
40 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 1, JANUARY 2010

Error Exponents of Optimum Decoding for the
Interference Channel
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Abstract—Exponential error bounds for the finite-alphabet
interference channel (IFC) with two transmitter–receiver pairs,
are investigated under the random coding regime. Our focus is
on optimum decoding, as opposed to heuristic decoding rules that
have been used in previous works, like joint typicality decoding,
decoding based on interference cancellation, and decoding that
considers the interference as additional noise. Indeed, the fact that
the actual interfering signal is a codeword and not an independent
and identically distributed (i.i.d.) noise process complicates the
application of conventional techniques to the performance analysis
of the optimum decoder. Using analytical tools rooted in statistical
physics, we derive a single-letter expression for error exponents
achievable under optimum decoding and demonstrate strict
improvement over error exponents obtainable using suboptimal
decoding rules, but which are amenable to more conventional
analysis.

Index Terms—Error exponent region, large deviations, method
of types, statistical physics.

I. INTRODUCTION

T HE -user interference channel (IFC) models the
communication between transmitter–receiver pairs,

wherein each receiver must decode its corresponding trans-
mitter’s message from a signal that is corrupted by interference
from the other transmitters, in addition to channel noise. The
information-theoretic analysis of the IFC was initiated over 30
year ago and has recently witnessed a resurgence of interest,
motivated by new potential applications, such as wireless
communication over unregulated spectrum.

Previous work on the IFC has focused on obtaining inner
and outer bounds to the capacity region for memoryless chan-
nels, with a precise characterization of the capacity region re-
maining elusive for most channels, even for users.
The best known inner bound for the IFC capacity region is the
Han–Kobayashi (HK) region, established in [1]. It has been
found to be tight in certain special cases ([1], [2]), and recently
was found to be tight to within 1 bit for the two-user Gaussian
IFC [3]. No achievable rates that lie outside the HK region are
known for any IFC with users.
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Our aim in this paper is to extend the study of achievable
schemes to the analysis of error exponents, or exponential rates
of decay of error probabilities, that are attainable as a function of
user rates. To our knowledge, there has been no prior treatment
of error exponents for the IFC. In particular, the error bounds
underlying the achievability results in [1] yield vanishing error
exponents (though still decaying error probability) at all rates.

The notion of an error exponent region, or a set of achiev-
able exponential rates of decay in the error probabilities for dif-
ferent users at a given operating rate-tuple in a multiuser com-
munication network, was formalized recently in [4], and studied
therein for Gaussian multiple-access and broadcast channels.
Our main result, presented in Section IV, is a single-letter char-
acterization of an achievable error exponent region, as a func-
tion of user rates, for the user, finite alphabet, memo-
ryless interference channel. The region is derived by bounding
the average error probability of random codebooks comprised
of independent and identically distributed (i.i.d.) codewords uni-
formly distributed over a type class, under maximum-likelihood
(ML) decoding at each user. Unlike the single-user setting, in
this case, the effective channel determining each receiver’s ML
decoding rule is induced both by the noise and the interfering
user’s codebook. Our focus on optimal decoding is a departure
from the conventional achievability arguments in [1] and else-
where, which are based on joint-typicality decoding, with re-
strictions on the decoder to “treat interference as noise” or to
“decode the interference” in part or in whole. However, in this
work, we confine our analysis to codebook ensembles that are
simpler than the superposition codebooks of [1].

The analysis of the probability of decoding error under op-
timal decoding is complicated due to correlations induced by
the interfering signal. Usual methods for bounding the proba-
bility of error based on Jensen’s inequality and other related in-
equalities (see, e.g., (8)) fail to give good results. Our bounding
approach combines some of the classical information-theoretic
approaches of [5] and [6] with a technique rooted in the anal-
ysis of the random energy model (REM) of spin glasses in sta-
tistical physics [16, Chrs. 5 and 6] that was further exercised in
[7] and [8] for single-user channels and in [9] for the degraded
broadcast channel. More specifically, as in [5], we use auxiliary
parameters and to get an upper bound on the average prob-
ability of decoding error under ML decoding, which we then
bound using the method of types [6]. Key to our derivation is
the use of distance enumerators in the spirit of the analysis of
the above-mentioned REM (see also [7]–[9]), which allows us
to avoid using Jensen’s inequality in some steps, and allows us
to maintain exponential tightness in other inequalities by ap-
plying them to only polynomially few terms (as opposed to ex-
ponentially many) in certain sums that bound the probability of
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decoding error. It should be emphasized, in this context, that
the use of this technique was pivotal to our results. Our earlier
attempts, that were based on more “traditional” tools, failed to
provide meaningful results. In fact, they all turned out to be in-
ferior to some trivial bounds.

