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Abstract

Spectrum Sharing: Fundamental Limits, Scaling Laws, and Self-Enforcing Protocols

by

Raúl Hernán Etkin

Doctor of Philosophy in Engineering-Electrical Engineering and Computer Sciences

University of California, Berkeley

Adjunct Professor Abhay K. Parekh, Co-chair

Professor David N. C. Tse, Co-chair

Spectrum sharing arises whenever multiple wireless systems operate in the same frequency band.

Due to mutual interference, the performance of the systems is coupled and tradeoff occurs between

the rates that can be simultaneously achieved. The fundamental characterization of this tradeoff is

given by the capacity region of the interference channel, whose determination is an open problem

in information theory. For the case of the two-system Gaussian interference channel we provide a

characterization of this capacity region to within a single bit/s/Hz. This characterization is obtained

by deriving new outer bounds, and by using simple communication schemes that are special cases

of the ones introduced by Han and Kobayashi in [29].

When many systems share the band, the interference cancellation techniques used in the

two-system case may not be feasible, and a large fraction of the interference must be treated as

noise. As the number of systems grows, interference aggregates and limits performance. We study

the statistical properties of the interference aggregation phenomenon in a random network model

and determine how to mitigate the strongest interference components.
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Frequency selective fading can provide gains in a multi-user system due to multi-user di-

versity. We investigate whether similar gains can be achieved in multi-system spectrum sharing

situations. For this we fix the rate of each system and study how the required bandwidth scales

as the number of systems M grows large. While for Rayleigh fading the multi-user diversity gain

provides bandwidth savings of the order of log(log M), the multi-system diversity gain can provide

larger bandwidth savings, of order log M .

We lastly consider the problem of incentives in spectrum sharing. Systems are often in-

dependent and selfish. We investigate whether efficiency and fairness can be obtained with self-

enforcing spectrum sharing rules that do not require cooperation among the systems. Any self-

enforcing protocol must correspond to an equilibrium of a game. We first analyze the possible

outcomes of a one shot game, and notice many inefficient solutions. However, since systems often

coexist for long periods, a repeated game is more appropriate to model their interaction. In the

repeated game, the possibility of building reputations and applying punishments enables a larger set

of self-enforcing outcomes. When this set includes the optimal operating point, efficient, fair, and

incentive compatible spectrum sharing becomes possible. We prove that our results are tight and

quantify the best achievable performance in non-cooperative scenarios.

Adjunct Professor Abhay K. Parekh
Dissertation Committee Co-chair

Professor David N. C. Tse
Dissertation Committee Co-chair
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Preface

Spectrum sharing occurs in any situation where multiple wireless devices coexist in the

same area and use the same frequency band to communicate. The wireless spectrum is a broadcast

medium: any signal transmitted by a device is received with some attenuation by all other devices

operating in the same band. This property is useful when the same signal must be transmitted

to multiple receivers. However, when many systems communicate independent information they

interfere with each other and the broadcast nature of spectrum becomes a disadvantage.

Since radio signals are attenuated by several factors (distance, shadowing, multi-path fad-

ing) the same portion of spectrum can be used simultaneously by multiple systems operating inde-

pendently. If the attenuation between systems is large, the performance of one system is not affected

by the other systems. In this case, the performance is said to be noise limited: the interference is

small compared to the noise and each system operates as if there were no other systems present. On

the other hand, if the interference between systems is not negligible the performance of the different

systems are coupled. In this case the performance is said to be interference limited.

In this thesis we study several aspects of the spectrum sharing problem. In the first part

of this work we study how interference affects the performance of the wireless systems sharing the

band. Interference is not always harmful: in some situations the effects of interference can be com-

pletely removed and the systems operate as if they were alone in the band. However, in other cases

interference has a negative impact on the systems. In order to obtain a fundamental characterization

of how interference limits communication we study the Gaussian interference channel in Part I. The



vii

information theoretic analysis that we do in this part allows us to tightly characterize (to within 1

bit/s/Hz) the achievable rates in a spectrum sharing situation between two systems. In addition, we

present communication schemes that suggest how to design efficient protocols for spectrum sharing.

The second part of this work considers networks where the number of systems M is large.

Unfortunately the M-user interference channel for M > 2 is not very well understood, and little work,

if any, has been done in the area. In particular, if M is large, a tight and complete characterization

of the fundamental communication limits in spectrum sharing may be beyond reach. However, one

can gain insight into the spectrum sharing problem by looking at asymptotic regimes in which the

number of systems M is allowed to grow. In Chapter 7 we study how interference aggregates when the

systems are randomly distributed on the plane with uniform density. We do a probabilistic analysis

to study the statistical properties of the received interference. This analysis shows that unless the

frequency assignments are carefully coordinated between neighboring systems, the aggregate received

interference may be very large.

The channel gains between transmitters and receivers may vary over frequency due to

frequency selective fading. In some situations, these fluctuations can be opportunistically exploited

to obtain a performance gains. In Chapter 8 we study the asymptotic performance improvement

that can be obtained from frequency selective fading as the number of systems M grows large. This

analysis complements the insights provided in the previous chapters that assume a frequency flat

fading model.

The third part of the thesis deals with the problems that arise when the systems operate

as independent, rational, and selfish entities, that try to maximize their own objectives. The models

of the first and second parts of the thesis implicitly assume that the systems cooperate to achieve a

common goal. Unfortunately, if the systems behave selfishly, greedy behavior may lead to inefficient

and unfair situations. We formulate the spectrum sharing problem between selfish systems as a

game, and analyse how to obtain good performance without assuming cooperation. The result of

our study shows how to design spectrum sharing protocols that are self-enforcing, that is, that do
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not require the intervention of a central authority to verify compliance. These protocols try to

achieve an efficient and fair allocation of resources between the systems.

This brief overview is complemented with more complete introductions in each part of the

thesis. In addition, each part contains a section that summarizes the main results, points out the

insights gained from the analysis, and mentions open problems for future research.
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Part I

Two-User Gaussian Interference

Channel
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Chapter 1

Preliminaries

1.1 Introduction

Interference is a central phenomenon in wireless communication when multiple uncoordi-

nated links share a common communication medium. Most state-of-the-art wireless systems deal

with interference in one of two ways:

• orthogonalize the communication links in time or frequency, so that they do not interfere with

each other at all;

• allow the communication links to share the same degrees of freedom, but treat each other’s

interference as adding to the noise floor.

It is clear that both approaches can be sub-optimal. The first approach entails an a priori

loss of degrees of freedom in both links, no matter how weak the potential interference is. The second

approach treats interference as pure noise while it actually carries information and has structure that

can potentially be exploited in mitigating its effect.

These considerations lead to the natural question of what is the best performance one can

achieve without making any a priori assumptions on how the common resource is shared. A basic
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information theory model to study this question is the two-user Gaussian interference channel, where

two point-to-point links with additive white Gaussian noise interfere with each other (Figure 1.1).

The capacity region of this channel is the set of all simultaneously achievable rate pairs (R1, R2)

RxTx
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Figure 1.1: Two-user Gaussian interference channel.

in the two interfering links, and characterizes the fundamental tradeoff between the performance

achievable in the two links in face of interference. Unfortunately, the problem of characterizing this

region has been open for over thirty years. The only case in which the capacity is known is in

the strong interference case, where each receiver has a better reception of the other user’s signal

than the intended receiver [7, 29]. The best known strategy for the other cases is due to Han and

Kobayashi [29]. This strategy is a natural one and involves splitting the transmitted information

of both users into two parts: private information to be decoded only at own receiver and common

information that can be decoded at both receivers. By decoding the common information, part of

the interference can be cancelled off, while the remaining private information from the other user is

treated as noise. The Han-Kobayashi strategy allows arbitrary splits of each user’s transmit power

into the private and common information portions as well as time sharing between multiple such

splits. Unfortunately, the optimization among such myriads of possibilities is not well-understood,

so while it is clear that it will be no worse than the above-mentioned strategies as it includes them

as special cases, it is not very clear how much improvement can be obtained and in which parameter
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regime would one get significant improvement. More importantly, it is also not clear how close to

capacity can such a scheme get and whether there will be other strategies that can do significantly

better.

In this part of the thesis, we make progress on this state of affairs by showing that a very

simple Han-Kobayashi type scheme can in fact achieve rates within 1 bits/s/Hz of the capacity of the

channel for all values of the channel parameters. That is, for all rate pairs (R1, R2) on the boundary

of the achievable region, (R1 +1, R2 +1) is not achievable. This result is particularly relevant in the

high signal-to-noise-ratio (SNR) regime, where the achievable rates are high and grow unbounded

as the noise level goes to zero. In fact, in some high SNR regimes, we can strengthen our results to

show that our scheme is asymptotically optimal.

The high SNR regime is the interference-limited scenario: when the noise is small, in-

terference from one link will have a significant impact on the performance of the other. The low

SNR regime is less interesting since here the performance of each link is primarily noise-limited and

interference is not having a significant effect.

The key feature of our proposed scheme is that the power of the private information of each

user should be set such that it is received at the level of the Gaussian noise at the other receiver.

In this way, the interference caused by the private information has a small effect on the other link

beyond the impairment that is already caused by the noise. At the same time, quite a lot of private

information can be conveyed to the intending receiver if the direct gain is appreciably larger than

the cross gain.

To prove our result, we need good outer bounds on the capacity region of the interference

channel. The best known outer bound is based on giving extra side information to one of the

receivers so that it can decode all of the information from the other user (the one-sided channel and

related bounds). It turns out that while this bound is sufficiently tight in some parameter regimes,

it can get arbitrarily loose in others. We derive new outer bounds to cover for the other parameter

ranges.
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At high SNR, it is well known that the capacity of a point-to-point additive white Gaussian

noise (AWGN) link, in bits/s/Hz, is approximately:

Cawgn ≈ log SNR (1.1)

Using our results, we can derive analogous approximations of the Gaussian interference channel

capacity, accurate to within one bit/s/Hz. Just to give a flavor of the results, let us consider

the symmetric case where the signal-to-noise ratios at the two receivers are the same (denoted by

SNR)and the interference-to-noise ratios at the receivers are also the same (denoted by INR). The

symmetric capacity, i.e. the best rate that both users can simultaneously achieve, is approximately:

Csym ≈































































log(SNR

INR
) log INR < 1

2 log SNR (regime 1)

log INR
1
2 log SNR < log INR < 2

3 log SNR (regime 2)

log SNR√
INR

2
3 log SNR < log INR < log SNR (regime 3)

log
√

INR log SNR < log INR < 2 log SNR (regime 4)

log SNR log INR > 2 logSNR (regime 5)

(1.2)

Note that there are five regimes in which the qualitative behaviors of the capacity are

different.

The fifth regime is the very strong interference regime [7]. Here the interference is so strong

that each receiver can decode the other transmitter’s information, treating its own signal as noise,

before decoding its own information. Thus, interference has no impact on the performance of the

other link. The fourth regime is the strong interference regime, where the optimal strategy is for

both receivers to decode entirely each other’s signal, i.e. all the transmitted information is common

information. Here, the capacity increases monotonically with INR because increasing INR increases

the common information rate.

The capacity in the fourth and fifth regimes follow from previous results. The first three

regimes fall into the weak interference regime, and the capacity in these regimes is a consequence of

the new results that we obtain. In these regimes, the interference is not strong enough to be decoded
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in its entirety. In fact, the capacity approximation (1.2) in regime 1 implies that if the interference

is very weak, then treating interference as noise is optimal. The capacity expression for regimes 2

and 3 however imply that if the interference is not very weak, decoding it partially can significantly

improve performance. Interestingly, the capacity is not monotonically decreasing with INR in the

weak interference regime.

In point-to-point links, the notion of degrees of freedom is a fundamental measure of channel

resources. It tells us how many signal dimensions are available for communication. In the (scalar)

AWGN channel, there is one degree of freedom per second per Hz. When multiple links share the

communication medium, one can think of the mutual interference as reducing the available degrees

of freedom for useful communication. Our results quantify this reduction. Define

α :=
log INR

log SNR

as the ratio of the interference-to-noise ratio and the signal-to-noise ratio in dB scale, and

dsym :=
Csym

Cawgn

as the generalized degrees of freedom per user, then (1.2) yields the following characterization:

dsym =































































1 − α 0 ≤ α ≤ 1
2

α 1
2 ≤ α ≤ 2

3

1 − α
2

2
3 ≤ α ≤ 1

α
2 1 ≤ α ≤ 2

1 α ≥ 2.

(1.3)

This is plotted in Figure 2.5 (shown later in Chapter 2), together with the performance of

our baseline strategies of orthogonalizing and treating interference as noise. Note that orthogonaliz-

ing between the links, in which each link achieves half the degrees of freedom, is strictly sub-optimal

except when α = 1
2 and α = 1. Treating interference as noise, on the other hand, is strictly sub-

optimal except for α ≤ 1
2 . Note also the fundamental importance of comparing the signal-to-noise

and the interference-to-noise ratios in dB scale.
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The rest of Part I of the thesis is structured as follows. In Section 1.2, we describe the

model. Chapter 2 focuses on the symmetric rate point in the symmetric interference channel, where

the results can be described in the simplest form. Results on the entire capacity region for the general

two-user channel in weak interference are derived in Chapter 3. Chapter 4 extends the results of

Chapter 3 for channels where one of the links is in strong interference while the other is in weak

interference. We conclude Part I with a summary and discussion in Chapter 5.

Regarding notation, we will use lowercase or uppercase letters for scalars, lowercase boldface

letters for vectors, and calligraphic letters for sets. For example we write h or P for scalars, x for

a vector, and R for a set. We use H(·) to denote binary entropy of a discrete random variable or

vector, h(·) to denote binary differential entropy of a continuous random variable or vector, and

I(·; ·) to denote mutual information. In addition, unless otherwise stated, all logarithms are to the

base 2.

The results of Part I of the thesis are joint work with Hua Wang, University of Illinois at

Urbana-Champaign. Preliminary versions of this research were presented in [24].

1.2 Model

In this section we describe the model to be used in the rest of this part. We consider

a two-user Gaussian interference channel. In this model there are two transmitter-receiver pairs,

where each transmitter wants to communicate with its corresponding receiver (cf. Figure 1.1).

This channel is represented by the equations:

y1 = h1,1x1 + h2,1x2 + z1

y2 = h1,2x1 + h2,2x2 + z2 (1.4)

where for i = 1, 2, xi ∈ C is subject to a power constraint Pi, i.e. E[|xi|2] ≤ Pi, and the noise

processes zi ∼ CN (0, N0) are i.i.d. over time. For convenience we will denote the power gains of the

channels by gi,j = |hi,j |2, i, j = 1, 2.
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It is easy to see that the capacity region of the interference channel depends only on four

parameters: the signal to noise and interference to noise ratios. For i = 1, 2, let SNRi = gi,iPi/N0

be the signal to noise ratio of user i, and INR1 = g2,1P2/N0 (INR2 = g1,2P1/N0) be the interference

to noise ratio of user 1 (2). As will become apparent from our analysis, this parameterization in

terms of SNR and INR is more natural for the interference channel, because it puts in evidence the

main factors that determine the channel capacity.

For a given block length n, user i communicates a message mi ∈ {1, . . . , 2nRi} by choosing

a codeword from a codebook Ci,n, with |Ci,n| = 2nRi . The codewords {ci(mi)} of this codebook

must satisfy the average power constraint:

1

n

n
∑

t=1

|ci(mi)[t]|2 ≤ Pi

Receiver i observes the channel outputs {yi[t] : t = 1, . . . , n} and uses a decoding function

fi,n : Cn → N to get the estimate m̂i of the transmitted message mi. The receiver is in error

whenever m̂i 6= mi. The average probability of error for user i is given by

εi,n = E[P (m̂i 6= mi)]

where the expectation is taken with respect to the random choice of the transmitted messages m1

and m2. Note that due to the interference among users, the probability of error of each user may

depend on the codeword transmitted by the other user.

A rate pair (R1, R2) is achievable if there exists a family of codebook pairs {(C1,n, C2,n)}n

with codewords satisfying the power constraints P1 and P2 respectively, and decoding functions

{(f1,n(·), f1,n(·)}n, such that the average decoding error probabilities ε1,n, ε2,n go to zero as the

block length n goes to infinity.

The capacity region R of the interference channel is the closure of the set of achievable rate

pairs.
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Chapter 2

Symmetric Gaussian Interference

Channel

2.1 Symmetric channel and symmetric rate point

In order to introduce the main ideas and results in the simplest possible setting, we start

our analysis of the interference channel capacity region by considering a symmetric interference

channel and the symmetric rate point1.

In the symmetric interference channel we have g1,1 = g2,2 = gd, g1,2 = g2,1 = gc and

P1 = P2 = P , or equivalently, SNR1 = SNR2 and INR1 = INR2. In addition, the symmetric capacity

is the solution to the following optimization problem:

Csym =















Maximize: min{R1, R2}

Subject to: (R1, R2) ∈ R

where R is the capacity region of the interference channel.

Due to the convexity and symmetry of the capacity region of the symmetric channel, the

1This chapter is based on preliminary work that was presented in “Gaussian Interference Channel Capacity to
Within One Bit: the Symmetric Case”, by Raul Etkin, David Tse, and Hua Wang, IEEE Information Theory
Workshop, October 22-26, 2006, Chengdu, China. c©2006 IEEE.
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symmetric capacity is attained at the point of the capacity region that maximizes the sum rate

R1 + R2. Since the capacity region is known in the strong interference case when INR/SNR ≥ 1, we

will focus on the case where 0 < INR/SNR < 1 (i.e. 0 < gc/gd < 1). In addition, we will concentrate

on the situation where gcP ≥ N0, i.e. the interfering signal power is at least as large as the noise

power. The case gcP < N0 is not so interesting because the communication is essentially limited by

noise.

2.2 A simple communication scheme

We will use a simple communication scheme that is a special case of the general type of

schemes introduced by Han and Kobayashi in [29]. For a given block length n user i chooses a

private message from codebook Cu
i,n and a common message from codebook Cw

i,n. These codebooks

satisfy the power constraints Pu and Pw with Pu + Pw = P . The sizes of these codebooks are such

that |Cu
i,n| · |Cw

i,n| = 2nRi . After selecting the corresponding codewords user i transmits the signal

xi = cu
i + cw

i by adding the private and common codewords. The private codewords are meant to

be decoded by receiver i, while the common codewords must be decoded by both receivers.

The general Han and Kobayashi scheme allows to generate the codebooks using arbitrary

input distributions, and allows to do time sharing between multiple strategies. We will consider a

simple scheme where the codebooks are generated by using i.i.d. random samples of a Gaussian

CN (0, σ2) random variable with σ2 = Pu, Pw. We choose Pu such that gcPu = N0, i.e. the

interference created by the private message has the same power as the Gaussian noise2. In addition,

we use a fixed strategy, i.e. we don’t do time sharing.

We will show that this simple scheme allows us to achieve a symmetric rate close to the

symmetric rate capacity of the channel. In order to determine the symmetric rate that we can achieve

with this scheme, it is useful to think of each user as being split into two virtual users: private user

2Note that this is possible with the available power under the assumption gcP ≥ N0. If gcP < N0 one can choose
Pu = P , but will not consider this case in this section.
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Ui and common user Wi. Let MAC1 be the multiple access channel formed by virtual users U1, W1,

and W2, and receiver 1, with the signal from virtual user U2 being treated as noise. In a similar

way, let MAC2 be the multiple access channel formed by virtual users U2, W1, and W2, and receiver

2, with the signal from virtual user U1 being treated as noise. Since the common messages must

be decoded by both receivers, while the private messages must be decoded only by the intending

receiver, we see that the rates achievable by a the Han and Kobayashi scheme correspond to the

intersection of the capacity regions of MAC1 and MAC2.

In general, it is possible to choose any operating point that lies in the intersection of MAC1

and MAC2. Different points may correspond to different decoding orders at the receivers, and also

may result in different rates for the private and common messages of the users. In order to simplify

the analysis we choose the private rates of both users, as well as the common rate of both users to

be equal, i.e. Ru,1 = Ru,2 and Rw,1 = Rw,2. We also fix a decoding order at each receiver, so that

the common messages are decoded first, while the private message is decoded last.

Since the private message is decoded last, while the private message of the other user is

treated as noise, the private rate of each user is given by:

Ru = log

(

1 +
gdPu

N0 + gcPu

)

= log

(

1 +
gdPu

2N0

)

= log

(

1 +
gd

2gc

)

.

Since each receiver decodes the common messages first, both private messages are treated as

noise when decoding the common messages. With this decoding order, the sum rate of the common

messages must satisfy two constraints:

Rw,1 + Rw,2 ≤ log

(

1 +
Pw(gd + gc)

N0 + Pu(gd + gc)

)

= log

(

1 +
(P − N0/gc)(gd + gc)

N0 + N0gd/gc + N0

)

= log

(

1 +
(gcP − N0)(gd + gc)

N0(2gc + gd)

)

(2.1)

and

Rw,1 + Rw,2 ≤ 2 log

(

1 +
gcPw

N0 + Pu(gc + gd)

)
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= 2 log

(

1 +
gcP − N0

N0 + N0/gc(gc + gd)

)

= 2 log

(

1 +
gc(gcP − N0)

N0(2gc + gd)

)

(2.2)

where (2.1) arises from the sum rate constraint of the MAC formed by virtual users W1 and W2

at receiver 1 (or receiver 2) when the messages from virtual users U1 and U2 are treated as noise,

and (2.2) arises from the individual rate constraint of decoding the message of virtual user W1 at

receiver 2 and virtual user W2 at receiver 1, treating the messages from virtual users U1 and U2 as

noise (see Figure 2.1).

