
Discrete Memoryless Interference Channel: New
Outer Bound

Raul Etkin
Hewlett-Packard Laboratories

Palo Alto, CA 94304
Email: raul.etkin@hp.com

Erik Ordentlich
Hewlett-Packard Laboratories

Palo Alto, CA 94304
Email: erik.ordentlich@hp.com

Abstract— A new outer bound for the two-user discrete mem-
oryless interference channel is presented. This bound establishes
the capacity region of the binary erasure interference channel,
whose determination was left open in [6]. The new bound is
compared with the best known outer bounds for some additional
examples. It is also shown that the new outer bound is tight for a
one-sided deterministic interference channel that belongs to the
class studied by El Gamal and Costa.

I. I NTRODUCTION

The two-user interference channel (IFC) is an information-
theoretic model that captures the effects of interference be-
tween two users that communicate independent information
to their corresponding receivers. The capacity region of the
channel gives a fundamental measure of the tradeoff between
the rates that can be simultaneously achieved. Unfortunately,
except for a few special cases, the capacity region is unknown
[1], [2]. There are two IFC models that received particular at-
tention in the literature: the discrete memoryless IFC (DMIFC)
and the Gaussian memoryless IFC (GMIFC). Recently, the
capacity region of the Gaussian IFC has been characterized
with an error smaller than 1 bit/s/Hz per user through the
derivation of new outer bounds [3]. However, the DMIFC
lacks such a tight characterization for its capacity region. In
this work we make progress in the characterization of the
DMIFC capacity region by presenting a new outer bound. This
bound establishes the capacity region of the binary erasure
IFC, whose determination was left open in [5], [6].

The best known achievable region for both the DMIFC and
the GMIFC is due to Han and Kobayashi [8]. In order to
characterize capacity, it is of interest to obtain outer bounds
to the capacity region, such as the ones proposed by Sato
[9] and Carleial [10]. These bounds are obtained by allowing
cooperation between the transmitters or receivers, and by
enhancing the channel so that the actual channel outputs
are degraded versions of the enhanced channel outputs. In
the enhanced channel, each receiver is able to decode the
messages sent by both transmitters. However, in many cases,
the receivers in the actual channel cannot completely decode
the message sent by the interfering transmitter. In these cases,
the bounds of [9] and [10] are loose. In contrast, the bound
that we present in this work does not require either receiver
to completely decode the interfering signal. In addition to
determining the capacity region of the binary erasure IFC, we

present some examples that illustrate the performance of the
new bound. In particular, the new bound appears to be most
useful for channels with only one-sided interference.

Regarding notation we use lowercase letters to denote
scalars, uppercase letters to denote random variables, boldface
letters to denote vectors, and calligraphic uppercase letters
to denote sets. For examplex is a scalar,X is a random
variable, x is a vector,Xn

1 = (X1, . . . , Xn) is a random
vector, andX is a set. We useH(·), and I(·; ·) to denote
binary entropy and mutual information. The indicator function
is denoted by1(·), and(x)+ is used to denotemax{x, 0}. The
probability mass function (pmf) of the random variableX is
written aspX and, with slight abuse of notation, we usep(x)
to denote this function. We useB(p) to denote the Bernoulli
distribution of parameterp. We definehi(p1, . . . , pi−1) =
−

∑i
j=1 pj log2(pj) for pj ≥ 0,

∑i
j=1 pj = 1, i.e. the entropy

in bits of a random variable with pmf(p1, . . . , pi).

II. M ODEL

We consider a two-user discrete memoryless interference
channel. In this model there are two transmitter-receiver pairs,
where each transmitter wants to communicate with its corre-
sponding receiver (cf. Figure 1). This channel is defined by the
finite input alphabetsX1 andX2, the finite output alphabets
Y1 andY2, and transition probability matrices{p (y1|x1, x2)}
and {p (y2|x1, x2)}. Without loss of generality we assume
X1 = {1, . . . , k1} andX2 = {1, . . . , k2}.
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Fig. 1. Two-user discrete memoryless interference channel.

For a given block lengthn, useri communicates a message
mi ∈ {1, . . . , 2nRi} by choosing a codeword from a codebook
Ci,n, with |Ci,n| = 2nRi . The codewords{ci(mi)} of this
codebook have symbols chosen from the input alphabetXi.
Receiveri observes the channel outputs{yi,t : t = 1, . . . , n}
and uses a decoding functionfi,n : Yn

i → N to get the estimate



m̂i of the transmitted messagemi. The receiver is in error
wheneverm̂i 6= mi. The average probability of error for user
i is given by

εi,n = E[P (m̂i 6= mi)]

where the expectation is taken with respect to the random
choice of the transmitted messagesm1 andm2. Note that due
to the interference among users, the probability of error of
each user may depend on the codebook of the other user.