The paper is organized as follows. The notation, various def-
initions, and the channel model assumed throughout the paper
are detailed in Section II. In Section III, we derive an “easy” set
of attainable error exponents, which we shall treat as a bench-
mark for the exponents of the main section, Section IV. The
“easy” exponents are obtained by simple extensions to the in-
terference channel of existing error exponent results for single-
user and multiple-access channels, based on random constant
composition codebooks and suboptimal decoders. Then, in Sec-
tion IV, we derive another set of attainable exponents by ana-
lyzing ML decoding for the channel induced by the interfering
codebook. In Section V, we show that the minimizations re-
quired to evaluate the new error exponents can be written as
convex optimization problems, and, as a result, can be solved
efficiently. We follow this up in Section VI with a numerical
comparison of the new exponents with the baseline exponents
of Section III for a simple IFC. These numerical results demon-
strate that the new exponents are never worse (at least for the
chosen channel and parameters) and, for most rates, strictly im-
prove over the baseline exponents.

An earlier version of this work was presented in [10].

II. NOTATION, DEFINITIONS,AND CHANNEL MODEL

Unless otherwise stated, we use lowercase and uppercase let-
ters for scalars, boldface lowercase letters for vectors, upper-
case (boldface) letters for random variables (vectors), and calli-
graphic letters for sets. For example, is a scalar, is a vector,
is a random variable, is a random vector, and is a set. For a
real number we shall, on occasion, let denote . Also, we
use to denote natural logarithm, to denote expectation,
and to denote probability. For independent random variables

and distributed according to ,
, we denote the conditional expectation oper-

ator as for any
function . All information quantities (entropy, mutual in-

formation, etc.) and rates are in nats. Finally, we use , , etc.,
to denote equality or inequality to the first order in the exponent,
i.e.,

The empirical probability mass function of the finite alphabet
sequence with alphabet is denoted as
the vector , where each is the relative fre-
quency of along . The type class associated with an
empirical probability mass function , which will be denoted by

, is the set of all -vectors whose empirical probability
mass function is equal to . Similar conventions will apply to
pairs and triples of vectors of length , which are defined over
the corresponding product alphabets. Information measures
pertaining to empirical distributions will be denoted using the

standard notational conventions, except that we use “ ” as
well as subscripts that indicate the sequences from which these
empirical distributions were extracted. For example, we write

and to denote the conditional
entropy of given and the mutual information between

and , respectively, computed with respect to the
empirical distribution . We denote the relative
entropy or Kullback–Leibler divergence between distributions

and as ,
and we write for the conditional relative
entropy between conditional distributions and
conditioned on , which is defined as

.
We continue with a formal description of the two-user IFC

setting. Let , , de-
note the channel input signals of the two transmitters, and let

be the corresponding channel
outputs received by decoders 1 and 2, where and de-
note the input and output alphabets, and which we assume to
be finite. Each (random) output symbol pair is
assumed to be conditionally independent of all other outputs,
and all input symbols, given the two corresponding (random)
input symbols , and the corresponding condi-
tional probability is assumed to be constant from symbol to
symbol. An code for the IFC consists of pairs of
encoding and decoding functions, and , respec-
tively, where , , and

, . The performance of the
code is characterized by a pair of error probabilities

, , where and is the
random output when user transmits , assuming
the messages are uniformly distributed on the sets of indices

, . The per user error probabilities depend
on the channel only through the marginal conditional distribu-
tions of the channel outputs given the corresponding channel
input pairs. We shall denote these conditional distributions as

. We
use a superscript to denote channel product distributions
over channel uses.

A pair of error exponents is attainable at a rate pair
if there is a sequence of codes satisfying

for The set of all
attainable error exponents at comprises the error ex-
ponent region at and we shall denote it as .
The main result of this paper is a single-letter characterization
of a nontrivial subset of for each , .

III. BACKGROUND

In this section, we present achievable error exponents for the
interference channel which are based on known results of error
exponents for single user and multiple-access channels (MAC)
for fixed composition codebooks [12]–[15]. These exponents
will be used as a baseline for comparing the performance of the
error exponents that we derive in Section IV.