R

R

w,1

w,2

MAC(W  ,W  ) @ Rx

MAC(W  ,W  ) @ Rx

1

1

1

2

2

2

R

R

R

w,1

w,2

MAC(W  ,W  ) @ Rx

MAC(W  ,W  ) @ Rx

1

1

1

2

2

2

R

Figure 2.1: Intersection of the multiple access channel regions corresponding to virtual users W1 and W2

at receivers 1 and 2, when the signals from virtual users U1 and U2 are treated as noise. The left figure
corresponds to the case in which the sum rate constraint (2.1) is active, while the right figure corresponds to
the case in which the sum rate constraint(2.2) is active. In both cases, the symmetric rate point is indicated.

Therefore, with the simple Han and Kobayashi scheme we obtain a symmetric rate:

RHK = log

(

1 +
gd

2gc

)

+ min

{

1

2
log

[

1 +
(gcP − N0)(gd + gc)

N0(2gc + gd)

]

, log

[

1 +
gc(gcP − N0)

N0(2gc + gd)

]}

(2.3)

By comparing (2.1) and (2.2) we can determine the parameter ranges in which each of the

terms of the min{·, ·} in (2.3) is active. Define:

B1 =
{

(gc, gd, P, N0) : gcP ≥ N0 and gd(gc + gd) < g2
c (gcP/N0 + 1)

}

B2 =
{

(gc, gd, P, N0) : gcP ≥ N0 and gd(gc + gd) ≥ g2
c (gcP/N0 + 1)

}

. (2.4)

Then, the first (second) term of the min{·, ·} is active in B1 (B2). We denote by RHK1

(RHK2) the symmetric rate expression that results in B1 (B2).
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2.3 Known upper bounds

In order to evaluate the performance of our communication scheme, we can compare the

symmetric rate achieved with an upper bound. We can obtain this upper bound by considering any

outer bound to the interference channel capacity region evaluated at R1 = R2. The best known

outer bound to the interference channel capacity region is that given in [35] Theorem 2. This result

is derived for the normalized interference channel, i.e. gd = 1, N0 = 1, so in order to use the results

in [35], we need to replace: gc → gc/gd, P → gdP/N0. Specializing this result to the complex

symmetric interference channel with 0 < gc/gd < 1 one obtains the symmetric rate upper bound:

RUB1 = log

[

1 +
−(gc + gd) +

√

(gc + gd)2 + 4gcgd(P/N0)(gc + gd)

2gc

]

(2.5)

Consider the case in which the first term of the min{·, ·} of (2.3) is active. Then we can

write:

RUB1 − RHK1 = log

[

2gc − (gc + gd) +
√

(gc + gd)2 + 4gcgd(P/N0)(gc + gd)

2gc

]

− log

(

2gc + gd

2gc

)

− 1

2
log

[

2gc + gd + (gc(P/N0) − 1)(gd + gc)

2gc + gd

]

=
1

2
log











[

(gc − gd) +
√

(gc + gd)2 + 4gcgd(P/N0)(gc + gd)
]2

(2gc)2











−1

2
log

{

(2gc + gd)[(2gc + gd) + (gc(P/N0) − 1)(2gc + gd)]

(2gc)2

}

≤ 1

2
log

{

2(g2
c + g2

d) + 4gcgdP (gc + gd)/N0 − 2(gd − gc)(gc + gd)

(2gc + gd)gc(1 + (gc + g + d)(P/N0))

}

=
1

2
log

[

4gc + 4gd(gc + gd)P/N0

(2gc + gd)(1 + (gc + gd)P/N0)

]

=
1

2
log

[(

4

2 + gd/gc

)(

1 + gd(1 + gd/gc)P/N0

1 + (gc + gd)P/N0

)]

≤ 1

2
log

[(

4

2 + gd/gc

)(

gd

gc

)]

=
1

2
log

[

4

2gc/gd + 1

]

< 1 (2.6)

where we used
√

1 + x ≥ 1 for x ≥ 0 in the first inequality and the assumption gc ≤ gd in the second
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and third inequalities. It is easy to check that for example, if gd = 1, gc = 1/P 1/4, and N0 = 1,

RUB1 −RHK1 → 1 as P → ∞. Therefore the worst case difference of 1 bit/s/Hz in (2.6) can actually

occur.

We see that in the parameter range B1, the achievable strategy and the upper bound differ

for at most 1 bit/s/Hz. Therefore, in this parameter range our simple scheme gives a bounded (and

small) gap with respect to the upper bound.

We will now show that in the parameter range B2, the gap between our scheme and the

upper bound can be arbitrarily large. In this parameter range we can write:

RUB1 − RHK2 = log

[

gc − gd +
√

(gc + gd)2 + 4gcgd(gc + gd)P/N0

2gc

]

− log

(

2gc + gd

2gc

)

− log

[

2gc + gd + gc(gcP/N0 − 1)

2gc + gd

]

≥ log

[

gc − gd + 2
√

gcgd(gc + gd)P/N0

gc + gd + g2
cP/N0

]

(2.7)

where the inequality follows from discarding (gc+gd)
2 in the square root. To show that this difference

can be unbounded, take gc =
√

N0/P and gd = 1. With this choice of parameters we get:

RUB1 − RHK2 ≥ log





√

N0/P − 1

2(1 +
√

N0/P )
+

(P/N0)
1/4
√

1 +
√

N0/P

1 +
√

N0/P



 (2.8)

where the right hand side goes to infinity for P/N0 → ∞.

We see that the gap between our scheme and the upper bound can be arbitrarily large in

this case. This large gap could be due to a very suboptimal scheme, a loose upper bound, or both.

It turns out that the large gap is due to the looseness of the upper bound. In order to prove this we

need to derive a new upper bound for the sum rate of the interference channel.

As a first step toward deriving the new bound, in order to introduce some ideas that we will

use later, and to better understand why (2.5) can be very loose, we will obtain a bound somewhat

looser than (2.5) but that also gives a worst case 1-bit/s/Hz gap for the parameter range B1.

We will consider a general interference channel so that the upper bounds that we derive

are not restricted to the symmetric interference channel. Consider a modified interference channel,
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where a genie provides the side information v2 = h2,1x2 to receiver 1 (see Figure 2.2).
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Figure 2.2: Genie-aided two-user interference
channel. A genie provides signal v2 = h2,1x2 to
receiver 1.
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Figure 2.3: One-sided interference channel.

Since x1 is independent of v2 we can write for any block of length n:

I(xn
1 ;yn

1 ,vn
2 ) = I(xn

1 ;vn
2 ) + I(xn

1 ;yn
1 |vn

2 ) = I(xn
1 ; h1,1x

n
1 + zn

1 )

and it follows that receiver 1 can get an interference-free signal by subtracting the interference

v2 provided by the genie. Therefore we obtain that the genie-aided channel is equivalent to the

one-sided interference channel depicted in Figure 2.3.

The sum rate capacity of a one-sided interference channel for the case of g1,2/g1,1 < 1 is

given by [42]3:

Rsum(one-sided IC) = log

(

1 +
g1,1P1

N0

)

+ log

(

1 +
g2,2P2

N0 + g1,2P1

)

(2.9)

and since the aid of the genie can only increase the capacity region of the interference channel, we

obtain the upper bound for the symmetric rate:

RUB2 =
1

2
log

(

1 +
gdP

N0

)

+
1

2
log

(

1 +
gdP

N0 + gcP

)

. (2.10)

3We provide a derivation of the sum-rate capacity of the one sided interference channel in the proof of Theorem 3
in Section 3.1.
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We will now check that this bound still achieves a 1-bit/s/Hz gap with respect to RHK1 .

RUB2 − RHK1 =
1

2
log

(

1 +
gdP

N0

)

+
1

2
log

(

1 +
gdP

N0 + gcP

)

− log

(

2gc + gd

2gc

)

− 1

2
log

[

2gc + gd + (gc(P/N0) − 1)(gd + gc)

2gc + gd

]

<
1

2
log

(

1 +
gdP

N0

)

+
1

2
log

(

1 +
gd

gc

)

− log

(

2gc + gd

2gc

)

− 1

2
log

[

2gc + gd + (gc(P/N0) − 1)(gd + gc)

2gc + gd

]

=
1

2
log

(

2gc + 2gd

2gc + gd

)

+
1

2
log

[

2(1 + gdP/N0)

1 + (gd + gc)P/N0

]

≤ 1

2
log

(

2gc + 2gd

2gc + gd

)

+
1

2
log

[

2(N0/P + gd)

gd + gc

]

≤ 1

2
log

(

2gc + 2gd

2gc + gd

)

+
1

2
log

[

2(gc + gd)

gd + gc

]

≤ 1

2
log(2) +

1

2
log(2)

= 1 (2.11)

where we used the assumptions gcP > N0 and gc/gd ≤ 1.

Even though the bound (2.9) is not as good as the bounds presented in [35], all these

bounds have the same worst case 1-bit/s/Hz gap with respect to our simple communication strategy

in the parameter range B1. Also, in the parameter range B2 all these bounds are arbitrarily loose.

Why are all these bounds loose in B2 ? The problem is that they rely, in one way or another,

in giving side information to receiver 1 so that he can eventually cancel the interfering signal from

user 2. We can gain some intuition about why these bounds are loose in B2 by considering our simple

communication scheme in the genie-aided channel of Figure 2.2. The side information provided by

the genie allows receiver 1 to subtract the interference generated by transmitter 2. The rates of the

virtual private users U1 and U2 are in this case:

Ru1 = log

(

1 +
gdPu

N0

)

= log

(

1 +
gd

gc

)

Ru2 = log

(

1 +
gdPu

N0 + gcPu

)

= log

(

1 +
gd

2gc

)

and we see that virtual user U1 gains at most 1 bit/s/Hz due to the help of the genie. The sum

rate of the MAC formed by virtual users W1 and W2 at receiver 2 does not change due to the aid
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of the genie. Therefore, the sum rate constraint (2.1) still holds. However, due to the aid of the

genie receiver 1 can decode the message of virtual user W2 and the sum rate constraint (2.2) does

not appear in this case.

In B1 the sum rate constraint (2.1) is active in the original channel, and the aid of the

genie does not allow to increase the sum rate by a large amount. In this regime, the bound obtained

from the genie-aided channel is good. In contrast, in B2 the sum rate constraint (2.2) is active in the

original channel, and the genie effectively releases this constraint by providing enough information

to receiver 1 to decode the message of virtual user W2. Since in B2 the constraint (2.1) is larger than

(2.2) (and the gap between the two constraints can be made arbitrarily large), the bound obtained

from the genie-aided channel is loose.

2.4 A new upper bound

In order to derive a tighter sum rate bound for the parameter range B2 we will make use

of the help of genies, but will avoid giving too much information to either receiver. The information

that we will provide will not allow either receiver to completely decode the message of the interfering

transmitter. The new sum rate upper bound is given in the following theorem, which we state for a

general (not necessarily symmetric) Gaussian interference channel.

Theorem 1 For a Gaussian interference channel as defined in Section 1.2, equation (1.4), the sum

rate is upper bounded by

R1 + R2 ≤ log

(

1 +
g2,1P2

N0
+

g1,1P1

N0 + g1,2P1

)

+ log

(

1 +
g1,2P1

N0
+

g2,2P2

N0 + g2,1P2

)

. (2.12)

Proof: Define

s1 = h1,2x1 + z2

s2 = h2,1x2 + z1
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and consider the genie-aided channel where a genie provides s1 to receiver 1 and s2 to receiver 2

(see Figure 2.4). Clearly, the capacity region of this genie-aided channel is an outer bound to the
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Figure 2.4: Genie-aided two-user Gaussian interference channel. A genie provides signals s1 to receiver 1 and s2 to
receiver 2.

capacity region of the original interference channel. Therefore, we can obtain an upper bound for

the sum rate of the original channel by computing an upper bound on the sum rate of the genie

aided channel. For a block of length n we can bound the sum rate of the genie-aided channel in the

following way:

n(R1 + R2) ≤ I(xn
1 ;yn

1 , sn
1 ) + I(xn

2 ;yn
2 , sn

2 ) + nεn

= I(xn
1 ; sn

1 ) + I(xn
1 ;yn

1 |sn
1 ) + I(xn

2 ; sn
2 ) + I(xn

2 ;yn
2 |sn

2 ) + nεn

= h(sn
1 ) − h(sn

1 |xn
1 ) + h(yn

1 |sn
1 ) − h(yn

1 |xn
1 , sn

1 )

+h(sn
2 ) − h(sn

2 |xn
2 ) + h(yn

2 |sn
2 ) − h(yn

2 |xn
2 , sn

2 ) + nεn

= h(sn
1 ) − h(zn

2 ) + h(yn
1 |sn

1 ) − h(sn
2 )

+h(sn
2 ) − h(zn

1 ) + h(yn
2 |sn

2 ) − h(sn
1 ) + nεn

= h(yn
1 |sn

1 ) + h(yn
2 |sn

2 ) − h(zn
1 ) − h(zn

2 ) + nεn

≤
n
∑

i=1

[h(y1i|s1i) + h(y2i|s2i) − h(z1i) − h(z2i)] + nεn (2.13)

where the last inequality follows by the fact that removing conditioning cannot reduce differential

entropy, and εn → 0 as n → ∞.
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Let E[x2
1i] = P1i and E[x2

2i] = P2i, we have

1

n

n
∑

i=1

h(y1i|s1i)
(a)

≤ 1

n
log

[

πe

(

N0 + g2,1P2i +
g1,1P1iN0

N0 + g1,2P1i

)]

(b)

≤ log









πe









N0 + g2,1

(

1

n

n
∑

i=1

P2i

)

+

g1,1

(

1
n

n
∑

i=1

P1i

)

N0

N0 + g1,2

(

1
n

n
∑

i=1

P1i

)

















(c)

≤ log

[

πe

(

N0 + g2,1P2 +
g1,1P1N0

N0 + g1,2P1

)]

(2.14)

where in step (a) we use the fact that the circularly symmetric complex Gaussian distribution

maximizes conditional differential entropy for a given covariance constraint, in step (b) we use

Jensen’s inequality applied to a concave function, and in step (c) we used the fact that the function

is increasing on P1 and P2. Similarly, we have

1

n

n
∑

i=1

h(y2i|s2i) ≤ log

[

πe

(

N0 + g1,2P1 +
g2,2P2N0

N0 + g2,1P2

)]

. (2.15)

Thus we have

R1 + R2 ≤ 1

n

n
∑

i=1

[h(y1i|s1i) + h(y2i|s2i) − h(z1i) − h(z2i)] + εn

≤ log

[

πe

(

N0 + g2,1P2 +
g1,1P1N0

N0 + g1,2P1

)]

− log (πeN0)

+ log

[

πe

(

N0 + g1,2P1 +
g2,2P2N0

N0 + g2,1P2

)]

− log (πeN0) + εn

= log

(

1 +
g2,1P2

N0
+

g1,1P1

N0 + g1,2P1

)

+ log

(

1 +
g1,2P1

N0
+

g2,2P2

N0 + g2,1P2

)

+ εn.(2.16)

Letting n → ∞, εn → 0 and we get the desired upper bound.

By analysing the proof of Theorem 1 one observes that the upper bound can be achieved

by using codebooks generated from i.i.d. samples of circularly symmetric complex Gaussian random

variables of variance P1 and P2, and by treating interference as noise at the decoders. Since treating

interference as noise is optimal in the genie aided channel, the role of the side information provided

by the genie is to compensate for the harm produced by interference. Making the signals more

random results in added interference, but the side information compensates the negative effect of

interference on the other link by enhancing the performance of the own link.



20

We specialize the bound of Theorem 1 to the symmetric interference channel to obtain the

following upper bound on the symmetric rate:

RUBnew = log

(

1 +
gcP

N0
+

gdP

N0 + gcP

)

. (2.17)

This bound has a finite gap with respect to the achievable symmetric rate with our simple scheme

in the parameter range B2. To verify this we compute:

RUBnew − RHK2 = log

(

1 +
gcP

N0
+

gdP

N0 + gcP

)

− log

(

2gc + gd

2gc

)

− log

[

2gc + gd + gc(gcP/N0 − 1)

2gc + gd

]

< log

(

gc + g2
cP/N0 + gd

gc

)

− log

[

gc + gd + g2
cP/N0

2gc

]

= log(2)

= 1 (2.18)

and we find that the gap in the symmetric rate with respect to the new upper bound is at most 1

bit/s/Hz in B2.

Using (2.11) and (2.18) we see that when gcP ≥ N0 our simple scheme is at most 1 bit/s/Hz

away from the symmetric rate channel capacity. Proving that the simple scheme is at most 1 bit/s/Hz

away from capacity when gcP ≤ N0 is straightforward. We can set Pu = P and use as a symmetric

rate upper bound the single user capacity. The difference between the achievable rate and the upper

bound is:

log

(

1 +
gdP

N0

)

− log

(

1 +
gdP

N0 + gcP

)

≤ log

(

1 +
gdP

N0

)

− log

(

1 +
gdP

2N0

)

≤ 1. (2.19)

2.5 Generalized degrees of freedom

At high SNR, it is well known that the capacity of a point-to-point AWGN link, in

bits/s/Hz, is approximately:

Cawgn(SNR) ≈ log SNR (2.20)

and if nt transmit and nr receive antennas are available at the transmitter and receiver respectively,

if the channel gain matrix is full rank, the capacity of the point-to-point multiple input-multiple
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output (MIMO) link, in bits/s/Hz, is approximately:

CMIMO(SNR) ≈ min{nr, nt} · log SNR. (2.21)

In this equation, min{nr, nt} is the dimension of the signal space over which communication takes

place, and is called the degrees of freedom of the channel. The degrees of freedom characterize to the

first order the capacity of the channel, and therefore give a fundamental measure of the resources

available for communication. Note that in the single antenna case, the channel has 1 degree of

freedom.

When multiple links interfere with each other we can think of interference as effectively

reducing the degrees of freedom of the channel. In order to make this notion precise we define the

generalized degrees of freedom of the interference channel as:

dsym(α) := lim
SNR,INR→∞; log INR

log SNR
=α

Csym(INR, SNR)

Cawgn(SNR)
. (2.22)

Since interference cannot help in communicating each user’s message, it follows that Csym ≤ Cawgn

and therefore dsym ≤ 1. Also note that the generalized degrees of freedom depend on the way in

which INR and SNR go to infinity through the parameter α:

α =
log INR

log SNR
.

Note that since SNR, INR → ∞ in the definition of dsym, we can assume without loss of generality

that SNR, INR > 1, and hence α > 0.

In the very strong interference case, each user can decode the interfering message before

decoding his own message [7]. After decoding the interference and subtracting it from the received

signal, the user effectively gets an AWGN channel for communicating his own message. It follows

that the symmetric capacity in the very strong interference case is:

Csym = log

(

1 +
gdP

N0

)

= log(1 + SNR) ≈ log(SNR). (2.23)

The channel is in the very strong interference situation whenever:

gcP

N0 + gdP
≥ gdP

N0
⇔ INR ≥ SNR

2 + SNR. (2.24)
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Taking logs and assuming SNR, INR � 1 the very strong interference condition becomes

log INR ≥ 2 log SNR. In this regime we obtain dsym = 1, and therefore, interference does not reduce

the available degrees of freedom of the channel.

In the strong interference regime, each receiver is able to decode both messages. The

capacity region of the interference channel is given by the intersection of the capacity regions of the

two multiple access channels (MAC) formed by the two transmitters and each of the receivers. In

the symmetric case, the sum capacity of both MACs is the same and the corresponding symmetric

capacity is given by:

Csym =
1

2
log

(

1 +
(gd + gc)P

N0

)

=
1

2
log (1 + SNR + INR) . (2.25)

The symmetric channel is in the strong interference situation whenever it is not in very strong

interference and

gcP

N0
≥ P

N0
⇔ INR ≥ SNR (2.26)

which after taking logs becomes log SNR ≤ log INR < 2 logSNR. This condition and (2.25) together

with the assumption SNR, INR � 1 imply that Csym ≈ 1
2 log INR. It follows that under strong

interference the generalized degrees of freedom are

dsym =
log

√
INR

log SNR
=

α

2
. (2.27)

The previous results follow from the known capacity region of the interference channel in

strong/very strong interference. If INR < SNR the channel is in the weak interference regime. We

can use the results of the previous subsection to fully characterize dsym in this regime.

For SNR, INR � 1 the condition that defines B1 in (2.4) is INR
3 > SNR

2 which together

with the weak interference condition implies 2
3 log SNR < log INR < log SNR. In this regime, which

we call moderate interference, Csym is characterized by the lower bound (2.3) (using the first term

in the min{·, ·}) and the upper bound (2.10) which differ by at most by 1 bit/s/Hz. Using either of

these bounds we obtain for SNR, INR � 1:

Csym ≈ log SNR − 1

2
log INR (2.28)
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and the generalized degrees of freedom under moderate interference are:

dsym = 1 − log
√

INR

log SNR
= 1 − α

2
. (2.29)

The parameter range B2 corresponds to log INR ≤ 2
3 log SNR. In this regime the symmetric

capacity is characterized by the lower bound (2.3) (using the second term in the min{·, ·}) and the

upper bound (2.17) which also differ by at most by 1 bit/s/Hz. Using either of these bounds we

obtain a symmetric capacity:

Csym ≈ log

(

INR +
SNR

INR

)

. (2.30)

Depending on how INR compares to SNR

INR
we can identify two subregimes. If INR ≥ SNR

INR
, which

implies 1
2 log SNR ≤ log INR ≤ 2

3 log SNR we have what we call weaker interference and the symmetric

capacity is given by:

Csym ≈ log INR (2.31)

and the generalized degrees of freedom are:

dsym =
log INR

log SNR
= α. (2.32)

Finally, if log INR < 1
2 log SNR we have the very weak interference regime, where the symmetric

capacity is:

Csym ≈ log SNR − log INR (2.33)

and the generalized degrees of freedom are:

dsym = 1 − log INR

log SNR
= 1 − α. (2.34)

Note that in this regime we can also use the strategy that consists of both users transmitting their

private messages with power P , treating the other user’s message as noise. With this strategy we

obtain a symmetric rate:

R = log

(

1 +
gdP

N0 + gcP

)

≈ log SNR − log INR (2.35)
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which coincides with (2.33).

