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Abstract— A new outer bound for the two-user discrete mem- present some examples that illustrate the performanceeof th
oryless interference channel is presented. This bound edtishes new bound. In particular, the new bound appears to be most
the capacity region of the binary erasure interference chanel, ,sefy| for channels with only one-sided interference.
whose determination was left open in [6]. The new bound is . .
compared with the best known outer bounds for some additiona Regarding notation we use lowercase Iettgrs to denote
examples. It is also shown that the new outer bound is tight foa ~ Scalars, uppercase letters to denote random variabletfabel
one-sided deterministic interference channel that belorgto the letters to denote vectors, and calligraphic uppercasersett
class studied by El Gamal and Costa. to denote sets. For example is a scalar,X is a random
variable, x is a vector, X} = (Xi,...,X,) is a random
vector, andX’ is a set. We usd{(-), and I(;-) to denote

The two-user interference channel (IFC) is an informatiofvinary entropy and mutual information. The indicator fuowt
theoretic model that captures the effects of interferenee ks denoted byl (-), and(x)" is used to denotmax{z,0}. The
tween two users that communicate independent informatiprobability mass function (pmf) of the random variableis
to their corresponding receivers. The capacity region ef thvritten aspx and, with slight abuse of notation, we usgr)
channel gives a fundamental measure of the tradeoff betweerdenote this function. We ug8(p) to denote the Bernoulli
the rates that can be simultaneously achieved. Unfortlynatelistribution of parametep. We defineh;(p1,...,pi—1) =
except for a few special cases, the capacity region is unknow Z;Zl pjlogy(p;) for p;j >0, Z;:l p; = 1, i.e. the entropy
[1], [2]. There are two IFC models that received particullar ain bits of a random variable with pm, ..., p;).
tention in the literature: the discrete memoryless IFC (BI)
and the Gaussian memoryless IFC (GMIFC). Recently, the Il. MODEL
capacity region of the Gaussian IFC has been characterizegve consider a two-user discrete memoryless interference
with an error smaller than 1 bit/s/Hz per user through théhannel. In this model there are two transmitter-receiagnsp
derivation of new outer bounds [3]. However, the DMIFGyhere each transmitter wants to communicate with its corre-
lacks such a tight characterization for its capacity region sponding receiver (cf. Figure 1). This channel is definechiey t
this work we make progress in the characterization of thgite input alphabetst; and X, the finite output alphabets
DMIFC capacity region by presenting a new outer bound. This, andy),, and transition probability matrice® (y1 |1, z2)}
bound establishes the capacity region of the binary erasg@i@y {p (y,|z1,2,)}. Without loss of generality we assume
IFC, whose determination was left open in [5], [6]. Xy={1,... ki}andXs = {1,... ko}.

The best known achievable region for both the DMIFC and
the GMIFC is due to Han and Kobayashi [8]. In order to
characterize capacity, it is of interest to obtain outerrusu
to the capacity region, such as the ones proposed by Sato
[9] and Carleial [10]. These bounds are obtained by allowing
cooperation between the transmitters or receivers, and by
enhancing the channel so that the actual channel outputs
are degraded versions of the enhanced channel outputs. In
the enhanced channel, each receiver is able to decode the
messages sent by both transmitters. However, in many cases,
the receivers in the actual channel cannot completely decod For a given block length, useri communicates a message
the message sent by the interfering transmitter. In thesescam; € {1,...,2"%} by choosing a codeword from a codebook
the bounds of [9] and [10] are loose. In contrast, the bouidd,,, with |C; .| = 2"f. The codewords{c;(m;)} of this
that we present in this work does not require either receivendebook have symbols chosen from the input alphafet
to completely decode the interfering signal. In addition tReceiveri observes the channel outpytg;: : t = 1,...,n}
determining the capacity region of the binary erasure IFE, vand uses a decoding functigp,, : V* — N to get the estimate
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Fig. 1. Two-user discrete memoryless interference channel
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m; of the transmitted message;. The receiver is in error :l Z [H(Yl .|Yi71 X2)
wheneveni,; # m,. The average probability of error for user n & S

1 is given by _ ; Y, YL X X)) 4
€in = E[P(m; # m;)] n( LY Xy 2)] o
(0)

1
where the expectation is taken with respect to the random ~,
choice of the transmitted messages andm,. Note that due "
to the interference among users, the probability of error of (i)l Z [H(Y1 [ Xa) — H(YV1 4| X1, Xo .)} te
each user may depend on the codebook of the other user. Cn S e "