In the following, we will focus on the error performance of
user 1, and as a result, all explanations and expressions will be
specialized to receiver 1. Similar expressions also hold for user
2 with the exchange of indices .
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A possibly suboptimal decoder for the interference channel
can be obtained from a given MAC decoder by simply ignoring
the decoded message of the interfering transmitter. For example,
following [15], we can use a minimum entropy decoder that for
a given received vector at receiver 1 computes

and disregards .
It follows from [15] that for random codebooks of fixed com-

position , , the average probability of decoding both mes-
sages in error, where the averaging is done over the random
choice of codebooks, satisfies

where

with .
In addition, the average probability of decoding the message

of the interfering transmitter correctly but the message of the
desired transmitter incorrectly satisfies

where

Therefore, the overall average error performance of this MAC
decoder in the IFC satisfies

A second suboptimal decoder that leads to tractable error per-
formance bounds is the single-user maximum mutual informa-
tion decoder (which in this case coincides with the minimum
entropy decoder)

In this case, standard application of the method of types [12],
[13] leads to the following bound on the average error prob-
ability under random fixed composition codebooks of types

,

where

We can choose the better decoder between these two, that
leads to the better error performance. Therefore, we obtain that

(1)

is an achievable error exponent at receiver 1, with an analogous
exponent following for receiver 2.

IV. MAIN RESULT

Our main contribution is stated in the following theorem,
which presents a new error exponent region for the discrete
memoryless two-user IFC. While the full proof appears in Ap-
pendix A, we also provide a proof outline below, to give an idea
of the main steps.

Theorem 1: For a discrete memoryless two-user IFC as de-
fined in Section I, for a family of block codes of rates and

a decoding error probability for user 1 satisfying

(2)

can be achieved, where the error exponent
is given by

(3)

where

(4)

(5)

with

and

(6)
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Fig. 1. Rate region � where � � �.

(7)

where is the probability simplex in . In the
bound (2), can be chosen to maximize the error
exponent .

In (2), (3), (6), and (7), and are probability distribu-
tions defined over the alphabets and , respectively.

Expressions for the error probability and error exponent
equivalent to (2) and (3) can be stated for the receiver of

user 2 by replacing , , and in all the
expressions. By varying and over all probability distri-
butions in and , respectively, we obtain the error exponent
region for fixed rates and .

Remark 1: A lower bound to

is derived in Appendix B (cf. (49)) that is closer in form to
the expressions underlying the benchmark exponent pre-
sented above. In particular, this lower bound allows us to estab-
lish analytically (see Appendix B) that at
(and for sufficiently small ). Numerical computations, as pre-
sented in Section VI, indicate that this inequality can be strict.

A second application of the lower bound (49) is to determine
the set of rate pairs , for which . We show in
Appendix B that this region includes

evaluated with
, with an analogous region following for

the set where (see Fig. 1).
Furthermore, it is shown in [12], [13] that the error exponent

achievable for user 1 with optimal decoding and random fixed
composition codebooks is zero outside the closure of the region

. Therefore, the region where our error exponents are posi-
tive is as large as it can be for any error exponents with fixed

composition codebooks. The exponent can also be shown
to have this property. Finally, it can be shown that this region is
contained in the HK region [12], [13].

Remark 2: Theorem 1 presents an asymptotic upper bound
on the average probability of decoding error for fixed compo-
sition codebooks, where the averaging is done over the random
choice of codebooks. It is straightforward to show (see, e.g., [4])
that there exists a specific (i.e., nonrandom) sequence of fixed
composition codebooks of increasing block length for which
the same asymptotic error performance can be achieved.

Remark 3: In the MAC, expurgated codebooks allow to
obtain improved error exponent bounds [17]. The baseline error
exponents and possibly our new error exponents

may be improved by considering expurgated
ensembles.

Proof Outline: For nonnegative reals and
, the following inequality [5, Problem 4.15(f)] will be fre-

quently used:

(8)

For a given block length , we generate the codebook of user
by choosing sequences of length independently and

uniformly over all the sequences of length and type in .
Note that , have rational entries with denominator .
We will write to denote the th codeword of user .

For a given channel output , the best decoding rule
to minimize the probability of error in decoding the message of
user 1 is ML decoding, which consists of picking the message

which maximizes

Letting

(9)

be the “average” channel observed at receiver 1, where the aver-
aging is done over the codewords of user 2 in , the decoding
error probability at receiver 1 for transmitted codeword
and codebooks , and is given by

(10)

where is the decoding error probability at
receiver 1 for the transmitted codeword and codebooks
and when the received vector is , which is a deterministic
function for the deterministic decoding rules considered in this
paper.