These results can be summarized as:

Csym ≈































































log(SNR

INR
) log INR < 1

2 log SNR

log INR
1
2 log SNR < log INR < 2

3 log SNR

log SNR√
INR

2
3 log SNR < log INR < log SNR

log
√

INR log SNR < log INR < 2 logSNR

log SNR log INR > 2 log SNR

(2.36)

and

dsym =































































1 − α 0 ≤ α < 1
2

α 1
2 ≤ α < 2

3

1 − α
2

2
3 < α ≤ 1

α
2 1 ≤ α < 2

1 α ≥ 2.

(2.37)

The generalized degrees of freedom are plotted in Figure 2.5, together with the performance

of the baseline strategies of orthogonalizing the users (in frequency or time) and treating interference

as noise. Note that orthogonalizing between the links, in which each link achieves half the degrees

of freedom, is strictly sub-optimal except when α = 1
2 and α = 1. Treating interference as noise, on

the other hand, is strictly sub-optimal except for α ≤ 1
2 . Note also the fundamental importance of

comparing the signal-to-noise and the interference-to-noise ratios in dB scale.

Note that there are five regimes in which the qualitative behaviors of the capacity are

different. The first three regimes fall into the weak interference regime, and the characterization of

the symmetric capacity in these regimes is a consequence of the new results that we obtained. In

these regimes, the interference is not strong enough to be decoded in its entirety. In fact, in regime

1 where the interference is very weak, treating interference as noise is optimal. In regimes 2 and 3

where the interference is not very weak, decoding it partially can significantly improve performance.

Interestingly, the capacity is not monotonically decreasing with INR in the weak interference

regime. Increasing INR has two opposing effects: more common information can be decoded and
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capacity

orthogonal (TDM or FDM)

interference treated as noise

Csym
dsym

log SNR
=

a =
log SNR

log INR

Figure 2.5: Generalized degrees of freedom for two suboptimal schemes vs. capacity. These suboptimal schemes are
treating interference as noise and orthogonalizing the users over time or frequency.

cancelled but less private information can be sent under the constraint INRp = 1. Depending on

which of these two effects dominates, the capacity increases or decreases with INR.

In the very weak interference regime where treating interference as noise is optimal, the

common messages carry negligible information. In this regime, the loss in the private rate due to the

increase in INR makes the capacity decrease with INR. However, once interference becomes strong

enough to reach the weaker interference regime, the users can start using common information to

partially cancel interference. As the interference level increases, more and more of this common

information can be decoded and partially cancelled, and this effects dominates the behavior of ca-

pacity with INR. Therefore, capacity increases with INR in the weaker interference regime. However,

as INR increases further to reach the moderate interference regime, the gains obtained by partially

cancelling interference through the common messages are not enough to offset the loss of rate in the

private information. In this regime capacity decreases with INR until the strong interference regime

is reached. Since in the strong interference regime all the information is common information, in-

creasing INR increases capacity. Finally, in the very strong interference regime all the interference

can be cancelled before decoding the useful information, and interference does not have any effect
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on capacity.

2.6 One bit/s/Hz gap revisited

In Sections 2.3 and 2.4 we showed that the Han-Kobayashi scheme that sets the private

message power so that the interference created is at noise level achieves a symmetric rate within

one bit/s/Hz of the upper bounds. Therefore, we obtained a characterization of the symmetric

capacity to within one bit/s/Hz. The finite and small gap between the lower and upper bounds on

the symmetric capacity was obtained by direct calculation of the difference between the bounds. In

this section we present an alternative analysis of the gap between the bounds that will provide a

more intuitive explanation for the tightness of the bounds. We will assume SNR, INR � 1 to simplify

some calculations.

We can split the gap analysis into two parts:

1. Fix Han-Kobayashi strategy (i.e. Pu = N0/gc, decode first the common messages (w1, w2)

and then the private message u1 or u2
4) and see how the symmetric rate changes when varying

the channel from the given interference channel to the genie aided interference channel used

in the bounds. Show that the rate does not change much by giving the side information for

the fixed strategy.

2. Fix the channel to the genie aided interference channel, and change the Han-Kobayashi strategy

by varying Pu from Pu = N0/gc to Pu = P . Show that the rate does not change much by

varying Pu.

Referring to Figure 2.6, the first part of the analysis corresponds to comparing the rates at

points A and B, and showing that the gap ∆1 is small. The second part corresponds to comparing

the rates at points B and C, verifying that the gap ∆2 is small.

4With some abuse of notation, we use ui, wi, i = 1, 2 to denote the private and common messages, and also to
denote the symbols of the codewords actually sent over the channel.
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Pu

Rsym

P
gc

N0

genie aided channel

original channel

D1

D2

R
HK

RUB

A

B
C

Figure 2.6: Gap between the achievable rate with the Han-Kobayashi scheme that sets Pu = N0/gc and the
symmetric capacity upper bound decomposed into two components: ∆1 and ∆2. ∆1 results from fixing Pu and
changing the channel; ∆2 results from increasing Pu to P in the genie aided channel.

Since Pu = P achieves the capacity of the genie aided channel (one can show that the sum

rate upper bounds can be achieved by generating the codewords xn
1 and xn

2 with i.i.d. circularly

symmetric complex Gaussian components of variance P , and treating interference as noise at the

decoder) the above two-part analysis would show that by going from the initial Han-Kobayashi

strategy in the original channel, to the capacity achieving strategy in the genie aided channel, the

symmetric rate does not change much.

Since the argument depends on the regime of interest, we split the analysis into three

regimes for the weak interference channel (see equation (2.37)):

(a) 0 < α < 1/2: very weak interference,

(b) 1/2 < α < 2/3: weaker interference,

(c) 2/3 < α < 1: moderate interference.

Step 1, regimes (a) and (b).

In these regimes, the outer bound is derived using the genie aided channel of Figure 2.4.

In this genie aided channel receiver 1 has side information s1 = hcx1 + z2 and receiver 2 has side

information s2 = gcx2 + z1. In these regimes the common message w1 can be easily decoded at
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receiver 1 (and w2 at receiver 2) because the binding constraint on the sum rate includes only the

rates of the cross-common messages and the private messages. The fixed Han-Kobayashi strategy

requires that w2 be decoded at receiver 1 treating u1 (and u2) as noise.

The side information s1 does not help much in decoding w2 due to the following argument.

After decoding w1 and subtracting its effect from the received signals, the remaining side information

is s̃1 = hcu1 + z2. The side information contains only information about u1 which plays the role of

interference at this stage. This side information would be useful in reducing the uncertainty about

this interference, but since gcPu = N0 this is a very noisy view of u1. Therefore the rate achieved

for w2 in the genie aided channel is very similar to the rate achieved in the original channel.

With a similar argument we see that the rate at which w1 can be decoded at receiver 2 in

the genie aided channel is similar to the rate in the original channel.

After w1 and w2 have been decoded, the Han-Kobayashi strategy decodes u1 at receiver 1

and u2 at receiver 2. The side information provides a second view of u1 at receiver 1 and of u2 at

receiver 2. Doing maximal ratio combining between the two received signals (after subtracting the

common messages) we get that the total effective signal to noise ratio is the sum of the SNRs of the

two receiver branches, which for Pu = gc/N0 is:

SNRy1,s1 = SNRy1 + SNRs1 =
gdPu

N0 + gcPu
+

gcPu

N0
=

gd

2gc
+ 1 =

SNR

2INR
+ 1.

Therefore, the SNR of u1 in the genie aided channel increases by at most 1 when compared to the

SNR in the original channel, resulting in a maximum rate increase of 1 bit/s/Hz. However, when

we take SNR, INR � 1, the rate increase is approximately zero.

The same argument can be used to show that the rate of u2 can increase by at most 1

bit/s/Hz in the genie aided channel.

Step 1, regime (c)

In this regime, the symmetric rate upper bound is derived using the genie aided channel of

Figure 2.2. In this genie aided channel receiver 1 has side information x2 (x2 can be obtained from
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v2 by dividing it by h2,1), and therefore it can completely remove the interference from user 2 in his

received signal y1. The resulting channel is a one sided interference channel.

For the fixed Han-Kobayashi strategy, the rates of the messages u2, w1 and w2 at receiver

2 cannot change, since receiver 2 does not receive any side information. To see this, note that in this

regime the binding constraints on the rates of w1 and w2 are the MAC constraints at each receiver.

Since MAC2 did not change, the rates of w1 and w2 did not change either. In addition, after w1

and w2 are decoded at receiver 2, the maximum rate of u2 does not change either since receiver 2

does not get any side information.

On the other hand the rate u1 can increase, since receiver 1 can completely remove the

interference hcu2. However this interference is at power level N0, and removing it can only increase

the SNR of u1 by a factor of 2. Therefore u1 can increase by at most 1 bit/s/Hz in the genie aided

channel.

It follows that for the fixed Han-Kobayashi strategy, the symmetric rate increases by at

most 1/2 bit/s/Hz due to the aid of the genie.

Step 2, regime (a)

In this regime the common messages have bounded (and small) rate. The actual rate is

irrelevant since when we increase Pu from N0/gc to P , the common rate does not increase and, in

fact, it goes to zero.

In addition, after maximal ratio combining, the SNR of the private message u1 is given by:

SNRu1(Pu) =
gdPu

N0 + gcPu
+

gcPu

N0

and goes from SNR/(2INR) + 1 to:

SNRu1(P ) =
gdP

N0 + gcP
+

gcP

N0
=

SNR

INR + 1
+ INR <

SNR

INR
+ INR (2.38)

when increasing Pu from N0/gc to P .
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For 0 < α < 1/2, SNR

INR
> INR, the first term of (2.38) dominates, and the SNR of u1 can

increase by at most a factor of 2 when increasing Pu to full power, resulting in a rate gain of at most

1 bit/s/Hz.

The same argument can be used to show that the rate of u2 cannot increase by more than

1 bit/s/Hz when varying Pu from N0/gc to P .

Therefore the symmetric rate can increase by at most 1 bit/s/Hz when varying Pu from

our initial Han-Kobayashi strategy to the capacity achieving strategy in the genie aided channel.

Step 2, regime (b)

In this regime the common messages can provide non-negligible rate. When we increase

Pu we affect the common message rates in two ways:

i) We reduce the common message power.

ii) We increase the interference generated by the private messages.

The effect of i) is negligible when Pu � P , since Pw = P − Pu ≈ P . The effect of ii) is harder

to analyze because increasing Pu increases the interference affecting the decoding of w2, but at the

same time increases the usefulness of the side information s1 in reducing this interference.

We do a back of the envelope calculation to determine how Pu affects the rate of w2.

Receiver 1 can use the side information s1 to get an estimate û1 of the private message u1 which is

treated as Gaussian noise at this stage. We can write u1 = û1 + δu1 , where for the minimum mean

square error estimator û1, the estimation error δu1 is Gaussian, independent of û1, and has variance:

σ2 = Pu

(

1 − 1

1 + N0/(gcPu)

)

≈ N0

gc
.

In the above equation, the approximation is good for N0/(gcPu) � 1 (INR � 1). We see that the

estimation error is approximately independent of the private message power Pu.
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Receiver 1 can use û1 to reduce the interference plus noise in the received signal y1, ob-

taining:

ỹ1 = y1 − hdû1 = hcw2 + hcu2 + z1 − hdδu1

The resulting SNR for decoding w2 is given by

SNRw2 ≈ gcP/N0

gcPu/N0 + gd/gc + 1
≈ gcP/N0

gcPu/N0 + gd/gc
(2.39)

and the rate at which w2 can be decoded is Rw2 = log(1 + SNRw2).

We see that increasing Pu results in a reduction in the rate of w2, but surprisingly, this

reduction is compensated by the increase in the rate of u1. The SNR of u1 after maximal ratio

combining is:

SNRu1 =
gdPu/N0

1 + gcPu/N0
+

gcPu

N0
≈ gd

gc
+

gcPu

N0
(2.40)

where the last approximation holds for gcPu/N0 � 1.

Comparing the denominator of (2.39) with (2.40) we see that the reduction in the rate of

w2 is approximately the same as the increase of the rate of u1 as Pu is increased from N0/gc to

P . Therefore, the sum of these rates (each of which depends logarithmically with SNR) remains

approximately invariant when Pu increases.

Step 2, regime (c)

Increasing Pu increases the noise+interference power in MAC2 from 2N0 to N0 + gcP , or

approximately by a factor gcP/(2N0) = INR/2. The sum rates of the messages u2, w1, and w2 is

reduced by a term log(gcP/(2N0)) = log(INR/2).

On the other hand increasing Pu produces an increase in the rate of the private message

u1 which does not see any interference after decoding w1 due to the aid of the side information. The

rate of u1 is given by

Ru2(Pu) = log

(

1 +
gdPu

N0

)

≈ log

(

gdPu

N0

)

.

When Pu is increased from N0/gc to P , this rate increases by a term log(gcP/N0) = log(INR).
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Comparing the reduction in the sum rate of the messages u2 w1 and w2 to the increase in

the rate of the message u1 we see a net gain of 1 bit/s/Hz for SNR, INR � 1.

Therefore, the symmetric rate increases by at most 1/2 bit/s/Hz when we increase Pu from

N0/gc to P in the genie aided channel.

Summary

The above analysis shows that the upper bounds are tight for two main reasons:

1. The side information essentially does not modify the binding constraints for the rates that can

be achieved with the Han-Kobayashi strategy.

2. The side information provides just enough help to maintain the rates in the genie aided channel

when varying the communication scheme from the Han-Kobayashi strategy to the capacity

achieving scheme in the genie aided channel. Too little help would make Pu = P suboptimal,

and would complicate the computation of the capacity of the genie aided channel. Too much

help would make the bounds loose.

Note that except in regime (a) where setting Pu = P is optimal in the original channel, increasing

Pu beyond N0/gc is strictly suboptimal. However, the side information in the genie aided channel

compensates the negative effect of increasing Pu and essentially makes the rates invariant with Pu.

2.7 Tight characterization of symmetric capacity

Our simple Han and Kobayashi type scheme, together with the symmetric capacity upper

bounds (2.10) and (2.17) allowed us to characterize the symmetric capacity to within one bit/s/Hz.

We will now show that in some parameter ranges, the gap between the upper bound (2.17) and the

rates achievable with some improved communication schemes vanishes for SNR, INR → ∞.

The communication scheme that sets the private message power so that the interference

generated onto the other receiver is at noise level (i.e. gcPu = N0) is “universal” in the sense that
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the same scheme can be used to achieve a symmetric rate within one bit/s/Hz of capacity in the

weak interference regime, regardless of the values of the parameters.

However, we can further improve the achievable symmetric rate by modifying the com-

munication scheme for different parameter ranges. In the very weak interference regime, when

log INR < 1
2 log SNR we can simply assign Pu = P and not use common messages at all. As stated

in the previous subsection, this scheme achieves a symmetric rate:

R = log

(

1 +
gdP

N0 + gcP

)

(2.41)

and the gap between this rate and the upper bound (2.17) is:

RUBnew − R = log

(

1 +
gcP

N0
+

gdP

N0 + gcP

)

− log

(

1 +
gdP

N0 + gcP

)

= log

(

1 +
INR(1 + INR)

1 + INR + SNR

)

≈ log

(

1 +
INR

2

SNR

)

. (2.42)

Note that the same gap would be obtained with any scheme that uses private message power Pu

such that gcPu → ∞ as SNR, INR → ∞.

Recall that α = log INR

log SNR
. The very weak interference regime corresponds to 0 < α < 1

2 . In

this regime, (2.42) implies that for fixed α, Csym − R → 0 as SNR, INR → ∞. Therefore, we have

that for 0 < α < 1/2 the symmetric capacity is tightly characterized by:

Csym = log

(

SNR

INR

)

. (2.43)

For simplicity of presentation, from now on we assume without loss of generality that

gd = 1. In the weaker interference regime where 1
2 < α < 2

3 , we can choose the private message

power as Pu = N0(SNR/INR)γ , where

0 <
2α − 1

1 − α
< γ < 1 (2.44)

is fixed but arbitrary. This choice of Pu makes the received interference power corresponding to the

private message gcPu = gdN0(INR/SNR)(1−γ) = N0(INR/SNR)(1−γ) to go to zero as SNR, INR → ∞.

Note that in the weaker interference regime we have log SNR < log INR < 2
3 log SNR and therefore

INR/SNR → 0 as SNR, INR → ∞.
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Fixing the decoding order so that the private messages are decoded last, this scheme

achieves a symmetric rate:

R = log

[

1 +
gdPu

N0 + gcPu

]

+ min

{

1

2
log

[

1 +
(gd + gc)(P − Pu)

N0 + (gd + gc)Pu

]

, log

[

1 +
gc(P − Pu)

N0 + (gd + gc)Pu

]}

(a)' log

[

1 +

(

SNR

INR

)γ]

+ min

{

1

2
log

[

1 +
SNR

(SNR/INR)γ

]

, log

[

1 +
INR

(SNR/INR)γ

]}

' γ log

(

SNR

INR

)

+ min

{

1

2
log
[

SNR
1−γ

INR
γ
]

, log

[

INR
1+γ

SNR
γ

]}

= γ(1 − α) log (SNR) + min

{

1 − γ + αγ

2
, α(1 + γ) − γ

}

log(SNR)

(b)
= α log (SNR) (2.45)

where ' means that the the difference between the left and right hand sides goes to zero as

SNR, INR → ∞, (a) follows from the fact that gcPu → 0, Pu/P → 0, and gc/gd → 0 as SNR, INR →

∞, and (b) follows because the second term of the min{·, ·} dominates due to (2.44).

From the upper bound (2.17) we obtain:

RUBnew = log

(

1 +
gcP

N0
+

gdP

N0 + gcP

)

= log

(

1 + INR +
SNR

1 + INR

)

' log
(

SNR
α + SNR

1−α
)

' max {α, 1 − α} log (SNR)

= α log (SNR) . (2.46)

Comparing (2.45) with (2.46) we see that the difference RUBnew −R → 0 as SNR, INR → ∞

and therefore in the weaker interference regime the symmetric capacity is given by:

Csym = log (INR) . (2.47)

We note that both in the very weak and weaker interference regimes we have some flexibility

in setting the private message power to asymptotically achieve the symmetric capacity. In the very

weak interference regime we can choose any private message power as long as gcPu → ∞ when

SNR, INR → ∞. In a similar way, in the weaker interference regime we can use any private message
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power that satisfies gcPu → 0 as SNR, INR → ∞. In both cases setting gcPu = N0 does not

asymptotically achieve the symmetric capacity, but results in a symmetric rate no smaller than 1

bit/s/Hz from it. Unfortunately, in the moderate interference regime the only choice of private

message power that achieves a symmetric rate with bounded difference from the upper bound (2.10)

is gcPu = constant, and this choice of private message power does not result in a gap that vanishes

as SNR, INR → ∞.

In the strong interference regime the symmetric capacity is given by:

Csym =
1

2
log (1 + INR + SNR) (2.48)

which asymptotically approaches log(
√

INR) for 1 < α ≤ 2 as SNR, INR → ∞.

Finally in the very strong interference regime the symmetric capacity is given by:

Csym = log (1 + SNR) (2.49)

which asymptotically approaches log(SNR) for SNR → ∞.

We summarize the results of this subsection in the following theorem.

Theorem 2 Let α = (log INR/ logSNR). For 0 < α < 1/2, 1/2 < α < 2/3 and α > 1, the

approximation

Csym ≈















































log(SNR

INR
) log INR < 1

2 log SNR

log INR
1
2 log SNR < log INR < 2

3 log SNR

log
√

INR log SNR < log INR < 2 logSNR

log SNR log INR ≥ 2 log SNR

(2.50)

is asymptotically tight in the sense that the difference between Csym and the approximation goes to

zero as SNR, INR go to infinity with α fixed.
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Chapter 3

Gaussian Interference Channel in

Weak Interference

In this chapter we will extend the results derived in the previous chapter for the symmetric

Gaussian interference channel, where the parameters SNR1, SNR2, INR1, and INR2 are arbitrary. In

this chapter we will relax the assumption of symmetry, but will still require that the channel be

in weak interference. This means that the parameters satisfy INR1 < SNR2 and INR2 < SNR1, or

equivalently, g1,1 > g1,2 and g2,2 > g2,1.

We start with a derivation of an outer bound to the capacity region. We then describe the

Han-Kobayashi family of schemes and obtain a simplified expression for the rate region that can

be achieved with this family. While computing the largest possible Han-Kobayashi rate region is in

general hard due to the large number of combination of strategies that must be considered, we show

that by time sharing between two or three simple Han-Kobayashi schemes one can achieve a rate

region within one bit/s/Hz of the outer bound, and hence from capacity. Therefore, the inner bound

resulting from these schemes and the outer bound together characterize within a single bit/s/Hz

the capacity region. We conclude the chapter by extending the concept of generalized degrees of
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freedom (introduced in Section 2.5 for the symmetric rate of the symmetric channel) to the complete

capacity region.

3.1 Outer bound to the capacity region

We present an outer bound to the capacity region of the Gaussian interference in weak

interference in the following theorem.