A rate pair (R1, Rz2) is achievable if there exists a family 1
of codebook pairs{(Cy,,,C2,)}» and decoding functions :—ZI(XLZ';YVLAXQJ')-F@I

{(f1.n(), f2.n()}n, Such that the average decoding error prob- " i=1

_ab_lhpes €1,n,€2,n 9O 10 Z€r0 as the block length goes to \\pqpe (a) follows from the non-negativity of mutual informa
infinity. i , i i tion, (b) follows from the independence betweXii andX?,
The capacity regiorR of the interference channel is the) follows from the memoryless property of the channel, (d)
closure of the set of achievable rate pairs. follows from the fact that conditioning reduces entropy an
e, — 0 asn — oo. The upper bound, on R, can be obtained
N in a similar way.
Theorem 1. Let U and@;, @ = 1,2, be auxiliary random e next boundR; + aR.. We will use the following
variables withU chosen from the alphab&t= {1,...,7} and inequality:

Q; chosen from the alphabe&; = {1,...,k;}, such that:

[H(Yl,i|Yli_lan) — H(Y1,:| X1, X2,i)} +€n
1

B

IIl. NEwW OUTER BOUND

H(Y7XT) = Z H(Y1: Y] XT)

p(21, 22, Y1, Y2, q1, g2, u) = p(w)p(qi|u)p(1]qr, u)p(galu) -
p

- p(@2]g2, w)p(yi|e1, 22)p(yz|21, 22) (a) ™ _ _
> Z H(}/l-,i|Xl2717 Yiilv X;’ll)

and for fixedpy, pg, v, P. (U Px11Q1,U» PX2]Q0,u €L P
r1 =1(X1; Y11 X2,U), 1o = I1(Xo;Y2|X1,U) ® zn:H(yl X1 X)) 2)
- T 2 ) K3
fila, B8) =(1 = B)I(Qz2, X1; Y1|U) + BI(X1; Y1|X2,U) i=1
+aH(X;|Q2,U) where (a) follows from the fact that extra conditioning redsi

fa(a, B) =(1 = B)1(Q1, Xa; Ya|U) + BI(X2; Y| X1, U) conditional entropy, and (b) follows from the equality

+ aH(X1|Q1,U). o _
aH(X|QuU) p(Yil X5 YT XT) = p(Ye, X5, X0 )

For arbitrary functionss;, 32 : R™ — [0,1] define the rate

regionfz(ﬁl 3,) as: which is a consequence of the memoryless property of the

channel.
R(Br,B2) = {(R1,R2) : 0 < Ry < 71,0 < Ro <1y, For any codebook of block-length, and non-negatives
Ri+aR < fi (a,ﬁl (a))7aR1 + Ry < fz(a,ﬁg(a)), we can write:
1
foralla >0} RitaR < = [I(XI3 YY) +al (X35 Y5)] + e

The rate region: (a)1 n nlvn
3 SE[H(X1)—H(X1|Y1)
Ros(B1,32) = Closure U R(B1,B2) (1) +aH(X3) + BI(XT; X5 Y] + €

PUPQ1|U>PQ2|U >
PXx11Q1,UPX2|Q2,U

1
. : . . =—{H(X}) - H(X}|Y}) + aH (X})
is an outer bound to the capacity region of the discrete 7 I .
memoryless interference channel, iR.C Rop (61, fz). + BH(XTYT) — H(XY|X5, YT)]} + en
Proof: First we derive the bounds on the |nFj|V|duaI rfates :_{(1 ) [H(Yl) —H(Y! |X1)] +BH(XT)
R, and R,. For any code with block-length, using Fano’s n
inequality we can write: +aH(Xy) - BH(X}|X3, YT)} +en

1
(a) =—J{(1-p)|H(Y?)— H(Y?XT}
Ry SHIXE YY) + 60 € ~I(X53 YT X3) + € R {0 = AHET) - HYTXD)
" +BI(XT: X3, YT) + aH (X3)} +en
O 1Xp; YTIXE) + en | . o
:5{(1_5)[H(Y1)_H(Y1|X1)]
— [H(YYX3) — HYP X X3)] + o, ALK YPIXE) + aHXD) 4+ e

3| =3

3



:l{(1 - B)[H(YT) — H(Y?|XT])] IV. THE CAPACITY REGION OF THEBINARY ERASURE
n

B[H(YXE) — HOYTX]XE)] + aH (X)) + e . |NTER.FERENCECHANNEL -
01 clphabotst, = s = 31 3y (0.1) and s Geined by
SE ; {(1 - f) [H(le) — H(V1ilX5 ’Xl’i)} the equatiolnsy1 2: T '1562, y; = 9172.7 We see that receiver

+ BIH(Y14|X2) — H(Y14| X145, Xa.)] 2 observes a clean version 0§, but whenever, = 0 the

symbolz; is “erased” aty;.

