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Degrees of Freedom in Some Underspread MIMO
Fading Channels
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Abstract—Consider a multiple-input multiple-output (MIMO)
fading channel in which the fading process varies slowly over
time. Assuming that neither the transmitter nor the receiver have
knowledge of the fading process, do multiple transmit and re-
ceive antennas provide significant capacity improvements at high
signal-to-noise ratio (SNR)? For regular fading processes, recent
results show that capacity ultimately grows doubly logarithmically
with the SNR independently of the number of transmit and receive
antennas used. We show that for the Gauss–Markov fading process
in all regimes of practical interest the use of multiple antennas
provides large capacity improvements. Nonregular fading pro-
cesses show completely different high-SNR behaviors due to the
perfect predictability of the process from noiseless observations.
We analyze the capacity of MIMO channels with nonregular
fading by presenting a lower bound, which we specialize to the
case of band-limited slowly varying fading processes to show that
the use of multiple antennas is still highly beneficial. In both cases,
regular and nonregular fading, this capacity improvement can be
seen as the benefit of having multiple spatial degrees of freedom.
For the Gauss–Markov fading model and all regimes of practical
interest, we present a communication scheme that achieves the
full number of degrees of freedom of the channel with tractable
complexity. Our results for underspread Gauss–Markov and
band-limited nonregular fading channels suggest that multiple
antennas are useful at high SNR.

Index Terms—Channel capacity, decision-oriented training,
fading number, high signal-to-noise ratio (SNR), multiple an-
tennas, noncoherent communication.

I. INTRODUCTION

RECENT information-theoretic results suggest that in
richly scattered wireless environments, systems with

multiple transmit and multiple receive antennas (multiple-input
multiple-output (MIMO) systems) can have very large ca-
pacities. In particular, Foschini and Gans [1] and Telatar [2]
considered a channel with transmit and receive antennas,
with Rayleigh flat-faded channel gains independent and identi-
cally distributed (i.i.d.) across antenna pairs, and showed that
at high signal-to-noise ratio (SNR), the capacity of this channel
grows like for large SNR. This yields
a -fold increase in capacity over a channel with
a single transmit and a single receive antenna. The parameter

can be interpreted as the number of degrees of
freedom (d.o.f.) of the channel: the dimension of the space over
which communication can take place.
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The preceding result assumes that the receiver can perfectly
track the fading gains of the channel (so-called perfect channel
state information (CSI) at the receiver). In high-mobility appli-
cations, this may not be a reasonable assumption. Moreover, in
the high-SNR regime, where the amount of noise is small, it is
conceivable that the impact of channel uncertainty on perfor-
mance is more pronounced. This leads to the question: what is
the high-SNR capacity of time-varying fading channels without
the prior assumption of CSI? In particular, does the number of
transmit and receive antennas have a significant impact in the
high-SNR capacity? Is the notion of degrees of freedom still
relevant ?

As a first step to answer these questions, Marzetta and
Hochwald analyzed in [3] the block-fading model, where the
fading matrix is assumed to remain constant over
the duration of a block of length , and varies independently
between blocks. The high SNR capacity of this model in the
MIMO case was characterized by Zheng and Tse in [4] where
it is shown that

where . One has to be careful in in-
terpreting this result in the regime of validity of the block-fading
model. At high SNR, small variations in the channel coefficients
can introduce enough uncertainty to affect capacity, and this is
not taken into account when one assumes a constant channel in
the coherence block.

To overcome this difficulty, Liang and Veeravalli [5] intro-
duced the time-selective block-fading model, where the fading
matrix is allowed to vary within each block, and is assumed to
vary independently across blocks. For the MIMO case, they ob-
tained a capacity lower bound

where , is the rank of the co-
variance matrix of , and is a constant indepen-
dent of . In all cases, the block-fading model assumes inde-
pendent channel realizations in different blocks. This assump-
tion may be justified in time-interleaved or frequency-hopped
systems, but may be artificial for systems that operate by trans-
mitting a continuous symbol stream over time.

In this work, we will analyze a model in which the fading
process is stationary and is allowed to vary from symbol to
symbol. To answer the above questions in this context, Lapi-
doth and Moser [6], building on earlier work by Taricco and
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Elia for memoryless fading [7], recently showed a contrasting
result: that at high SNR, for regular1 Gaussian fading processes,
the first-order term of the capacity is , regardless of
what the number of transmit and receive antennas is. Thus, not
only does capacity grow much slower than in the case with per-
fect CSI, but this result also suggests that without CSI, the per-
formance gain from having multiple antennas, if any, will only
appear as a second-order effect. The increase in the number of
the degrees of freedom has minimal impact.

Does this then suggest that the perfect CSI results are very
fragile? Even though [6] explicitly incorporates the channel
variation (and the associated uncertainty) in its model, the

result is still asymptotic in the SNR and thus
one has to be careful in interpreting its regime of validity. In
particular, since the channel variation process is fixed while the
SNR is taken to infinity, it is conceivable that the
growth only occurs when the noise level is much smaller than
the amount of channel variation from one sample to the next.
However, typical wireless channels are underspread, which
means that this variation is small. Thus, one has to look at
the effect of the SNR and the amount of channel variation
simultaneously to get a more complete picture.

The result is obtained in the context of regular
fading processes. When the fading process is nonregular, it can
be perfectly predicted from noiseless observations of its infinite
past, and one should expect different high SNR capacity asymp-
totics. In fact, Lapidoth shows in [8], [9] that in the case of non-
regular fading the capacity can grow as , ,
or , , in a single-input single-output
(SISO) channel. Therefore, regular and nonregular fading pro-
cesses can result in completely different high SNR capacities
and need to be analyzed separately.

Typical wireless channels are underspread, that is, they sat-
isfy , where is the coherence time and the
coherence bandwidth of the channel.2 In the context of reg-
ular fading, the underspread condition implies that the one-step
minimum mean-square error (MMSE) in the prediction of the
fading process is small. In the nonregular fading case, when
the process is band-limited to a bandwidth of where
is the maximum Doppler shift, the underspread condition im-
plies .

A. Main Results

In this work, we would like to answer the questions raised
in the beginning of this section for some channels with regular
and nonregular fading processes. Since we are mainly inter-
ested in the influence of the number of transmit and receive
antennas on the capacity, we give particular emphasis to the
MIMO case.

We analyze the regular fading case in the context of a
Gauss–Markov fading model. Suppose the fading process for
each channel gain is first-order Gauss–Markov with a one-step
MMSE prediction error in the prediction of from sample to
sample. For underspread channels, is small. We propose that

1A process is called regular when the mean-square estimation error in the
estimate of the present value from the (noiseless) infinite past is positive.

2See Section II for a definition of these parameters.

the capacity of a first-order Gauss-Markov under-
spread MIMO fading channel (without CSI) for and

can be described in three regimes:

Regime 1:

Regime 2:

Regime 3:

In the first regime, the channel prediction error is smaller than
the inverse of the SNR. The system is noise-limited and its ca-
pacity behaves as though there is perfect CSI at the receiver. In
the second regime, the SNR is now larger than the inverse of the
channel prediction error and the system is limited by channel un-
certainty. However, when the SNR gets much larger, the doubly
logarithmic regime kicks in and the system is again noise-lim-
ited, albeit with a much smaller growth rate. The important point
is that in both regime 1 and 2, the capacity is proportional to the
degrees of freedom in the channel. This observation does not
apply to the third regime, where the degrees of freedom in the
channel have no effect in the first-order term of capacity.

To get a feeling of the values of that separate the three
regimes consider an system. For urban environ-
ments with mobile speeds in the order of 5–50 km/h, with car-
rier frequencies ranging from 800 MHz to 5 GHz, the threshold
between regimes 1 and 2 can range from 17.4 to 40 dB, while
the threshold that separates regimes 2 and 3 can range from

to dB. For indoor environments these thresh-
olds are even larger.

In the rest of this paper, we present quantitative results to
support this picture as well as quantify when regime 3 kicks
in. We argue that typical wireless scenarios fall in regimes 1
and 2 but rarely in 3. To address the case of nonregular fading
processes, we present a capacity lower bound

for large and some constant independent of
, where is the Lebesgue measure of the set of fre-

quencies where the power spectral density (PSD) of the fading
process is nonzero. For band-limited underspread channels

is typically small. This result is of particular practical
importance since channel models based on the physics of the
channel such as Jakes’ model [10] have band-limited fading
PSDs and hence are nonregular.3 In this case, the parameter

can be associated with the Doppler spread of the channel:
, where is the maximum Doppler shift and

is the coherence bandwidth of the channel. This lower bound

3Refer to Section VI and Appendix I for details regarding the assumptions
required to reach this result, and to see a complete derivation.
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extends to the MIMO setting the results of [8], [9], where lower
and upper bounds on the capacity of a SISO channel with a
peak power constraint in the input and nonregular fading are
presented.

It is interesting to compare this lower bound with the results
for the block-fading model of [4] and the time-selective block-
fading model of [5]. Intuitively, in the block-fading case, the
channel is perfectly predictable within each block, and a fraction

of the available degrees of freedom needs to be spent
in channel estimation and cannot be used for communication.
A similar intuition can be applied to the time-selective block-
fading model, where the channel predictability in each block
is controlled by the parameter . Channels with smaller are
easier to predict and result in more degrees of freedom available
for communication. In our case, the predictability of the channel
is governed by and the fraction of degrees of freedom lost
due to channel uncertainty is given by .

These results suggest that in underspread fading channels,
multiple antennas provide significant gains and the concept of
degrees of freedom is a useful measure of that performance gain,
even without the assumption of perfect CSI.