Theorem 3 For the Gaussian interference channel in weak interference, the capacity region is con-

tained within the set of rate pairs (R1, R2) satisfying

R1 ≤ log

(

1 +
g1,1P1

N0

)

(3.1)

R2 ≤ log

(

1 +
g2,2P2

N0

)

(3.2)

R1 + R2 ≤ log

(

1 +
g2,2P2

N0

)

+ log

(

1 +
g1,1P1

N0 + g2,1P2

)

(3.3)

R1 + R2 ≤ log

(

1 +
g1,1P1

N0

)

+ log

(

1 +
g2,2P2

N0 + g1,2P1

)

(3.4)

R1 + R2 ≤ log

(

1 +
g2,1P2

N0
+

g1,1P1

N0 + g1,2P1

)

+ log

(

1 +
g1,2P1

N0
+

g2,2P2

N0 + g2,1P2

)

(3.5)

2R1 + R2 ≤ log

(

1 +
g1,1P1

N0
+

g2,1P2

N0

)

+ log

(

1 +
g1,2P1

N0
+

g2,2P2

N0 + g2,1P2

)

+ log

(

1 +
g1,1P1

N0 + g1,2P1

)

(3.6)

R1 + 2R2 ≤ log

(

1 +
g2,2P2

N0
+

g1,2P1

N0

)

+ log

(

1 +
g2,1P2

N0
+

g1,1P1

N0 + g1,2P1

)

+ log

(

1 +
g2,2P2

N0 + g2,1P2

)

(3.7)

which expressed in terms of SNRs and INRs becomes:

R1 ≤ log (1 + SNR1) (3.8)

R2 ≤ log (1 + SNR2) (3.9)

R1 + R2 ≤ log (1 + SNR2) + log

(

1 +
SNR1

1 + INR1

)

(3.10)

R1 + R2 ≤ log (1 + SNR1) + log

(

1 +
SNR2

1 + INR2

)

(3.11)
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R1 + R2 ≤ log

(

1 + INR1 +
SNR1

1 + INR2

)

+ log

(

1 + INR2 +
SNR2

1 + INR1

)

(3.12)

2R1 + R2 ≤ log (1 + SNR1 + INR1) + log

(

1 + INR2 +
SNR2

1 + INR1

)

+ log

(

1 +
SNR1

1 + INR2

)

(3.13)

R1 + 2R2 ≤ log (1 + SNR2 + INR2) + log

(

1 + INR1 +
SNR1

1 + INR2

)

+ log

(

1 +
SNR2

1 + INR1

)

.

(3.14)

Proof: We prove outer bounds (3.1)-(3.7). The equivalent outer bounds (3.8)-(3.14) can be easily

derived by change of variables.

The bounds on R1 (3.1) and R2 (3.2) follow from the single user capacity of an AWGN channel.

The bounds (3.3) and (3.4) follow from the sum rate of the one-sided interference channel, which

was given in (2.9) (a similar bound can be obtained by considering the one-sided channel that results

from taking g1,2 = 0). Since the derivation of the sum-rate capacity of the one sided channel that

follows from [15,42, 45] is rather convoluted, we provide an alternative proof.

For a block of length n we can write:

n(R1 + R2) ≤ I(xn
1 ;yn

1 ) + I(xn
2 ;yn

2 ) + nεn

(a)

≤ I(xn
1 ;yn

1 ) + I(xn
2 ;yn

2 ,xn
1 ) + nεn

(b)
= I(xn

1 ;yn
1 ) + I(xn

2 ;yn
2 |xn

1 ) + nεn

= h(yn
1 ) − h(yn

1 |xn
1 ) + h(yn

2 |xn
1 ) − h(yn

2 |xn
1x

n
2 ) + nεn

= h(yn
1 ) − h(h2,1x

n
2 + zn

1 ) + h(h2,2x
n
2 + zn

2 ) − h(zn
2 ) + nεn

= h(h2,1h2,2x
n
2 + h2,1z

n
2 ) − h(h2,1h2,2x

n
2 + h2,2z

n
1 ) − n log g2,1 + n log g2,2

+h(yn
1 ) − h(zn

2 ) + nεn

= h(x̃n
2 + z̃n

2 ) − h(x̃n
2 + z̃n

1 ) − n log g2,1 + n log g2,2

+h(yn
1 ) − h(zn

2 ) + nεn (3.15)
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where εn → 0 as n → ∞, (a) follows from having a genie providing xn
1 to receiver 2, and (b) is due

to the fact that xn
1 and xn

2 are independent. In (3.15) we defined

x̃n
2 = h2,1h2,2x

n
2

z̃n
1 = h2,2z

n
1

z̃n
2 = h2,1z

n
2 .

In the weak interference regime we have g2,1 < g2,2, which implies

g2,1N0 = E[z̃2
2,i] < E[z̃2

1,i] = g2,2N0.

Since the capacity region of the Gaussian interference channel only depends on the marginal distri-

butions of z1 and z2, we can choose z̃n
1 as:

z̃n
1 = z̃n

2 + zn (3.16)

where zn ∼ CN (0, (g2,2 − g2,1)N0I2)
1 is independent of z̃n

2 .

Using the entropy power inequality [17] we can write:

h(x̃n
2 + z̃n

1 ) − h(x̃n
2 + z̃n

2 ) = h(x̃n
2 + z̃n

2 + zn) − h(x̃n
2 + z̃n

2 )

≥ n log

[

1 +
2(1/n)h(zn)

2(1/n)h(x̃n
2 +z̃

n
2 )

]

≥ n log

[

1 +
(g2,2 − g2,1)N0

g2,1(g2,2P2 + N0)

]

(3.17)

where the last inequality is obtained by choosing x̃n
2 ∼ CN (0, g2,2g2,1P2I2) and using the entropy

maximizing property of the circularly symmetric complex Gaussian distribution.

Furthermore, we can upper bound h(yn
1 ) by choosing xn

i ∼ CN (0, PiI2), i = 1, 2, and using again

the entropy maximizing property of the circularly symmetric complex Gaussian distribution we can

write:

h(yn
1 ) − h(zn

2 ) ≤ n log

(

1 +
g1,1P1 + g2,1P2

N0

)

. (3.18)

1
I2 is the identity matrix in R

2
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Replacing (3.17) and (3.18) in (3.15) and after some simple calculations we obtain (3.3).

In a similar way we obtain (3.4).

Bound (3.5) was obtained in Theorem 1.

Tx

Tx

+

+

+

+

x

x

1

z 1

y 1

s 2

s 1

1 Rx1

Rx1

2

z 2

y 2

2 Rx2

h11

h12

h21

h22

x 2

a

b

Figure 3.1: Genie-aided two-user Gaussian interference channel with virtual receivers. A genie provides signals s1

and x2 to virtual receiver 1a, and s2 to receiver 2. Virtual receiver 1b only observes y1.

Next we bound 2R1 + R2. As we did in the proof of Theorem 1 we define

s1 = h1,2x1 + z2

s2 = h2,1x2 + z1

and use a genie to provide additional information to the receivers. We can think of the term 2R1

as arising from the sum rate that transmitter 1 can achieve when communicating with two virtual

receivers, 1a and 1b. Both virtual receivers observe y1, but only receiver 1a gets help from the genie.

In particular, the genie provides signals s1 and x2 to receiver 1a, and s2 to receiver 2 (see Figure

3.1). Since the rates achievable with the help of the genie are no smaller than the achievable rates

in the original channel, we can write:

n(2R1 + R2) ≤ I(xn
1 ;yn

1 ) + I(xn
1 ;yn

1 ) + I(xn
2 ;yn

2 ) + nεn

≤ I(xn
1 ;yn

1 ) + I(xn
1 ;yn

1 , sn
1 ,xn

2 ) + I(xn
2 ;yn

2 , sn
2 ) + nεn

(a)
= I(xn

1 ;yn
1 ) + I(xn

1 ;yn
1 , sn

1 |xn
2 ) + I(xn

2 ;yn
2 , sn

2 ) + nεn
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= h(yn
1 ) − h(sn

2 ) + h(yn
1 , sn

1 |xn
2 ) − h(yn

1 , sn
1 |xn

1 ,xn
2 ) + I(xn

2 ;yn
2 ) + I(xn

2 ; sn
2 |yn

2 ) + nεn

= h(yn
1 ) − h(sn

2 ) + h(sn
1 |xn

2 ) + h(yn
1 |sn

1 ,xn
2 ) − h(yn

1 |xn
1 ,xn

2 ) − h(sn
1 |xn

1 ,xn
2 ,yn

1 )

+h(yn
2 ) − h(sn

1 ) + h(sn
2 |yn

2 ) − h(sn
2 |xn

2 ,yn
2 ) + nεn

= h(yn
1 ) − h(sn

2 ) + h(sn
1 ) + h(yn

1 |sn
1 ,xn

2 ) − h(zn
1 ) − h(zn

2 )

+h(yn
2 ) − h(sn

1 ) + h(sn
2 |yn

2 ) − h(zn
1 ) + nεn

= h(yn
1 ) − I(sn

2 ,yn
2 ) + h(yn

1 |sn
1 ,xn

2 ) + h(yn
2 ) − 2h(zn

1 ) − h(zn
2 ) + nεn

= h(yn
1 ) + h(yn

2 |sn
2 ) + h(yn

1 |sn
1 ,xn

2 ) − 2h(zn
1 ) − h(zn

2 ) + nεn

(b)

≤
n
∑

i=1

[h(y1,i) + h(y2,i|s2,i) + h(y1,i|s1,i, x2,i) − 2h(z1,i) − h(z2,i) + εn] (3.19)

where (a) follows from the independence of xn
1 and xn

2 , and (b) is obtained from the chain rule for

differential entropies and removing conditioning, noting that the components of the noise vectors zn
1

and zn
2 are independent.

Let E[|x1,i|2] = p1,i, and E[|x2,i|2] = p2,i. For a given covariance matrix, the circularly symmetric

complex Gaussian distribution not only maximizes the differential entropy, but also maximizes any

conditional differential entropy. It follows that the individual terms of (3.19) are maximized by

choosing x1,i ∼ CN (0, p1,i) and x2,i ∼ CN (0, p2,i), i = 1, . . . , n. Using these distributions for x1,i

and x2,i, we can use Jensen’s inequality to write:

1

n

n
∑

i=1

h(y1,i) ≤ 1

n

n
∑

i=1

log [πe (g1,1p1,i + g2,1p2,i + N0)]

≤ log

[

πe

(

g1,1
1

n

n
∑

i=1

p1,i + g2,1
1

n

n
∑

i=1

p2,i + N0

)]

≤ log [πe (g1,1P1 + g2,1P2 + N0)] (3.20)

together with

1

n

n
∑

i=1

h(y2,i|s2,i) =
1

n

n
∑

i=1

h(h1,2x1,i + h2,2x2,i + z2,i|s2,i)

≤ 1

n

n
∑

i=1

log

[

πe

(

N0 + g1,2p1,i +
g2,2N0p2,i

N0 + g2,1p2,i

)]
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≤ log









πe









N0 + g1,2

(

1

n

n
∑

i=1

p1,i

)

+

g2,2N0

(

1
n

n
∑

i=1

p2,i

)

N0 + g2,1

(

1
n

n
∑

i=1

p2,i

)

















≤ log

[

πe

(

N0 + g1,2P1 +
g2,2N0P2

N0 + g2,1P2

)]

(3.21)

and

1

n

n
∑

i=1

h(y1,i|s1,ix2,i) =
1

n

n
∑

i=1

h(h1,1x1,i + z1i|s1i)

≤ 1

n

n
∑

i=1

log

[

πe

(

N0 +
g1,1N0p1,i

N0 + g1,2p1,i

)]

≤ log









πe









N0 +

g1,1N0

(

1
n

n
∑

i=1

p1,i

)

N0 + g1,2

(

1
n

n
∑

i=1

p1,i

)

















≤ log

[

πe

(

N0 +
g1,1N0P1

N0 + g1,2P1

)]

(3.22)

where in all cases Jensen’s inequality was applied to concave functions.

Thus we have

2R1 + R2 ≤ log [πe (g1,1P1 + g2,1P2 + N0)] − log [πeN0]

+ log

[

πe

(

N0 + g1,2P1 +
g2,2P2N0

N0 + g2,1P2

)]

− log [πeN0]

+ log

[

πe

(

N0 +
g1,1N0P1

N0 + g1,2P1

)]

− log [πeN0] + εn

= log

(

1 +
g1,1P1

N0
+

g2,1P2

N0

)

+ log

(

1 +
g1,2P1

N0
+

g2,2P2/N0

1 + g2,1P2/N0

)

+ log

(

1 +
g1,1P1/N0

1 + g1,2P1/N0

)

+ εn. (3.23)

Finally, we can derive the bound (3.7) for R1 + 2R2 in a similar way.

3.2 Achievable rate region with Han-Kobayashi scheme

The best known achievable region for interference channel is the Han-Kobayashi region [29].

To define this region, Han and Kobayashi use auxiliary random variables U1, U2, W1, W2, and Q.
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The U variables can be interpreted as representing private information, to be decoded only by the

intended receiver, while the W variables represent common information to be decoded by both

receivers. In addition, the auxiliary random variable Q plays the role of a time-sharing parameter.

For a fixed random vector Z = (Q, U1, W1, U2, W2, X1, X2, Y1, Y2) the Han-Kobayashi

scheme allows to achieve a rate region R(Z), given in [29, Theorem 4.1]. Furthermore, [29, Theorem

3.2] shows that R∗ = Closure {∪Z∈P∗R(Z)} can be achieved, where P∗ is the set of probability

distributions for Z that satisfy:

• U1, U2, W1, W2 are conditionally independent given Q;

• X1 = f(U1, W1|Q) and X2 = f(U2, W2|Q);

• the conditional distribution of (Y1, Y2) given (X1, X2) matches the channel conditional distri-

bution.

Unfortunately, the region R(Z) given in [29, Theorem 4.1] is not easy to evaluate and

contains many redundant bounds. In order to simplify our future calculations we provide in this

section a simplified expression for the region given in [29, Theorem 4.1]. 2

Lemma 1 The Han-Kobayashi region R(Z) is equivalent to the polyhedron consisting of all rate

pairs (R1, R2) satisfying

R1 ≤ I(Y1; W1|W2Q) + I(Y1; U1|W1W2Q) (3.24)

R1 ≤ I(Y2; W1|U2W2Q) + I(Y1; U1|W1W2Q) (3.25)

R2 ≤ I(Y2; W2|W1Q) + I(Y2; U2|W1W2Q) (3.26)

R2 ≤ I(Y1; W2|U1W1Q) + I(Y2; U2|W1W2Q) (3.27)

R1 + R2 ≤ I(Y1; W1W2|Q) + I(Y1; U1|W1W2Q) + I(Y2; U2|W1W2Q) (3.28)

R1 + R2 ≤ I(Y2; W1W2|Q) + I(Y1; U1|W1W2Q) + I(Y2; U2|W1W2Q) (3.29)

2 [12] obtained independently a similar simplification of the Han-Kobayashi achievable region, derived using Fourier-
Motzkin elimination to remove the redundant rate constraints.
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R1 + R2 ≤ I(Y2; W1|W2Q) + I(Y1; W2|W1Q) + I(Y1; U1|W1W2Q) + I(Y2; U2|W1W2Q)

(3.30)

2R1 + R2 ≤ I(Y1; W1W2|Q) + 2I(Y1; U1|W1W2Q) + I(Y2; U2|W1W2Q) + I(Y2; W1|W2Q)

(3.31)

R1 + 2R2 ≤ I(Y2; W1W2|Q) + I(Y1; U1|W1W2Q) + 2I(Y2; U2|W1W2Q) + I(Y1; W2|W1Q)

(3.32)

Proof: We use the definitions and notation of [29] in this proof.

The bounds on R1 (3.24)(3.25) and R2 (3.26)(3.27) are the same as those in [29, theorem 4.1].

Besides the three sum rate bounds (3.28)(3.29)(3.30), there is a fourth bound on R1 + R2 in [29,

theorem 4.1]:

R1 + R2 ≤ I(Y1; W1|W2Q) + I(Y2; W2|W1Q) + I(Y1; U1|W1W2Q) + I(Y2; U2|W1W2Q).

However, this bound is equal to the sum of (3.24) and (3.26), and hence is redundant.

Next we evaluate the 2R1 + R2 bounds in [29, theorem 4.1]. Let σ∗
1 be as defined in [29]:

σ∗
1 = min {I(Y1; W1|W2Q), I(Y2; W1|U2W2Q)} .

Depending on the value of [σ∗
1 − I(Y2; W1|W2Q)]+, there are two cases.

Case I: σ∗
1 − I(Y2; W1|W2Q) ≥ 0

In this case, evaluating [29, equation (4.5)], we have

2R1 + R2 ≤ 2σ∗
1 + 2I(Y1; U1|W1W2Q) + I(Y2; U2|W1W2Q) − σ∗

1 + I(Y2; W1|W2Q)

+ min
{

I(Y2; W2|W1Q), I(Y2; W2|Q), I(Y1; W2|W1Q), I(Y1; W1W2|Q) − σ∗
1

}

= σ∗
1 + 2I(Y1; U1|W1W2Q) + I(Y2; U2|W1W2Q) + I(Y2; W1|W2Q)

+ min
{

I(Y2; W2|Q), I(Y1; W2|W1Q), I(Y1; W1W2|Q) − σ∗
1

}

where the last equality follows from the fact that I(Y2; W2|W1Q) ≥ I(Y2; W2|Q) due to the inde-
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pendence between W1 and W2.

If σ∗
1 = I(Y1; W1|W2Q), we have

2R1 + R2 ≤ I(Y1; W1|W2Q) + 2I(Y1; U1|W1W2Q) + I(Y2; U2|W1W2Q) + I(Y2; W1|W2Q)

+ min
{

I(Y2; W2|Q), I(Y1; W2|W1Q), I(Y1; W2|Q)
}

= I(Y1; W1|W2Q) + 2I(Y1; U1|W1W2Q) + I(Y2; U2|W1W2Q) + I(Y2; W1|W2Q)

+ min
{

I(Y2; W2|Q), I(Y1; W2|Q)
}

where the last equality again follows from the independence between W1 and W2.

So we have two bounds:

2R1 + R2 ≤ I(Y2; W1W2|Q) + 2I(Y1; U1|W1W2Q) + I(Y2; U2|W1W2Q) + I(Y1; W1|W2Q)

2R1 + R2 ≤ I(Y1; W1W2|Q) + 2I(Y1; U1|W1W2Q) + I(Y2; U2|W1W2Q) + I(Y2; W1|W2Q)

(3.33)

where the first bound is redundant since it is the summation of (3.24) and (3.29).

If σ∗
1 = I(Y2; W1|U2W2Q), we have

2R1 + R2 ≤ I(Y2; W1|U2W2Q) + 2I(Y1; U1|W1W2Q) + I(Y2; U2|W1W2Q) + I(Y2; W1|W2Q)

+ min
{

I(Y2; W2|Q), I(Y1; W2|W1Q), I(Y1; W1W2|Q) − I(Y2; W1|U2W2Q)
}

So we have three bounds:

2R1 + R2 ≤ I(Y2; W1W2|Q) + 2I(Y1; U1|W1W2Q) + I(Y2; U2|W1W2Q) + I(Y2; W1|U2W2Q)

2R1 + R2 ≤ I(Y2; W1|W2Q) + I(Y1; W2|W1Q) + 2I(Y1; U1|W1W2Q) + I(Y2; U2|W1W2Q)

+I(Y2; W1|U2W2Q)

2R1 + R2 ≤ I(Y1; W1W2|Q) + 2I(Y1; U1|W1W2Q) + I(Y2; U2|W1W2Q) + I(Y2; W1|W2Q)

We can see that the first bound on 2R1 + R2 is the summation of (3.25) and (3.29), and the second

bound on 2R1 +R2 is the summation of (3.25) and (3.30), so these two bounds are redundant. Also,

the third bound is equal to (3.33).
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It follows that in case I the only bound for 2R1 + R2 is (3.33) which is (3.31).

Case II: σ∗
1 − I(Y2; W1|W2Q) < 0

Since I(Y2; W1|W2U2Q) ≥ I(Y2; W1|W2Q) is always true, in this case, we have σ∗
1 = I(Y1; W1|W2Q).

Evaluating [29, equation (4.5)], we have

2R1 + R2 ≤ 2I(Y1; W1|W2Q) + 2I(Y1; U1|W1W2Q) + I(Y2; U2|W1W2Q)

+ min
{

I(Y2; W2|W1Q), I(Y2; W2|Q) + I(Y2; W1|W2Q) − I(Y1; W1|W2Q),

I(Y1; W2|W1Q), I(Y1; W1W2|Q) − I(Y1; W1|W2Q)
}

So we have the following four bounds:

2R1 + R2 ≤ 2I(Y1; W1|W2Q) + 2I(Y1; U1|W1W2Q) + I(Y2; U2|W1W2Q) + I(Y2; W2|W1Q)

2R1 + R2 ≤ I(Y2; W1W2|Q) + 2I(Y1; U1|W1W2Q) + I(Y2; U2|W1W2Q) + I(Y1; W1|W2Q)

2R1 + R2 ≤ 2I(Y1; W1|W2Q) + 2I(Y1; U1|W1W2Q) + I(Y2; U2|W1W2Q) + I(Y1; W2|W1Q)

2R1 + R2 ≤ I(Y1; W1W2|Q) + 2I(Y1; U1|W1W2Q) + I(Y2; U2|W1W2Q) + I(Y1; W1|W2Q).

The first bound can be obtained by adding two times (3.24) and (3.26); the second bound can be

obtained by adding (3.24) and (3.29); while the fourth bound can be obtained by adding (3.24) and

(3.28). In addition, the third bound on 2R1 +R2 is also redundant. To see this we rewrite the fourth

bound as:

2R1+R2 ≤ 2I(Y1; U1|W1W2Q)+I(Y2; U2|W1W2Q)+I(Y1; W1|W2Q)+I(Y1; W1|W2Q)+I(Y1; W2|Q)

which is not larger than the third bound above, due to the fact that I(Y1; W2|W1Q) ≥ Y (Y1; W2|Q).