With the introduction of the average channel (9), and the use
of two auxiliary parameters , we can follow
the approach of [5] to bound the conditional probability of de-
coding error . Taking expectation over the
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random choice of codebooks and , we obtain an average
error probability

(11)

where we used Jensen’s inequality to move the second inner
expectation inside .

Equation (11) is hard to handle, mainly due to the correlation
introduced by between the two factors inside the outer ex-
pectation. Furthermore, the evaluation of the inner expectations
over are complicated due to the powers and affecting

. Bounding methods based on Jensen’s inequality
and (8) fail to give good results due to the loss of exponential
tightness.

We proceed with a refined bounding technique based on the
method of types inspired by [7]. While in this approach we still
use (8), we use it to bound sums with a number of terms that
only grows polynomially with , and as a result, exponential
tightness is preserved.

Since the channel is memoryless

(12)

where we used to denote the number of code-
words in such that have empirical distribution

. We also used to denote expectation with
respect to the distribution .

Replacing (12) in (11) and using (8) three times, we obtain

(13)

where we used and to shorten
the expression.

We next consider the bounding of

(14)

and note that and are formed by sums
of an exponentially large number of indicator functions, each of
which takes value with exponentially small probability. These
sums concentrate around their means, which show different
behavior depending on how the number of terms in the sum

compares to the probability of each of the indicator func-
tions taking value (depending on the case considered, these

probabilities take the form , , or
). Whenever one of the factors in (14) concentrates

around its mean it behaves as a constant, and hence is uncor-
related with the remaining factor. As a result, the correlation
between the two factors of (14), which complicates the anal-
ysis, can be circumvented. We give the details of this part of
the derivation in Appendix A, but note here that the resulting
bound on depends on only through a factor

.
Therefore, the innermost sum in (13) can be evaluated by
counting the number of vectors that have empirical
types and . Note that this count can only be positive for

. This count is approximately equal to to

first order in the exponent. Furthermore, the sums over and
in (13) have a number of terms that only grows polynomially

with . Therefore, to first order, the exponential growth rate
of (13) equals the maximum exponential growth rate of the
argument of the outer two sums, where the maximization is per-
formed over the distributions and which are rational, with
denominator . We can further upper-bound the probability of
error by enlarging the optimization region, maximizing over
any probability distributions , .

V. CONVEX OPTIMIZATION ISSUES

In order to get a valid evaluation of
, for any given , , ,

satisfying the constraints of the outer maximization, we
need to accurately solve the inner minimization problems. A
brute-force search may not give accurate enough results in
reasonable time. As will be shown below, the first minimization
problem in (3) is a convex problem, and as such, can be solved
efficiently. In addition, convexity allows to lower-bound the
objective function by its supporting hyperplane, which in turn,
allows to get a reliable1 lower bound through the solution of a
linear program.

The second minimization problem is not convex due to the
nonconvex constraint . If we remove this con-
straint, it will be later shown that we obtain a convex problem
that can be solved efficiently. There are two possible situations.

The first situation occurs when the optimal solution to the
modified problem satisfies : in this case, the
solution to the modified problem is also a solution to the original
problem.

The second situation is when the optimal solution to the
modified problem satisfies : in this case, a
solution to the original problem must satisfy .
We prove this statement by contradiction. Let be the op-
timal solution to the modified problem, and be an optimal
solution to the original problem. Now assume conversely,
that there is no that satisfies . With
this assumption, we have that at , . Let

. Note that is a convex set

and . Due to the continuity of , the
straight line in that joins and must pass through

1In our implementation, we solve the original convex optimization problem
using the MATLAB function �������.
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an intermediate point , ,
that satisfies . Let be the objective
function of the second minimization problem in (3), restricted
to . It will be shown later that , restricted to this do-
main, is a convex function. By hypothesis,
and we have . On the other
hand, from the convexity of , restricted to , we have

and we get a
contradiction. Therefore, it follows that there is a solution
to the original problem that satisfies .

Let be the objective function of the first minimization
problem in (3). First, we note that satisfies the constraints
of the first minimization problem since they are less restric-
tive than the constraints of the second minimization problem
in (3). We next prove that . As a result, the
optimal solution of the first minimization problem satisfies

, and we do not need to know
to evaluate the argument of the maximization in (3).