A rate pair (R1, R2) is achievable if there exists a family
of codebook pairs{(C1,n, C2,n)}n and decoding functions
{(f1,n(·), f2,n(·)}n, such that the average decoding error prob-
abilities ε1,n, ε2,n go to zero as the block lengthn goes to
infinity.

The capacity regionR of the interference channel is the
closure of the set of achievable rate pairs.

III. N EW OUTER BOUND

Theorem 1: Let U and Qi, i = 1, 2, be auxiliary random
variables withU chosen from the alphabetU = {1, . . . , 7} and
Qi chosen from the alphabetsQi = {1, . . . , ki}, such that:

p(x1, x2, y1, y2, q1, q2, u) = p(u)p(q1|u)p(x1|q1, u)p(q2|u)

· p(x2|q2, u)p(y1|x1, x2)p(y2|x1, x2)

and for fixedpU , pQ1|U , pQ2|U , pX1|Q1,U , pX2|Q2,U let

r1 =I(X1; Y1|X2, U), r2 = I(X2; Y2|X1, U)

f1(α, β) =(1 − β)I(Q2, X1; Y1|U) + βI(X1; Y1|X2, U)

+ αH(X2|Q2, U)

f2(α, β) =(1 − β)I(Q1, X2; Y2|U) + βI(X2; Y2|X1, U)

+ αH(X1|Q1, U).

For arbitrary functionsβ1, β2 : R
+ → [0, 1] define the rate

regionR̃(β1, β2) as:

R̃(β1, β2) =
{

(R1, R2) : 0 ≤ R1 ≤ r1, 0 ≤ R2 ≤ r2,

R1 + αR2 ≤ f1(α, β1(α)), αR1 + R2 ≤ f2(α, β2(α)),

for all α > 0
}

.

The rate region:

ROB(β1, β2) = Closure
⋃

pU ,pQ1|U ,pQ2|U ,
pX1|Q1,U ,pX2|Q2,U

R̃(β1, β2) (1)

is an outer bound to the capacity region of the discrete
memoryless interference channel, i.e.R ⊆ ROB(β1, β2).

Proof: First we derive the bounds on the individual rates
R1 and R2. For any code with block-lengthn, using Fano’s
inequality we can write:
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1

n
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where (a) follows from the non-negativity of mutual informa-
tion, (b) follows from the independence betweenX

n
1 andX

n
2 ,

(c) follows from the memoryless property of the channel, (d)
follows from the fact that conditioning reduces entropy, and
εn → 0 asn → ∞. The upper boundr2 onR2 can be obtained
in a similar way.

We next boundR1 + αR2. We will use the following
inequality:
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where (a) follows from the fact that extra conditioning reduces
conditional entropy, and (b) follows from the equality

p(Y1,i|X
i−1
2 ,Yi−1

1 ,Xn
1 ) = p(Y1,i|X

i−1
2 , X1,i)

which is a consequence of the memoryless property of the
channel.

For any codebook of block-lengthn, and non-negativeβ
we can write:
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(1 − β)H(Y1,i) + βI(X1,i; Y1,i|X2,i)

+
[

αH(X2,i|Qi) − (1 − β)H(Y1,i|Qi, X1,i)
]}

+ εn

(3)

where we added a non-negative mutual information term in (a),
and (b) follows from (2), the fact that removing conditioning
increases entropy, and the memoryless property of the channel.
In step (c) we defined the scalar random variablesQi with
alphabetsQi = {1, . . . , |Qi|}, |Qi| = ki−1

2 , to represent
the vectorsXi−1

2 . Using Carathéodory’s theorem [4] and the
procedure of [11] one can restrict attention to auxiliary random
variables chosen from an alphabet with cardinality|Qi| ≤ k2.
With this cardinality bound, we can letn → ∞ in (3) so that
εn → 0.

The boundf2(α, β) on αR1 + R2 can be obtained in a
similar way asf1(α, β).

The time sharing random variableU , and the closure
and union operations in (1) allow to replace the sums
(1/n)

∑n

i=1(·) by single letter expressions, and consider every
possible distribution onU , Q1, Q2, X1 and X2 that the
codebooks might induce. A standard argument for bounding
the cardinality of time sharing random variables can be used
here withU ∈ U , to show that it suffices to take|U| ≤ 7.