B. Related Works

The first-order Gauss–Markov fading model was analyzed
in the context of a SISO system in [11], where it is shown
that as the SNR increases to infinity, Gaussian inputs result in
bounded mutual information. It is also shown that for this kind
of inputs, the mutual information only increases substantially
with SNR when the channel estimation error variance is neg-
ligible as compared to . This result is a generalization
of the work in [12] where i.i.d. Rayleigh-fading was assumed.
[12] also shows for the SISO case that unless the channel es-
timation error variance is negligible with respect to ,
Gaussian inputs and scaled nearest neighbor decoding have
poor performance at high SNR. Lapidoth and Moser [6] show
in Theorem 4.2 that for MIMO channels with independent,
stationary, and ergodic fading and noise processes with finite
entropy rate, inputs with finite expected log-norm result in
bounded mutual information regardless of the SNR. The effect
of channel measurement errors in a SISO channel was studied
in [13], where bounds on mutual information were applied
to a Gauss–Markov fading model. Weingarten et al.[14] ana-
lyze the MIMO case with Gaussian inputs and scaled nearest
neighbor decoding with some side information at the receiver.
Our characterization of the first regime is consistent with these
results, and is obtained in more generality, in the context of
the Gauss–Markov fading model, for MIMO channels with ar-
bitrary inputs with no specific decoding structure assumptions.
Lapidoth and Moser [6] characterize the regime in which the

behavior kicks in through the notion of a fading
number (see Section VII-B for a discussion about the fading
number and its relation to the results that we present), but does
not provide a tight bound for the fading number of the MIMO
channel when the fading process is correlated over time. In
particular, the bound that can be derived from [6] does not
capture the influence of the degrees of freedom
on the channel capacity. The SISO nonregular fading channel

with a peak power constraint in the input was considered in
[8], [9], where it is shown that

C. Notation

Wewilluse lower caseoruppercase letters to represent scalars,
boldface lower case letters for vectors, upper case calligraphic
letters for sets, and boldface upper case letters for matrices. For
example, we write for a scalar, for a vector, for a set, and

for a matrix. We will denote by the vector with components
for , where is the th component of . We use
to represent differential entropy to the base , for the in-

dicator function, for natural logarithm,and for the Kro-
neker’s delta function. We write for the transpose, for the
conjugate, and for the Hermitian (conjugate transpose) of the
complex matrix and we represent the identity matrix by

. Finally, we write for the norm of the vector , i.e.,

, and for the Frobenius norm of the matrix

, i.e.,

II. CHANNEL MODEL

Throughout this work, we will use a flat-fading Rayleigh, dis-
crete-time, baseband model. We will consider the general case
when transmit and receive antennas are used. The channel
equation is

(1)

where is the channel output, is the
channel input with average power constraint

is circularly symmetric white complex
Gaussian noise, is the SNR, and is
the fading matrix with i.i.d. circularly symmetric complex
Gaussian components of zero mean and unit variance. In Sec-
tions III–V, the time variation of the channel is modeled by a
Gauss–Markov process4

(2)

where has circularly symmetric complex
Gaussian components of zero mean and unit variance, indepen-
dent across rows, columns, and time indices , . The
coherence time of the channel is controlled by the parameter

, . As , we get the limiting case of
a constant channel. Also, has zero mean, unit variance
complex Gaussian independent components.

4In Section VI, we allow the fading process to be any nonregular process with
a power spectral density.
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We will use the channel by grouping input symbols in blocks
of size , i.e.,

where , and compute the channel capacity
using the following expression:

(3)
The above maximization is performed by selecting a channel

input distribution among all possible input distributions that sat-
isfy the power constraint. Note that the channel matrix is
unknown at both the transmitter and the receiver. No closed-
form expression for (3) is known.

It is useful to compute the typical values of for different
applications. Since we are dealing with a flat-fading channel,
the signals must be restricted to a bandwidth of the order of the
coherence bandwidth of the channel [15]

(4)

where is the root mean square (RMS) delay spread of the
channel. We note that it is possible to define in different
ways, and here we are only interested in doing an order of mag-
nitude calculation. Measured values of range from 1 to 2 s
in urban environments and from 10 to 100 ns in indoor environ-
ments (see [15] and references therein). The bandwidth of the
channel determines the sampling interval used in the discrete
time model. If the passband channel has a bandwidth , the
baseband representation has a bandwidth and the sam-
pling theorem allows us to take samples at a rate without
loss of information. The coherence time of the channel rep-
resents the time over which the fading coefficients are highly
correlated. If we define as the time over which the autocor-
relation function is above of its value at then [16]

(5)

where is the maximum Doppler shift given by ,
where is the mobile speed and is the wavelength. We can
compute the autocorrelation of the process defined by (2), set it
equal to and solve for the corresponding value of

(6)

where the approximation is done for . When
, the channel is said to be underspread [17], in which

case we have . For indoor environments ranges from
to for mobile speeds of 1–5 km/h and carrier

frequencies ranging from 800 MHz to 5 GHz. For slow-fading
outdoor environments with mobile speeds of the order of 5
km/h, varies from to for the same range

of carrier frequencies. Even in a fast-fading scenario with a
mobile speed of 50 km/h and a carrier frequency of 5 GHz, is
still only . This suggests that the regime of
is a natural one to look at.

We note that the above calculations correspond to fitting the
free parameter of the first-order Gauss–Markov fading process
(i.e., ) to some physical parameters obtained by measurement
of real systems. There are different ways of fitting the model to
the measurements, like adjusting to obtain a given value of the
autocorrelation function of the fading process at time , or
adjusting to obtain a given noisy prediction error for a given
value of . Our approach is conservative in the sense that the
values of obtained by the other suggested methods are smaller,
and hence the fading is easier to predict.

We point out that the Gauss–Markov assumption of the fading
process is made to make the capacity analysis tractable, while
capturing in the parameter the noiseless prediction error ex-
istent in all regular processes. As is shown in [8], [9] for SISO
channels with nonregular fading processes, the high SNR ca-
pacity may have very different behaviors as compared to the
regular case. The Gauss–Markov model, being regular, cannot
be fitted to predict behaviors typical of nonregular processes. In
Section VI, we analyze (through a lower bound) the capacity of
the MIMO fading channel when the fading coefficients corre-
spond to band-limited nonregular processes.

The other parameter of our model that we want to consider
is the SNR. We will analyze different high-SNR regimes de-
pending on how the SNR compares to , so it is useful to have
an idea of the practical values that the SNR can take. There are
a number of factors that limit how large the SNR can be. In mul-
tiuser systems that are interference limited, the SNR is limited
by the number of users that are sharing the channel.5 In multiuser
systems, where the users are kept orthogonal in time, frequency,
or code, the achievable values of SNR are generally much larger.
But even in point-to-point links there are a number of factors that
limit SNR such as antenna effective noise temperature, receiver
noise figure, quantization noise, etc. In practice, it is difficult to
achieve values of SNR much larger than 30 dB.

III. THE THREE REGIMES

The input symbols of the channel (1) are vectors in . The
rank of the matrix determines how many of these dimen-
sions are resolvable at the receiver. The assumption that
is formed by i.i.d. Gaussian components implies that is
full rank with probability one. If , the received signal
is a vector in so at most of the dimensions of the
input vector can effectively be resolved. If, on the other hand,

the information-bearing component of the received
signal is contained in a subspace of dimension of . There-
fore, in both cases determines
how many d.o.f. the channel offers for conveying information.
This intuitive argument based on the physics of the channel
is backed up by the result [1], [2] that for large , the ca-
pacity of the channel (1) grows as when
the channel realization is known at the receiver. Based on this,

5In fact, when there is interference SNR is to be interpreted as signal to inter-
ference plus noise ratio.
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TABLE I

Environment

Indoors 40 dB 65 dB dB dB
Indoors 40 dB 65 dB dB dB
Urban 17.4 dB 40 dB 241 dB dB
Urban 17.4 dB 40 dB dB

we define the number of degrees of freedom of the channel to
be .

Now the following question arises: do the degrees of freedom
still determine the capacity of a fading channel without the as-
sumption of CSI? To answer this question, we start by pre-
senting an asymptotic lower bound on the capacity ,
asymptotic for high and small prediction error .

Theorem 1:

(7)

where , and is some constant
independent of and .

Proof: See Appendix B.

This bound and the nonasymptotic version that we present
later in this section can be derived by using Gaussian inputs
which are i.i.d. across time and space. We leave the proofs of
these theorems for the appendices, and focus on the implications
of these results.

If the receiver were to predict the channel from previous
values of the channel gains, the prediction error would be . On
the other hand, is proportional to the noise power. By
comparing these two quantities we can differentiate two regimes
of operation. For large and small , with , the
lower bound behaves as . In this
case, the prediction error is negligible as compared to the noise
power and the performance is similar to that of the channel with
perfect CSI at the receiver. As is increased beyond , the
lower bound takes a constant value (as a function of ) given
by . In this case, the prediction
error becomes dominant and any additional reduction in noise
variance does not have a significant impact on the lower bound.

We see that establishes a threshold on that sep-
arates two regimes of operation: the regime where the capacity
is limited by the noise, and the regime where the capacity is
limited by the channel prediction error. In both cases, we see
that increasing results in improved performance. Irrespec-
tive of the source of uncertainty (prediction error or noise),
plays a significant role in the lower bound and, as will be shown
later in this section, on channel capacity.

In Section IV, we present a communication scheme that
achieves the lower bound (7) using i.i.d. Gaussian inputs, in-
terleaving, decision-oriented channel estimation, and weighted
minimum Euclidean distance decoding. The analysis of the per-
formance of this scheme shows that the achievable throughput

can be lower-bounded by the capacity of a Gaussian fading
channel with perfect CSI at the receiver and with a noise term
with variance that depends linearly on and . We see
that channel estimation error results in an increase in noise
variance that depends linearly on . Both in regimes 1 and 2
the degrees of freedom of the channel have the same role in
capacity: that of defining the dimensionality of the space over
which communication takes place. The difference between
regimes 1 and 2 is the dominant noise term; additive Gaussian
noise and channel estimation error, respectively.