Using the fact that at , , we
have:

(15)

where we used the identity

in the second equality.
In summary, if the solution to the second minimiza-

tion problem in (3), without the constraint on , satisfies
, then the first minimization problem in

(3) dominates the expression. Otherwise, the solution to the
second minimization problem in (3) without the constraint

equals the solution to the second minimization
problem with this constraint.

It remains to show that the objective functions of the
minimization problems in (3), ,

, restricted to the domain , are
convex functions. Since the sum of convex functions is convex,
to prove the convexity of on , we only need to prove
that the different terms of

(16)

are convex within .

First, we have that

is linear in and therefore convex. Also, we

have that is convex for
fixed due to the concavity of .

In addition, can be written as

. Let for any , such that

and . We have that

and

The convexity of for fixed follows from the
convexity of in the pair

(17)

Continuing with the next term of (16)

we note that it is the maximum of two convex functions, and
therefore convex. The convexity of each of the individual
functions follows from the convexity of for fixed

, , which can be proved along the same lines as (17).
Finally, we consider the last term of (16)

Each of the arguments of the can be shown to be the
sum of convex functions for fixed and , using a similar
argument as the one used to prove (17). Since the maximum of
convex functions is convex, the convexity of restricted to
follows.

Using similar arguments, it is easy to show that

is convex in .
VI. NUMERICAL RESULTS

In this section, we present a numerical example to show the
performance of the error exponent region introduced in The-
orem 1. We use as a baseline for comparison the error expo-
nent region of Section III, which is obtained with minor modifi-
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Fig. 2. Error exponents as a function of � for two different values of � and fixed choices � , � . All the rates are in nats.

cations from known results for single-user and multiple-access
channels.

We present results for the binary Z-channel model:
, , where ,

, is multiplication, and is modulo addi-
tion. This is a modified version of the binary erasure IFC studied
in [11], where we add noise to the received signal of user 1.
In the results presented here, we fix .

The boundary of the error exponent region is a surface in four
dimensions , , , . This surface can be obtained
parametrically by computing , as a function of ,

, , , by optimizing over and in (3) and in the corre-
sponding expression for . The parameterization of in
terms of , , , , allows the study of the error perfor-
mance as a function of the parameters that directly influence it.

Fig. 2 shows that the error exponents under optimal decoding
derived in this paper can be strictly better than the baseline error
exponents of Section III. This suggests that the inequality ob-
tained in Appendix B for can be strict. In addition, in
all the plots that we computed for the Z-channel for different
values of , , and we were not able to find a single case
where the baseline exponent was larger than .

We see that the curves of for fixed , ,
have a linear part for below a critical value , and
a curved part for (note that the critical
values depend on the parameters , , and ). Fig. 3 shows
the optimal parameters and for the curves shown in
Fig. 2 for and nats/channel use. We see
that for the linear part of the curves and are
optimal, while for the curved part (i.e., ) the optimal

decreases to and the optimal increases towards . For in
the interval the gap between the
and curves remains constant as both curves are lines with
slope , and this gap is equal to the gap at . In general,
any gap between and at will remain constant

in the interval where both curves have slope . We also note
since the optimal parameters and vary for different rates,
these parameters are indeed active, i.e., they have influence on
the resulting error exponent.

The curves of Fig. 2 are obtained for fixed choices of
and , which are the distributions used to generate the random
fixed composition codebooks. As and vary in the proba-
bility simplex , we obtain the four-dimensional error exponent
region

In order to obtain a two-dimensional plot of the region, we con-
sider a projection: we fix varying and plot the max-
imum value over and in the error exponent region of

. This corresponds to choosing and in
order to maximize the error exponent simultaneously achievable
for both users. Fig. 4 shows this projection for and

nats/channel use, where, for reference, we included
the corresponding curves for the error exponents of
Section III.

For the noiseless binary channel of user 2,
, and as a result, decreases

with increasing for . On
the other hand, because of the multiplication between and

in the received signal , increasing results
in less interference for user 1, and a larger value of . It
follows that there is a direct tradeoff between and
through the choice of , and whenever is
maximized, . Therefore, in the curve of Fig. 4,

.
From the plots of Figs. 2 and 4, we see that the error exponents

obtained from Theorem 1 sometimes outperform and are never
worse than the baseline error exponents of Section III.
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Fig. 3. Optimal parameters � and � for the � curves of Fig. 2. All the rates are in nats.