1—1
+ oH (X2,4]X5 )} +én This channel is a deterministic interference channel: the

(01 - _ outputs are deterministic functions of the inputs. Howgver
n 2} {(1 = B)H(Y1,0) + BI(X15 Y10l X2.0) this simple channel does not belong to the class studied in
. [7], because given:;, y; does not completely determing
+ [0 (Xo,0]Qi) = (1 = HHY1ilQi, X1.0)] } +en 3) (i.e. whenz; = 0, y; does not provide any information about
.%'2).

where we added a non-negative mutual information term in (a) We specialize the bound of Theorem 1 to this channel. We
and (b) follows from (2), the fact that removing conditiogin will only consider the bounds, and f;(a, 3) with 3 = 0.
increases entropy, and the memoryless property of the ehanas will be seen, these bounds are enough to characterize the
In step (c) we defined the scalar random variatflgswith  capacity region. Usinds = X, we can write:
alphabetsQ; = {1,...,|Q;|}, |Q:| = ki, to represent _
the vectorsX’~!. Using Carathéodory’s theorem [4] and the "2 ~ I(X; Xo| X3, U) = H(Xo| X0, U) S H(Xz) <1 (4)
procedure of [11] one can restrict attention to auxilianydam and for any joint distribution of the form given in Theorem 1
variables chosen from an alphabet with cardinglidy| < k,. W€ have:
With this cardinality bound, we can let — oo in (3) so that fi(e, 0) = I[(Q2, X1; Y1|U) + aH(X2|Q2,U)
en — 0. 7 1
The boundfs(a, 3) on aRy + Ry can be obtained ina = _pw)[H(Yilu) = > pai|u)H(Yilz1, Qs,u)
similar way asf1(«a, 3). u=1 ©1=0

The time sharing random variabl&, and the closure + aH(X2|Qz2,u)]
and union operations in (1) allow to replace the sums )~
(1/n) 31, (-) by single letter expressions, and consider every — > () [HMYilu) + (o = p(X1 = 1u)) H (X2|Q2, u)]
possible distribution onl/, @1, @2, X; and X, that the u=t
codebooks might induce. A standard argument for bounding < max max__ {ha(p1 - p2)
the cardinality of time sharing random variables can be used “Sth 7 0sPpest

here withU/ € I, to show that it suffices to také/| < 7. m Tl (@ = p1)[(1 = @)h2(p3) + g ha(p3)] }
The individual bounds of Theorem 1 are defined in terms of P2 (1) pb a3

single letter expressions that can be computed with tréetab () n

complexity when the alphabet size%,| and |X,| are small.  ~ o<p; pe<i {h2(p1 - p2) + (@ = p1)ha(p2) } ®)

The individual rate bounds of Theorem 1 can be interpretgghere (a) is obtained by noting that wh&h = 0, Y; = 0 and
as the maximum single user rate that results when a geRighce the conditional entropy f is zero, and wherk; = 1,
provides signal; to receiverj (i 7 j). The boundsfi(e, 5), y; — X,. (b) is obtained by optimizing over the distributions
i = 1,2 require the use of an auxiliary random variallle (x,|u) ~ B(p,), (Xz|u) ~ B(p2), (X2|Q2 = 0,u) ~ B(p2),
whose alphabet size can be restrictedg. The role ofQ: (X, |Q, = 1,u) ~ B(pY), Q2 ~ B(q), satisfying the constraint
is to capture the effect of the memory in the input codewokfiat the marginal distribution qfX,|Q2, u) coincides with the
x;. An interesting aspect of the bounds of Theorem 1 is thstribution of (X5|u). Finally (c) is obtained by noting that
the alphabet size of these auxiliary random variables can jfenq — p; < 0 the solution of the innermost maximization
made quite small. is zero.