The individual bounds of Theorem 1 are defined in terms of
single letter expressions that can be computed with tractable
complexity when the alphabet sizes|X1| and |X2| are small.
The individual rate bounds of Theorem 1 can be interpreted
as the maximum single user rate that results when a genie
provides signalxi to receiverj (i 6= j). The boundsfi(α, β),
i = 1, 2 require the use of an auxiliary random variableQi

whose alphabet size can be restricted to|Xi|. The role ofQi

is to capture the effect of the memory in the input codeword
xi. An interesting aspect of the bounds of Theorem 1 is that
the alphabet size of these auxiliary random variables can be
made quite small.

Another novel feature of the boundf1(α, β) (f2(α, β))
is the addition of a non-negative termβI(Xn

1 ;Xn
2 |Y

n
1 )

(βI(Xn
1 ;Xn

2 |Y
n
2 )), where β ∈ [0, 1] can be optimized for

each choice ofα. At first glance, it is somewhat surprising
to see that the addition of a non-negative term can result in a
tighter bound. A more traditional approach to deriving upper
bounds is to enhance the channel through the aid of a genie that
provides side information to one or both receivers. The help
of the genie can usually be explained through a non-negative
term that is added to the mutual information expressions that
determine the upper bound. In our bounds, we can “optimize”
the genie for each choice ofα.

IV. T HE CAPACITY REGION OF THEBINARY ERASURE

INTERFERENCECHANNEL

The binary erasure interference channel has input and output
alphabetsX1 = X2 = Y1 = Y2 = {0, 1} and is defined by
the equations:y1 = x1 · x2, y2 = x2. We see that receiver
2 observes a clean version ofx2, but wheneverx2 = 0 the
symbolx1 is “erased” aty1.

This channel is a deterministic interference channel: the
outputs are deterministic functions of the inputs. However,
this simple channel does not belong to the class studied in
[7], because givenx1, y1 does not completely determinex2

(i.e. whenx1 = 0, y1 does not provide any information about
x2).

We specialize the bound of Theorem 1 to this channel. We
will only consider the boundsr2 and f1(α, β) with β = 0.
As will be seen, these bounds are enough to characterize the
capacity region. UsingY2 = X2 we can write:

r2 = I(X2; X2|X1, U) = H(X2|X1, U) ≤ H(X2) ≤ 1 (4)

and for any joint distribution of the form given in Theorem 1
we have:

f1(α, 0) = I(Q2, X1; Y1|U) + αH(X2|Q2, U)

=

7X
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p(u)
�
H(Y1|u) −

1X
x1=0

p(x1|u)H(Y1|x1, Q2, u)
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�
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�
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0≤p1,p2≤1

�
h2(p1 · p2)

+ max
0≤pa

2
,pb

2
,q≤1

pa
2
(1−q)+pb

2
q=p2

(α − p1)
�
(1 − q)h2(p

a
2) + q · h2(p

b
2)
�	

(c)
= max

0≤p1,p2≤1

�
h2(p1 · p2) + (α − p1)

+
h2(p2)

	
(5)

where (a) is obtained by noting that whenX1 = 0, Y1 = 0 and
hence the conditional entropy ofY1 is zero, and whenX1 = 1,
Y1 = X2. (b) is obtained by optimizing over the distributions
(X1|u) ∼ B(p1), (X2|u) ∼ B(p2), (X2|Q2 = 0, u) ∼ B(pa

2),
(X2|Q2 = 1, u) ∼ B(pb

2), Q2 ∼ B(q), satisfying the constraint
that the marginal distribution of(X2|Q2, u) coincides with the
distribution of (X2|u). Finally (c) is obtained by noting that
whena − p1 < 0 the solution of the innermost maximization
is zero.

Whenα > 1/2 the value ofp1 that optimizes (5) satisfies
p∗1 < α. Therefore whenα > 1/2 we obtain:

f1(α, 0) ≤ max
0≤p1,p2≤1

{

h2(p1 · p2) + (α − p1)h2(p2)
}

.

In addition, asα → 1/2 from above, the optimal valuep∗2 →
1, while whenα → ∞, p∗2 → 1/2. For 1/2 < α < ∞, p∗2(α)
is a continuous and decreasing function ofα.