Therefore, in case II the four bounds on 2R1 + R2 are redundant.

Summarizing cases I and II, we have only one non-redundant 2R1 + R2 bound which is (3.31).

Finally, we can simplify the bounds on R1 + 2R2 in a similar way.

For Gaussian interference channel, we choose U1, W1, U2, W2 to be independent Gaussian

random variables, and X1 = U1 + W1, X2 = U2 + W2. We define the parameters k1 and k2,
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0 ≤ k1 ≤ INR2 and 0 ≤ k2 ≤ INR1, such that the interference to noise ratio of user 1’s (2’s) private

message at receiver 2 (1) is k1 (k2). Equivalently,

Pu1 =
k1N0

g1,2

Pu2 =
k2N0

g2,1

where Pui is the power of user i’s private message, i = 1, 2. With this definition, the signal to noise

ratio of user 1’s private message at receiver 1 is k1
SNR1

INR2
= k1

g1,1

g1,2
and the signal to noise ratio of user

2’s private message at receiver 2 is k2
SNR2

INR1
= k2

g2,2

g2,1
. In addition, we assign the remaining power of

each user (Pi − Pui) to the common message.

This choice of random variables defines a Han-Kobayashi scheme parameterized in (k1, k2),

which we denote HK(k1, k2). Also, we can evaluate the rate region that this scheme achieves using

Lemma 1, which we denote by RHK(k1, k2).

We have the following expressions for relevant mutual information terms:

I(Y1; U1|W1W2) = log

(

1 +
g1,1Pu1

N0 + g2,1Pu2

)

= log

[

1 +
g1,1

g1,2

(

k1

1 + k2

)]

I(Y2; U2|W1W2) = log

(

1 +
g2,2Pu2

N0 + g1,2Pu1

)

= log

[

1 +
g2,2

g2,1

(

k2

1 + k1

)]

I(Y1; W1|W2) = log

(

1 +
g1,1(P1 − Pu1)

N0 + g2,1Pu2 + g1,1Pu1

)

= log



1 +

g1,1P1

N0
− k1

g1,1

g1,2

1 + k2 + k1
g1,1

g1,2





I(Y1; W2|W1) = log

(

1 +
g2,1(P2 − Pu2)

N0 + g2,1Pu2 + g1,1Pu1

)

= log

(

1 +

g2,1P2

N0
− k2

1 + k2 + k1
g1,1

g1,2

)

I(Y1; W1W2) = log

(

1 +
g1,1(P1 − Pu1) + g2,1(P2 − Pu2)

N0 + g2,1Pu2 + g1,1Pu1

)

= log



1 +

g1,1P1

N0
− k1

g1,1

g1,2
+

g2,1P2

N0
− k2

1 + k2 + k1
g1,1

g1,2





I(Y2; W2|W1) = log

(

1 +
g2,2(P2 − Pu2)

N0 + g1,2Pu1 + g2,2Pu2

)

= log



1 +

g2,2P2

N0
− k2

g2,2

g2,1

1 + k1 + k2
g2,2

g2,1





I(Y2; W1|W2) = log

(

1 +
g1,2(P1 − Pu1)

N0 + g1,2Pu1 + g2,2Pu2

)

= log

(

1 +

g1,2P1

N0
− k1

1 + k1 + k2
g2,2

g2,1

)

I(Y2; W1W2) = log

(

1 +
g2,2(P2 − Pu2) + g1,2(P1 − Pu1)

N0 + g1,2Pu1 + g2,2Pu2

)
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= log



1 +

g2,2P2

N0
− k2

g2,2

g2,1
+

g1,2P1

N0
− k1

1 + k1 + k2
g2,2

g2,1





I(Y1; W2|U1W1) = log

(

1 +
g2,1(P2 − Pu2)

N0 + g2,1Pu2

)

= log

(

1 +

g2,1P2

N0
− k2

1 + k2

)

I(Y2; W1|U2W2) = log

(

1 +
g1,2(P1 − Pu1)

N0 + g1,2Pu1

)

= log

(

1 +

g1,2P1

N0
− k1

1 + k1

)

I(Y1; U1|W1W2) = log

(

1 +
SNR1

INR2

k1

1 + k2

)

I(Y2; U2|W1W2) = log

(

1 +
SNR2

INR1

k2

1 + k1

)

I(Y1; W1|W2) = log

(

1 +
SNR1 − k1

SNR1

INR2

1 + k2 + k1
SNR1

INR2

)

I(Y1; W2|W1) = log

(

1 +
INR1 − k2

1 + k2 + k1
SNR1

INR2

)

I(Y1; W1W2) = log

(

1 +
SNR1 − k1

SNR1

INR2
+ INR1 − k2

1 + k2 + k1
SNR1

INR2

)

I(Y2; W2|W1) = log

(

1 +
SNR2 − k2

SNR2

INR1

1 + k1 + k2
SNR2

INR1

)

I(Y2; W1|W2) = log

(

1 +
INR2 − k1

1 + k1 + k2
SNR2

INR1

)

I(Y2; W1W2) = log

(

1 +
SNR2 − k2

SNR2

INR1
+ INR2 − k1

1 + k1 + k2
SNR2

INR1

)

I(Y1; W2|U1W1) = log

(

1 +
INR1 − k2

1 + k2

)

I(Y2; W1|U2W2) = log

(

1 +
INR2 − k1

1 + k1

)

Replacing this mutual information expressions in the bounds of Lemma 1 we have that

RHK(k1, k2) is given by the rate pairs (R1, R2) that satisfy:

R1 ≤ log

(

1 +
SNR1 − k1

SNR1

INR2

1 + k2 + k1
SNR1

INR2

)

+ log

(

1 +
SNR1

INR2

k1

1 + k2

)

R1 ≤ log

(

1 +
INR2 − k1

1 + k1

)

+ log

(

1 +
SNR1

INR2

k1

1 + k2

)

R2 ≤ log

(

1 +
SNR2 − k2

SNR2

INR1

1 + k1 + k2
SNR2

INR1

)

+ log

(

1 +
SNR2

INR1

k2

1 + k1

)
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R2 ≤ log

(

1 +
INR1 − k2

1 + k2

)

+ log

(

1 +
SNR2

INR1

k2

1 + k1

)

R1 + R2 ≤ log

(

1 +
SNR1 − k1

SNR1

INR2
+ INR1 − k2

1 + k2 + k1
SNR1

INR2

)

+ log

(

1 +
SNR1

INR2

k1

1 + k2

)

+ log

(

1 +
SNR2

INR1

k2

1 + k1

)

R1 + R2 ≤ log

(

1 +
SNR2 − k2

SNR2

INR1
+ INR2 − k1

1 + k1 + k2
SNR2

INR1

)

+ log

(

1 +
SNR1

INR2

k1

1 + k2

)

+ log

(

1 +
SNR2

INR1

k2

1 + k1

)

R1 + R2 ≤ log

(

1 +
INR2 − k1

1 + k1 + k2
SNR2

INR1

)

+ log

(

1 +
INR1 − k2

1 + k2 + k1
SNR1

INR2

)

+ log

(

1 +
SNR1

INR2

k1

1 + k2

)

+ log

(

1 +
SNR2

INR1

k2

1 + k1

)

2R1 + R2 ≤ log

(

1 +
SNR1 − k1

SNR1

INR2
+ INR1 − k2

1 + k2 + k1
SNR1

INR2

)

+ 2 log

(

1 +
SNR1

INR2

k1

1 + k2

)

+ log

(

1 +
SNR2

INR1

k2

1 + k1

)

+ log

(

1 +
INR2 − k1

1 + k1 + k2
SNR2

INR1

)

R1 + 2R2 ≤ log

(

1 +
SNR2 − k2

SNR2

INR1
+ INR2 − k1

1 + k1 + k2
SNR2

INR1

)

+ log

(

1 +
SNR1

INR2

k1

1 + k2

)

+2 log

(

1 +
SNR2

INR1

k2

1 + k1

)

+ log

(

1 +
INR1 − k2

1 + k2 + k1
SNR1

INR2

)

(3.34)

We will use this region and the outer bound derived in Section 3.1 to characterize the

capacity region of the Gaussian interference channel in weak interference with an error no larger

than one bit/s/Hz for each user.

3.3 Characterization of the capacity region to within one

bit/s/Hz

In Chapter 2 we showed that a simple Han-Kobayashi scheme could achieve a symmetric

rate close to the symmetric capacity of the symmetric Gaussian interference channel. More specif-

ically, we showed that the scheme achieved a rate that was at most one bit/s/Hz below a capacity

upper bound. In this section we prove an equivalent result for the whole capacity region of the



50

Gaussian interference channel in weak interference. In particular, we will show that by time-sharing

between at most three simple Han-Kobayashi schemes we can achieve a rate region that is within

one bit/s/Hz of the capacity region.

We make the “within one bit/s/Hz” notion precise with the following definition.

Definition 1 An achievable region is within one bit/s/Hz of the capacity region if for any rate pair

(R1, R2) on the Pareto boundary 3 of the achievable region, the rate pair (R1 + 1, R2 + 1) is not

achievable.

Our goal is to find an achievable region such that for any rate point (R1, R2) of its boundary,

the rate pair (R1+1, R2+1) exceeds some outer bound of the capacity region. By the above definition,

such a region would be within one bit/s/Hz of capacity.

For a fixed distribution of the vector Z = (Q, U1, W1, U2, W2, X1, X2, Y1, Y2) the Han-

Kobayashi scheme achieves a rate region delimited by straight lines of slope 0, −1/2, −1, −2, and

∞ (some of these lines may be missing in some degenerate cases). These lines are defined by the

bounds on R1, R2, R1 + R2, 2R1 + R2, and 2R2 + R1 given in Lemma 1. Let these bounds be

denoted by HKR1 , HKR2, HKR1+R2 , HK2R1+R2 , and HKR1+2R2 respectively.

On the other hand, the outer bound presented in Theorem 3 consists of a region delimited

by straight lines of slope 0, −1/2, −1, −2, and ∞. In other words, the outer bound is defined in

terms of upper bounds on R1, R2, R1 + R2, 2R1 + R2, and 2R2 + R1. Let these bounds be denoted

by UBR1 , UBR2 , UBR1+R2 , UB2R1+R2 , and UBR1+2R2 respectively.

Let ∆R1 = UBR1 − HKR1 , ∆R2 = UBR2 − HKR2 , ∆R1+R2 = UBR1+R2 − HKR1+R2 ,

∆2R1+R2 = UB2R1+R2 −HK2R1+R2 , and ∆R1+2R2 = UBR1+R2 −HKR1+2R2 denote the differences

between the boundaries of the Han-Kobayashi region and the outer bound. If ∆R1 < 1, increasing

R1 by one bit/s/Hz in any point on the vertical boundary of the Han-Kobayashi region results in

a point that exceeds the R1 upper bound. Similarly, ∆R2 < 1 implies that we cannot increase

R2 in any point on the horizontal boundary of the Han-Kobayashi region without exceeding the

3Refer to Chapter 11 in Part III for a definition of the Pareto boundary of a rate region.
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corresponding upper bound. In addition, ∆R1+R2 < 2, ∆2R1+R2 < 3, and ∆R1+2R2 < 3 imply that

if we increased R1 and R2 by one bit/s/Hz in any point on the boundaries of slope −1/2, −1, or

−2, the resulting rate pair would fall out of the achievable region. It follows that:

∆R1 < 1

∆R2 < 1

∆R1+R2 < 2

∆2R1+R2 < 3

∆R1+2R2 < 3 (3.35)

is a sufficient condition for the achievable region to be within one bit/s/Hz of the capacity region.

In Section 2.4 we showed that the Han-Kobayashi scheme that sets the private message

power so that the interference created onto the other user’s receiver is at the noise level (i.e. gcPu =

N0) achieved a symmetric rate that is at most one bit/s/Hz away from the symmetric capacity. We

now explore how the same scheme performs over the whole achievable rate region. We first note

that we can only set the private message power Pu1 = N0/g1,2 and Pu2 = N0/g2,1 when INR1 ≥ 1

and INR2 ≥ 1. Therefore in the following analysis, we will assume INR1 ≥ 1 and INR2 ≥ 1. Setting

k1 = 1 and k2 = 1 in (3.34) we obtain that the achievable region RHK (1, 1) is given by the set of

rate pairs (R1, R2) that satisfy:

R1 ≤ log

(

1 +
SNR1

2

)

if 2INR2 ≥ SNR1 (3.36)

R1 ≤ log

(

(1 + INR2)(2INR2 + SNR1)

4INR2

)

if 2INR2 < SNR1 (3.37)

R2 ≤ log

(

1 +
SNR2

2

)

if 2INR1 ≥ SNR2 (3.38)

R2 ≤ log

(

(1 + INR1)(2INR1 + SNR2)

4INR1

)

if 2INR1 < SNR2 (3.39)

R1 + R2 ≤ log

(

(1 + INR1 + SNR1)(2INR1 + SNR2)

4INR1

)

(3.40)

R1 + R2 ≤ log

(

(1 + INR2 + SNR2)(2INR2 + SNR1)

4INR2

)

(3.41)



52

R1 + R2 ≤ log

(

(INR2 + INR1INR2 + SNR1)(INR1 + INR1INR2 + SNR2)

4INR1INR2

)

(3.42)

2R1 + R2 ≤ log

(

(1 + INR1 + SNR1)(2INR2 + SNR1)(INR1 + INR1INR2 + SNR2)

8INR1INR2

)

(3.43)

R1 + 2R2 ≤ log

(

(1 + INR2 + SNR2)(2INR1 + SNR2)(INR2 + INR1INR2 + SNR1)

8INR1INR2
.

)

(3.44)

We will now compute the gaps between the boundary lines of the achievable region and

the outer bound. If 2INR2 ≥ SNR1 we can write:

∆R1 = log (1 + SNR1) − log

(

1 +
SNR1

2

)

= log

(

1 + SNR1

2 + SNR1

)

+ log 2

< 1

while for 2INR2 < SNR1 we have:

∆R1 = log (1 + SNR1) − log

(

(1 + INR2)(2INR2 + SNR1)

4INR2

)

≤ log

(

1 + SNR1

2 + SNR1

)

+ log

(

4INR2

1 + INR2

)

< 2.

In a similar way we obtain ∆R2 < 1 for 2INR1 ≥ SNR2, and ∆R2 < 2 for 2INR1 < SNR2.

To compute ∆R1+R2 we need to consider the three sum rate bounds (3.40),(3.41), and

(3.42) separately, using an appropriate upper bound from Theorem 3. For (3.40) we use the upper

bound (3.10) to obtain a gap:

∆
(A)
R1+R2

= log (1 + SNR2) + log

(

1 +
SNR1

1 + INR1

)

− log

(

(1 + INR1 + SNR1)(2INR1 + SNR2)

4INR1

)

≤ log

(

1 + SNR2

2 + SNR2

)

+ log

(

1 + INR1 + SNR1

1 + INR1

)

+ log

(

4INR1

1 + INR1 + SNR1

)

< log

(

4INR1

1 + INR1

)

= 2

while for (3.41) we use the upper bound (3.11) to obtain in a similar way:

∆
(B)
R1+R2

= log (1 + SNR1) + log

(

1 +
SNR2

1 + INR2

)

− log

(

(1 + INR2 + SNR2)(2INR2 + SNR1)

4INR2

)
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< 2. (3.45)

Finally, for (3.42) we use the upper bound (3.12) to get:

∆
(C)
R1+R2

= log

(

1 + INR1 +
SNR1

1 + INR2

)

+ log

(

1 + INR2 +
SNR2

1 + INR1

)

− log

(

(INR2 + INR1INR2 + SNR1)(INR1 + INR1INR2 + SNR2)

4INR1INR2

)

< log

(

1 + INR1 +
SNR1

INR2

)

+ log

(

1 + INR2 +
SNR2

INR1

)

− log

(

(INR2 + INR1INR2 + SNR1)(INR1 + INR1INR2 + SNR2)

4INR1INR2

)

= log

(

INR2 + INR1INR2 + SNR1

INR2

)

+ log

(

INR1 + INR1INR2 + SNR2

INR1

)

− log

(

(INR2 + INR1INR2 + SNR1)(INR1 + INR1INR2 + SNR2)

4INR1INR2

)

= 2. (3.46)

If follows that regardless of whether (3.40), (3.41), or (3.42) is active, there is a matching sum rate

upper bound with a gap ∆R1+R2 < 2.

It remains to compute the gaps for the lines of slope −1/2 and −2. We have:

∆2R1+R2 = log (1 + SNR1 + INR1) + log

(

1 + INR2 +
SNR2

1 + INR1

)

+ log

(

1 +
SNR1

1 + INR2

)

− log

(

(1 + INR1 + SNR1)(2INR2 + SNR1)(INR1 + INR1INR2 + SNR2)

8INR1INR2

)

< log

(

INR1 + INR1INR2 + SNR2

INR1

)

+ log

(

1 + INR2 + SNR1

1 + INR2

)

+ log

(

2INR2

2INR2 + SNR1

)

+ log

(

4INR1

INR1 + INR1INR2 + SNR2

)

= log(4) + log

(

1 + INR2 + SNR1

2INR2 + SNR1

)

+ log

(

2INR2

1 + INR2

)

≤ 3.

In a similar way, we obtain ∆R1+2R2 < 3.

In summary, the region RHK(1, 1) satisfies:

∆R1 <















1 if 2INR2 ≥ SNR1

2 if 2INR2 < SNR1



54

∆R2 <















1 if 2INR1 ≥ SNR2

2 if 2INR1 < SNR2

∆R1+R2 < 2

∆2R1+R2 < 3

∆R1+2R2 < 3.

(1,1)
HKR

outer bound

Figure 3.2: Comparison of Han-Kobayashi
achievable region RHK(1, 1) and outer bound of
Theorem 3. The achievable region is within one
bit/s/Hz of the outer bound.

(1,1)
HKR

outer bound

Figure 3.3: Comparison of Han-Kobayashi
achievable region RHK(1, 1) and outer bound of
Theorem 3. The achievable region fails to satisfy
the one bit/s/Hz condition on the vertical and
horizontal boundaries.

We can see that when 2INR2 ≥ SNR1 and 2INR1 ≥ SNR2, RHK(1, 1) satisfies the sufficient

conditions (3.35) for being within one bit/s/Hz of capacity (see Figure 3.2).

However, when 2INR2 < SNR1 or 2INR1 < SNR2, the gap between the achievable region

RHK(1, 1) and the outer bound may be larger than one bit/s/Hz on the vertical and horizontal

boundaries, but in any case, the gap is smaller than two bits/s/Hz (see Figure 3.3).

From the above discussion, it follows that the HK(1, 1) scheme does not achieve large

enough R1 when 2INR2 < SNR1, or large enough R2 when 2INR1 < SNR2 to be within one bit/s/Hz of

the capacity region. However, we can increase the maximum achievable R1 (R2) rate by considering

schemes that assign more power to the private message of user 1 (2), i.e. k1 > 1 (k2 > 1). In

particular, we can assign all the available power P1 (P2) to Pu1 (Pu2) by choosing k1 = INR2
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(k2 = INR1). The following lemma shows that by time sharing between the schemes HK(1, 1),

HK(INR2, 1), and HK(1, INR1) we can obtain an achievable rate region that is within one bit/s/Hz

of the capacity region.

Lemma 2 When INR1 ≥ 1 and INR2 ≥ 1, the following achievable region

Convex hull {RHK (1, 1) ∪RHK(INR2, 1) ∪RHK (1, INR1)}

is within one bit/s/Hz of the capacity region of the Gaussian interference channel with weak inter-

ference.

Proof: We have shown above that when 2INR2 ≥ SNR1 and 2INR1 ≥ SNR2, the achievable region

RHK(1, 1) satisfies the sufficient conditions (3.35), and as a result, is within one bit/s/Hz of capacity.

Also, when 2INR2 < SNR1 and/or 2INR1 < SNR2 the gaps ∆R1+R2 , ∆2R1+R2 , and ∆R1+2R2 still

satisfy (3.35), so we only need to reduce the gaps ∆R1 and/or ∆R2 .

When 2INR2 < SNR1, we will show that we can shift the vertical boundary of RHK(1, 1) to the line

R1 = log (1 + SNR1/2) by time sharing between the scheme HK(INR2, 1) and HK(1, 1). This will

reduce the gap ∆R1 to a number strictly smaller than 1.

By taking k1 = INR2 and k2 = 1 in (3.34) and removing redundant bounds we obtain the region

RHK(INR2, 1) as the set of rate pairs (R1, R2) that satisfy:

R1 ≤ log

(

1 +
SNR1

2

)

R2 ≤ log

(

1 +
SNR2

1 + INR2

)

if INR1 + INR1INR2 ≥ SNR2

R2 ≤ log

(

(1 + INR1)(INR1 + INR1INR2 + SNR2)

2(1 + INR2)INR1

)

if INR1 + INR1INR2 < SNR2

R1 + R2 ≤ log

(

(INR1 + INR1INR2 + SNR2)(1 + INR1 + SNR1)

2(1 + INR2)INR1

)

(3.47)

Note that there are no boundary lines with slope −1/2 or −2 in R(INR2, 1).

Consider the point B with coordinates (RB
1 , RB

2 ) which maximizes R2 within RHK(INR2, 1) subject

to R1 = log(1+SNR1/2) (see Figure 3.4). By setting R1 = log(1+SNR1/2), and finding the smallest
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upper bound on R2 from the three resulting bounds in (3.47) we obtain:

RB
2 = log

(

(1 + INR1 + SNR1)(INR1 + INR1INR2 + SNR2)

INR1(1 + INR2)(2 + SNR1)

)

.