Another novel feature of the boundi(a,5) (f2(a;5))  wWhena > 1/2 the value ofp, that optimizes (5) satisfies
is the addition of a non-negative termil(X7;X5|Y7T) p* < a. Therefore wheny > 1/2 we obtain:
(BI(X7; X5YE)), where 3 € [0,1] can be optimized for
each choice of. At first glance, it is somewhat surprising  /1(,0) < omax_, {ha(p1 - p2) + (@ = p1)ha(p2) }.
to see that the addition of a non-negative term can resultina_ ... .
tighter bound. A more traditional approach to deriving Lrppln ad(jltlon, asox —1/2 fiom above, the optimal valu;eé -
bounds is to enhance the channel through the aid of a gertie thaWh'Ie yvhena 0% P2 1./2' For 1./2 < a <00, pj(a)
provides side information to one or both receivers. The heﬁ)?hcogtmug;s ang dicreasw(l)g f[unct]:onaof implies that
of the genie can usually be explained through a non—negati,vef. € d(())un R1+O‘1 2 ” f*l(g’ ), ;_ue _orz;nya; |m|3%|es f
term that is added to the mutual information expressions thy o v < ft2 < Landa (Rz) satisfyingha(p3(a(R2))) =
determine the upper bound. In our bounds, we can “optimize
the genie for each choice of. R < fi(a*(R2),0) — a*(R2)Rs



< max ha(p1 - p5(a*(Rz))) — p1Ra. (6) Before specializing Theorem 1 to this channel, we derive
0<pi=l some inner and outer bounds for the capacity region using
We will show that for any0 < R, < 1, this upper bound previous results.

on R, is achievable. FixR, and consider a communication Consider a communication scheme where user 1 commu-
scheme in which user 2 communicates with a codebook witates using a codebook generated using i.i.d. samples of
block-lengthn generated from independent and identicallg random variable with probability mass function (pmf),
distributed (i.i.d.) samples of &(p2) random variable, where with px, (0) = po, px, (1) = p1, px,(2) =1 —po — p1 and
ha(p2) = Rs with 1/2 < py < 1. This codebook hag"#z user 2 communicates using a codebook generated using i.i.d.
codewords. When user 2 communicates using this codebaanples of a random variable with pmf, with px, (1) =
the vectorscy have a distribution such that its components are— p, , px,(2) = p2. User 2 can communicate reliably at a
i.i.d. B(p2). The resulting communication channel for user fate R, = ho(p2) asn — oo. If user 1 treats the interference
is a binary memoryless channel where the input with valdeom user 2 as noise, he can communicate reliably at a rate:

0 is transmitted with no change, but the input with value % XY
is converted to a 0 with probability,. The capacity of this ~*! — (X1:¥1)
channel is: = ha(po,p1(1 = p2), (1 = po — p1)p2) — (1 — po)h2(p2).

Ci(ps) = max I(X1;Y1) = max h(ps-p2) — prho(ps) AS We vary0 < po,pi,p2 < 1 we get the inner bound
0<p1<1 0<p:1<1 corresponding to the scheme that treats interference ag.noi
which can be achieved by user 1 as— co. Therefore, the ~ Another inner bound results from requiring that user 1
upper bound (6) can be achieved. It follows thatdor R, < be able to completely decode the message transmitted by
1 we have a characterization of the maximum achievadhle Uuser 2. In this case, the achievable rates are given by the
Note that) < R, < 1. It follows that the closure of the regioncapacity region of the multiple access channel formed bia bot
transmitters and receiver 1. This capacity region is:

R ={(R1,R2) :1/2 < pa < 1, Ra = ha(p2),

Ratac, = {(Ri, Rs) : R < I(X1;Y1|X2),
R < s bl p) - pih(pe)) (A0 = UL ) A S TG0 X
>P1>

Ry < I(X2;Y1|X1), R1 + R < I(X1,X2; Y1),

is the capacity region of the binary erasure interferen@ch for some(po, p1,p2) € [0, 1]3} (8)

nel (see Figure 2). where I(X1;Y1|X2) = hs(po,p1), I(Xo;Y1]X1) = (1 —

po)ha(p2), and (X1, X; Y1) = ha(po, p1(1 —p2), (1 —po —
P1)p2)-

Furthermore, by time-sharing between treating interfeeen
as noise and decoding user 2's message at receiver 1, we can
achieve a region that is equal to the convex hull of the union
of both achievable regions. We call this regifn.