The boundR1+αR2 ≤ f1(α, 0), true for anyα, implies that
for fixed0 < R2 < 1 andα∗(R2) satisfyingh2(p

∗
2(α(R2))) =

R2

R1 ≤ f1(α
∗(R2), 0) − α∗(R2)R2



≤ max
0≤p1≤1

h2(p1 · p
∗
2(α

∗(R2))) − p1R2. (6)

We will show that for any0 < R2 < 1, this upper bound
on R1 is achievable. FixR2 and consider a communication
scheme in which user 2 communicates with a codebook of
block-lengthn generated from independent and identically
distributed (i.i.d.) samples of aB(p2) random variable, where
h2(p2) = R2 with 1/2 < p2 < 1. This codebook has2nR2

codewords. When user 2 communicates using this codebook
the vectorsxn

2 have a distribution such that its components are
i.i.d. B(p2). The resulting communication channel for user 1
is a binary memoryless channel where the input with value
0 is transmitted with no change, but the input with value 1
is converted to a 0 with probabilityp2. The capacity of this
channel is:

C1(p2) = max
0≤p1≤1

I(X1; Y1) = max
0≤p1≤1

h(p1 · p2) − p1h2(p2)

which can be achieved by user 1 asn → ∞. Therefore, the
upper bound (6) can be achieved. It follows that for0 < R2 <
1 we have a characterization of the maximum achievableR1.
Note that0 ≤ R2 ≤ 1. It follows that the closure of the region

R = {(R1, R2) : 1/2 < p2 < 1, R2 = h2(p2),

R1 ≤ max
0≤p1≤1

h(p1 · p2) − p1h2(p2)} (7)

is the capacity region of the binary erasure interference chan-
nel (see Figure 2).
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Fig. 2. Capacity region of the binary erasure interference channel.

V. OTHER EXAMPLES

In order to illustrate how the bound of Theorem 1 improves
upon the existing outer bounds, but also to understand its
limitations we present some additional examples.

1) A one-sided channel with multiplicative interference:
Consider a deterministic interference channel withX1 =
{0, 1, 2}, X2 = 1, 2, Y1 = {0, 1, 2, 4}, Y2 = {1, 2}, defined
by the equations:y1 = x1 · x2, y2 = x2.

In this channel, receiver 2 observes a clean version of
the input signalx2, while y1 is affected by interference. In
addition, sincey1 = 0 wheneverx1 = 0 regardless of the value
of x2, this channel does not belong to the class of deterministic
interference channels studied in [7].

Before specializing Theorem 1 to this channel, we derive
some inner and outer bounds for the capacity region using
previous results.

Consider a communication scheme where user 1 commu-
nicates using a codebook generated using i.i.d. samples of
a random variable with probability mass function (pmf)pX1

with pX1
(0) = p0, pX1

(1) = p1, pX1
(2) = 1 − p0 − p1 and

user 2 communicates using a codebook generated using i.i.d.
samples of a random variable with pmfpX2

with pX2
(1) =

1 − p2 , pX2
(2) = p2. User 2 can communicate reliably at a

rateR2 = h2(p2) asn → ∞. If user 1 treats the interference
from user 2 as noise, he can communicate reliably at a rate:

R1 = I(X1; Y1)

= h4(p0, p1(1 − p2), (1 − p0 − p1)p2) − (1 − p0)h2(p2).

As we vary 0 ≤ p0, p1, p2 ≤ 1 we get the inner bound
corresponding to the scheme that treats interference as noise.

Another inner bound results from requiring that user 1
be able to completely decode the message transmitted by
user 2. In this case, the achievable rates are given by the
capacity region of the multiple access channel formed by both
transmitters and receiver 1. This capacity region is:

RMAC1
=

{

(R1, R2) : R1 ≤ I(X1; Y1|X2),

R2 ≤ I(X2; Y1|X1), R1 + R2 ≤ I(X1, X2; Y1),

for some(p0, p1, p2) ∈ [0, 1]3
}

(8)

where I(X1; Y1|X2) = h3(p0, p1), I(X2; Y1|X1) = (1 −
p0)h2(p2), andI(X1, X2; Y1) = h4(p0, p1(1− p2), (1 − p0 −
p1)p2).

Furthermore, by time-sharing between treating interference
as noise and decoding user 2’s message at receiver 1, we can
achieve a region that is equal to the convex hull of the union
of both achievable regions. We call this regionR1.