Note that the point B is on the intersection of the vertical bound and the bound with slope −1 of

RHK(INR2, 1), and therefore, the sum rate bound is always active.

We will show that the region obtained by taking the convex hull of RHK(1, 1) ∪ {(RB
1 , RB

2 )} is

larger than the region obtained by shifting the vertical bound of RHK(1, 1) to the line R1 =

log (1 + SNR1/2).

In RHK(1, 1) consider the point A where the vertical bound intersects the bound with slope −2 (see

Figure 3.4). This point A has coordinates:

RA
1 = log

(

(1 + INR2)(2INR2 + SNR1)

4INR2

)

RA
2 = log

(

2INR2(1 + INR1 + SNR1)(INR1 + INR1INR2 + SNR2)

INR1(1 + INR2)2(2INR2 + SNR1)

)

and achieves a sum rate:

RA
1 + RA

2 = log

(

(1 + INR1 + SNR1)(INR1 + INR1INR2 + SNR2)

2INR1(1 + INR2)

)

which satisfies with equality the sum rate bound of (3.47).

If point A is part of RHK(1, 1) (which requires the 2R1 + R2 bound of RHK(1, 1) to be active)

the segment A −B obtained by time sharing between points A and B is strictly above the segment

A − C obtained when the region RHK(1, 1) is extended by shifting the vertical bound to the line

R1 = log (1 + SNR1/2) (see Figure 3.4).

If on the other hand point A is outside RHK(1, 1) (which requires the 2R1 +R2 bound of RHK (1, 1)

to be inactive), the maximum sum rate achievable in RHK (1, 1) is smaller than RA
1 +RA

2 = RB
1 +RB

2 .

In addition, in this case the sum rate bound of RHK(1, 1) is active4. Therefore, point B is above

the corner point C obtained by intersecting the sum rate bound of RHK(1, 1) with the vertical line

4This can be checked by comparing the sum of the individual R1, R2 bounds (i.e. (3.37) and (3.38) or (3.39)), and
either (3.41) or (3.42).
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R1 = log (1 + SNR1/2) (see Figure 3.5). It follows that the region obtained by taking the convex

hull of RHK(1, 1) ∪ {(RB
1 , RB

2 )} is larger than the region obtained by shifting the vertical bound of

RHK(1, 1) to the line R1 = log (1 + SNR1/2).

A similar analysis can be done for the case when 2INR1 < SNR2. We can time share between the

strategies HK(1, 1) and HK(1, INR1) to obtain a region that is the convex hull of RHK(1, 1) ∪

RHK(1, INR1), which is larger than the region obtained from RHK(1, 1) by shifting the horizontal

bound on R2 to the line R2 = log (1 + SNR2/2).

If follows that the region defined in the statement of the lemma is within one bit/s/Hz of the capacity

region (see Figure 3.6).

outer bound

(1,1)
HKR

(INR  ,1)
HKR 2

D

Figure 3.4: Achievable regions RHK(1, 1) and
RHK(INR2, 1), and outer bound for a case where
2INR2 < SNR1 and the 2R1 + R2 bound of
RHK(1, 1) is active.

(1,1)
HKR

(INR  ,1)
HKR 2

D

outer bound

Figure 3.5: Achievable regions RHK(1, 1) and
RHK(INR2, 1), and outer bound for a case where
2INR2 < SNR1 and the 2R1 + R2 bound of
RHK(1, 1) is not active.

Lemma 2 applies only when INR1 ≥ 1 and INR2 ≥ 1. If either INR1 < 1 or INR2 < 1 the

interference is so weak that we cannot choose the private message power so that the interference

created by the private message is at noise level, i.e. we cannot implement the scheme HK(1, 1).

The closest we can get to the HK(1, 1) scheme is to set Pu1 = P1 (i.e. k1 = INR2) when INR2 < 1

or Pu2 = P2 (i.e. k2 = INR1) when INR1 < 1. The following lemma shows that this modification of
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outer bound

(1,1)
HKR

(INR  ,1)
HKR 2

time sharing

time sharing

(1, INR )
HKR 1

Figure 3.6: Region convex hull {RHK(1, 1) ∪RHK(INR2, 1) ∪ RHK(1, INR1)} and outer bound when the
2R1 + R2 and R1 + 2R2 bounds in RHK(1, 1) are active.

our simple scheme is enough to achieve a rate region within one bit/s/Hz of capacity.

Lemma 3 When INR1 < 1 and INR2 ≥ 1, the following achievable region

Convex hull {RHK(1, INR1) ∪RHK(INR2, INR1)}

is within one bit/s/Hz of the capacity region of the Gaussian interference channel with weak inter-

ference.

Similarly, when INR1 ≥ 1 and INR2 < 1, the following achievable region

Convex hull {RHK(INR2, 1) ∪RHK(INR2, INR1)}

is within one bit/s/Hz of the capacity region of the Gaussian interference channel with weak inter-

ference.

Proof: We will prove only the first part of the lemma. The same argument can be used to prove the

second part.
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Setting k1 = 1 and k2 = INR1 in (3.34) and removing redundant bounds we obtain that RHK(1, INR1)

is the set of rate pairs (R1, R2) that satisfies:

R1 ≤ log

(

1 +
SNR1

1 + INR1

)

if INR2 + INR1INR2 ≥ SNR1 (3.48)

R1 ≤ log

(

(1 + INR2)(INR2 + INR1INR2 + SNR1)

2(1 + INR1)INR2)

)

if INR2 + INR1INR2 < SNR1

(3.49)

R2 ≤ log

(

1 +
SNR2

2

)

(3.50)

R1 + R2 ≤ log

(

(INR2 + INR1INR2 + SNR1)(1 + INR2 + SNR2)

2(1 + INR1)INR2

)

. (3.51)

Subtracting (3.48) from the upper bound (3.8), subtracting (3.50) from the upper bound (3.9), and

subtracting (3.51) from the upper bound (3.11), and noting that INR1 < 1 we obtain that:

∆R1 < 1 if INR2 + INR1INR2 ≥ SNR1

∆R2 < 1

∆R1+R2 < 2.

It follows that when INR2 + INR1INR2 ≥ SNR1, the region RHK(1, INR1) is within one bit/s/Hz of

the capacity region (see Figure 3.7).

outer bound

(1, INR )
HKR 1

Figure 3.7: Han-Kobayashi achievable region
RHK(1, INR1) and capacity outer bound for a case
where INR2 + INR1INR2 ≥ SNR1.

outer bound

(1, INR )
HKR 1

(INR  , INR )
HKR 12

E

Figure 3.8: Han-Kobayashi achievable region
RHK(1, INR1)∪R(INR2, INR1) and capacity outer
bound for a case where INR2 + INR1INR2 < SNR1.
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If INR2+INR1INR2 < SNR1 the gap ∆R1 can exceed one, so in this case we extend the achievable rate

region by considering the strategy HK(INR2, INR1). Noting that this strategy consists of sending

private messages at full power (and no common messages) we immediately get that the achievable

region RHK(INR2, INR1) consists of the set of rate pairs (R1, R2) that satisfy:

R1 ≤ log

(

1 +
SNR1

1 + INR1

)

R2 ≤ log

(

1 +
SNR2

1 + INR2

)

.

Noting that INR1 < 1 it follows that ∆R1 < 1 for RHK(INR2, INR1).

We will now show that when INR2 + INR1INR2 < SNR1, the corner point E of region RHK(1, INR1)

where the boundary of slope (−1) intersects the vertical boundary falls on the horizontal boundary

of RHK (INR2, INR1) (see Figure 3.8). This fact implies that every point on the boundary of the

region RHK(1, INR1) ∪ RHK (INR2, INR1) is within one bit/s/Hz of outer bound. Toward this end

we subtract (3.49) from (3.51) to obtain:

RE
2 = log

(

1 + INR2 + SNR2

1 + INR2

)

= log

(

1 +
SNR2

1 + INR2

)

where we used the fact that INR2 ≥ 1 to get that RE
2 is not determined by (3.50). This shows that

point E falls in the horizontal boundary of RHK(INR2, INR1), concluding the proof.

Finally, for the case when INR1 < 1 and INR2 < 1 we have the following result.

Lemma 4 When INR1 < 1 and INR2 < 1, the following achievable region

RHK(INR2, INR1)

is within one bit/s/Hz of the capacity region of the Gaussian interference channel with weak inter-

ference.

Proof: As in the proof of Lemma 3 have that the region RHK(INR2, INR1) is given by the set of rate

pairs (R1, R2) that satisfy:

R1 ≤ log

(

1 +
SNR1

1 + INR1

)

(3.52)
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R2 ≤ log

(

1 +
SNR2

1 + INR2

)

. (3.53)

Subtracting (3.52) from (3.8) and subtracting (3.53) from (3.9) we obtain:

∆R1 < 1

∆R2 < 1.

Therefore, the region RHK (INR2, INR1) is within one bit/s/Hz of the capacity region (see figure 3.9).

(INR  , INR )
HKR 12

outer bound

Figure 3.9: Achievable region RHK(INR2, INR1) and capacity outer bound.

Combining the three previous lemmas we reach the main result of this section.

Theorem 4 The achievable region

Convex hull
{

RHK

(

min(1, INR2), min(1, INR1)
)

∪RHK

(

INR2, min(1, INR1)
)

∪RHK

(

min(1, INR2), INR1

)}

is within one bit/s/Hz of the capacity region of the Gaussian interference channel with weak inter-

ference.
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This theorem has two important implications for the Gaussian interference channel with

weak interference:

• The outer bound of Theorem 3 is tight to within one bit/s/Hz.

• Fairly simple Han-Kobayashi schemes provide performance within one bit/s/Hz of capacity.

These remarks imply that from the practical point of view, especially when operating at

moderate or large rates, there is not much to be gained by using more complicated communication

schemes than the simple ones proposed here. However, in some cases, it is possible to improve upon

our simple schemes with a performance gain of a fraction of a bit/s/Hz. For example, it is possible

to approach the single user bound (i.e. point to point AWGN rate) of one user by increasing the

private message power of that user, while decreasing the private message power of the other user.

3.4 Generalized degrees of freedom

In Section 2.5 we obtained the generalized degrees of freedom of the symmetric Gaussian

interference channel for the symmetric rate point, dsym. As we argued, the generalized degrees of

freedom characterize to first order the capacity of the channel, and provide a fundamental measure of

the resources available for communication. In this section we use the results of Sections 3.1 and 3.3

to characterize the generalized degrees of freedom for the complete capacity region of the Gaussian

interference channel in weak interference.

Since the degrees of freedom depend on the way in which SNR1, SNR2, INR1, and INR2 scale,

we define5:

α1 :=
log(INR2)

log(SNR1)

α2 :=
log(INR1)

log(SNR2)

β :=
log(SNR2)

log(SNR1)
(3.54)

5We assume that SNR1,SNR2, INR1, INR2 > 1 since we will let all these parameters to go to infinity. With this
assumption α1, α2, β > 0.
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which we can use to parameterize the capacity region C(α1, α2, β, SNR1). Note that the weak

interference conditions INR1 < SNR2 and INR2 < SNR1 imply that α1 < 1 and α2 < 1.

We define the degrees of freedom capacity region of the interference channel as:

D(α1, α2, β) := lim
SNR1→∞

C(α1, α2, β, SNR1)

log SNR1
. (3.55)

The region D is composed of degrees of freedom pairs (d1, d2) that characterize how the

achievable rate pairs (R1, R2) scale with log SNR1 for fixed α1, α2, and β.

Since D is defined asymptotically dividing the rates in the capacity region by log SNR1, we

can use either the inner or outer bounds to the capacity region, since the difference between them

is bounded and goes to zero when dividing it by log SNR for SNR → ∞.

We can approximate the bounds of Theorem 3 for large SNR1, SNR2, INR1, and INR2 in the

following way:

R1 . log(SNR1)

R2 . log(SNR2)

R1 + R2 . min
{

log(SNR2) + [log(SNR1) − log(INR1)]
+ , log(SNR1) + [log(SNR2) − log(INR2)]

+ ,

max {log(INR1), log(SNR1) − log(INR2)} + max {log(INR2), log(SNR2) − log(INR1)}}

2R1 + R2 . max {log(SNR1), log(INR1)} + max {log(INR2), log(SNR2) − log(INR1)} + log(SNR1)

− log(INR2)

R1 + 2R2 . max {log(SNR2), log(INR2)} + max {log(INR1), log(SNR1) − log(INR2)} + log(SNR2)

− log(INR1)

where (x)+ = max{x, 0}. Dividing these bounds by log SNR1 and using (3.54) we obtain that the

region D(α1, α2, β) is given by the set of generalized degrees of freedom pairs (d1, d2) that satisfy:

d1 ≤ 1

d2 ≤ β
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d1 + d2 ≤ min
{

β + (1 − α2β)
+

, 1 + (β − α1)
+

,

max {α2β, 1 − α1} + max {α1, β − α2β}}

2d1 + d2 ≤ max {1, α2β} + max {α1, β − α2β} + 1 − α1

d1 + 2d2 ≤ max {β, α1} + max {α2β, 1 − α1} + β − α2β. (3.56)

Having derived the generalized d.o.f. region in (3.56), we can specialize it for the symmetric

interference channel by setting α1 = α2 = α, and β = 1. We obtain that D(α, α, 1) is given by the

set of d.o.f. pairs (d1, d2) that satisfy:

d1 ≤ 1

d2 ≤ 1

d1 + d2 ≤ min
{

1 + (1 − α)
+

, 2 max{α, 1 − α}
}

2d1 + d2 ≤ max {1, α} + max {α, 1 − α} + 1 − α

d1 + 2d2 ≤ max {1, α} + max {α, 1 − α} + 1 − α.

We can now evaluate the generalized d.o.f region for the three weak interference regimes

that we studied in Chapter 2. For 0 < α < 1/2 we have the very weak interference regime, which

has d.o.f region given by:

D(α, α, 1) = {(d1, d2) : 0 ≤ d1 ≤ 1 , 0 ≤ d2 ≤ 1 , d1 + d2 ≤ 2 − 2α} .

Figure 3.10 shows how this region varies for different values of α ∈ (0, 1/2). Note that in

this regime, the bounds for 2d1 + d2, and d1 +2d2 are inactive. Similarly for 1/2 < α < 2/3 we have

the weaker interference regime, which has d.o.f region:

D(α, α, 1) = {(d1, d2) : 0 ≤ d1 , 0 ≤ d2 , d1 + d2 ≤ 2α , 2d1 + d2 ≤ 2 , d1 + 2d2 ≤ 2}

which is shown in Figure 3.11 for some values of α ∈ (1/2, 2/3). Finally, for 2/3 < α < 1 we have

the moderate interference regime, with d.o.f. region:

D(α, α, 1) = {(d1, d2) : 0 ≤ d1 , 0 ≤ d2 , d1 + d2 ≤ 2 − α , 2d1 + d2 ≤ 2 , d1 + 2d2 ≤ 2}
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d1

d2

a=0

a=1/2

a=1/4

1

1

1
2

1
2

Figure 3.10: Generalized degrees of freedom re-
gion D(α, α, 1) (symmetric channel) for the very
weak interference regime (0 < α < 1/2).

d1

d2

a=1/2

a=2/3

a=7/12

1

1

1
3

2
3

2
3

1
3

Figure 3.11: Generalized degrees of freedom
region D(α, α, 1) (symmetric channel) for the
weaker interference regime (1/2 < α < 2/3).

which is shown in Figure 3.12 for some values of α ∈ (2/3, 1). For completeness, we also present

d1

d2

a=1

a=2/3

a=5/6

1

1

1
3

2
3

2
3

1
3

Figure 3.12: Generalized degrees of freedom re-
gion D(α, α, 1) (symmetric channel) for the mod-
erate interference regime (2/3 < α < 1).
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1
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Figure 3.13: Generalized degrees of freedom re-
gion D(α, α, 1) (symmetric channel) for the strong
interference regime (α ≥ 1).

the generalized degrees of freedom region for the symmetric channel with strong interference. The

characterization of this region follows from the known capacity region of the interference channel

with strong interference. In this case we have:

D(α, α, 1) = {(d1, d2) : 0 ≤ d1 ≤ 1 , 0 ≤ d2 ≤ 1 , d1 + d2 ≤ min{α, 2}}
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which is shown in Figure 3.13.

From these figures we see that in the weaker interference regime the generalized d.o.f. region

shrinks for increasing α (increasing interference), it grows for increasing α in the weaker interference

regime, it shrinks again with increasing interference in the moderate interference regime, it grows

again for increasing α in the strong interference regime, and finally remains constant when α ≥ 2 in

the very strong interference regime. A similar effect was observed in Figure 2.5 for the symmetric

capacity generalized degrees of freedom dsym, which is given by the intersection of the boundary of

the generalized d.o.f. region with the line d1 = d2.
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Chapter 4

Gaussian Interference Channel

with One-sided Strong Interference

4.1 Characterization of the capacity region

In the last chapter we analyzed the Gaussian interference channel in weak interference.

The weak interference condition can be expressed as INR1 < SNR2 and INR2 < SNR1. In the weak

interference case, we were able to characterize the capacity region to within one bit/s/Hz, and showed

that simple Han-Kobayashi schemes could achieve any rates within one bit/s/Hz of capacity. On

the other hand, the capacity of the interference channel under strong interference, i.e. INR1 ≥ SNR2

and INR2 ≥ SNR1, is well known [7, 29]. Therefore, it remains to consider the case where one of

the users receives strong interference while the other receives weak interference. In this chapter we

analyze such channel, which we call “with one-sided strong interference”.

Most of ideas and techniques used in the previous chapter apply directly to the current

setting. In particular, Lemma 1 was derived for a general interference channel (not necessarily

Gaussian), and the achievable rate region for the Gaussian channel RHK(k1, k2) given by the set of
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rate pairs (R1, R2) that satisfy (3.34) is applicable in the channel with one-sided strong interference.

However, the outer bound given in Theorem 3 needs a small revision. This is because the

bound that is derived using the one-sided channel sum rate capacity needs to be changed when

the corresponding one-sided channel is in strong interference. In addition, some of the bounds in

Theorem 3 become redundant. We provide an outer bound for the Gaussian interference channel

with one-sided strong interference in the following theorem.

Theorem 5 For the Gaussian interference channel with one-sided strong interference, such that

INR1 ≥ SNR2 and INR2 < SNR1, the capacity region is contained within the set of rate pairs (R1, R2)

satisfying:

R1 ≤ log (1 + SNR1) (4.1)

R2 ≤ log (1 + SNR2) (4.2)

R1 + R2 ≤ log(1 + SNR1 + INR1) (4.3)

R1 + R2 ≤ log (1 + SNR1) + log

(

1 +
SNR2

1 + INR2

)

(4.4)

R1 + R2 ≤ log

(

1 + INR1 +
SNR1

1 + INR2

)

+ log

(

1 + INR2 +
SNR2

1 + INR1

)

(4.5)

R1 + 2R2 ≤ log (1 + SNR2 + INR2) + log

(

1 + INR1 +
SNR1

1 + INR2

)

+ log

(

1 +
SNR2

1 + INR1

)

.

(4.6)

Similarly, when INR2 ≥ SNR1 and INR1 < SNR2, the capacity region is contained within

the set of rate pairs (R1, R2) satisfying:

R1 ≤ log (1 + SNR1)

R2 ≤ log (1 + SNR2)

R1 + R2 ≤ log(1 + SNR2 + INR2)

R1 + R2 ≤ log (1 + SNR2) + log

(

1 +
SNR1

1 + INR1

)

R1 + R2 ≤ log

(

1 + INR2 +
SNR2

1 + INR1

)

+ log

(

1 + INR1 +
SNR1

1 + INR2

)
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2R1 + R2 ≤ log (1 + SNR1 + INR1) + log

(

1 + INR2 +
SNR2

1 + INR1

)

+ log

(

1 +
SNR1

1 + INR2

)

.

Proof: We base the proof of this theorem on the proof of Theorem 3. We will only prove the first

part, since the proof of the second part follows along the same lines.

The bounds (4.1) and (4.1) are the single user bounds.

To derive (4.3) we convert the interference channel into a one-sided channel by giving side information

x1 to receiver 2, which he can use to completely remove the interference from transmitter 1. The

resulting one-sided interference channel is in strong interference, which means that receiver 1 can

decode the messages sent by both transmitters. In this case, the sum rate of the channel is upper

bounded by the sum rate of the multiple access channel between transmitters 1 and 2, and receiver

1. This sum rate bound is (4.1).

The bounds (4.4),(4.5), and (4.6) are exactly (3.11),(3.12), and (3.14) of Theorem 3, which apply to

the present setting with no change.

In order to obtain an inner bound to the capacity region we will consider Han-Kobayashi

schemes as we did in Chapter 3. We will then compare the achievable performance to the outer

bound of Theorem 5 to show that these schemes achieve a rate region that is within one bit/s/Hz

of capacity.

In the Gaussian interference channel with one sided strong interference, the receiver that has

strong interference can decode the messages sent by both transmitters. Without loss of generality

consider the case where receiver 1 has strong interference (i.e. INR1 ≥ SNR2). In this case the

message sent by transmitter 2 is common information decodable by both receivers. It follows that

in the HK(k1, k2) scheme we can choose k2 = 0 to set the power of the private message of user

2 to zero. In addition, we will see that setting the private message power of user 1 so that the

interference created at receiver 2 is as close to the background noise level as possible achieves a rate

region within one bit/s/Hz of capacity. We prove this result in the following two lemmas.

