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Abstract—We present a new outer bound for the general two-
user discrete memoryless interference channel (IFC) and use it to
establish the capacity region of the binary erasure IFC, whose de-
termination was left open in [7]. We also show that there are es-
sentially two deterministic binary IFCs, in addition to the binary
erasure IFC, whose capacity regions are not obvious from previous
results. We determine the capacity region of one of these and apply
the aforemenioned general outer bound to obtain the best available
bound on the maximum achievable sum-rate for the other. We also
show that the new general outer bound is tight for one-sided de-
terministic IFCs that belong to the class studied by El Gamal and
Costa.

Index Terms—Binary erasure interference channel, capacity, in-
terference channel (IFC), outer bound.

I. INTRODUCTION

T HE two-user interference channel (IFC) is an informa-
tion-theoretic model that captures the effects of interfer-

ence between two users that communicate independent informa-
tion to their corresponding receivers. The capacity region of the
channel gives a fundamental measure of the tradeoff between
the rates that can be simultaneously achieved. Unfortunately,
except for a few special cases, the capacity region is unknown
[1], [2]. There are two IFC models that received particular at-
tention in the literature: the discrete memoryless IFC (DMIFC)
and the Gaussian memoryless IFC (GMIFC). Recently, the ca-
pacity region of the Gaussian IFC has been characterized with
an error smaller than 1 bit/s/Hz per user through the derivation of
new outer bounds [3]. However, the DMIFC lacks such a tight
characterization for its capacity region. In this work we make
progress in the characterization of the DMIFC capacity region
by presenting a new outer bound. We use this bound to establish
the capacity region of the binary erasure IFC, whose determina-
tion was left open in [6], [7].

The best known achievable region for both the DMIFC and
the GMIFC is due to Han and Kobayashi [10]. In order to char-
acterize capacity, it is of interest to obtain outer bounds to the
capacity region, such as the ones proposed by Sato [11] and
Carleial [12]. These bounds are obtained by allowing coopera-
tion between the transmitters or receivers, and by enhancing the
channel so that the actual channel outputs are degraded versions
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of the enhanced channel outputs. In the enhanced channel, each
receiver is able to decode the messages sent by both transmit-
ters. However, in many cases, the receivers in the actual channel
cannot completely decode the message sent by the interfering
transmitter. In these cases, the bounds of [11] and [12] are loose.
In contrast, the bound that we present in this work does not re-
quire either receiver to completely decode the interfering signal.
In addition to determining the capacity region of the binary era-
sure IFC, we present some examples that illustrate the perfor-
mance of the new bound. In particular, the new bound appears
to be most useful for channels with only one-sided interference.

Preliminary results of this work were presented in [14], where
the bound of Theorem 1 was given in a possibly weaker form.1

In this full version, we expand the treatment of deterministic
binary IFCs and identify the remaining two-user deterministic
binary IFC whose capacity region is still unknown. In addition,
we show that time sharing (i.e., convexification) is required to
achieve the capacity region of the binary erasure IFC, thus cor-
recting an error in the statement and derivation of this region
given in [14].

Regarding notation we use lowercase letters to denote scalars,
uppercase letters to denote random variables, boldface letters
to denote vectors, and calligraphic uppercase letters to denote
sets. For example is a scalar, is a random variable, is
a vector, is a random vector, and is
a set. We use , and to denote binary entropy and
mutual information. The indicator function is denoted by ,
and is used to denote . The probability mass
function (pmf) of the random variable is written as and,
with slight abuse of notation, we use to denote this func-
tion. We use to denote the Bernoulli distribution of param-
eter . We define for

, i.e., the entropy in bits of a random vari-
able with pmf .

II. MODEL

We consider a two-user discrete memoryless interference
channel. In this model there are two transmitter-receiver pairs,
where each transmitter wants to communicate with its corre-
sponding receiver (cf. Fig. 1). This channel is defined by the
finite input alphabets and , the finite output alphabets
and , and transition probability matrices and

.
For a given block length , user communicates a message

by choosing a codeword from a codebook

1It can be shown that Theorem 1 implies the bound in [14], but we have no
proof or counter-example concerning the reverse implication. We do note that
the bound of [14] is also sufficient to prove Theorem 2 below, which is presently
the main application of Theorem 1.
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Fig. 1. Two-user discrete memoryless interference channel.