However, we note that the lower bound (7) is not tight for
very large SNR. As is shown in [6], channel capacity ultimately
grows as . We must then define a third regime of op-
eration. This regime corresponds to the range of SNRs for which
the doubly logarithmic term has a significant influence on the
high SNR capacity expansion. For this to occur, the
term must be comparable to the value of the capacity, which
must be at least as large as the lower bound (7). So we define
a second threshold, , which corresponds to
the value of that makes of the same order of
the lower bound. The range of SNRs corresponding to the third
regime must therefore lie to the right of . In this third regime,
increasing the number of transmit or receive antennas beyond
one does not produce a significant increase in , so we cannot
fully exploit any of the available degrees of freedom. Basically,
communication over all of the degrees of freedom becomes lim-
ited by channel uncertainty and the additional SNR can only be
exploited by conveying information in the norm of the input and
output vectors. This method of conveying information does not
take advantage of the increase in dimensionality, and if this is
the main term of the capacity we do not observe significant gains
in the addition of degrees of freedom.

It is interesting to note that grows doubly exponentially
with , or equivalently, grows exponentially in decibels
with . Thus, the range of SNR values for which the third
regime is relevant increases very rapidly with the number of
antennas. To get an idea of the typical values that and
can take, we can compute them for the extreme values of ,
corresponding to the minimum and maximum mobile speeds
and carrier frequencies considered in Section II: see the Table I
at the top of the page.6

From Table I we see that, in practice, the third regime of oper-
ation requires extremely large values of SNR, values which in-
crease very rapidly with . In practical systems these values
of SNR are never attained.

We point out that the values in Table I are obtained by fitting
the first-order Gauss–Markov model to the parameters of phys-

6Here � (min) corresponds to the maximum value of � and � (max) to the
minimum value of � for a particular scenario.
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Fig. 1. Capacity lower bound as a function of the SNR (�) for different values of n = n , and � = 10 . The curve log(1+ log ) is plotted for reference;
it would cross the curve corresponding to n = n = 1 at � 43000 dB. The crossing points for the other curves occur at much larger values of .

ical channels. In general, these numbers are likely to change for
higher order Markov processes or other regular processes.

To see the effect of the increase in d.o.f. on the lower bound
for specific values of and , we include a nonasymptotic
lower bound on channel capacity derived using information-the-
oretic principles.

Theorem 2: The capacity is lower-bounded by
the expression at the bottom of the page.

Proof: See Appendix A.

Figs. 1 and 2 show the value of this lower bound for different
numbers of transmit and receive antennas as a function of the
SNR for and , respectively. We observe
that for all practical values of SNR, increasing the number of
degrees of freedom results in a considerable improvement.

The performance analysis of the communication scheme pre-
sented in Section IV also provides a lower bound on channel ca-
pacity. Because of the bounding techniques used, the resulting
lower bound is not as tight as (8) for certain values of the pa-
rameters, so we include both bounds for completeness.

Motivated by the lower bound in Theorem 1, we argued that
increasing the number of degrees of freedom of the system can
be exploited in the first two regimes. However, the lower bound
gives only partial information about the capacity of the channel.
For the conclusions to be fundamental we need to complement
the argument with an upper bound that shows the same behavior
as the lower bound for large and small . Particular focus
is on regime 1 and regime 2 which cover most common wireless
scenarios.

We present the following asymptotic upper bound on the
channel capacity.

Theorem 3: Let . Then

(10)

where and is some constant
independent of and .

Proof: See Section V-A.

(8)

where

if

if
(9)

, , and is a random variable with degrees of freedom.
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Fig. 2. Capacity lower bound as a function of the SNR (�) for different values of n = n , and � = 0:01. The curve log(1 + log ) is plotted for reference;
it would cross the curve corresponding to n = n = 1 at � 400 dB. The crossing points for the other curves occur at much larger values of .

Theorem 3 together with Theorem 1 allow us to tightly char-
acterize the behavior of channel capacity in the first two regimes
for the case . As before, we focus on the scenario when

and .
For the case when , the above asymptotic upper

bound gives

which matches the lower bound in regime 1 (to within a constant
not depending on and .) For the case when but

, the above asymptotic upper bound becomes

which matches the lower bound in regime 2.
Finally, for the case , we can approximate

in accordance with the result of [6] whenever
.

For the case , we present an alternative upper bound.

Theorem 4: Let . Then

(11)

where and is some constant
independent of and .

Proof: See Section V-B.

This bound differs from (10) in that the coefficient of the
term is instead of . Since the doubly loga-

rithmic term is negligible compared to the other terms in regimes
1 and 2, this bound also matches the lower bound in the first
two regimes. However, in the third regime this bound becomes
loose and fails to characterize the behavior. In
fact, by [6, Theorem 4.29 (eq. 136)] applied to the first-order
Gauss–Markov fading model one can obtain

(12)

for some constant independent of and . This
bound is loose however in the second regime because the coef-
ficient of is instead of . This bound has re-
cently been improved in [23], from which it is possible to show
that

(13)

Note, however, that for , which is the case addressed in
Theorem 4, this bound is still loose in the term. For
this reason, we need the bound of Theorem 4 to characterize
capacity in the first and second regimes for .

In summary, regardless of the values and , the lower
and upper bounds match for regimes 1 and 2, which as we saw
in the examples (cf. Table I) are the regimes of most practical
importance. In these two regimes, the increase in the number
of degrees of freedom results in considerable capacity
improvements.
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Fig. 3. Schematic representation of the transmission scheme. Symbols of the same codeword have the same shading.B is the codeword length,M the interleaver
block length, and n the number of training symbols used in each interleaved block.

IV. COMMUNICATION SCHEME FOR REGIMES 1 AND 2

The derivation of the lower bound (7) suggests using i.i.d. cir-
cularly symmetric complex Gaussian inputs and maximum-like-
lihood decoding. If the channel fading process is known at the
receiver, the optimum decoding strategy reduces to minimum-
weighted Euclidean distance decoding (MWEDD). In practice,
the channel is unknown, and to use MWEDD we need to have
an estimate of the channel. Here, two problems arise as follows.

• Channel estimation: if we use pilot sequences to estimate
the channel, a fraction of the available degrees of freedom
is wasted in training. We need to find a scheme that can es-
timate the channel without spending a significant amount
of time in the training process.

• Estimation error: due to additive noise and channel vari-
ation, any estimation strategy will have a nonnegligible
channel estimation error. This error appears as an extra
noise term in the channel equation, and this term is not
independent of the input. Then, MWEDD is no longer the
optimal decoding scheme and we have to prove that i.i.d.
circularly symmetric complex Gaussian inputs and a mis-
matched decoder can still achieve the full number of de-
grees of freedom.

To tackle the channel estimation problem, we propose a de-
cision-oriented training scheme. We use i.i.d. circularly sym-
metric complex Gaussian codewords of length and we in-
terleave of them with a block interleaver. At the beginning
of each interleaved block of length we append the training
sequence , i.e., we send at time ,

, a in transmit antenna leaving the
remaining antennas silent. Fig. 3 shows a schematic representa-
tion of the transmission scheme.

Broadly speaking, the scheme consists of using the
training sequences to obtain estimates of at times

for , and using these
estimates to decode the first codeword of length . Assuming
that an appropriate coding rate is used, an arbitrarily small
probability of decoding error can be achieved by choosing
large enough. Once the first block is successfully decoded, the
symbols , for ,
are known to the receiver and can be used as if they were
training symbols to estimate ,
for . These estimates are then used to
decode the second codeword. Continuing in this way, at each
step the scheme uses the previously decoded codeword to

update the estimates of the fading matrix, which are then used
in the decoding process of the next codeword. We can make
the fraction of time spent in the transmission of the training se-
quences arbitrarily small by taking large enough. We finish
the description of the scheme by specifying the estimation
algorithm, the decoding rule, and the transmission rate used.

A. Channel Estimation

Consider the received vector when we send the first training
symbol

...

where is the first column of . The optimal MMSE
estimate of given is the conditional expectation

. To simplify the analysis, we use the suboptimal
estimate , which is a good estimate for large .
In general, we will estimate the channel fading matrix at time

, , i.e., the time when we
transmit the first information symbol of the interleaved block

, using

with

as the corresponding estimation error. In order to characterize
, we will focus on the estimation error in given by

which has covariance . Our goal is
to compute the covariance of the estimation error at time

, i.e., the time when the first information symbol
is transmitted. Due to channel variation, the estimation error at
time contains an additional independent
term.7 Therefore, the overall estimation error of the first column
of at time is circularly symmetric complex Gaussian
with covariance . Also, the estimates of
the other columns of , i.e., , contain a
smaller prediction error due to channel variation, so we can
upper-bound the variance of the estimation error of all the
elements of by . We also note that the

7We have made the approximation
p
1� � � 1when computing the variation

of the channel matrix. This approximation is valid for �! 0 for any finite n .
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estimation error is circularly symmetric complex Gaussian
with independent components.

Consider the problem of estimating based on a pre-
vious estimate , the currently received vector , and the
successfully decoded symbol . This is a Gaussian estima-
tion problem, for which the optimal solution is given by the
Kalman filter. We can simplify the derivation of the Kalman
filter equations by noting that conditioned on , the estima-
tion of the different rows of decouples into indepen-
dent estimation problems. This result requires the independence
of the rows of which was shown earlier. Therefore,
without loss of generality, we will consider the estimation of the
first row of , which we will denote by .

