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Abstract—Exponential error bounds for the finite–alphabet
interference channel (IFC) with two transmitter–receiver pairs,
are investigated under the random coding regime. Our focus is
on optimum decoding, as opposed to heuristic decoding rules that
have been used in previous works, like joint typicality decoding,
decoding based on interference cancellation, and decoding that
considers the interference as additional noise. Indeed, the fact
that the actual interfering signal is a codeword and not an
i.i.d. noise process complicates the performance analysis of the
optimum decoder. In addition to the single–letter expressions of
the error exponents derived, we also present some numerical
results and discuss them.

I. INTRODUCTION

The M -user interference channel (IFC) models the commu-
nication between M transmitter-receiver pairs, wherein each
receiver must decode its corresponding transmitter’s message
from a signal that is corrupted by interference from the other
transmitters, in addition to channel noise. The information
theoretic analysis of the IFC was initiated over 30 year ago
and has recently witnessed a resurgence of interest, motivated
by new potential applications, such as wireless communication
over unregulated spectrum.
Previous work on the IFC has focused on obtaining inner

and outer bounds to the capacity region for memoryless
interference and noise, with a precise characterization of the
capacity region remaining elusive for most channels, even for
M = 2 users. The best known inner bound for the IFC is the
Han-Kobayashi (HK) region, established in [1]. It has been
found to be tight in certain special cases ([1], [2]), and recently
was found to be tight to within 1 bit for the two user Gaussian
IFC [3]. No achievable rates that lie outside the HK region are
known for any IFC.
Our aim in this paper is to extend the study of achievable

schemes to the analysis of error exponents, or exponential
rates of decay of error probabilities, that are attainable as a
function of user rates. To our knowledge, there has been no
prior treatment of error exponents for the IFC. In particular,
the error bounds underlying the achievability results in [1]
yield vanishing error exponents (though still decaying error
probability) at all rates.

† Part of this work was done while N. Merhav was visiting Hewlett–Packard
Laboratories in the Summer of 2007.

Our main result, presented in Section II, is a single letter
characterization of an achievable error exponent region, as a
function of user rates, for the M = 2 user finite alphabet,
memoryless interference channel. The region is derived by
bounding the average error probability of random codebooks
comprised of i.i.d. codewords uniformly distributed over a type
class, under maximum likelihood (ML) decoding at each user.
Unlike the single user setting, in this case, the effective channel
determining each receiver’s ML decoding rule is induced both
by the noise and the interfering user’s codebook. Our focus
on optimal decoding is a departure from the conventional
achievability arguments in [1] and elsewhere, which are based
on joint-typicality decoding, with restrictions on the decoder
to “treat interference as noise” or to “decode the interference”
in part or in whole. However, our codebook ensembles are
simpler than the superposition codebooks of [1]. It might be
fruitful to consider such structured codebook ensembles from
an error exponent perspective, and we plan to do so in future
work [6].
The analysis of the probability of decoding error under

optimal decoding is complicated due to correlations induced
by the interfering signal. Usual methods for bounding the
probability of error based on Jensen’s inequality and other
related inequalities (see, e.g., (10) in Section II) fail to give
tight results. Our bounding approach combines some of the
ideas of [4] and [5] used to derive error exponents for single
user channels. As in [4], we use auxiliary parameters ρ and λ
to get an upper bound on the average probability of decoding
error under ML decoding, which we then bound using the
method of types [5]. Key in our derivation is the use of distance
enumerators in the spirit of [7], which allows us to avoid using
Jensen’s inequality in some steps, and allows us to maintain
exponential tightness in other inequalities by applying them to
only a polynomially few terms (as opposed to exponentially
many) in certain sums that bound the probability of decoding
error.
Regarding notation, unless otherwise stated, we use low-

ercase and uppercase letters for scalars, boldface lowercase
letters for vectors, uppercase (boldface) letters for random vari-
ables (vectors), and calligraphic letters for sets. For example,
a is a scalar, v is a vector, X is a random variable, X is a
random vector, and S is a set. In addition, we write v(t) to
refer to the t-th element of vector v. Also, we use log(·) to

ISIT 2008, Toronto, Canada, July 6 - 11, 2008

1523978-1-4244-2571-6/08/$25.00 ©2008 IEEE

Authorized licensed use limited to: Hewlett-Packard via the HP Labs Research Library. Downloaded on February 27, 2009 at 19:17 from IEEE Xplore.  Restrictions apply.



denote natural logarithm, E to denote expectation, and Pr to
denote probability. For independent random variablesX and Y
distributed according to PX,Y (x, y) = PX(x)PY (y), (x, y) ∈

X × Y , we define the operator EX(·) as EX(f(X, Y ))
�
=∑

x∈X f(x, Y )PX(x) for any function f(·, ·). All information
quantities (entropy, mutual information, etc.) and rates are
in nats. Finally, we use .