With more generality, we could consider a scheme of the
type proposed by Han and Kobayashi in [8]. This scheme con-
sists of splitting the information to be sent into two messages:
a private message to be decoded only by the intended receiver,
and a common message to be decoded by both receivers. In
the channel that we are considering,y2 is independent ofx1

so user 1 can only send private information. Letu2 and w2

denote the private and common messages of user 2, and let
U2 and W2 be the random variables used to generate the
codebooks of the Han-Kobayashi (HK) scheme. In addition,
let Q be a time sharing random variable used to time-share
between multiple schemes. According to Theorem 4.1 of [8] it
is enough to consider random variables chosen from alphabets
with cardinalities:

|U2| ≤ |X2| + 2 = 4, |U2| ≤ X2 + 7 = 9, |Q| ≤ 11.

Furthermore, to compute the HK achievable region we need
to consider all possible functionsf : (U2 × W2) → X2 (i.e.
236 functions) that encode the private and common messages
into the message transmitted in the channel. It follows that
even for the relatively simple channel that we are considering,
computing the HK achievable region is a complex task.



We limit our analysis to the following HK scheme. We
chooseU2 ∼ B(u), W2 ∼ B(w), and use the encoding
functionx2 = u2⊕w2+1, where⊕ denotes modulo 2 addition.
After varying (u, w, p0, p1) ∈ [0, 1]4 we obtain an achievable
region matchingR1. We conjecture that the HK achievable
region is equal toR1.

We can obtain an outer bound to the capacity region by
considering a modified interference channel in which a genie
provides side informations1 = x2 · 1(x1 = 0) to receiver
1. Since x2 is a function of (x1, y1, s1), this genie-aided
channel belongs to the class of deterministic channels studied
in [7], and its capacity region can be explicitly computed. The
resulting outer bound is:

ROB1
=

{

(R1, R2) : R1 ≤ h3(p0, p1), R2 ≤ h2(p2),

R1 + R2 ≤ h4[p0, p1(1 − p2), (1 − p0 − p1)p2]

+ p0h2(p2), for some(p0, p1, p2) ∈ [0, 1]3
}

.

The same outer bound can be obtained from the bound of [10]
Theorem 1, which is more general than the bound of Sato [9].

We specialize Theorem 1 to this channel. We only need to
consider the individual constraintsr1, r2, andf1(α, β), since
adding the constraintf2(α, β) does not improve the outer
bound. We obtain:

r1 ≤ max
0≤p0,p1≤1

h3(p0, p1) = log(3)

r2 ≤ max
0≤p2≤1

h2(p2) = 1

f1(α, β) ≤ max
0≤p0,p1,p2≤1

(1 − β)h4[p0, p1(1 − p2),

(1 − p0 − p1)p2] + βh3(p0, p1)

+ (α − (1 − β)(1 − p0))
+h2(p2)

where the optimization that determinesf1(α, β) must be
computed numerically for each value ofα andβ. Furthermore,
we can optimizeβ(α) to obtain the smallest outer bound.
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Fig. 3. Achievable region and outer bounds. Note that the axes are drawn
in different scales, and the horizontal axis starts at1.2 [bits/s/Hz].

Figure 3 shows the inner boundR1 and the outer bounds
ROB1

andROB . We see that for this channel, the new outer
boundROB strictly improves on the existing boundROB1

.
2) The one-sided El Gamal-Costa IFC: Consider a deter-

ministic interference channel defined by:

v1 = g1(x1) , v2 = g2(x2) , y1 = f1(x1, v2) , y2 = f2(x2, v1)

whereg1(·) andg2(·) are arbitrary functions, while for fixed
x1 (x2), f1(x1, ·) (f2(x2, ·)) is injective. The capacity region
of this channel has been obtained in [7].

We will show that for this special class of channels, when
y2 = x2 (i.e. f2(x2, v1) = x2) Theorem 1 is tight. We can
compute the different bounds of Theorem 1 for this channel
for specific values ofα andβ:

r1 = H(Y1|X2) = H(Y1|V2, X2) ≤ H(Y1|V2)

r2 = H(Y2|X1) = H(Y2)

f1(1, 0) = H(Y1) + H(X2|Q2) − H(Y1|Q2, X1)

= H(Y1) + H(X2|Q2) − H(V2|Q2)

= H(Y1) + H(X2|V2, Q2)

(a)

≤ H(Y1) + H(Y2|V2) (9)

where (a) follows from the assumptiony2 = x2 and removing
conditioning. It is easy to check that the right hand sides of
(9) coincide with the non-redundant bounds in [7] Theorem 1.
It follows thatROB(0, 0) of Theorem 1 is the capacity region
of this channel. Note that in this case the bounds of Theorem
1, f1(α, β) for α 6= 1, andf2(α, β) are redundant.
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