Assume that at time we have an estimate of , and
that the estimation error has zero mean and
covariance . We also assume that has been success-
fully decoded and is known to the receiver, together with the
received signal in the first antenna, . We want to obtain

and the covariance matrix of the corresponding estimation error,
. We use to denote the first row of , and

consider

to get the updated estimate

(14)

where we used the fact that is zero mean and independent
of , , and . We also need the conditional covariance
of the estimation error

(15)

where we used the independence of with everything else.
To compute the expectation in (14) and covariance in (15),

we need the joint distribution of conditioned on
and . This distribution is complex Gaussian, so we only

need to compute the first and second moments.8 Letting
denote the first element of we can write

and noting that is independent of everything else, we have
that conditioned on and , has mean
and covariance . By the orthog-
onality principle, is independent of , and is also in-

8The centered version of this random vector is circularly symmetric, so we
only need to compute the mean vector and covariance matrix, knowing that the
pseudocovariance matrix is zero.

dependent of . Therefore, conditioned on and ,
. Finally, we have

It follows that

and

We can now get the distribution of conditioned on
which is complex Gaussian, by obtaining the

corresponding moments

We finally replace in (14) and (15) obtaining

(16)

It is interesting to note that does not depend on
and so the estimation errors corresponding to all the rows
of have the same covariance. However, the estimates for
the different rows of will be different in general.

B. Decoding

Define

for , i.e., the set of times when the symbols
corresponding to the th codeword are transmitted. The de-
coding of the th codeword is based on the received vectors

and the estimates of the channel fading matrix
. Define to be the matrix whose columns

are the received vectors corresponding to the th codeword, and
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to be the matrix whose columns are the vectors of the form
for and , where denotes

the codeword index in the codebook. Then the decoding rule for
the th codeword is given by

This is a weighted minimum Euclidean distance decoding
rule. The vectors of the candidate codeword are weighted by
the estimates of the channel-fading matrices, and then compared
to the received vectors to find the one which is closest in Eu-
clidean distance.

If the fading matrices were perfectly known at the receiver,
then this decoding rule would correspond to maximum-likeli-
hood decoding, which minimizes the probability of decoding
error. However, in practice, there will be some estimation error
in the fading matrices, and there is an additional noise term that
is not Gaussian and is not independent of the channel input. In
this case, MWEDD is no longer optimal, but as we show next,
it lets us achieve the full number of degrees of freedom of the
channel in the first two regimes.

C. Coding Rate

In this subsection, we obtain a lower bound on the maximum
rate achievable with our communication scheme. Once this
lower bound is found, we can build a family of codebooks,
each with an appropriate number of codewords so that the error
probability goes to zero as the block length goes to infinity.

We start by characterizing the channel that results from our
communication scheme. As , the estimation errors

and the channel estimates
become independent over ,

so the th transmitted codeword sees an equivalent channel
given by

(17)

where and , and
and are i.i.d. over . We note that

the noise depends on the input , but it is uncorrelated
with it

Using the independence of , , and we can ex-
press the covariance matrix of the noise as

By computing an upper bound on the fol-
lowing lemma gives an upper bound on .

Lemma 1: where, for large
enough so that reaches a steady state, is
upper-bounded by

Proof: See Appendix G.

Having characterized the noise term , we now turn our at-
tention to the estimate of the fading matrix which is known
at the receiver. As we argued before, conditioned on , the
rows of are independent, and by symmetry, identically dis-
tributed. They are also zero mean, so it follows that they are un-
correlated. The same holds true after removing the conditioning
on . It follows that in steady state we can write

for some constant , where is the th row of .
By the orthogonality principle, the estimation error is

independent of the estimate , and so is the Gaussian noise
. Therefore, is independent of .

As and , the estimate converges to
with probability , so it follows that also converges

in distribution to . Therefore, in the limit as
and , converges in distribution to a circularly sym-
metric complex Gaussian matrix, with independent components
of variance , in which case converges to .

We now show that for a channel like (17) with MWEDD,
the worst case noise is circularly symmetric complex Gaussian,
independent of the input and the channel-fading matrix. Then,
we can lower-bound the maximum achievable rate by that of the
additive, independent Gaussian noise channel, with Rayleigh
fading known at the receiver. The following theorem extends a
result of [18] for noise not independent with the channel input.

Theorem 5: Let denote the capacity of the channel

where is known at the receiver, is i.i.d. over

time, and , , for some

constant , where is the th row of . Also,
is is independent over time and independent of

; and the input is independent of everything
else and is subject to the power constraint .

Consider the channel

where is the same as before, and is also known
at the receiver; is independent over time, is uncorrelated
with the input , is independent of , and has the same
covariance as ; and is independent of and
is subject to the power constraint . Let be the
supremum of the achievable rates in this channel when the input

is constrained to be formed by i.i.d. components,
independent over time, and weighted minimum Euclidean dis-
tance decoding is used.
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Assuming that all random vectors are jointly defined we have

Proof: See Appendix H.

Then we can choose any rate

where the expectation is taken over the random matrix . For
large and small , we can do the following approximations:

(18)

where was assumed; the other case is similar. There-
fore, we have that the maximum achievable rate of our scheme
grows at least as fast as for

and . Thus, our scheme achieves the full de-
grees of freedom of the channel.

D. Practical Considerations

Many of the elements of the scheme analyzed in this section
are very useful in practice and have been considered in the lit-
erature. For example, Weingarten et al. analyze in [19] the per-
formance of Gaussian codes and a more general version of the
weighted minimum Euclidean distance decoding rule that we
considered here and apply the results to a block-fading channel
model. Baltersee et al. use in [20] a perfect interleaver to justify
the assumption of independent channel realizations in the dif-
ferent coding blocks, and compute the achievable rates for an
optimal decoder.

For practical systems, decoding delay is an important param-
eter that must be minimized. One way to reduce the interleaving
delay is to use per-survivor processing [21] (PSP) to obtain re-
liable decisions for channel estimation before the reception of
the complete codewords. A practical example of noncoherent
sequence detection using PSP can be found in [22].

V. PROOFS OF THE UPPER BOUNDS

In this section, we will present the proofs of Theorems 3 and
4. We first prove Theorem 3 in Section V-A introducing many
results that are also useful in the proof of Theorem 4. Later, in
Section V-B, we build on the previous subsection to obtain an
upper bound for the case, and extend the result for the

case, proving Theorem 4.

We will introduce many changes of variables. The following
table summarizes the definitions

Variable Definition

A. Proof of Theorem 3

Consider first the case when , or equivalently
. This corresponds to a noise variance larger than the

one-step MMSE prediction error of the channel. In this regime,
the capacity is mainly limited by the noise, so we can obtain
a tight upper bound for the capacity by simply assuming that
the channel realization is perfectly known at the receiver.
The capacity under this assumption was explicitly computed in
[2], from which it follows that
for some constant independent of , for large . This
corresponds to the bounds in Theorems 3 and 4 in regime 1,
where the term is negligible.

Next, consider the case when . Channel uncer-
tainty becomes the main capacity-limiting factor when the ad-
ditive noise becomes negligible as compared to the one-step
MMSE prediction error of the channel. However, this does not
mean that we can remove the noise from the channel equation
and expect to have a tight upper bound for capacity. In fact, re-
moving the noise corresponds to letting , in which
case . It is shown in [6] that for a memoryless
channel it is possible to upper-bound the capacity of a noisy
channel by the capacity of a noiseless channel with the addition
of a lower bound constraint on the input. Intuitively, little infor-
mation can be transmitted when the input is much smaller than
the noise, so adding an appropriate lower bound on the input
does not reduce capacity significantly. On the other hand, once
the lower bound constraint on the input is added, the noise can
be removed while obtaining a finite capacity. The following the-
orem generalizes the same idea for channels with memory.

Theorem 6: Let be the family of distributions

and

with probability
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Then

Proof: See Appendix C.

Having a lower bound on the input norm allows us to remove
the additive noise from the channel equation and still get a tight
upper bound for the capacity. This is done at the expense of
an additive constant that does not modify the
asymptotic behavior of the bound. From this point on, we will
assume that the input satisfies

(19)

Removing the noise does not reduce mutual information. By
using the chain rule we have that
where

(20)

After removing the noise we get the multiplicative chan-
nel (20).

To get some intuition about the techniques used later on we
will consider the scalar SISO case first. In the
scalar case, the resulting multiplicative channel is given by

where the input distribution is chosen from the set . We ob-
serve that if we directly write the mutual information
in terms of differential entropies

both terms depend on the input distribution and cannot be max-
imized independently without obtaining an extremely loose
upper bound. However, we can introduce a change of variables
that converts the multiplicative channel into an additive channel.
For a complex number , let , where

, and for a complex vector
let be the vector whose components are . After
taking the channel equation becomes

and the term plays the role of an additive noise term,
which is unknown to the receiver and is correlated over time.

With the above definition, is a one-to-one transforma-
tion that applied to the channel equation leaves the mutual in-
formation unaltered

Note that the second term of the right-hand side (RHS) is
independent of the input distribution, and, in principle, can be
computed. To bound the term we can find an upper
bound on the variance of the components of and use
the Gaussian bound assuming that all the components are inde-
pendent. This is achieved in the actual proof by using triangle

inequality and Jensen’s inequality. The term of the
upper bound comes from this Gaussian bound.

The computation of is simplified by expressing
it in terms of , finding the Jacobian of the transfor-
mation and using a property that relates the differential entropies
of vectors related by a one-to-one transformation. The compu-
tation of is complicated by the correlation of the fading
channel. Since we are interested in obtaining an upper bound for
the capacity of the channel, we just need to obtain a lower bound
on . This is done by using the chain rule for differential
entropies, and for each time conditioning on . This
extra conditioning does not increase the differential entropy, and
each of the corresponding terms can be computed explicitly as
a function of . The term in the upper bound comes from
this lower bound on .