=,
.
≤, etc., to denote equality or

inequality to the first order in the exponent, i.e. an
.
= bn ⇔

limn→∞
1
n log an

bn
= 0; an

.
≤ bn ⇔ lim sup 1

n log an

bn
≤ 0.

We continue with a formal description of the two user
IFC setting. Let xi = (xi(1), . . . , xi(n)) ∈ Xn

i , i = 1, 2,
denote the channel input signals of the two transmitters, and let
yi = (yi(1), . . . , yi(n)) ∈ Yn

i be the corresponding channel
outputs received by decoders 1 and 2, where Xi and Yi denote
the input and output alphabets, and which we assume to be
finite. Each (random) output symbol pair (Y1(j), Y2(j)) is
assumed to be conditionally independent of all other outputs,
and all input symbols, given the two corresponding (random)
input symbols (X1(j), X2(j)), and the corresponding condi-
tional probability is assumed to be constant from symbol to
symbol. An (n, R1, R2) code for the IFC consists of pairs
of encoding and decoding functions, (f1, f2) and (g1, g2),
respectively, where fi : {1, . . . , �enRi�} → Xn

i and gi : Yn
i →

{1, . . . , �enRi�}. The performance of the code is characterized
by a pair of error probabilities Pe,i = Pr(Ŵi �= Wi), i = 1, 2,
where Ŵi = gi(Y i) and Y i is the random output when user
i transmits Xi = fi(Wi), assuming the messages Wi are
uniformly distributed on the sets of indices {1, 2, . . . , �enRi�},
i = 1, 2. The per user error probabilities depend on the
channel only through the marginal conditional distributions
of the channel outputs given the corresponding channel in-
put pairs. We shall denote these conditional distributions as
qi(y|x1, x2)

�
= Pr(Yi(j) = y|(X1(j), X2(j)) = (x1, x2)).

A pair of error exponents (E1, E2) is attainable at a rate
pair (R1, R2) if there is a sequence of (n, R1, R2) codes
satisfying Ei ≤ lim inf −(1/n) logPe,i for i = 1, 2. The set
of all attainable error exponents at (R1, R2) comprises the
error exponent region at (R1, R2) and we shall denote it as
E(R1, R2). The main result of this paper is a single letter
characterization of a non-trivial subset of E(R1, R2) for each
R1, R2.
Before presenting the main result, we first derive an “easy”

set of attainable error exponents which we shall treat as a
benchmark for the more sophisticated exponents of the next
section. The “easy” exponents are obtained from Gallager’s
single user random coding error exponents for suitable “aver-
age” channels.
Given distributions Qi on Xi, let qi(y|x) denote the average

channel induced for user i if user j’s transmitted symbol,
j �= i, is distributed according to Qj . That is, q1(y1|x1) =∑

x2∈X2
q1(y1|x1, x2)Q2(x2), with q2(y2|x2) defined analo-

gously. It is reasonable to expect that, for i = 1, 2, Gallager’s
random coding error exponents corresponding to input distri-
butions Qi and induced single user channels qi are attainable.
From eqs. (5.6.13) and (5.6.14) in [4], for i = 1, 2, these

exponents correspond to

EG,i = max
0≤ρ≤1

{
− ρRi

− log
∑
y∈Yi

[ ∑
x∈Xi

Qi(x)qi(y|x)1/(1+ρ)

]1+ρ }
. (1)

The following simple argument shows that these exponents
are indeed achievable. Suppose each receiver implements an
ML decoder assuming a discrete memoryless channel (DMC)
with transition probabilities given by its corresponding average
channel qi. Unlike what will be treated in the next section,
these are suboptimal decoders, since the true induced channels
depend on the interfering users’ codebooks. The error proba-
bilities corresponding to these simpler decoders (i = 1, 2) can
be written as