Fig. 4. Maximum error exponent simultaneously achievable for both users for fixed � as a function of � .

APPENDIX A
PROOF OF THEOREM 1

It is easy to see that the optimum decoder for user 1 picks
the message whose codeword maxi-
mizes , where
and . Applying Gallager’s general upper bound
to the “channel” , we
have for user 1

(18)

where and are arbitrary parameters to be op-
timized in the sequel. Thus, the average error probability is
upper-bounded by the expectation of the above with respect to
(w.r.t.) the ensemble of codes of both users. Let us take the
expectation w.r.t. the ensemble of user 1 first, and we denote
this expectation operator by . Since the codewords of
user 1 are independent, the expectation of the summand in the
sum above is given by the product of expectations, namely, the
product of

(19)
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and

Now, let denote the number of codewords
that form a joint empirical probability mass function

together with a given and . Then, using (8),
can be bounded by

(20)

where is the single-letter transition probability
distribution of the IFC, and where , for
a generic function , denotes the expectation operator when the
random variables (RVs) are understood to be dis-
tributed according to . Similarly (and using Jensen’s
inequality to push the expectation w.r.t. into the brackets),
we have

(21)

Taking the product of these two expressions, applying (8) to the
summation in the bound for , and taking expectations with
respect to the codebook yields

(22)

The next step is to bound the term involving the expectation over
. As noted, the codewords and are randomly se-

lected i.i.d. over the type classes and
corresponding to probability distributions and , respec-
tively. To avoid cumbersome notation, we denote hereafter

and and assume that
, , , and that lies in the

type class corresponding to . We will also use the shorthand
notation

(23)

The bounding of requires considering multiple cases which
depend on how compares to different information quanti-
ties, and also depend on properties of the joint types ,

. In order to guide the reader through the different steps
we present in Fig. 5 a schematic representation of the different
cases that arise.

We first consider two different ranges of , according to its
comparison with :

1. The range . Here we have

(24)

where in the second to last inequality we used , and
in the last inequality we used the fact that

(25)

for any , which decays doubly exponentially with (cf.
[7, Appendix]).

To compute , we consider two cases,

according to the comparison between and :
The case . Here, we have

(26)
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Therefore, when

we have

(27)

The case . Here we have

(28)

where we used the fact that and then estimated the
expectation of as times the probability would
fall into the corresponding conditional type. Therefore, when

we have

(29)

The exponents for the subcases (27) and (29) corresponding
to and , respectively,
differ only in the factors ( and , respectively) multiplying the
term . Therefore, we can consolidate these
two subscases of into the expression

(30)

since
is when and

when .

2. The range . In this range

(31)

where we assumed in the last step. The second expecta-
tion over can be evaluated as

(32)

where is the number of codewords that are
jointly typical with according to . Thus

(33)

To bound , we consider two cases

depending on how compares to .
The case . Here, we have

(34)

where we used the fact that
decays doubly exponentially in the third inequality, and
bounded using (26) and (28) in the last
inequality.

The case . Here, we further split the evalu-
ation into two parts. In the first part, , and
we have
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(35)

where we used in the last inequality

valid for .
The other part corresponds to . Here we

have

(36)

To bound , we consider two
cases.

The first case is when : in this case,

. Therefore

Replacing in (36), we get

(37)

The other case is : in this case, the same
codeword cannot simultaneously satisfy

and . Therefore, we have that

Replacing in (36), we get

(38)

This completes the decomposition of into the various
subcases.

Consolidation: Next, we carry out a consolidation process
that merges all of the above subcases into a more compact ex-
pression, leading ultimately to the expression in Theorem 1.
Fig. 5 gives a schematic representation, in terms of a tree, of the
various consolidation steps described below. The consolidation
of (27) and (29) into (30) was done before, but we include it in
Fig. 5 for completeness. Referring to Fig. 5, the consolidation
starts at the deepest leaves of the tree and works its way up the
nodes until it reaches the root.
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Fig. 5. Tree representing the multiple ranges of � considered in the derivation, and the equations that consolidate the different ranges.