We now consider the general vector case. In the scalar case,
we applied to convert the multiplicative channel into an
additive channel. However, in this case, the channel equation
is in vector form so we need to introduce a change of vari-
ables before we can take logarithms. Information gets trans-
mitted through this channel by means of , the
norm of the input, and , the direction of the
input. The SNR has influence only on the communication over
the norm component of the input, so this transformation allows
us to separate the component that depends on the SNR.

We also define for . Finally,
using to index the receive antenna number, we define

and , where is the th
component of , and for , and group
all this variables into the -dimensional vectors and .
Note that this transformation includes the logarithm used in the
scalar case. The following fact relates the differential entropies
of random vectors defined in terms of a one to one mapping.

Fact 1: Let the vectors and be related by a one-to-one
transformation with Jacobian where .
Then

We show in a lemma how to compute the mutual information
in terms of these new variables.

Lemma 2:

(21)

where is the th component of .
Proof: See Appendix D.

Lemma 2 summarizes in one expression the result of taking
in the channel equation, computing the Jacobian of the

one-to-one transformation, and simplifying the computation of
the second differential entropy in the mutual information ex-
pression by inverting the transformation.

We conclude the computation of the upper bound by com-
puting or bounding each of the terms of (21). This is done in the
following three lemmas.
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Lemma 3:

where is Euler’s constant.
Proof: To compute the double sum we need to determine

the distribution of , , . Recall that
, where is the th row of . Since

is a norm vector and has i.i.d. compo-
nents, conditioned on , has distribution inde-
pendent of . It follows that without conditioning, has

distribution, and therefore . Then
we can compute explicitly

independent of and .

Lemma 4:

Proof: We start by using the chain rule for differential en-
tropies and lower-bounding by adding extra conditioning

Conditioned on

and it follows that9

To see this, we write as a function of for

where has distribution because
has i.i.d. components and has norm .

Lemma 5:

where

Proof: See Appendix E.

9Note that conditioned on (HHH[n � 1]; ddd[n]), ccc[n] is independent of ccc[n �
1]; . . . ; ccc[1] and ddd .

We replace in (21) the results of the last three lemmas to ob-
tain the upper bound

where is as in Theorem 6,

and

Finally, we use Theorem 6 to obtain an upper bound for

As , ,
so for , Theorem 3 follows by taking

. However, for , this bound becomes
loose in regime 2 because the coefficient of the term is

instead of .

B. Proof of Theorem 4

As mentioned in the introduction of this section, many of the
results of Section V-A apply to this proof as well. The main
problem of the previous proof resides in Lemma 5 which is
not tight for . In fact, we conjecture that the right
upper bound for should contain a term of the form

which is nonzero for . We
could not obtain the right form for the general case, but we ob-
tained a tight bound for the special case of . This is given
in the following lemma.

Lemma 6: Let . Then

where

Proof: See Appendix F.

Lemma 6 together with Theorem 6, and Lemmas 2–4 allow
us to obtain a tight upper bound for the capacity of the single
transmit antenna channel

(22)

where .
An upper bound for the capacity of the MIMO channel can

be obtained by rewriting the channel (1) as the sum of the
outputs of independent single-input multiple-output (SIMO)

channels as represented in Fig. 4. Let be
the th column of , be the th component of , and

, , , be independent
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Fig. 4. Representation of the MIMO channel as the sum of the outputs of n independent SIMO channels.

across and , and independent of the channel input and fading
gains. Define independent SIMO channels by

(23)
Letting and ,

we have the original channel equation expressed as a function
of the individual SIMO channels

(24)

where is independent across , and is inde-
pendent of the channel input and fading matrix.

Let

Then for any distribution of , we can use the data pro-
cessing inequality, the chain rule for differential entropies, and
the fact that conditioning does not increase differential entropy,
to get the upper bound

(25)

This upper bound can be better understood by interpreting
as the received signal corresponding to the transmission

in the transmit antenna as if it could be received without inter-
ference from the signals transmitted in the other antennas.

The power constraint on the input distribution

implies that the input to each of the SIMO channels must
satisfy

Therefore, we can bound each of the terms of (25) by the
bound (22) replacing . However, for large ,

in the sense that in the limit the
difference between the two sides converges to . As a result, we
obtain for the case the bound

where

which corresponds to the bound of Theorem 4 for .

VI. CHANNELS WITH BAND-LIMITED NONREGULAR

FADING PROCESSES

A. Capacity Lower Bound

The results presented so far rely on the first-order Gauss–
Markov fading model defined in Section II. The first-order
Gauss–Markov fading process is regular: the mean-squared
estimation error (MSE) of the present of the process using
noiseless observations of the infinite past is positive.

The noiseless MSE is given by

(26)
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where is the power spectral density of the discrete-time
fading process . In the case of an MIMO system,
there are independent such processes.

If the process is nonregular, the present value can be perfectly
estimated from noiseless observations of the infinite past. In this
case, . However, if the observed samples are corrupted
by i.i.d. additive Gaussian noise of variance , the resulting
MSE is in general greater than zero, and is given by

(27)

Lapidoth in [8], [9] analyzes the capacity of SISO channels
with nonregular fading processes where the input of the channel
is subject to a peak power constraint. He shows that depending
on how goes to when the high capacity
of the channel can be , , or for

.
It follows that regular and nonregular fading processes lead to

totally different high SNR capacity asymptotics. This motivates
the question on how the degrees of freedom of a MIMO channel
influence the high SNR capacity when the fading is nonregular.

To this end, in the following theorem we present a capacity
lower bound that can be applied to any MIMO flat-fading
channel with spatially i.i.d. circularly symmetric complex
Gaussian entries in the fading matrix.

Theorem 7: The capacity of a MIMO fading
channel with an circularly symmetric complex
Gaussian fading matrix with spatially i.i.d. components of
variance , when the fading realization is unknown to both
transmitter and receiver can be lower-bounded as

(28)

for some constant independent of , where is
the set of frequencies where the power spectral density
of each fading process of the fading matrix is greater than zero

and denotes the Lebesgue measure of this set.
Proof: The proof of the theorem is very similar to the

proof of Theorem 2 given in Appendix A. In fact, most of the
steps of the proof apply to any channel with spatially i.i.d. circu-
larly symmetric complex Gaussian fading processes, regardless
of the time correlation structure.

We first note that we can use receive and
transmit antennas to achieve a lower bound on capacity. We use
as input to the channel and apply Lemmas 7
and 8 to obtain

(29)

where , , and is
a random variable with degrees of freedom.

We now use (27) to express the last term of (29) in terms of
the noisy prediction error of the fading process

(30)

where we used the periodicity of . It follows that

(31)

To obtain a lower bound that depends on instead of
the noisy prediction error variance we use (30) and apply
Jensen’s inequality:

(32)

where the last equality follows from the unit variance of the
fading coefficients.

Evaluating (32) in and replacing in (31) we
obtain

(33)

For high , the first term of the lower bound (33) grows
as and the last term approaches a constant, so by
taking the statement of the theorem
results.

In Appendix I, we derive the power spectral density of a dis-
crete-time flat-fading channel using Jake’s model [10]. For this
derivation, we assume that the signal bandwidth is much
smaller than the delay spread of the channel (flat fading as-
sumption), and that both the input and output of the channel
are sampled at a rate .10 Since the channel can be interpreted
as a time-varying system, the signal at the output may have a
bandwidth larger than the signal at the input, in which case sam-
pling at a rate may incur in loss of information. However,
since we only obtain a lower bound in this section, the approach

10Note that the baseband equivalent input is band-limited to a bandwidth
W=2.
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of sampling at rate is valid. Under these assumptions, we
show that where is the maximum Doppler
shift. For underspread channels and , can be
chosen large enough to obtain while satisfying the flat
fading condition. Therefore, the number of degrees of freedom

is slightly reduced from the
perfect CSI at the receiver case. Note that the CSI at the receiver
assumption gives an upper bound to the noncoherent channel
capacity. Recently, it has been shown in [23] that the pre-log,
that is, the asymptotic ratio of the capacity to , can be
upper-bounded by

which for is at least as tight as the perfect CSI bound.
We see that for band-limited MIMO underspread channels

with nonregular fading statistics, the number of degrees of
freedom plays an essential role in channel ca-
pacity and provides significant capacity improvements.

B. Relation to the Capacity of the Liang–Veeravalli Model

Our results for the capacity of the MIMO underspread
flat-fading channel with band-limited nonregular fading via the
lower bound (28) can be compared to the results obtained in [5]
for the time-selective block-fading model.

Liang and Veeravalli [5] analyze a model where the discrete
time is divided into blocks of length . In the traditional block-
fading model [3], the fading matrix is constant within
each block and varies to an independent realization in different
blocks. In contrast, in the time-selective block-fading model, the
fading matrix is allowed to vary within each block and varies to
independent or correlated realizations in different blocks. One
can define a vector that groups the

th entries of the fading matrix for the different times within

a block. The corresponding covariance matrix
has rank . is assumed to have spatially i.i.d. entries, and
hence the distribution of is the same for all .

It is argued that for flat, slow fading using Jakes’ model for the
fading correlation and that if components of are
available, near-perfect prediction of the remaining channel gains
is possible. This models the situation of a nonregular fading
process where noiseless observations of the infinite past are
enough to perfectly predict the future evolution of the process.

For the case of the MIMO channel they obtained the capacity
lower bound

(34)

where

and is a constant that does not depend on . They conjec-
tured that this lower bound is tight in the leading term, and gave
an intuitive argument to justify the conjecture: if transmit and

receive antennas are used, one has to lose symbol pe-
riods to estimate the fading gains in the first channel
matrices in each block. Then the channel matrices in the entire

block are known and the remaining symbol periods can be used
coherently to achieve a rate

There is an analogy between the lower bound (34) for the
time-selective block-fading model and our lower bound (28) ob-
tained for the discrete-time continuous fading model. In fact,
plays the role of and represents the “predictability” of the
channel. Channels with smaller values of or are easier to
predict, and using the above intuitive argument, require fewer
symbol times to obtain accurate predictions.