Pe,i =
1

�enR1��enR2�

∑
x1∈C1

∑
x2∈C2

∑
y∈Yn

i

q
(n)
i (y|x1, x2)·

1(∃x′ �= x1, x
′ ∈ C1 : q

(n)
i (y|x1) ≤ q

(n)
i (y|x′)) (2)

where Ci is the codebook of user i, q
(n)
i (y|x1, x2) =∏n

t=1 qi(y(t)|x1(t), x2(t)), q
(n)
i (y|x) =

∏n
t=1 qi(y(t)|x(t)),

and 1(·) denotes the indicator function. Assuming the symbols
across all codewords in Ci are selected i.i.d. according to
the product distribution Qi, the expectation of Pe,1 over the
random codebooks C1 and C2, denoted as P e,1, is given by

P e,1 = EC1

[
1

�enR1�

∑
x1∈C1

∑
y∈Yn

i

q
(n)
i (y|x1)·

1(∃x′ �= x1, x
′ ∈ C1 : q

(n)
1 (y|x1) ≤ q

(n)
1 (y|x′))

]
, (3)

with a similar expression holding for P e,2. In particular,
only the terms q

(n)
i (y|x1, x2) in (2) depend on C2, and

averaging them over C2 (selected according to the product
distribution) yields the terms q

(n)
i (y|x1). The expression (3),

however, corresponds exactly to the expected error probability
(with respect to the random codebook C1) of single user ML
decoding for the “averaged” DMC q1, and the exponential
behavior of this, as is well known from [4], is indeed bounded
from below by EG,1 of (1). This (and the analogous argument
for EG,2) establishes that EG,1 and EG,2 are indeed attainable
exponents for the IFC.
In the next section, we derive a more sophisticated set of

attainable exponents by analyzing true ML decoding for the
channel induced by the interfering codebook. We follow this
up in Section III with a numerical comparison of the new
exponents with EG,1 and EG,2 for a simple IFC. These results
show that our improved exponents are never worse, and, for
most rates, strictly improve over EG,1 and EG,2.

II. MAIN RESULT
Our main contribution is stated in the following theorem,

which presents a new error exponent region for the discrete
memoryless two-user IFC.
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Theorem 1: For a discrete memoryless two-user IFC as
defined in Section I, for a family of block codes of rates R1

and R2 a decoding error probability for user 1 satisfying

lim inf −
1

n
log P̄e,1(n) ≥ ER,1(R1, R2, Q1, Q2, ρ, λ) (4)

can be achieved as the block length of the codes n goes to
infinity, where the error exponent ER,1(R1, R2, Q1, Q2, ρ, λ)
is given by

ER,1 =

{
R2 − ρR1 + min

{

min
(P

X̂1,X̂2,Ŷ1
,P

X̂′

1
,X̂′

2
,Ŷ ′

1

)

∈S1(Q1,Q2)

f1

(
ρ, λ, PX̂1,X̂2,Ŷ1

, PX̂′

1
,X̂′

2
,Ŷ ′

1

)
;

min
(P

X̂1,X̂2,Ŷ1
,P

X̂′

1
,X̂′

2
,Ŷ ′

1

)

∈S2(Q1,Q2,R2)

f2

(
ρ, λ, PX̂1,X̂2,Ŷ1

, PX̂′

1
,X̂′

2
,Ŷ ′

1

)}}

(5)
where

f1
�
=g(ρ, λ, PX̂1,X̂2,Ŷ1

, PX̂′

1
,X̂′

2
,Ŷ ′

1

) − H(Ŷ1|X̂1) + ρI(X̂ ′
1; Ŷ

′
1)

+ max

{
I(X̂2; X̂1, Ŷ1) − R2;

(1 − ρλ)(I(X̂2; X̂1, Ŷ1) − R2)

}

+ max

{
(1 − ρ)I(X̂ ′

2; Ŷ
′
1) + ρI(X̂ ′

2; X̂
′
1, Ŷ

′
1) − R2;

ρ(I(X̂ ′
2; X̂

′
1, Ŷ

′
1) − R2); ρλ(I(X̂ ′

2; X̂
′
1, Ŷ

′
1) − R2)

}
(6)

f2
�
=g(ρ, λ, PX̂1,X̂2,Ŷ1

, PX̂′

1
,X̂′

2
,Ŷ ′

1

) − H(Ŷ1|X̂1)

+ ρI(X̂ ′
1; X̂

′
2, Ŷ

′
1) + I(X̂2; X̂1, Ŷ1) − R2 (7)

with

g
�
= − (1 − ρλ)EX̂1,X̂2,Ŷ1

log q1(Ŷ1|X̂1, X̂2)