, with . The codewords of this code-
book have symbols chosen from the input alphabet . Receiver

observes the channel outputs and uses
a decoding function to get the estimate of
the transmitted message . The receiver is in error whenever

. The average probability of error for user is given by

where the expectation is taken with respect to the random choice
of the transmitted messages and . Note that due to the
interference among users, the probability of error of each user
may depend on the codebook of the other user.

A rate pair is achievable if there exists a family
of codebook pairs and decoding functions

, such that the average decoding error
probabilities go to zero as the block length goes to
infinity.

The capacity region of the interference channel is the clo-
sure of the set of achievable rate pairs.

III. NEW OUTER BOUND

Theorem 1: Let and , be auxiliary random
variables with chosen from the alphabet and

chosen from the alphabets , such that

(1)

and for fixed let

(2)

(3)

The closure of the region

(4)

is an outer bound to the capacity region of the discrete memory-
less interference channel, i.e., , where denotes the
closure of the set .

Proof: Given a sequence of block-length codes of rates
and with vanishing error probability, using Fano’s in-

equality, we can write

(5)

where (a) follows from the non-negativity of mutual informa-
tion, (b) follows from the independence between and ,
(c) follows from the memoryless property of the channel, (d)
follows from the fact that conditioning reduces entropy.

Next, we will need the following inequality:

(6)

where (a) follows from the fact that extra conditioning reduces
conditional entropy, and (b) follows from the equality

which is a consequence of the memoryless property of the
channel.

Resorting again to Fano’s inequality

(7)
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where (a) follows from (6) and the fact that removing condi-
tioning increases entropy. In step (b), we defined the random
variables with alphabets

, to represent the subsequences .
Finally, it follows trivially that

(8)

(9)

where we use to represent the subsequence .
Let be uniformly distributed on and let

conditioned on have the same
joint distribution as in (5), (7),
and (9). These three inequalities then imply that

(10)

Analogous inequalities for can be derived similarly, yielding

(11)

It is easy to see that the joint distribution of the resulting
is of the form specified by (1).

Moreover, using Carathéodory’s theorem [5] and the procedure
of [13], one can find an alternative set of random variables

, again with a joint distribution of
the form of (1), that induce the same values for the conditional
mutual information and entropy expressions in (10) and (11),
but for which the alphabet sizes of and are as in
the statement of the theorem. Since can be made arbitrarily
small, this together with (10) and (11) prove that the achievable
rate pair is in the closure of .

Remark 1: One of the components of our bound, namely
, is equivalent to a bound in [15, Theorem

3] which applies to the “Z” channel and one sided interfer-
ence channel satisfying certain Markovity condition. This re-
sult, which was simultaneous with the conference version of the
present work [14], uses essentially the same auxiliary random
variable that we introduced in (7).

The first conditional mutual informations appearing in the
rate bounds (2) and (3) can be interpreted as the maximum single
user rate that results when a genie provides signal to receiver

. The remaining information quantities involve an aux-
iliary random variable whose alphabet size can be restricted
to . The role of is to capture the memory in the input
codeword .

The bound of Theorem 1 can be strengthened by incorpo-
rating the bounds of Sato [11] and Carleial [12]. While in the
examples that we consider in this paper adding these bounds
does not lead to tighter results, the additional bounds may prove
useful for more general channels. In Section V-A2 we discuss
how to incorporate the bounds of [11], [12] in the numerical
evaluation of our bound.

IV. CAPACITY REGION OF THE BINARY ERASURE

INTERFERENCE CHANNEL

The binary erasure interference channel has input and output
alphabets and is defined by
the equations: . We see that receiver 2
observes a clean version of , but whenever the symbol

is “erased” at .
This channel is a deterministic interference channel: the

outputs are deterministic functions of the inputs. However,
this channel does not belong to the class of deterministic
IFCs studied in [9], because given does not completely
determine (i.e., when does not provide any
information about ).

Define

(12)

and

(13)

We apply Theorem 1 to prove the following.

Theorem 2: The capacity region of the binary erasure inter-
ference channel is given by the closure of the set .

Remark 2: As shown in Appendix A, is not a convex
set, with a slight nonconvexity occurring in the vicinity of

. The convex hull operation of (13) thus
strictly enlarges the region.

Remark 3: In [14], we erroneously claimed to be the
capacity region of the binary erasure interference channel. The
statement made in the paragraph preceeding equation (4) in [14]
is incorrect.

The capacity region of the binary erasure interference channel
is depicted in Fig. 2. We note that the nonconvexity of is
so slight that at the resolution of this figure it is not possible to
distinguish between and .