With more generality, we could consider a scheme of the
type proposed by Han and Kobayashi in [8]. This scheme con-
0 sists of splitting the information to be sent into two meg&sag

\ a private message to be decoded only by the intended receiver
S, and a common message to be decoded by both receivers. In
R, bits/siHz] the channel that we are considering,is independent of
so user 1 can only send private information. ket and wo
denote the private and common messages of user 2, and let
U, and Wy be the random variables used to generate the
codebooks of the Han-Kobayashi (HK) scheme. In addition,

In order to illustrate how the bound of Theorem 1 improvdst ) be a time sharing random variable used to time-share
upon the existing outer bounds, but also to understand litstween multiple schemes. According to Theorem 4.1 of [8] it
limitations we present some additional examples. is enough to consider random variables chosen from alpkabet

1) A one-sided channel with multiplicative interference: with cardinalities:

Consider a deterministic interference channel with =
0,1,2), X = 1,2, V1 = {0,1,2,4}, I» = {1,2}, defined o] < | o +2=14, Jilo| < X2 +7 =09, [Q <11.
by the equationsy; = x1 - x2, Y2 = 2. Furthermore, to compute the HK achievable region we need

In this channel, receiver 2 observes a clean version wf consider all possible functions: (Uz x Wh) — X, (i.e.
the input signalz,, while y; is affected by interference. In 236 functions) that encode the private and common messages
addition, since;; = 0 wheneverr; = 0 regardless of the value into the message transmitted in the channel. It follows that
of x4, this channel does not belong to the class of determiniséeen for the relatively simple channel that we are considgri
interference channels studied in [7]. computing the HK achievable region is a complex task.

R, [bits/s/Hz]

Fig. 2. Capacity region of the binary erasure interferenttanoel.

V. OTHER EXAMPLES



We limit our analysis to the following HK scheme. We Figure 3 shows the inner bourfd; and the outer bounds
chooselUs ~ B(u), W2 ~ B(w), and use the encodingRop, andRop. We see that for this channel, the new outer
functionzy = ua@wy+1, whered denotes modulo 2 addition. boundR o5 strictly improves on the existing bourdo s, .
After varying (u, w, po,p1) € [0,1]* we obtain an achievable 2) The one-sided EI Gamal-Costa IFC: Consider a deter-
region matchingR;. We conjecture that the HK achievableministic interference channel defined by:
region is equal toR;.

We can obtain an outer bound to the capacity region By — gi(@1) » v2 = g2(w2) sy = fi(@1,v2) s y2 = fo(wa, 1)
considering a modified interference channel in which a genihereg, () and g»(-) are arbitrary functions, while for fixed
provides side information; = x3 - 1(x; = 0) to receiver z; (x3), fi(w1,-) (f2(x2,-)) is injective. The capacity region
1. Sincez, is a function of (x1,y1,s1), this genie-aided of this channel has been obtained in [7].
channel belongs to the class of deterministic channelsestud We will show that for this special class of channels, when
in [7], and its capacity region can be explicitly computedeT y, = x5 (i.e. fo(z2,v1) = x2) Theorem 1 is tight. We can
resulting outer bound is: compute the different bounds of Theorem 1 for this channel

for specific values ofv and 3:

Rop, = {(R1,R2) : Ry < h3(po,p1), R2 < ha(p2), r = H(Yi|Xs) = H(Yi|Va, Xa) < H(Y:|V)

R1 + Ry < hyapo, p1(1 — p2), (1 — po — p1)p2]

5 ro = H(Y2|X1) = H(Y2)
+ pohalps), for some(po, pi,pz) € 0,11} Fi(1,0) = H(Y:) + H(Xa1@2) — H(%i|Qs, X)
The same outer bound can be obtained from the bound of [10] = H(Y1) + H(X2|Q2) — H(V2|Q2)
Theorem 1, which is more general than the bound of Sato [9]. = H(Y1) + H(X3|Va, Q2)

We specialize Theorem 1 to this channel. We only need to ()
consider the individual constraints, o, and f;(«, 8), since < H(Y7) + H(Yz|V2) 9)
adding the constrainfz(«, 3) does not improve the outer

bound. We obtain: where (a) follows from the assumptigh = z2 and removing

conditioning. It is easy to check that the right hand sides of

r < max  hs(po,p1) = log(3) (9) coincide with the non-redundant bounds in [7] Theorem 1.

"~ 0<po,p1<1 It follows thatRo 5 (0,0) of Theorem 1 is the capacity region
72 Sogla§1 ha(p2) =1 of this channel. Note that in this case the bounds of Theorem
Sp2>
1, fi(a, B) for a # 1, and fz(«, 3) are redundant.
file, B) < max (1 - B)ha[po,pi(1 — pa), e f) (@)
0<po,p1,p2<1 REFERENCES
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