− ρλEX̂′

1
,X̂′

2
,Ŷ ′

1

log q1(Ŷ
′
1 |X̂

′
1, X̂

′
2)

and
S1(Q1, Q2)

�
=

{
(PX̂1,X̂2,Ŷ1

, PX̂′

1
,X̂′

2
,Ŷ ′

1

) ∈ S2 : PŶ1

= PŶ ′

1

,

PX̂1

= PX̂′

1

= Q1, PX̂2

= PX̂′

2

= Q2

}
(8)

S2(Q1, Q2, R2)
�
=

{
(PX̂1,X̂2,Ŷ1

, PX̂′

1
,X̂′

2
,Ŷ ′

1

) ∈ S2 :

PX̂1

= PX̂′

1

= Q1, PX̂2

= PX̂′

2

= Q2,

R2 ≤ I(X̂2; Ŷ1), PX̂2,Ŷ1
= PX̂′

2
,Ŷ ′

1

}
(9)

where S is the probability simplex in X1 × X2 × Y1. In the
bound (4), (ρ, λ) ∈ [0, 1]2 can be chosen to maximize the error
exponent ER,1.
In eqs. (4), (5), (8), and (9), Q1 and Q2 are probability dis-

tributions defined over the alphabets X1 and X2 respectively.
Expressions for the error probability Pe,2 and error exponent

ER,2 equivalent to (4) and (5) can be stated for the receiver of
user 2 by replacing X1 ↔ X2, Y1 → Y2, and q1 → q2 in all
the expressions. By varying Q1 and Q2 over all probability

distributions in X1 and X2 respectively, we obtain the error
exponent region for fixed rates R1 and R2.
Remark: The set of rate pairs (R1, R2) for which the cor-

responding error exponent regions contain points with strictly
positive components can be shown to be contained in the HK
region [8]. A precise characterization of this set of rate pairs
is left for future work.
Proof Outline: Due to space limitations we will omit some

of the details of the derivation. The complete proof will be
presented in [6]. We will use the following inequality (see
problem 4.15, part (f) in [4]), valid for ai ≥ 0, i = 1, . . . , n
and 0 ≤ b ≤ 1: ( n∑

i=1

ai

)b
≤

n∑
i=1

ab
i . (10)

For a given block length n, we generate the codebook of
user i = 1, 2 by choosing Mi

�
= �enRi� sequences xi of

length n independently and uniformly over all the sequences
of length n and type Qi in Xn

i . We will write xi,j to denote
the j-th codeword of user i. For the moment, we make the
technical assumption that Qi, i = 1, 2 have rational entries
with denominator n.
For a given channel output y1 ∈ Yn

1 , the best decod-
ing rule to minimize the probability of error in decoding
the message of user 1 is ML decoding, which consists of
picking the message m which maximizes P (y1|x1,m) =∑M2

i=1 q
(n)
1 (y1|x1,m, x2,i)/M2. Letting1

q
(n)
1,C2

(y1|x1)
�
=

1

M2

M2∑
i=1

q
(n)
1 (y1|x1, x2,i) (11)

be the “average” channel observed at receiver 1, where the
averaging is done over the codewords of user 2 in C2,
the decoding error probability at receiver 1 for transmitted
codeword x1,m and codebooks C1 and C2 is given by:

Pe,1(x1,m, C1, C2) =∑
y

1
∈Yn

1

Pe,1(x1,m, C1, C2|y1)q
(n)
1,C2

(y1|x1,m) (12)

With the introduction of the average channel (11), and the
use of two auxiliary parameters (ρ, λ) ∈ [0, 1]2, we can follow
the approach of [4] to bound the conditional probability of
decoding error Pe,1(xm, C1, C2|y1). Taking expectation over
the random choice of codebooks C1 and C2 we obtain an
average error probability:

P̄E1
≤Mρ

1

∑
y

1
∈Yn

1

EC2

{
EX1

[
[q

(n)
1,C2

(y1|X1)]
1−ρλ

]

· Eρ

X1

[
[q

(n)
1,C2

(y1|X1)]
λ

]}
(13)

where we used Jensen’s inequality in the last step.
Equation (13) is hard to handle, mainly due to the corre-

lation introduced by C2 between the two factors inside the

1Note that this average channel differs from the one used in Section I due
to the difference in the codebook generation process.
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outer expectation. Furthermore, the evaluation of the inner
expectations over X1 are complicated due to the powers
(1 − ρλ) and λ affecting q