Proof: Since for and

it is easy to see that the closure of belongs to the Han-
Kobayashi region [10] and is therefore achievable.
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Fig. 2. Capacity region of the binary erasure interference channel.

Next, we prove the converse. If is an achievable rate
pair, Theorem 1 implies the existence of a joint distribution of
the form (1) and arbitrarily small satisfying

(14)

(15)

and

(16)

where we have used to denote and
to denote . Note that for each .

For satisfying , consider the
function

Note that each term from the summation in (15) corresponds to
. We next establish that, for fixed

(17)

where is the inverse of the binary entropy function and
satisfies

(18)

To obtain (17), note first that for fixed is concave
in so that it can be maximized over (for fixed ) by setting
the derivative with respect to to 0. Specifically

which can be solved for to give the maximizing

(19)

Substituting this into and simplifying yields

(20)

Next, consider the function and note
that (20) corresponds to . Differentiating yields

implying that is decreasing in , and, therefore, that (20) is
maximized over (for fixed ) by taking as large as possible.
Thus, the maximizing is

(21)

with as defined above.
Note that for , the maximizing , as given by (19),

satisfies

(22)

Equation (17) thus follows, with the maximum being attained at
as given by (21) and (22).

Incorporating (17), (21), and (22) into (15) and (16), yields

(23)

(24)

with satisfying (given above)

(25)

and

(26)
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It follows from (25) and (26) that

(27)

belongs to , the convex hull of , and hence, from (23)
and (24), and the fact that can be taken to be arbitrarily small,
that belongs to the closure of .

V. OTHER EXAMPLES

In order to illustrate how the bound of Theorem 1 improves
upon the existing outer bounds, but also to understand its limi-
tations we present some additional examples.

A. Other Deterministic Two-User Binary IFCs

A deterministic binary IFC is one for which
and are deterministic bi-

nary valued functions of the inputs. The binary erasure IFC is
a special case whose capacity region was heretofore unknown.
The capacity regions of most nondegenerate deterministic bi-
nary IFCs (those in which both outputs depend on their corre-
sponding inputs) are readily seen, using known methods, to be
the time-sharing region . This is
obviously the case, by the MAC bound [11], [12], for channels
for which . It is also the case for channels for which,
for at least one is a one-to-one function in

for all values of (this is the El Gamal–Costa condition
from [9] for these IFCs). In such a case, the -th receiver, upon
decoding its own signal can also decode the interfering signal,
thereby implying a MAC constraint of 1 on the rate sum at that
receiver.

A useful observation concerning deterministic binary IFCs
is that if is the capacity region for a particular choice
of then the capacity regions for given
by and

coincide with for all choices
of and , where denotes addition
modulo 2 (or the “exclusive-or” Boolean operation). Another
obvious isomorphism given is that if
then where and

.
A little reflection based on the above conditions for opti-

mality of the time-sharing region, together with the above iso-
morphisms, leads to the conclusion, that, again up to the above
isomorphisms, there are three deterministic binary IFCs whose
capacity regions are not immediate based on previously known
bounds. These are:
Binary erasure IFC

(28)

IFC A

(29)

and
IFC B

(30)

where denotes .
We have shown in the previous section that the capacity re-

gion of the binary erasure IFC can be derived using Theorem
1. This capacity region is larger than the time-sharing region.
For IFC’s A and B, on the other hand, it is natural to conjec-
ture that their capacity regions coincide with the time-sharing
region. It turns out, however, that Theorem 1 is not sufficient
to prove this conjecture in either case. For IFC A, we are able
to prove the conjecture via an alternative genie aided approach
which leads to a fortuitous cancellation of conditional entropy
terms. For IFC B, this alternative approach fails. In this case,
we demonstrate that Theorem 1 gives the tightest bound on the
maximum achievable sum-rate among all bounding techniques
we are aware of.

1) Deterministic Binary IFC A: We prove the following
about this IFC.

Theorem 3: The capacity region of IFC A, defined by (29),
is the time-sharing region .

Proof: Achievability is obvious, since each transmitter can
create a noiseless channel for the other transmitter with an ap-
propriate constant signal. Time-sharing then achieves the full
region.

For the converse, given a sequence of block-length codes of
rates and with vanishing error probability, using Fano’s
inequality, we can write

(31)

where (31) follows from the deterministic nature of the channel
and the independence of and .

Given a binary sequence , let denote
the random variables (i.e., the
component-wise product of and ). It is then easy to see
that for IFC A

(32)

where denotes . It then follows from (31)
and (32) that

which, since , in turn, implies .