Lemma 5 For the Gaussian interference channel with one-sided strong interference such that INR1 ≥
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SNR2, INR2 < SNR1, and INR2 > 1, the Han-Kobayashi rate region RHK(1, 0) is given by the set of

rate pairs (R1, R2) that satisfy:

R1 ≤ log

(

(1 + INR2)(INR2 + SNR1)

2INR2

)

(4.7)

R2 ≤ log

(

1 +
SNR2

2

)

(4.8)

R1 + R2 ≤ log (1 + INR1 + SNR1) (4.9)

R1 + R2 ≤ log

(

(INR2 + SNR1)(1 + INR2 + SNR2)

2INR2

)

(4.10)

R1 + R2 ≤ log

(

(1 + INR2)(INR2 + INR1INR2 + SNR1)

2INR2

)

(4.11)

R1 + 2R2 ≤ log

(

(INR2 + INR1INR2 + SNR1)(1 + INR2 + SNR2)

2INR2

)

(4.12)

and is within one bit/s/Hz of capacity.

Similarly, if INR2 ≥ SNR1, INR1 < SNR2, and INR1 > 1 the Han-Kobayashi rate region

RHK(0, 1) is given by the set of rate pairs (R1, R2) that satisfy:

R1 ≤ log

(

1 +
SNR1

2

)

R2 ≤ log

(

(1 + INR1)(INR1 + SNR2)

2INR1

)

R1 + R2 ≤ log (1 + INR2 + SNR2)

R1 + R2 ≤ log

(

(INR1 + SNR2)(1 + INR1 + SNR1)

2INR1

)

R1 + R2 ≤ log

(

(1 + INR1)(INR1 + INR2INR1 + SNR2)

2INR1

)

2R1 + R2 ≤ log

(

(INR1 + INR2INR1 + SNR2)(1 + INR1 + SNR1)

2INR1

)

and is within one bit/s/Hz of capacity.

Proof: We will prove the first part of the lemma. The second part can be proved in a similar way.

The rate constraints of the region RHK(1, 0) can be obtained by setting k1 = 1 and k2 = 0 in (3.34).

After removing redundant constraints we get the constraints given in the statement of the lemma.

In order to prove that the region RHK(1, 0) is within one bit/s/Hz of the capacity region we follow

the same approach of chapter 3 and compute the gaps between the constraints (4.7)-(4.12) and the
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outer bound given in Theorem 5.

For (4.7) we use the upper bound (4.1) to get:

∆R1 = log (1 + SNR1) − log

(

(1 + INR2)(INR2 + SNR1)

2INR2

)

(a)
< log

(

1 + SNR1

1 + SNR1
· 2INR2

1 + INR2

)

≤ 1

where (a) follows from the assumption INR2 > 1.

For (4.8) we use the upper bound (4.2) to get:

∆R2 = log (1 + SNR2) − log

(

1 +
SNR2

2

)

= log

(

2 · 1 + SNR2

2 + SNR2

)

< 1.

Noting that (4.9) equals (4.3) we get that when (4.9) is active, ∆R1+R2 = 0.

When (4.10) is active, we use (4.4) to obtain:

∆R1+R2 = log (1 + SNR1) + log

(

1 +
SNR2

1 + INR2

)

− log

(

(INR2 + SNR1)(1 + INR2 + SNR2)

2INR2

)

< log

(

1 + SNR1

1 + SNR1
· 1 + INR2 + SNR2

1 + INR2 + SNR2
· 2INR2

1 + INR2

)

≤ 1.

If on the other hand (4.11) is active, we use (4.5) to compute:

∆R1+R2 = log

(

1 + INR1 +
SNR1

1 + INR2

)

+ log

(

1 + INR2 +
SNR2

1 + INR1

)

− log

(

(1 + INR2)(INR2 + INR1INR2 + SNR1)

2INR2

)

(a)
< log

(

1 + INR1 +
SNR1

INR2

)

+ log

(

1 + INR2

1 + INR2
+

INR1

(1 + INR1)(1 + INR2)

)

− log

(

INR2 + INR1INR2 + SNR1

2INR2

)

≤ 2
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where we used the assumption INR1 ≥ SNR2 in (a).

Therefore, regardless of which of the sum rate constraints is active in the achievable region, we

obtain that ∆R1+R2 < 2.

Finally, for (4.12) we use (4.6) to get:

∆R1+2R2 = log (1 + SNR2 + INR2) + log

(

1 + INR1 +
SNR1

1 + INR2

)

+ log

(

1 +
SNR2

1 + INR1

)

− log

(

(INR2 + INR1INR2 + SNR1)(1 + INR2 + SNR2)

2INR2

)

< log

(

1 + INR1 +
SNR1

INR2

)

+ log

(

1 +
INR1

1 + INR1

)

− log

(

(INR2 + INR1INR2 + SNR1

2INR2

)

≤ 2.

From Chapter 3 we know that if the gaps satisfy ∆R1 < 1, ∆R2 < 1, ∆R1+R2 < 2 and ∆R1+2R2 < 3,

the corresponding Han-Kobayashi region is within one bit/s/Hz of capacity1. The region RHK (1, 0)

satisfies these conditions, and therefore is within one bit/s/Hz of capacity.

Lemma 6 For the Gaussian interference channel with one-sided strong interference such that INR1 ≥

SNR2, INR2 < SNR1, and INR2 ≤ 1, the Han-Kobayashi rate region RHK(INR2, 0) is given by the

set of rate pairs (R1, R2) that satisfy:

R1 ≤ log (1 + SNR1) (4.13)

R2 ≤ log

(

1 +
SNR2

1 + INR2

)

(4.14)

R1 + R2 ≤ log (1 + INR1 + SNR1)) (4.15)

R1 + R2 ≤ log

(

(1 + SNR1)(1 + INR2 + SNR2)

1 + INR2

)

(4.16)

and is within one bit/s/Hz of capacity.

Similarly, if INR2 ≥ SNR1, INR1 < SNR2, and INR1 ≤ 1 the Han-Kobayashi rate region

RHK(0, INR1) is given by the set of rate pairs (R1, R2) that satisfy:

R1 ≤ log

(

1 +
SNR1

1 + INR1

)

1The gap ∆2R1+R2
does not need to be computed when the Han-Kobayashi region does not have an explicit

constraint on 2R1 + R2 as is the case here.
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R2 ≤ log (1 + SNR2)

R1 + R2 ≤ log (1 + INR2 + SNR2))

R1 + R2 ≤ log

(

(1 + SNR2)(1 + INR1 + SNR1)

1 + INR1

)

and is within one bit/s/Hz of capacity.

Proof: We will prove the first part of the lemma. The second part can be proved in a similar way.

The rate constraints of the region RHK(INR2, 0) can be obtained by setting k1 = INR2 and k2 = 0

in (3.34). After removing redundant constraints we get the constraints given in the statement of the

lemma.

We then compute the gaps between the constraints (4.13)-(4.16) and the outer bound given in

Theorem 5.

Since (4.13) equals (4.1) we have ∆R1 = 0.

For (4.14) we use the bound (4.2) to get:

∆R2 = log (1 + SNR2) − log

(

1 +
SNR2

1 + INR2

)

≤ log (1 + SNR2) − log

(

1 +
SNR2

2

)

= log

(

1 + SNR2

2 + SNR2

)

+ log(2)

< 1.

Since the sum rate constraint (4.15) equals the upper bound (4.3), and also the sum rate constraint

(4.16) equals the upper bound (4.4) we have that ∆R1+R2 = 0.

If follows that RHK (INR2, 0) is within one bit/s/Hz of capacity.

Figure 4.1 shows the achievable region RHK(1, 0) and the outer bound of Theorem 3 for two

examples where INR1 ≥ SNR2, INR2 < SNR1, and INR2 > 1. Figure 4.2 shows the achievable region

RHK(INR2, 0) and the outer bound of Theorem 3 for an example where INR1 ≥ SNR2, INR2 ≤ SNR1,

and INR2 ≤ 1. In all cases we see that the Han-Kobayashi region is within one bit/s/Hz of the outer



74

bound.

(1,0)
HKR

outer bound

(1,0)
HKR

outer bound

Figure 4.1: Achievable region RHK(1, 0) and outer bound of Theorem (5) for two examples where INR1 ≥
SNR2, INR2 < SNR1, and INR2 > 1. In the left figure, the R1 + 2R2 inner bound is active. In the right
figure, the R1 + 2R2 inner bound is not active.

In summary, Lemmas 5 and 6 imply together the following theorem.

Theorem 6 The achievable region RHK

(

min(1, INR2), 0
)

is within one bit/s/Hz of the capacity

region of the Gaussian interference channel with one-sided strong interference when INR1 ≥ SNR2,

INR2 < SNR1.

In addition, the achievable region RHK

(

0, min(1, INR1)) is within one bit/s/Hz of the capac-

ity region of the Gaussian interference channel with one sided strong interference when INR2 ≥ SNR1,

INR1 < SNR2.

4.2 Generalized degrees of freedom

In this section we extend the results of Section 3.4 to the Gaussian interference channel

where one of the links is in strong interference while the other is in weak interference. We use the

definitions of Section 3.4 for α1, α2, β, and D(α1, α2, β).

We first consider the case when INR1 ≥ SNR2 and INR2 < SNR1, which corresponds to

α2 ≥ 1 and α1 < 1. We use Theorems 5 and 6 to characterize the capacity region of the Gaussian
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outer bound

(INR  ,0)
HKR 2

Figure 4.2: Achievable region RHK(INR2, 0) and outer bound of Theorem (5) for an example where INR1 ≥
SNR2, INR2 < SNR1, and INR2 ≤ 1.

interference channel with one sided strong interference for large SNR1, SNR2, INR1, and INR2. The

capacity region is given by the set of rate pairs (R1, R2) that satisfy:

R1 . log(SNR1)

R2 . log(SNR2)

R1 + R2 . min
{

max {log(SNR1), log(INR1)} , log(SNR1) + [log(SNR2) − log(INR2)]
+

,

max {log(INR1), log(SNR1) − log(INR2)} + max {log(INR2), log(SNR2) − log(INR1)}}

R1 + 2R2 . max {log(SNR2), log(INR2)} + max {log(INR1), log(SNR1) − log(INR2)} .

Dividing these bounds by log SNR1 and using (3.54) we obtain that the region D(α1, α2, β) is given

by the set of generalized degrees of freedom pairs (d1, d2) that satisfy:

d1 ≤ 1

d2 ≤ β
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d1 + d2 ≤ min
{

max {1, α2β} , 1 + (β − α1)
+

,

max {α2β, 1 − α1} + max {α1, β − α2β}}

d1 + 2d2 ≤ max {β, α1} + max {α2β, 1 − α1} .

In a similar way, for the Gaussian interference channel with one sided strong interference,

such that INR2 ≥ SNR1 and INR1 < SNR2, which corresponds to α2 < 1 and α1 ≥ 1, the generalized

degrees of freedom region D(α1, α2, β) is given by the set of pairs (d1, d2) that satisfy:

d1 ≤ 1

d2 ≤ β

d1 + d2 ≤ min
{

β + (1 − α2β)
+

, max {β, α1} ,

max {α2β, 1 − α1} + max {α1, β − α2β}}

2d1 + d2 ≤ max {1, α2β} + max {α1, β − α2β} .
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Chapter 5

Discussion

In this part of the thesis we studied how interference affects communication and what is

the best performance that can be achieved when two systems share the same portion of spectrum.

We used the information theoretic model of the Gaussian interference channel and characterized to

within one bit/s/Hz its capacity region.

Surprisingly, simple Han-Kobayashi schemes are enough to achieve any rate points that

are within one bit/s/Hz of capacity. These schemes consist of splitting the message to be sent into

two component messages: a private message to be decoded only by the intending receiver and a

common message to be decoded by both receivers. These messages are sent using random Gaussian

codebooks with powers appropriately chosen to satisfy the power constraint of each user. In most

cases, the average power of the private codebook should be chosen such that the interference created

onto the other user’s receiver is as close as possible to the background noise variance. In this way,

the most harmful part of the received interference (common message) can be decoded and cancelled

from the received signal. The remaining interference cannot be cancelled, but being at noise level,

it does not affect the communication rate substantially.

While the above simple scheme can achieve the capacity to within one bit/s/Hz, simple

variations of the scheme can asymptotically achieve the symmetric capacity in some parameter
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regimes when the signal to noise, and interference to noise ratios grow large. More specifically,

in the very weak interference regime sending the private messages with full power asymptotically

achieves the symmetric capacity of the symmetric channel. In addition, in order to asymptotically

achieve the symmetric capacity in the weaker interference regime, the private message power should

be chosen such that the interference created at the other receiver goes to zero with SNR, INR → ∞.

The scheme that sets the private message power so that the interference created is at noise level has

the nice property of performing well in a wide range of parameter values.

For the high SNR, INR regime we introduced the concept of generalized degrees of freedom

to quantify to first order how the capacity region grows for increasing SNR and INR. We also

identified the ratio α = log INR/ log SNR as a measure of the interference level. The degrees of

freedom view of capacity allows to clearly identify five different regimes of operation. These regimes

can be defined based on the effects that interference has on capacity. Focusing on the symmetric

degrees of freedom dsym of the symmetric channel, we identified five regimes. The first three regimes

correspond to the weak interference situation. The most surprising aspect of the behavior of capacity

in these three regimes is the fact that dsym is not monotonic on the interference level α. In the

very weak interference regime where the interference is too weak to be partially cancelled, dsym

decreases with increasing α. On the other hand, in the weaker interference regime the increased

interference helps decoding and subtracting part of the interfering signal, resulting in an increase

of dsym. However, as α continues growing we reach the moderate interference regime where dsym

decreases again. The capacity in the last two regimes was known from previous results. dsym increases

with increasing interference in the strong interference regime, and becomes constant and equal to

1 (capacity equal to the AWGN channel capacity) in the very strong interference regime. These

results were extended to the complete capacity region of the interference channel with asymmetric

parameters.

Even though our results are derived for the Gaussian interference channel we believe that

they should easily extend to other continuous alphabet memoryless interference channels with input
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power constraints where the noise processes are i.i.d. with finite entropy. In essence, the capacity

of the interference channel is governed by interference. The background noise has the only role

of keeping the rates bounded. Therefore, while the exact capacity expressions may change with

the noise distribution, we conjecture that the generalized degrees of freedom of the channel do not

change. To support this conjecture, note that the capacity inner bounds that we derived for the

Gaussian channel are also inner bounds for an interference channel with non-Gaussian i.i.d. noise of

variance N0 and finite entropy. This is because the inner bounds are determined by the intersection

of the capacity regions of two multiple access channels, for which given a fixed noise variance,

Gaussian noise is the worst type of noise. In addition, we believe that the same bounding techniques

used to derive the outer bounds of the Gaussian interference channel capacity region can be used

for interference channels with other finite entropy noise distributions. We finally conjecture that the

gap between the inner and outer bounds would be bounded.
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Part II

Spectrum Sharing in Large

Networks
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Chapter 6

Introduction

In this part of the thesis we study spectrum sharing situations between many systems. The

model and analysis done in Part I were based on two basic assumptions:

• there are only two systems sharing the band;

• the channel gains are constant over frequency.

These assumptions allowed us to give a fundamental characterization of the achievable performance

in the face of interference. Unfortunately, little is known about the capacity region of interference

channels with more than two users, or when the fading gains are frequency selective. We will try to

gain better understanding of the spectrum sharing problem between many systems by analyzing a

limiting situation where the number of systems M grows to infinity. In addition to letting M grow

large, we will make other simplifying assumptions that will lead to a more tractable analysis, at the

expense of losing the information-theoretic character of the results.

When there are only two systems sharing the band, we have shown in Part I that most of

the interference (essentially all the interference above the noise level) can be decoded and subtracted

from the received signal. That is, splitting the transmitted message into a private and a common

part, and choosing the private message power such that the interference created is at noise level is
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essentially optimal (to achieve capacity to within one bit/s/Hz). Consider now a situation where

three systems share the band. One could try to mimic the analysis of Part I, assuming that the

signal of the third system is treated as noise. Since this interfering signal may be received at a

power level well above the noise power level, it may be required to increase the power of the private

messages to adjust them to the new effective noise floor. But this increase in the power of the private

message comes together with a decrease in the power of the common message, which is the part of

the interfering signal that can be decoded and subtracted. We see that due to the presence of the

third system, interference cancellation becomes more difficult. As the number of systems grows, we

expect that interference cancellation may be feasible for only a couple of the strongest interferers.

Therefore, since the interference received from the remaining systems cannot be cancelled, it must

be treated as noise. In Chapter 7 we make the assumption that interference is treated as noise, and

study the statistical properties of the aggregate received interference for a model where an infinite

number of systems is distributed uniformly on the plane.

Using a standard path loss model and assuming finite and constant system density, with

systems transmitting at finite power levels, we find that the probability density function of the

aggregate interference is heavy tailed. This implies that the average received interference is infinite.

Our study of the interference aggregation phenomenon shows that the large interference is not due

to the infinite number of systems sharing the band, but results from the presence of a few interferers

that can be arbitrarily close to the given system. Therefore, in order to mitigate interference and

make it bounded, spectrum sharing protocols should coordinate the assignment of frequencies so

that the closest neighbors use different frequency channels. We show that by coordinating the

frequency allocation with the systems located within a distance r0 of a given system one can achieve

an aggregate interference with finite mean and variance. Moreover, as r0 increases not only does the

interference become smaller, but it also becomes more concentrated around its mean, which makes

it more predictable. However, increasing r0 comes at the expense of dividing the total bandwidth

into more channels, resulting in a smaller available bandwidth for each system.
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The model of Chapter 7 assumes a finite density of systems over the plane, and frequency

flat channel gains. In practice, wireless channels often present gains that vary over frequency due to

the presence of scatterers that reflect the signals and contribute to multipath fading [49]. The effect

of frequency selective fading is important when the communication bandwidth is much larger than

the coherence bandwidth of the channel. In a spectrum sharing situation between many systems the

total bandwidth available for communication may be much larger than the bandwidth used by each

individual system. This requires us to consider the influence of frequency selective fading over the

spectrum sharing performance. In the broadcast channel, where a single transmitter communicates

with many receivers, fading is beneficial1. This is because channel variations allow to exploit a

phenomenon called multi-user diversity. In essence, users are scheduled in such a way that they

receive information only when their channels are in a good fading state. Therefore, fading allows to

obtain effective channel gains that are above their average value. In Chapter 8 we analyze whether

fading can be exploited in a spectrum sharing situation between many systems and explore whether

there is a multi-system diversity effect.

To isolate the effect of frequency selective fading from large scale path loss (whose effect is

considered in Chapter 7) and to make the analysis tractable, we assume a mean path loss between

systems of value 1. We further assume that the available bandwidth is divided into channels of

fixed bandwidth equal to the coherence bandwidth of the channel, and that the fading gains are

independent and identically distributed (i.i.d.) in all channels between all transmitters, and receivers.

We finally assume that each system uses only one channel to communicate, and that it treats

interference as noise. Under these assumptions we explore how the network bandwidth W scales with

the number of systems M to achieve a minimum communication rate R in each system. Without

frequency selective fading, the bandwidth should scale linearly with the number of systems, so

linear bandwidth growth can be taken as a baseline to compare the multi-system diversity gains.

By deriving lower and upper bounds on the required bandwidth that hold asymptotically with

1We implicitly assume that the channel gains can be fed back to the transmitter with little delay as compared to
the coherence time of the channel.
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large probability, we find that W (M) ≈ M/(2 log M). Therefore, the required bandwidth can be

reduced by a factor log(M) which can be interpreted as the multi-system diversity gain due to

fading. We finally extend the result to spectrum sharing situations where each system is formed

by multiple transmitters and a single receiver (multiple access channel), or multiple receivers and a

single transmitter (broadcast channel).
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Chapter 7

Interference Aggregation

7.1 Random network model

The observed interference at a given receiver depends on the signals transmitted at the

different transmitters and on the path losses experienced by these signals. In order to have a

statistical description of the interference aggregation phenomenon, we use a random network model

where the different transmitters and receivers are placed randomly on the plane. To simplify the

analysis we assume that each system is formed by a single transmitter-receiver pair.

In this model we assume that the receivers are distributed on the plane as a two-dimensional

Poisson process with density λ, and that the transmitter of each system is uniformly distributed on

a circle of radius rMi centered at the receiver i. It follows that the process formed by the location

of the transmitters is also a two-dimensional Poisson process with density λ, but the transmitter

and receiver processes are correlated. We assume that the channel power gain ci,j between the

transmitter of system i and the receiver of system j is given by:

ci,j = GtGr

(

c

4πf

)2

d−α
i,j (7.1)

where f is the band’s center frequency, c is the speed of light, and Gt and Gr are the transmit and
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receive antenna gains, di,j is the distance between transmitter i and receiver j, and α > 2 is the path

loss exponent. Note that in our model we do not allow α to take value 2 which would correspond

to communication in free space. This path loss formula allows us to adjust the path loss exponent

α to different scenarios, depending on the antenna heights, range of communication, etc. We note

that while (7.1) takes into account the attenuation due to large scale effects (distance, reflections

on the ground, etc.) it does not model other effects such as shadowing or multipath fading (small

scale effects). In cases where shadowing or multipath fading are present (7.1) can be interpreted as

representing the average path loss over a period of time that is much larger than the time scale in

which the small scale variations occur.

The interference generated by each transmitter is a function of the power spectral density

(PSD) of its signal, so in order to characterize the interference distribution we need to make some

assumption about the distribution of the transmission PSD. In this subsection we will assume that

each system i uses a total power Pi drawn i.i.d. from a distribution with probability density function

(pdf) fP (p) with finite mean, finite variance, and characteristic function φP (ω). Also, we assume

that the power spectral density of the transmitted signal is Pi/W over the bandwidth W .