(n)
1,C2

(y1|X1). Bounding methods
based on using Jensen’s inequality and (10) fail to give good
results due to the loss of exponential tightness.
We proceed with a refined bounding technique based on

the method of types inspired by [7]. While in this approach
we still use (10), we use it to bound sums with a number of
terms that only grows polynomially with n, and as a result,
exponential tightness is preserved.
Since the channel is memoryless,

q
(n)
1,C2

(y1|x1) =
1

M2

M2∑
i=1

n∏
t=1

q1(y1(t)|x1(t), x2,i(t))

=
1

M2

∑
P

X̂1,X̂2,Ŷ1

Nx1,y
1
,C2

(PX̂1,X̂2,Ŷ1
)

· enE
X̂1,X̂2,Ŷ1

[log q1(Ŷ1|X̂1,X̂2)] (14)

where we used Nx1,m,y
1
,C2

(PX̂1,X̂2,Ŷ1

) to denote the number
of codewords x2 in C2 such that (x1,m, x2, y1) have empirical
distribution PX̂1,X̂2,Ŷ1

. We also used EX̂1,X̂2,Ŷ1
(·) to denote

expectation with respect to the distribution PX̂1,X̂2,Ŷ1
.

Replacing (14) in (13) and using (10) three times we obtain:

P̄E1
≤

Mρ
1

M2

∑
P̂

∑
P̂ ′

∑
y

1
∈Yn

1

EC2

{
EX1

[
N1−ρλ

X1,y
1
,C2

(P̂ )

]

· Eρ

X1

[
Nλ

X1,y
1
,C2

(P̂ ′)

]}

· en[(1−ρλ)E
P̂

log q1(Ŷ1|X̂1,X̂2)+λE
P̂ ′ log q1(Ŷ ′

1
|X̂′

1
,X̂′

2
)

(15)

where we used P̂ = PX̂1,X̂2,Ŷ1
and P̂ ′ = PX̂′

1
,X̂′

2
,Ŷ ′

1

to shorten
the expression.
We next consider the bounding of

E(y1, P̂ , P̂ ′)
�
=

EC2

{
EX1

[
N1−ρλ

X1,y
1
,C2

(P̂ )

]
E

ρ

X1

[
Nλ

X1,y
1
,C2

(P̂ ′)

]}
,

(16)

and note that NX1,y
1
,C2

(P̂ ) and NX1,y
1
,C2

(P̂ ′) are formed
by sums of an exponentially large number of indicator func-
tions, each of which takes value 1 with exponentially small
probability. These sums concentrate around their means, which
show different behavior depending on how the number of
terms in the sum (enR2) compares to the probability of each of
the indicator functions taking value 1 (depending on the case
considered, these probabilities take the form e−nI(X̂2;X̂1,Ŷ1),
e−nI(X̂′

2
;X̂′

1
,Ŷ ′

1
), or e−nI(X̂′

2
;Ŷ ′

1
)). Whenever one of the factors

in (16) concentrates around its mean it behaves as a constant,
and hence is uncorrelated with the remaining factor. As a
result, the correlation between the two factors of (16), which
complicates the analysis, can be circumvented. We omit the
details of this part of the derivation, but note that the resulting

bound on E(y1, P̂ , P̂ ′) depends on y1 only through a factor
1(y1 ∈ PŶ1

, PŶ ′

1

; PX̂1

= PX̂′

1

= Q1; PX̂2

= PX̂′

2

= Q2).
Therefore, the innermost sum in (15) can be evaluated by
counting the number of vectors y1 ∈ Yn

1 that have empirical
types PŶ1

and PŶ ′

1

. Note that this count can only be positive
for PŶ1

= PŶ ′

1

. This count is approximately equal to enH(Ŷ1)

to first order in the exponent. Furthermore, the sums over
P̂ and P̂ ′ in (15) have a number of terms that only grows
polynomially with n. Therefore, to first order, the exponent
of (15) equals the maximum exponent of the argument of
the outer two sums, where the maximization is performed
over the distributions P̂ and P̂ ′ which are rational, with
denominator n. We can further upper bound the probability of
error by enlarging the optimization region, maximizing over
any probability distributions P̂ , P̂ ′.
So far, we have assumed rational distributions Q1, Q2, and

showed that (4) can be achieved. It is possible to show that
ER,1(R1, R2, Q1, Q2, ρ, λ)) (cf. (5)) is a continuous function
of Q1 and Q2. It follows that for fixed ρ and λ the error
exponent obtained with any Q1 and Q2 can be asymptotically
achieved by using a sequence of rational {Q1,n, Q2,n}n which
converges to Q1, Q2 as n → ∞. Finally, ρ and λ can be
optimized to maximize the resulting error exponent.