We begin with the last set of subsubcases derived,
and (expressions (35), (37),

and (38)) for the subcase , and consolidate them
as follows:

(39)

Next we would like to decompose the indicator
appearing in the initial part of this expression

as

where we are taking into account in the last step that for the
present subcase ,

since for we have

Applying this decomposition to (39), then combining terms
having the same indicators , and

, and replacing indicators by as appropriate
(similar to (30)), we simplify (39) to

(40)

This is valid for the subcase .
Next, we consolidate (34) from the subcase

with (40) and insert the result into (33) to get

(41)

which applies to the range . Again, ex-
panding all terms against the indicators
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and , and, as above, replacing indicators by
as appropriate, we obtain

(42)

Using the identity (proved via the chain rule)

twice, we can rewrite the term

appearing after the indicator in (42) as

Similarly, we can decompose the term ap-
pearing after the indicator against the in-

dicators and , and use
the above identity to combine it with ap-
pearing after the indicator . Incorporating
these steps, we can rewrite (42) as

(43)

Finally, we consolidate (30) from the range
with the just obtained (43) (for the range

) to get

(44)

As before, after expanding the first indicator
against and

and combining terms, we obtain
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(45)

where, in simplifying, we have made use of the identity

along with

and finally

We use (45) in (22), add over all vectors , decompose all
joint-type-dependent terms appearing in (22), as well as the term

arising from the summation over per type, against
the indicators and , and
finally optimize over the types , to obtain

(46)

Note that the term mentioned above has been combined
with the term appearing in all subcases of (45) to
yield the appearing throughout (46).

The expression in Theorem 1 is obtained from (46) by drop-
ping the constraint from the first maximiza-
tion (which, given the continuity of the underlying terms, is
not really a constraint anyway), by noting that if, in the re-
sulting expression, the second maximization is attained when

, it will be dominated by the first maximization
so that the second maximization can be restricted to the case

, and finally by negating the resulting exponent
(and propagating the negation as
throughout).

APPENDIX B
A LOWER BOUND TO

We can lower-bound the maximization of (3) over and by
applying the min-max theorem twice, as follows.

First we introduce a new parameter and bound (3) as

(47)

where and we have dropped the constraint involving
from , resulting in a lower bound, and making convex.

Letting , we claim that for fixed , the expression
in (47) being minimized over above is convex
in . This follows from the fact that for fixed

both and are affine in . The only problem
would come from the ’s appearing in these
expressions, but it can be checked that these
maximizations are independent of for fixed

Letting , we can thus apply
the min-max theorem of convex analysis (twice) as follows:
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(48)

Since, as noted above, for fixed

both and are affine in , the inner maximization in
(48) is attained at one of the points

After simplification, we obtain

Next, we note the identities

and use them, with the shorthand

and

for , to rewrite the bound as
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(49)

where in simplifying the third expression in the maximization
we have also exploited the constraints

and

For , we can further simplify this expression. In
particular, for , the first term in the inner maximiza-
tion is readily seen to be always smaller than the second term.
Additionally, the second and third terms are symmetric in the
primed and nonprimed joint distributions, which, together with
the readily established joint convexity of the maximum of these
two terms on the constraint set, imply that the inner minimiza-
tion over the joint types is achieved when the primed and non-
primed joint distributions are equal, in which case the two terms
are equal. Therefore, at , we have

(50)

or

(51)

where .
Simplifying at gives

(52)

which is seen to be no bigger than the above lower bound on
, since ,

, and
.

Another application of the lower bound (49) is in determining
the set of rate pairs , for which . Let
be independent with marginal distributions and and
be the result of passing through the channel . We
shall argue that if

and
, then the expression (49) must be greater than

. Indeed, for the expression (49) to equal , we see from the
first term in the inner maximum that the minimizing and joint
distributions must satisfy one of the following: case 1: ,

, and ; case 2: , ,
and ; or case 3: ,

, and . If case
1 holds then necessarily have the same joint
distribution as , in which case, we see from the
third term in the maximum in (49) that

. Similarly, if case 2 holds then it fol-
lows that have the same joint distribution
as , in which case, it follows again from the third
term in the maximum that . Finally, if case
3 holds then both and
have the same distribution as , in which case, after
writing , we see again that either

or
must hold. Thus, the three cases together establish the above
claim that if and

then the expression (49), and hence ,
must be greater than . It can be checked that this region is
equivalent to

which is represented in Fig. 1 in Section IV. It is shown in [12],
[13] that for the ensemble of constant composition codes com-
prised of i.i.d. codewords uniformly distributed over the types

and , the exponential decay rate of the average probability
of error for user 1 must necessarily be zero for rate pairs outside
of this region, even for optimum, ML decoding.
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