VII. DISCUSSION AND COMMENTS

A. The Gauss–Markov Model

We used a first-order Gauss–Markov fading model to analyze
the high SNR capacity of regular underspread MIMO fading
channels when the fading realization is unknown to both trans-
mitter and receiver. This model allowed us to obtain lower and
upper bounds on channel capacity, which we used to define three
regimes of operation.

Our intuition suggests, in a sense that needs to be made
precise, that these three regimes should appear in all Gaussian
MIMO channels with regular fading processes. The Gauss–
Markov model captures through its parameter an essential
element of all regular fading processes: the nonzero noiseless
prediction error. The impossibility of perfectly predicting the
fading from noiseless observations of its past, becomes the
capacity limiter in the second regime, and produces the collapse
of the degrees of freedom of the channel in the third regime.

We used the Gauss–Markov model fitted to physical param-
eters of real communications systems to quantify the bound-
aries between the three regimes, and observed that the appear-
ance of the third regime required extremely large SNR values
in underspread channels. These boundaries are likely to change
for higher order Gauss–Markov fading models, or other regular
fading processes.

B. The Fading Number

Lapidoth and Moser define in [6] the fading number

Note that implicit in the definition of is the fact that the statis-
tics of the fading process are kept fixed, while the SNR
goesto infinity. In thecontextof theGauss–Markovfadingmodel,
this is equivalent to keeping fixed when taking the limit.

The fading number corresponds to the second term of the high
SNR capacity expansion, in the regime where the
is the leading term. That is, for sufficiently high SNR, we can
write . Since is an asymptotic
parameter, it is unclear whether this approximation is reasonable
for moderate values of SNR. For example, at the SNR values of
the second regime where the term is
still negligible the definition of does not allow us to judge
whether is accurate. However, based on our results for
the first-order Gauss–Markov model for the case of ,
the expansion holds for both
the second and third regimes.
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Lapidoth and Moser [6] use the fading number to characterize
the region where the term dominates capacity: “at
rates that significantly exceed the fading number, one should
expect to square the SNR for every additional bit per channel
use.” This characterization of the third regime is given in terms
of rates rather than SNR values.

In our approach, we compute capacity lower and upper
bounds by taking joint limits when both and .
This allows us to characterize capacity not only in the third
regime, but also in the second and first regimes, where the

term is still negligible. The thresholds between the
three regimes that we defined for the Gauss–Markov fading
model are based on these joint limits. Based on our results, it
turns out that both characterizations, in terms of rates or SNR
values, of the threshold that define the start of the third regime
for the Gauss–Markov model are essentially the same.

For the SISO case, [8] gives also a characterization of the
regime in terms of the noisy prediction error, which

is a function of the SNR. In addition, it notes that for the SISO
Gauss–Markov model both characterizations, in terms of rates
(through the fading number) and SNR values (through the noisy
prediction error), are equivalent to our characterization of the
third regime.

Our bound of Theorem 3 can also be used to obtain an upper
bound on the fading number for Gauss–Markov MIMO chan-
nels when . That is, for small enough and ,
we can use Theorem 3 to write .
To the best of our knowledge, [6] does not provide a tight char-
acterization of the fading number for this case of great prac-
tical interest. Specializing the results of [6] for the case of the
Gauss–Markov fading model, one can obtain (12), which as was
noted in Section III, is loose in the term. Note however
that a tighter bound, i.e., (13), can be obtained from the recent
results of [23]. Even though our results are obtained for the spe-
cial case of Gauss–Markov fading, we consider them an impor-
tant step toward the characterization of the high SNR capacity
of MIMO channels with correlated regular fading.

We note that other works that appeared after the original sub-
mission of this manuscript have characterized the fading number
in the cases of general SIMO fading [24] and MISO fading
[23]. In addition, [25] presents new upper and lower bounds on
the fading number of peak and average power constrained sta-
tionary MIMO regular fading channels. However, the problem
of obtaining a tight upper bound for the fading number for the
case where remains open.

C. Nonregular Fading Processes

The high SNR capacity of SISO channels with nonregular
fading processes was recently studied in [8], [9]. It is shown
that depending on how the noisy prediction error of the fading
process varies with ,11 the capacity can show very
different high SNR behaviors. In particular, it is shown that if

,12 the high SNR capacity expression grows as
.

11� is the noise variance of the additive noise that corrupts the observations
of the past of the process.

12As defined in Section VI, D is the set of frequencies where the power spec-
tral density of the fading process is strictly positive, and j � j denotes Lebesgue
measure.

This result is consistent with our lower bound (28) derived for
MIMO channels under an average power constraint on the input,
and shows that in fact our bound is tight for for
this kind of fading processes. Characterizing the high SNR ca-
pacity of nonregular stationary Gaussian MIMO fading channels
requires matching upper and lower bounds on the capacity for

. Unfortunately, the bounding techniques that we used
to upper-bound the capacity of the MIMO channel with Gauss–
Markov fading do not seem to easily extend to the case of nonreg-
ular fading. Also, the bounding techniques used in [8], [9] do not
seem to extend to the MIMO case. In addition, the upper bound
on the pre-log presented in [23] may be loose when
and does not match the pre-log predicted by our lower bound.
Therefore, more work needs to be done to fully characterize the
capacity of MIMO band-limited nonregular fading channels.

The lower bound (28) is loose for processes where
In fact, the bound may become negative in cases where the
condition is not met. Therefore, we cannot predict

or , , behaviors of channel
capacity using our bound.

However, physical fading models such as Jakes’ model result
in band-limited power spectral densities for the fading distribu-
tions. As we argued in Section II, the channels of typical com-
munication systems are underspread, in which case the condi-
tion holds.

VIII. CONCLUSION

Motivated by the capacity results of the MIMO channel
with perfect CSI at the receiver we identified the parameter

with the number of degrees of freedom of the
channel. We then studied whether the concept of degrees of
freedom could also be used in a MIMO channel where the
fading matrix varies continuously and is unknown to both the
receiver and the transmitter.

For the case of regular fading processes, we used a first-order
Gauss–Markov fading model and obtained lower and upper
bounds for channel capacity, the upper bounds being asymp-
totic in and . These bounds show different
behaviors depending on the relationship between and
. Depending on the relative values of and , we defined

three regimes of operation and argued, using numerical exam-
ples, that most channels are underspread and the majority of
practical systems operate in the first two regimes.

We found that in the first two regimes, the lower and upper
bounds match to within an additive constant, and the capacity
grows as for large and
small . This implies that even in the case of a continuously
varying channel without the assumption of perfect CSI the con-
cept of degrees of freedom has a great practical importance. Sys-
tems operating in the first two regimes can obtain large capacity
improvements by the use of multiple antennas. This capacity
improvement can be readily achieved by using a concrete com-
munication scheme of tractable complexity.

Our upper bound for is consistent with the results of
[6] at high SNR, where capacity only grows doubly logarithmi-
cally on the SNR for large enough SNR. However, our numer-
ical examples show that this behavior requires extremely large
values of SNR to take place.
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We believe that channels modeled with higher order Gauss–
Markov fading processes or other regular fading laws should
show similar qualitative behaviors. An open question for fu-
ture research is how to capture the concept of channel varia-
tions going to zero in fading processes whose statistics depend
on more than one parameter. Another open problem is to deter-
mine, in this more general setting, whether capacity can still be
characterized by three operational regimes and to compute the
corresponding thresholds that separate them.

For the case of band-limited nonregular fading processes,
where the future evolution of the fading can be perfectly pre-
dicted from noiseless observations of the infinite past, we ob-
tained a capacity lower bound. This bound can be used to show
that at high at least a rate

can be achieved with i.i.d. Gaussian inputs. For underspread
channels, where the power spectral density of the fading
process is band-limited , i.e., the Lebesgue measure of
the set of frequencies where the the PSD is nonzero is small.
This shows that in MIMO underspread flat-fading channels
with band-limited nonregular fading statistics the number of
degrees of freedom provides significant capacity
improvements over the SISO case.

APPENDIX A

Proof of Theorem 2

LET . With this choice of input distribution
we can write

(35)

where and the last inequality fol-
lows from the fact that conditioning does not increase differen-
tial entropy.

We present bounds for the two terms of the RHS of (35) in
the following three lemmas.

Lemma 7: Let . Then

(36)

where and .

Proof: Conditioned on , the components of are
independent across time, so we can write

(37)

where

Then we can rewrite (37) as (38) at the bottom of the page.
For the case , Foschini and Gans obtained the fol-

lowing lower bound [1]:

(39)

where is a chi-squared random variable with degrees of
freedom.

On the other hand, if , we can use the preceding lower
bound in the following way:

(40)

The result follows from (38)–(40).

Lemma 8: Let . Then

(41)

Proof: Conditioned on the components of are
i.i.d. and therefore , where
is the vector of received signals in the first receive antenna for

.
Let where

is the first row of , , and define in the
following way:

...
...

. . .
...

(38)
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where . In the same way define
, where is the first

component of , .
Then we have

and using the Gaussianity of

where

with .
We can upper-bound as follows:

(42)

where the inequality follows from Jensen’s inequality and the

last equality results from . To upper-bound
the last expression, we start by computing in terms of

, the autocorrelation function of the entry of
. is given in the expression at the bottom of the page,

where we have used the fact that the entries of are i.i.d.
To compute the RHS of (42), we use the following known

results.

Fact 2: Let , be a random process with autocor-
relation function

if
otherwise.

Then the power spectral density of is given by

Fact 3: The distribution of the eigenvalues of a Toeplitz ma-
trix converges to the Fourier transform of its rows, as the dimen-
sion of the matrix goes to infinity.