III. NUMERICAL RESULTS

In this section we present a numerical example to show the
performance of the error exponent region introduced in Theo-
rem 1. We use as a baseline for comparison the error exponent
region of Section I which is an extension of Gallager’s results
for single user channels to the IFC.
We present preliminary results for the binary Z-channel

model: Y1 = X1 ∗X2⊕Z1, Y2 = X2, where X1, X2, Y1, Y2 ∈
{0, 1}, Z1 ∼ Bernoulli(p), ∗ is multiplication, and ⊕ is
modulo 2 addition. This is a modified version of the binary
erasure IFC that we studied in [9], where we added noise Z1

to the received signal of user 1. In the results presented here,
we fixed p = 0.01.
The error exponent region is a surface in four dimensions

R1, R2, ER,1, ER,2. In order to obtain two-dimensional plots
we consider two projections:

• Fix R2 and maximize ER,1 subject to ER,2 > 0, varying
R1 (cf. figs. 1 and 2).

• Fix R2 and maximize min{ER,1, ER,2}, varying R1 (cf.
fig. 3).

In the first projection, we study the maximum error exponent
possible for user 1, only requiring reliable communication for
user 2. In the second projection we study the maximum error
exponent simultaneously achievable for both users.
Fig. 1 shows that the curves of ER,1 for fixed Q2 have a

linear part for R1 below a critical value, and a curvy part for
R1 above this value. This behavior is also observed in the
single user random coding exponent of [4], and as a result, it
also appears in the curves of EG,1.
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Fig. 1. Error exponent of user 1 for fixed R2 as a function of R1. The
random codebook distribution for user 2 is optimized to maximize the error
exponent of user 1 while achieving R2.
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Fig. 2. Optimal parameters that maximize ER,1 for fixed R2 as a function
of R1. The random codebook distribution for user 2 is optimized to maximize
the error exponent of user 1 while achieving R2.

Fig. 2 shows the optimal parameters for the ER,1 curves
shown in fig. 1 for R2 = 0.139 and R2 = 0.277 nats/channel
use. We note that since the input alphabets are binary, Qi is
completely determined by Pr(Xi = 1). Since Q2 is chosen
so that Pr(X2 = 1) ≥ 1/2 and H(X2) = R2, Pr(X2 = 1)
does not vary with R1 and decreases toward 1/2 for increasing
R2. We see from fig. 2 that for small values of R1, ρ = 1 is
optimal, while for larger values of R1, the optimal ρ decreases
gradually to 0. On the other hand, for small values of R1,
λ = 1/2 is optimal, while for larger values of R1, the optimal
λ increases gradually toward 1.
Fig. 3 is obtained by choosing Q2 to maximize

min{ER,1, ER,2}. For the noiseless binary channel of user 2,
ER,2 = max{H(Q2)−R2; 0}, and as a result, ER,2 decreases
with increasing Pr(X2 = 1) for Pr(X2 = 1) ≥ 1/2. On the
other hand, because of the multiplication between X1 and X2

in the received signal Y1, increasing Pr(X2 = 1) results in
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Fig. 3. Maximum error exponent simultaneously achievable for both users
for fixed R2 as a function of R1.

less interference for user 1, and a larger value of ER,1. It
follows that there is a direct trade-off between ER,1 and ER,2

through the choice of Q2, and whenever min{ER,1, ER,2} is
maximized, ER,1 = ER,2. Therefore, in the curves of fig. 3,
ER,1 = ER,2.
From the plots of figs. 1 and 3 we see that the error

exponents obtained from Theorem 1 always outperform the
baseline error exponents of Section I. It is worthwhile to note
that the random codebook distributions used to compute ER,i

and EG,i are not the same. ER,i is obtained using codebooks
generated by choosing the codewords uniformly and indepen-
dently over all sequences of length n and type Qi. On the
other hand, EG,i is computed using codebooks generated by
choosing the codewords with n i.i.d. symbols drawn from
Qi. The performance improvement of ER,i over EG,i can be
attributed to both the different random codebook distributions
and the improved decoding rule (ML vs. suboptimal decoding).
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