Remark 4: The first step in the the converse (i.e., bounding
by ) corresponds to a genie aided IFC in which
the interference is supplied to receiver 1. We note that
the alternative genie aided IFC obtained by instead providing
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the interference to receiver 2 (i.e., bounding by
) can only lead to a strictly inferior bound on

the sum-rate. The analogue of (31) in this case is

(33)

and, unfortunately, the terms and do
not cancel as above. This can be seen from the definition of
IFC A (29), which indicates that conditioned on

and now correspond to complementary subsets of the
components of . In fact, optimizing the multiletter bound
(33) just over i.i.d. channel inputs and already leads
to a bound on the sum-rate that is greater than the time sharing
bound.

2) Deterministic Binary IFC B: The technique used to bound
the sum-rate for IFC A does not yield the conjectured

for IFC B. The reason is rooted in Remark 4 in that in this case,
both genie aided IFCs suggested by the analysis of IFC A, are
similar to the suboptimal genie mentioned in the remark with
respect to the difference in the multiletter conditional entropies
appearing in the corresponding step (31) in their analysis.

We would like to apply the bound of Theorem 1 to this deter-
ministic channel. However, a direct numerical calculation of the
outer bound is infeasible due to the relatively large number of
variables over which we need to optimize. We derive a sum-rate
bound from the bound of Theorem 1 that can be evaluated nu-
merically with reasonable complexity. Using (2)–(4), we can
write [see (34)–(36), shown at the bottom of the page], where in
(a) we specialized the bound to the channel considered in this
subsection and we defined

, and for .
Using Carathéodory’s theorem [5] and the procedure of [13] one
can show that it is enough to take .

We did a numerical search to find “good” values for the vari-
ables in the outer minimization, and obtained

, and . Note that any choice of
these variables leads to a valid sum-rate upper bound. With
these choices, we computed the inner maximization by doing
an exhaustive search over a grid with diminishing step sizes in
three passes. The steps used were , and

, searching in each pass around the optimal solution
found in the previous pass. The final result that we obtained was

.
Next we compare this bound to some other bounds that we

can derive for this channel. A simple bound is obtained by al-
lowing the receivers to cooperate [11]. The resulting channel is
a multiple access channel, whose sum capacity is given by

A different bound is obtained by noting that removing one of
the interfering links at either receiver 1 or receiver 2 results in a
channel whose capacity region includes the capacity region of
the original channel. These channels are ,

(34)

(35)

(36)
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and . Both of these channels are isomor-
phic to the binary erasure interference channel whose capacity
region was derived in Section IV. Computing the intersection of
these capacity regions and maximizing the sum-rate we get the
bound .

Another bound results from using genies that provide the in-
terfering signals to the receivers

where (a) follows from Fano’s inequality and the non-negativity
of mutual information, (b) from the chain rule for mutual infor-
mation and the independence between and , (c) from
the deterministic nature of the channel, (d) by dropping con-
ditioning, which does not reduce entropy, and (e) by letting

so that and using .
We see that the sum-rate bound derived from Theorem 1 (i.e.,

) is tighter than the last three bounds.
The sum-rate bound (34) is applicable to a general channel.

This bound can be further strengthened by adding, for example,
the bound of [11]

and taking as the function to be maximized
in (34). In this case, in (35), we can introduce a new variable

in the minimization and replace the objective of the
optimization by . For
the channel considered in this section, the resulting bound does
not seem better than (36).

B. One-Sided El Gamal–Costa IFC

Consider a deterministic interference channel defined by

where and are arbitrary functions, while for fixed
(resp. ), (resp. ) is injective. The capacity

region of this channel has been obtained in [9].

We will show that for this special class of channels, when
(i.e., ) Theorem 1 is tight. Applying

Theorem 1 to this channel, we obtain

(37)

where (a) follows from the assumption and removing
conditioning. It is easy to check that the right hand sides of (37)
coincide with the nonredundant bounds in [9, Theorem 1]. It
follows that of Theorem 1 is the capacity region of this
channel.

APPENDIX A
NONCONVEXITY OF .

Equation (17) in the proof of Theorem 2 implies that

where is the inverse of the binary entropy function de-
fined by (18). The nonconvexity of follows from the non-
concavity of in . To see the latter, note that from basic
calculus

and therefore (after some simplification)

Evaluating at , and
, respectively, gives , and , indicating a

slight nonconcavity.
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