We can use these facts for the Toeplitz matrix . Letting
be the set of eigenvalues of we obtain

the following asymptotic bound:

(43)

...
. . .

...
...

. . .
...

...
...

...
...

...
...

. . .
...

...
...

...
...

...
...

...
. . .

...

...
...

. . .
...
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where we exploited the periodicity of in the last
equality. By multiplying both sides of (43) by , we obtain the
statement of the lemma.

We now specialize the result of the previous lemma to the
case of the first-order Gauss–Markov process.

Lemma 9: Let . Then

(44)

Proof: The power spectral density of is obtained
by taking the discrete-time Fourier transform of its autocorrela-
tion function, which for the first-order Gauss–Markov process
is given by

In this way, we obtain

Letting and replacing in (43) we obtain

(45)

The last two integrals can be computed in closed form using
the identity

valid for . This is done in the first set of equations at the
bottom of the page. Replacing in (45) and multiplying both sides
by we obtain the statement of the lemma.

As a result, we can use (35), (36), and (44) to get a lower
bound for the capacity of the channel. See (46) at the bottom of
the page.

This lower bound decreases with for sufficiently large
values of . Since the capacity is an increasing
function of , we can improve the lower bound by keeping
it constant for , where is the value that
maximizes the RHS of (46). The improved lower bound is given
by the last equation at the bottom of the page.

(46)
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To obtain a closed-form expression for , we note that as

in the sense that the difference between the two sides converges
to a constant. This approximation allows us to maximize the
RHS of (46) and obtain the first equation at the bottom of the
page valid for . If this condition is not met, the lower
bound obtained using this expression for is still valid.
However, we could obtain a tighter lower bound by computing

numerically.

APPENDIX B

Proof of Theorem 1

We want to characterize the behavior of in the
limit as and . Since we are only interested
in the asymptotics, we can relax the bound (8) as shown in (47)
at the bottom of the page.

When , , and (47) reduces to

The result for follows by noting that for some
constant

For , as , we can approximate
by

where in the limit the difference between the two sides con-
verges to zero. Also, for small , we can lower-bound the second
term of (47) by a constant that does not depend on or

As and , so it
follows that

where indicates that in the limit the difference between the
two sides converges to a constant.

Therefore, the result also follows for .

APPENDIX C

Proof of Theorem 6

We start by defining a set and a random vector
, where , and use the chain

rule of mutual information in two different ways

From these, the nonnegativity of mutual information, and the
fact that is a discrete random vector that takes values, we
obtain the following bound:

(48)

Now the problem is that of finding an upper bound for

(49)

if

if

(47)
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for every possible choice of the distribution of . We will find
an upper bound for for for any input
distribution that satisfies the power constraint

(50)

where the constants must satisfy the total power con-
straint

(51)

Define and . For
, the norm of the input is of the same order as the norm

of the noise, so the information that gets through the channel
during those times must be bounded. This intuitive idea is made
precise in the following lemma.

Lemma 10:

(52)
Proof: We use the chain rule for mutual information to

obtain a decomposition of into tree terms

(53)

The first term can be simplified by rewriting the mutual infor-
mation in terms of differential entropies, and noting that condi-
tioned on , is independent of

The second term of (53) can be upper-bounded by rewriting
the mutual information in terms of differential entropies and
bounding each of the individual terms

(54)

where the inequality follows from conditioning and the last
equality is due to the fact that conditioned on , the
randomness of comes only from the noise which is
independent of .

To bound the first term of (54) we define
and compute for as shown
in the equation at the bottom of the page. In the third
equality of that equation we used the conditional indepen-
dence of and conditioned on . In the fourth
equality, we used the fact that is a unit norm vector
and the entries of are i.i.d. and, therefore,
conditioned on , to compute

.

For , and hence,

Then using the chain rule, removing conditioning and applying
the Gaussian bound we obtain

where is the cardinality of the set .
The second term of (54) can be computed explicitly

Therefore, we obtain

The last term of (53) can be bounded in a similar way

Replacing these three bounds in (53) we get the desired result.
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At this point, our goal is to find an upper bound for (52) that
depends on only through . The power constraint (50) im-
poses a power constraint on

Consider a random vector such that has the same
distribution as conditioned on so that

We also require that for . Finally,
since must have the same total power as , we require
that

Using the chain rule for mutual information we can write

The nonnegativity of mutual information implies that
, so defining

we conclude that

(55)

In summary, putting (48), (49), (52), and (55) together, we
have

(56)

Finally, to upper-bound the RHS of (56), we prove that
is a concave function of and use Jensen’s in-

equality.

Lemma 11: is a concave function of , that is,
for any and

Proof: Assume that we have two independent channels to
communicate information, indexed by , . Let be the
block length used in channel , and assume that ,
where . Also, let . We require
that the input signals satisfy the power constraints

and

for

Then by the independence of the channels, we have

where we can achieve equality by choosing and inde-
pendent. It follows that

(57)

Now assume that instead of having two independent channels
we have only one channel, and we use it with block size by
feeding it with the family of inputs that achieves
(57) as . This can be seen as having two channels with
some correlation, which becomes negligible as as long
as . The corresponding mutual information is also given
by (57). This input satisfies the power constraints

and

for

Since this is just a particular choice of input distribution that
satisfies the power constraints and
corresponds to the supremum over all such distributions, we
have the desired result.

Using Jensen’s inequality in (56) we obtain

where we used (51) and the fact that is a nonde-
creasing function of .
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APPENDIX D

Proof of Lemma 2

We express the mutual information in terms of differential
entropies

(58)

To write each of the differential entropies in terms of the new
variables use the chain rule for differential entropies and apply
Fact 1 to the transformation which has Ja-
cobian with determinant to get (59) at the bottom of the
page,13 where the last equality follows from .

We also rewrite the second term of (58) in terms of the new
variables to get (60) also at the bottom of this page, where we
used the conditional independence between and condi-
tioned on in the last equality.

The result follows by subtracting (60) from (59).

APPENDIX E

Proof of Lemma 5

can be thought of as having vector components of di-
mension . The elements of the component corresponding
to time depend on the magnitude of the input , so they

13We abused notation slightly in the use of the chain rule to make the expres-
sions more readable. To be precise the first term in each sum is an unconditional
differential entropy.

are highly correlated. Eventually, we will use the independent
Gaussian bound to upper-bound so we will try to
remove as much correlation as possible to obtain a tight bound.
For this we introduce a change of variables that has Jacobian
with determinant equal to and hence does not modify the dif-
ferential entropy

This transformation eliminates the dependence on in all
but the components corresponding to the first receive antenna.
We then use the chain rule for differential entropies and remove
conditioning to get the upper bound

(61)

(59)

(60)
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Most of these terms can be easily bounded by noting that
and and hence

using the Gaussian bound

and

Using the chain rule and removing conditioning again we can
write

(62)

Reminding the definition of , we can write

Conditioned on , the independence between the rows of
implies the independence between and for

. Also, since has norm , and the rows
of have i.i.d. components, it follows that

for every possible value of . Then, condi-
tioned on , is the ratio of two independent

random variables, and the corresponding conditional
density does not depend on , so it follows that the uncondi-
tional distribution of is also that of the ratio of
two independent random variables. The corresponding
density is given by for . Introducing
the change of variables , where has the density
found before, we obtain that the density of is
for . Then we can compute the RHS of (62) explicitly as
shown in (63) at the bottom of the page.

It only remains to find an upper bound for the first term of
(61), . For this we use the chain rule for differential en-
tropies, remove conditioning, and use the Gaussian upper bound
for the differential entropy of a random variable with a given
second-order moment

(64)

where we used Jensen’s inequality and is some upper bound
for .

We use the triangle inequality to calculate some upper
bound

(65)

The second term of (65) can be bounded by conditioning on the
event and noting that on ,

Noting that , the first term of (65) can be
computed by numerical integration

As a result, we obtain

It is easy to check that is an increasing concave func-
tion of , so we can use Jensen’s inequality to upper-bound

Here we used the fact that

by the power constraint (19).
Therefore, we can upper-bound (64) by

where

(63)



ETKIN AND TSE: DEGREES OF FREEDOM IN SOME UNDERSPREAD MIMO FADING CHANNELS 1601

Replacing all the bounds that we found in (61) we obtain the
statement of the lemma.

APPENDIX F

Proof of Lemma 6

As in the proof of Lemma 5, we introduce a change of vari-
ables whose Jacobian has determinant and hence does not
modify the differential entropy, and apply the chain rule re-
moving conditioning

(66)

The first two terms of (66) can be bounded in the same way as
the corresponding terms that appeared in the proof of Lemma 514

by simply taking

(67)

where

Recalling previous definitions we can express
and in terms of for and

To compute the third term of (66), we invert the transforma-
tion which has Jacobian with determinant

, define , where is
the th entry of , and apply Fact 1

(68)

where the last equality results from noting that

since and have the same distribution for and
, and each of the expectations in the subtraction is

finite.

14See Appendix E for the details.

We can upper-bound (68) by using chain rule, removing con-
ditioning, and noting that are identically distributed

(69)

We provide an asymptotic upper bound for in the limit
as .

Lemma 12:

Proof: We will provide a heuristic proof that can be for-
malized by proving a technical issue of convergence of differ-
ential entropies.

We upper-bound using the chain rule for differential
entropies and removing conditioning

(70)

Recalling (2) for the Gauss–Markov process , and
letting be the th component of we can write

(71)

(72)

where means that difference between the two sides, condi-
tioned on , goes to zero with probability as . In (71),
we define , and note that
the circular symmetry of and the independence of
and imply independent across .

We want to use the approximation (72) to approximate
for small . Under some technical conditions

that we will not verify here, convergence in distribution of
random variables implies the convergence of the corresponding
differential entropies. Assuming that these conditions hold for
this particular case, we can write (73) at the top of the following
page as , where we used Fact 1 in the second and third
lines, and as before, .

To compute the second term of (73), we note that the real and
imaginary parts of are i.i.d. (with
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(73)

and without conditioning on ), and they depend on
only through its magnitude. Then we have

To compute the last differential entropy let

and . Then it can be shown by doing a change of
variables that

(74)

(75)

for and . Then

(76)

where the last integral was solved numerically.
As a result, we have that for small

As long as is finite, the first term of (70) becomes
negligible compared to the second term as . In fact, one
can check that , so that
the first term of (70) vanishes when dividing by and letting

. Therefore, dividing the RHS of (70) by and letting
, we obtain the statement of the lemma.

Using this lemma in (69), and (67) in (66) we conclude the
proof.

APPENDIX G

Proof of Lemma 1

To compute , we condition on the previously

transmitted symbols and recall a remark that we
made previously: the estimation of the different rows of
decouples into independent and identical problems, and
hence, the estimation errors of the different rows, conditioned
on , are independent. We also noted that the esti-
mation error covariances corresponding to different rows are
identical. Then

where is the conditional covariance of the first row of
, conditioned on .

Using (16), we could compute numerically and
recursively, starting with . How-
ever, we can obtain an explicit expression by noting that (16)
eventually reaches a steady state, and the transient behavior be-
comes irrelevant in the limit as . Taking traces and
expectations in (16) we get (77) at the bottom of the page.

We will upper-bound the RHS of equality (77) with an expres-
sion that depends on , and then find the maximum
value of that satisfies the bound in steady state. Let

be the th eigenvalue of , and . Then

and letting be the eigenvalue decomposition of
we have

for some where and is the
th component of .

(77)
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Noting that have the same distribution as
and are independent of we can upper-bound the RHS of
(77) as follows:

(78)

We bound using the following lemma.

Lemma 13:

Proof: The cases , , and re-
quire slightly different proofs, so we have to deal with each
case separately. In the three cases we will use the inequalities:

and .
Consider first the case . In this case,

. Since is independent of , con-
ditioned on , is also . Also
which is a scalar. Then we have

We next consider the case . In this case,
, where and are independent

of and are i.i.d. . Then we have the equation at the
bottom of the page

We finally consider the case . In this case,
, where is independent

of and and has a distribution.
Then we have the equation at the bottom of the following page.

Replacing in (78) we obtain

which can be solved in steady state to get an upper bound for
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Finally, we have where for
large15

APPENDIX H

Proof of Theorem 5

We start by specifying a randomly generated codebook
with block length . The codebook ,

, , is randomly generated by
choosing the components of the codewords in-
dependently from a distribution. We will transmit

from transmit antenna at time to send message .
Let , where is the th column of .
Let be the matrix whose th column is . In a similar
way, define as the matrix whose th column is , and
as the matrix whose th column is . Then we can rewrite
the channel equation as

where is the channel noise received at the re-
ceive antennas in times from through , and is formed by un-
correlated across antennas and independent across time compo-
nents of equal variance , also uncorrelated with the compo-
nents of and independent of the fading matrices .

15Here ”large” refers to an n large enough so that E[tr(KKK[n])] reaches a
steady state.

The decoding procedure is to assume that message was
transmitted whenever codeword has the smallest weighted Eu-
clidean distance to the received matrix , i.e.,

where is the decoded message.
The average probability of decoding error, averaged over the

randomly generated codewords, is independent of the codeword
being sent, and as a result we can assume without loss of gen-
erality that codeword was transmitted. Let be the average
probability of decoding error, averaged over all codebooks and
codewords, and let be the average probability of error when
codeword is sent. Then letting we have

(79)

where is the transmitted codeword and the expectation is
taken over the random codebook , the noise matrix , and the
fading matrices .

There is no decoding error when codeword is the closest
codeword in weighted Euclidean distance to the received matrix

and as a result
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Noting that the codewords are chosen i.i.d.
and independently of , , and , we can rewrite (79)
as the equation at the bottom of the page, where
and

We will upper-bound the average probability of decoding
error by the one corresponding to a Gaussian channel, relying
on the fact that this probability only depends asymptotically on
the second-order statistics of the random variables involved.
We will use the following lemma.

Lemma 14: Let , , , and be any matrices in
that satisfy the inequality

Then

Proof: From Fig. 5, we see that , , and
form a triangle and as a result

(80)

From (80) we have that if , it follows
that

and from the hypothesis of the lemma

As a result, under the hypothesis of the lemma

and we have that .

Consider two different channels, one with additive white cir-
cularly symmetric complex Gaussian noise of variance

for each component, independent of the input signal
denoted by , and another one with noise of variance

Fig. 5. Two-dimensional representation of YYY , ~YYY , and VVV .

per component, denoted by in which is
independent of for and uncorrelated with
for . Since in both cases, the noise is independent across
columns the Strong Law of Large Numbers (SLLN) lets us write

and

Also, because the codewords are generated with independent
Gaussian components of variance and is independent

over time and independent of the input, and
, by the SLLN we have that

and

Finally, noting that the noise is uncorrelated with the input signal
and is independent of the fading matrices , the SLLN
implies that

and

Let

. . .
...

. . .
...

We can express and by their singular value decomposi-

tions as follows: and
where , , , and are unitary matrices, and and are
diagonal matrices with real, nonnegative diagonal entries. Then

and . From the previous
results we have that as , and

.
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We want to verify the hypothesis of Lemma 14 in the limit as
. We first compute as

Also, from the SLLN we have that with probability

To check that for , we

have to verify that

for all . This follows from the fact that and
is strictly increasing for .

for .
Therefore, with probability one

(81)

We can now upper-bound the average probability of error
with the one corresponding to the Gaussian channel as follows:

Since is an average probability,

and we can use the Dom-
inated Convergence Theorem to exchange the limit with the
expectation

where the last inequality follows from (81) and Lemma 14.

Finally

is the limit for infinite block length of the average probability
of decoding error for a Gaussian channel with fading matrix
known to the receiver, in which random Gaussian codebooks
and weighted minimum Euclidean distance decoding are used.
We can use the Channel Coding Theorem to conclude that this
probability goes to as for all rates [2]

Since is arbitrarily small we have that all rates below

are achievable. Therefore, the supremum of all achievable rates
, , must be at least as large as .

APPENDIX I

Jake’s Model for a Discrete-Time Flat-Fading Channel

This is a popular statistical model for flat fading. The trans-
mitter is fixed, the mobile receiver is moving at speed , and
the transmitted signal is scattered by stationary objects around
the mobile. There are paths, the th path arriving at an angle

, , with respect to the direction of
motion. is assumed to be large. The scattered path arriving
at the mobile at the angle has a delay of and a time-in-
variant gain , and the input/output relationship is given by

(82)

The most general version of the model allows the received
power distribution and the antenna gain pattern to be
arbitrary functions of the angle , but the most common scenario
assumes uniform power distribution and isotropic antenna gain
pattern, i.e., the amplitudes for all angles . This
models the situation when the scatterers are located in a ring
around the mobile (see Fig. 6). We scale the amplitude of each
path by so that the total received energy along all paths is

. For large , the received energy along each path is a small
fraction of the total energy.

This input/output relationship corresponds to that of a linear
time-varying system. Let and be the baseband rep-
resentations of and . Then we can rewrite (82) as
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Fig. 6. The one-ring model.

where is the carrier frequency.16 Similarly, one can write

Hence, the baseband equivalent channel is

(83)

Assuming that the input signal is band-limited to , the
baseband equivalent input is then limited to a bandwidth
and can be represented using the sampling theorem as

where and . Using (83), the
baseband output is given by

The sampled outputs at multiples of , ,
are then given by

and by letting we obtain

(84)

By defining

16We denote by <f�g the real part operator, and by =f�g the imaginary part
operator.

equation (84) can be written in the simple from

(85)

We will argue that if the communication bandwidth is
much smaller than the reciprocal of the delay spread , the
baseband channel can be represented by a single tap at each
time. means that most of the paths arrive in an in-
terval much smaller than the sample time of the signal .
Since the signal remains approximately constant over the in-
terval , we can extract out of the sum in (83)
obtaining

(86)

We see from (86) that the input baseband signal is delayed
by and multiplied by a factor .
This means that in (85), only one tap will be nonzero at
a given time. The value of corresponding to the nonzero tap
will vary with (and ) due to the varying delay , but
this variation occurs in a time scale several orders of magnitude
larger than the symbol time scale. Without loss of generality we
will assume that in the time scale of interest the nonzero tap is
the first tap , whose value is

Note that in the time scale of interest .
To derive an expression for as a function of we

note that the projection of the velocity vector onto the direction
of the path at angle has magnitude . The distance
traveled by the mobile in the direction in time is , which
is the reduction in the distance between transmitter and receiver
for the path at angle . It follows that

where is the speed of light.
In order to characterize the process , we will fur-

ther assume that is independent of and that the
phase of the path at angle at time

is uniformly distributed in , and i.i.d. for all . With these
assumptions the mean of the process is

(87)
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and the autocorrelation function is

(88)

Assuming for all , in the limit of the
sum in (88) becomes an integral and we can write

We see that the process is wide-sense stationary
with autocorrelation function given by

(89)

where is the zeroth-order Bessel function of the first kind

and is the maximum Doppler shift. The power
spectral density , defined on , is given by

else.
(90)

This can be verified by computing the inverse discrete-time
Fourier transform of (90) which is given by (89). Note that

is zero for .
In addition, is the sum of many small independent

contributions, one for each angle. By the Central Limit The-
orem, it is reasonable to model the process as Gaussian, so in
fact the process is stationary, zero mean, with autocorrelation
and power spectral density functions as given in (89) and (90).
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