The interference power received by a receiver placed at the origin is given by:

I = GtGr

(

c

4πf

)2
∑

k∈P
Pkd−α

k (7.2)

where P is the set of transmitters of the interfering systems distributed according to the Poisson

process of density λ, c is the speed of light, dk is the distance to the origin from transmitter k, and f

is the center frequency of the given band. To simplify the analysis, we will normalize the interference

by dividing it by the constant in front of the sum.

7.1.1 Stable laws

The aggregate interference (7.2) is a random variable that depends on the random location

of the interferers, and their random transmission powers. In this section we will characterize the
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probability distribution of this random variable.

A useful result for evaluating the distributions of many random variables associated with

Poisson processes is Campbell’s Theorem, which can be stated as [34]:

Theorem 7 (Campbell’s Theorem) Let P be a Poisson process on S with mean measure µ, and let

f : S → R be measurable. Then the sum

T =
∑

X∈P
f(X)

is absolutely convergent with probability if and only if

∫

S
min{|f(x)|, 1}µ(dx) < ∞.

If this condition holds, then

E
(

ejωT
)

= exp

[∫

S

(

ejωf(x) − 1
)

µ(dx)

]

.

In order to use Theorem 7, let S = R2 × [0,∞), and define the Poisson process P on S as

the Poisson process with density

λ∗(x, y, p) = λ · fP (p).

In this process, a point (x, y, p) represents a transmitter located in point (x, y) on the plane that

transmits with power p.

In addition, define the function

f(x, y, p) = p(x2 + y2)−α/2

which can be interpreted as the (normalized) interference created at the origin by a transmitter

located at point (x, y) that transmits with power p. With this definition we can write the normalized

interference I as:

I =
∑

(x,y,p)∈P
f(x, y, p) =

∑

(x,y,p)∈P
p(x2 + y2)−α/2
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To check the necessary condition of Theorem 7, we compute:

∫

S
min{|f(x)|, 1}µ(dx) =

∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
min{|p · (x2 + y2)−α/2|, 1}λ · fP (p)dy · dx · dp

=

∫ ∞

0

∫ ∞

0

min{|p · r−α|, 1}2πrλfP (p) · dr · dp

=

∫ ∞

0

∫ p1/α

0

2πrλfP (p) · dr · dp +

∫ ∞

0

∫ ∞

p1/α

p · r−α2πrλfP (p) · dr · dp

=

∫ ∞

0

p2/απλfP (p) · dp +

∫ ∞

0

(

2

α − 2

)

p2/απλfP (p) · dp

=

(

απλ

α − 2

)∫ ∞

0

p2/αfP (p)dp

≤
(

απλ

α − 2

){∫ 1

0

fP (p)dp +

∫ ∞

1

p · fP (p)dp

}

≤
(

απλ

α − 2

)

[1 + E(P )]

< ∞ (7.3)

where we used the assumptions α > 2 and E(P ) < ∞. Therefore, we can use Theorem 7 to compute

the log-characteristic function of the interference distribution:

ΨI(ω) = log E [exp(jωI)]

=

∫ ∞

0

∫ ∞

0

[

exp
(

jωpr−α
)

− 1
]

2πλrfP (p) · dp · dr

=

∫ ∞

0

[

φP (ωr−α) − 1
]

2πλrdr (7.4)

After some calculations, under the assumption that fP (p) has support in R+, it is possible

to rewrite (7.4) as:

ΨI(ω) =

[

λπ cos
(π

α

)

Γ

(

1 − 2

α

)∫ ∞

0

fP (x)x
2
α dx

]

|ω| 2
α

[

−1 + j tan
(π

α

)

sgn(ω)
]

(7.5)

valid for α > 2. This log-characteristic function corresponds to that of a stable distribution. The

stable distributions have been extensively studied and can be parameterized by four parameters:

an index of stability α̃ ∈ (0, 2], a skewness parameter β ∈ [−1, 1], a scale parameter γ > 0, and a

location parameter δ ∈ R. With this parameterization, for α̃ 6= 1, the log-characteristic function of

the stable distribution S(α̃, β, γ, δ; 1) is given by [38]:

Ψ(ω) = −γα̃|ω|α̃
[

1 − jβ tan

(

πα̃

2

)

sgn(ω)

]

+ jδω (7.6)
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We see that in our case we have α̃ = 2/α, β = 1, δ = 0, and γ =
[

λπ cos
(

π
α

)

Γ
(

1 − 2
α

)

·
∫∞
0

fp(x)x
2
α dx

]α/2

.

Unfortunately there are only three cases in which the density of a stable distribution is

known. These are for α̃ = 2 (Gaussian), α̃ = 1 (Cauchy), and α̃ = 1/2 (Levy). In our case, since

α > 2 we can obtain a closed expression for the pdf of the interference only when α = 4, in which

case it is given by the Levy distribution:

f(x) =

√

γ

2π
x−3/2 exp

(

− γ

2x

)

, x ≥ 0 (7.7)

For other values of α we can only evaluate the pdf of the interference numerically. However

it is possible to obtain a tail approximation for any stable law [38] :

f(x|α̃, β, γ, δ) ∼ α̃γα̃ sin

(

πα̃

2

)

Γ[α̃]

π
(1 + β)x−(α̃+1) = Kx−( 2

α +1) (7.8)

where h(x) ∼ g(x) means limx→∞ g(x)/h(x) = 1. We see that in all cases the tail of the interference

power distribution follows a power law. In particular, this distribution is always heavy tailed and

the mean is infinite.

Note that the particular choice of the power pdf fP (p) only affects the distribution of the

interference through the scale parameter γ, and any change of power pdf can be absorbed in the

Poisson density constant λ.

The fact that the interference power pdf is heavy tailed means that, in our model, the

expected interference power received in any point of the plane is infinite. Therefore, even though

each system transmits a signal of finite power, the density of systems is finite, and the power decays

with distance as a power law, the resulting interference in any point in the plane is very large.

7.2 Interference reduction

We would like to understand what effect makes the interference so large. One possible

explanation is that since the total number of systems is infinite, the power law attenuation with
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distance is not enough to keep the aggregate interference power bounded. An alternative explanation

is that few interferers, located in the proximity of the receiver create a large amount of interference.

To see what is the main effect governing interference, we modify the model. We draw a circle of

radius r0 around the receiver of interest, and do not allow any other transmitter within this circle

to transmit.

r0

interfering transmitters

non-interfering
transmitters

Figure 7.1: Aggregation of interference generated by transmitters located farther than r0 from given receiver. The
transmitters located in the circle of radius r0 do not interfere with the given receiver.

We now characterize the distribution of the interference generated by transmitters farther

away than r0 from the given receiver (see Figure 7.1). It can be shown using techniques similar

to those in [47] that the log-characteristic function of the (normalized) interference generated by

transmitters out of a circle of radius r0 centered at the receiver is given by:

Ψr0(ω) = lim
b→∞

λπb2

{

∫ b

r0

2r

b2 − r2
0

[

ΦP

( ω

rα

)

− 1
]

dr

}

=

∫ ∞

r0

2λπr
[

ΦP

( ω

rα

)

− 1
]

dr (7.9)

Exploiting the fact that the pdf of the power has support in [0,∞), writing the integral defining

ΦP (ω), and making changes of variables, we can rewrite (7.9) as:

Ψr0(ω) = λπ|ω|2/α

∫ ∞

0

fP (x)x2/α

∫ ∞

r0(x|ω|)−1/α

2y

[

−2 sin2

(

1

2yα

)

+ j · sgn(ω) sin

(

1

yα

)]

dy.dx

(7.10)

In the case when the transmission power is constant, with value P , (7.10) reduces to:

Ψr0(ω) = λπ|ω|2/αP 2/α

∫ ∞

r0(P |ω|)−1/α

2y

[

−2 sin2

(

1

2yα

)

+ j · sgn(ω) sin

(

1

yα

)]

dy. (7.11)
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Furthermore, if we normalize the transmission power so that P = 1 we can obtain an

expression for the log-characteristic function of the interference distribution that is defined in terms

of well known functions:

Ψr0(ω) = λπ|ω|2/α

{

r2
0 |ω|−2/α +

2

α
exp

[

− j · sgn(ω)π

a

] [

Γ

(

− 2

α

)

− Γ

(

− 2

α
,−jr−α

0 ω

)]}

(7.12)

where Γ(x) =
∫∞
0

tx−1e−tdt is the Gamma function and Γ(x, y) =
∫∞

y
tx−1e−tdt is the incomplete

Gamma function.

In order to obtain the probability density function of the aggregate interference we take

the Fourier transform of its characteristic function:

fI|r0
(x|r0) =

1

2π

∫ ∞

−∞
e−jωxeΨr0(ω)dω (7.13)

in which we can replace Ψr0(ω) with (7.10), (7.11), or (7.12), depending on whether the transmission

power is non-constant, constant, or constant with value P = 1 respectively.

When r0 > 0 the interference distribution is not heavy tailed and we can compute the mean

and variance of the the received interference power:

E[I] =

∫ ∞

r0

2πλE[P ]r1−αdr

=
2πλ

α − 2
E[P ]r2−α

0 (7.14)

V ar[I] =

∫ ∞

r0

dVar(I(r)) =

∫ ∞

r0

{E [Var(I|dn(r))] + Var [E(I|dn(r))]}

=

∫ ∞

r0

{

E

[

Var(P )

r2α
dn(r)

]

+ Var

[

E(P )

rα
dn(r)

]}

=

∫ ∞

r0

2πλ
[

Var(P ) + E(P )2
]

r1−2αdr

=
πλ

α − 1

[

Var(P ) + E(P )2
]

r2−2α
0 (7.15)

where I(r) is the interference power generated by interferers located at distance r, n(r) is the

number of interferers located at distance r, and E(P ) and Var(P ) are the mean and variance of

the transmitted power distribution. We can further specialize these expressions for the mean an

variance to the case of constant transmission power (Var(P ) = 0), and constant transmission power

of value 1 (Var(P ) = 0, E(P ) = 1).
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We see that the reason for the very large interference in the first model is the presence

of few interferers located very close to the given receiver. By limiting the minimum transmitter-

receiver distance to r0 we made the expected interference finite and eliminated the most harmful

interference. In our second model r0 can be interpreted as a parameter that defines how close two

radio devices can be. In addition, r0 could be a protocol design parameter, where by appropriate

spectrum management we don’t allow any system within distance r0 from the given receiver to

transmit in the same band. Using (7.14) and (7.15) we can immediately see the benefit of increasing

r0 in reducing the moments of the received interference. Furthermore, we see that
√

Var[I]/E[I]

decays as 1/r0 and therefore, the interference distribution becomes more concentrated around its

mean when r0 increases. This has the effect of making the interference more deterministic and easier

to predict.
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Chapter 8

Bandwidth Scaling for Large and

Dense Networks 1

The model considered in the previous chapter assumed that the path loss between trans-

mitters and receivers is governed by the large scale path loss, ignoring small scale effects. We showed

that in order to keep interference under control the spectrum sharing protocol should allocate dif-

ferent frequencies to systems that are close to each other. This orthogonal allocation of frequencies

corresponds to having a frequency reuse factor larger than one. For example, if three systems are

close to each other, they should use 1/3 of the band each. Comparing this to a situation where the

frequency reuse factor is one, i.e. all systems use the same channel, we observe that the price paid

for the reduction of the interference is a reduction of the available bandwidth for each system.

If we take into account small scale effects, and opportunistically assign the same channel to

systems that interfere little with each other due to a fade in the channel gain, we may obtain some

gain. The goal of this chapter is to quantify the performance improvement that can be attained

by taking into account small scale effects. We do this by obtaining lower and upper bounds on the

achievable performance, as the number of systems grows large.

1Revised on November 28, 2007
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Let M be the total number of users, each formed by a transmitter receiver pair. Each user

needs to communicate data at a rate R. We assume that each user can only use a fixed bandwidth

B for communication and that interference is treated as noise. We investigate how the total required

bandwidth scales with the number of users in the following situations:

1. Many SISO systems: transmitters and receivers are distributed arbitrarily (cf. Figure 8.1).

2. Many Multiple Access Systems: users are grouped into systems, and the receivers of the users

belonging to the same system are collocated (cf. Figure 8.2).

3. Many Broadcast Systems: users are grouped into systems, and the transmitters of the users

belonging to the same system are collocated (cf. Figure 8.3).

In particular for the latter two situations we will analyze what is the minimum number of systems

required to support the M users while minimizing the total required bandwidth.

Rx

Rx

Rx

Rx

Tx

Tx

Tx

Tx

1

2

3

4

1

2

3

4

Figure 8.1: Many SISO sys-
tems.
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Figure 8.2: Many multiple ac-
cess systems.
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Figure 8.3: Many broadcast
systems.

8.1 Model

We will use a model in which we discretize the spectrum into channels of bandwidth B.

In this model B represents the coherence bandwidth of the channels. The power gain from the

transmitter of user i to the receiver of user j in channel number k is denoted by ci,j(k). Except

for the cases noted in the next paragraph, we assume that {ci,j(k)}i,j,k are i.i.d. Exp(1) random

variables. This assumption corresponds to a propagation environment where the large-scale path
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loss is of value 1. In other words, the path loss between transmitters and receivers is independent

of the distance between them. The only effect that the model takes into account is the small-scale

path loss due to multipath fading. Therefore, the model that we consider is appropriate for dense

networks in a rich scattering environment, where the distance between transmitters and receivers

has only a marginal effect on attenuation.

In situation 2-Many multiple access systems, we assume ci,j(·) = ci,k(·) when users j and

k belong to the same system. Similarly, in situation 3-Many broadcast systems, we assume that

cj,i(·) = ck,i(·) whenever users j and k belong to the same system.

We assume that each user can transmit in only one channel with power P , and that he

treats the received interference as noise. We also assume that the users communicate using random

Gaussian codebooks. Letting f(i) denote the channel assigned to user i, the rate of this user is given

by

Ri = B log



1 +
ci,i(f(i))

N0B
P +

∑

j 6=i
f(j)=f(i)

cj,i(f(i))





where N0 is the additive white Gaussian background noise PSD.

Let W = max1≤i≤M f(i) be the total number of channels used by the allocation f(·). We

would like to minimize W subject to a minimum rate requirement for each user, i.e. Ri ≥ R, where

the optimization variables are f(i) : i = 1, . . . , M . Let W ∗ be the optimal solution to this problem.

For each realization of the fading gains {ci,j(k)}i,j,k the above optimization problem is an

integer program, and seems very hard to solve. Also the solution W ∗ is a function of the channel

gains which are random, and hence is a random variable too.

We will characterize W ∗ by deriving lower and upper bounds which will hold with probabil-

ity approaching 1 as M → ∞. When a given property or relation holds with probability approaching

1 for M → ∞, we say that it holds a.a.s. (asymptotically almost sure).

Note that the rate constraint Ri ≥ R can be translated into a minimum SINR requirement
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γ so that

Ri ≥ R ⇐⇒ ci,i(f(i))
N0B

P +
∑

j 6=i
f(j)=f(i)

cj,i(f(j))
≥ γ. (8.1)

8.2 Many SISO systems

Consider first a channel assignment such that f(i) 6= f(j), i 6= j. This assignment allocates

orthogonal channels to all the users, and requires a total bandwidth M . Since there is no interference,

Ri only depends on ci,i(f(i)), and it seems reasonable to believe that it is possible to find an

assignment that achieves Ri ≥ R for all users. We just need to assign channel k to user i whenever

ci,i(k) is large enough to achieve the required rate. This assignment does not allow for any sharing of

channels among users, and can be taken as a baseline to compare the performance of other strategies.

Can we do better ? First we note that in order to reduce W we need to allocate multiple

users per channel. If we assign a constant number of systems K to each channel we obtain W (M) =

M/K, assuming that it is still possible to achieve the minimum rate requirements. In order to obtain

a sublinear relation for W (M), we need to let K(M) grow with M . So a natural question to ask is

how fast we can let K(M) grow while achieving the required rates.

In order to keep interference under control, we need to assign users to the same channel only

when they interfere little with each other. For example we may require that f(i) = f(j) = k only

when ci,j(k), cj,i(k) ≤ α. With this requirement, valid channel assignments can be seen as proper

colorings of a random graph whose nodes represent the users and edges represent unacceptable

interference among them. It is known that the chromatic number χ of an Erdös-Rényi random

graph G(M, p) scales as M ∼ − log(1−p)
2

M
log(M) . Therefore for fixed α we get a scaling of W (M) =

Θ(M/ log(M)). However, this scaling requires that we allocate Θ(log(M)) users per channel, in

which case interference may grow very large and we may not be able to achieve the required rates.

To limit interference, as we increase M we need to reduce α, in which case W (M) > Θ(M/ log(M)).

It seems that our requirement of keeping the total interference bounded resulted in a worse scaling
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law than that of χ(G(M, p)).

Should we conclude that W (M) > Θ(M/ log(M)) ? The above reasoning has two flaws.

First it does not take into account that ci,i(·) varies across channels, and this variation may help

in achieving a large SINR if we choose channels appropriately. Second, by reducing the channel

assignment problem to a graph coloring problem we are losing the information about the specific

values of the channel gains. When we do not draw an edge between users i and j we are implicitly

replacing ci,j(k) and cj,i(k) by their upper bound α and therefore we obtain a worst case performance

bound.

It turns out that W ∗(M) ∼ log(1+γ)·M
log M . So even though our problem seems harder than the

coloring problem in that we need to keep the total interference under control (instead of just satisfying

pairwise constraints among nodes) we have just enough additional flexibility to keep W ∗(M) scaling

as χ(G(M, p)).

We next prove that W ∗(M) ∼ log(1+γ)·M
log M a.a.s. by deriving lower and upper bounds on

W ∗(M), both in a.a.s. sense.

8.2.1 A lower bound on the required bandwidth

Theorem 8 In the many SISO case with M users, under the assumptions described in Section 8.1,

the optimal number of required channels to satisfy the rate constraints Ri ≥ R satisfies

W ∗(M) ≥ log(1 + γ) · M
log(M)

asymptotically, with probability going to 1 as M → ∞.

Proof: We prove the theorem by showing that the probability of finding a group of log(M)/ log(1+γ)

users, each satisfying its rate constraint Ri ≥ R, over the log(1+ γ) ·M/(log(M)) available channels

goes to zero as M → ∞. This implies that any spectrum allocation {f(·)} that satisfies the rate

constraints cannot assign more than log(M)/ log(1+γ) users per channel, and hence the total number

of channels required cannot be smaller than log(1 + γ)M/(log(M)).



98

We will say that the channel allocation f(·) is feasible if it satisfies (8.1) for i = 1, . . . , M . Let Af,k

be the set of users allocated to channel k under f :

Af,k = {i : f(i) = k, i = 1, . . . , M}

For a given realization of the fading gains we define f∗(k) to be a feasible channel allocation rule

that maximizes |Af,k|, i.e. it maximizes the number of users sharing channel k:

f∗(k) = arg max
f(·) feasible

|Af,k|

Finally let n∗(k) = |Af∗(k),k|. Note that since n∗(k) is a function of the fading gains {ci,j(k)} it is

a random variable.

We will prove that P (n∗(k) ≥ log(M)/ log(1 + γ)) ≤ exp(− log(M) log log(M)/ log(1 + γ)) for large

M (to the first order in the exponent).

Fix the channel k, and let X(n) be the number of groups of n users that can be assigned to channel

k satisfying the rate requirements. That is, X(n) is the number of feasible power allocations f(·)

that result in |Af,k| = n. We can also write X(n) as a sum of indicator functions:

X(n) =
∑

S⊆{1,...,M}
|S|=n

1





ci,i(k)
N0B

P +
∑

j 6=i
j∈S

cj,i(k)
≥ γ , ∀i ∈ S





Clearly, we have

P (n∗(k) ≥ n) = P (X(n) ≥ 1)

We use the first moment method (Markov’s inequality) to upper bound P (X(n) ≥ 1):

P (X(n) ≥ 1) ≤ E[X(n)] =

(

M

n

)

[

P

(

c1,1(k)
N0B

P +
∑n

j=2 cj,1(k)
≥ γ

)]n

(8.2)

where we exploited the fact that the {ci,j(k)} are i.i.d.

Since we assumed that {ci,j(k)} are i.i.d. Exp(1) random variables, we can compute the probability

between brackets in closed form. This is easily done by noting that
∑n

j=2 cj,1(k) ∼ Γ(n−1, 1), where

the p.d.f. of Z ∼ Γ(k, θ) is given by

fZ(z) =
zk−1θk

Γ(k)
e−θz , z, k, θ > 0.
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Then we have:

P

(

c1,1(k)
N0B

P +
∑n

j=2 cj,1(k)
≥ γ

)

=

∫ ∞

0

∫ ∞

γ(N0B/P+x)

e−c · xn−2

(n − 2)!
e−xdc · dx =

e−γN0B/P

(1 + γ)n−1
. (8.3)

Replacing in (8.2) we get:

P (X(n) ≥ 1) ≤
(

M · e
n

)n [
e−γN0B/P

(1 + γ)n−1

]n

=

[

M exp

(

1 − γN0B

P
− log(n) − (n − 1) log(1 + γ)

)]n

(8.4)

If we set n = log(M)
log(1+γ) we get

P

[

n∗(k) ≥ log(M)

log(1 + γ)

]

= P

[

X

(

log(M)

log(1 + γ)

)

≥ 1

]

≤ exp

{

log(M)

log(1 + γ)
[− log log(M) + C]

}

(8.5)

where C = 1 − γN0B
P + log log(1 + γ) + log(1 + γ) is a constant independent of M .

We finally show that we cannot find a group of users of size log M/ log(1 + γ) that satisfies the rate

constraints in any of the K = log(1 + γ) · M/ log(M) channels using the union bound:

P

�
max

k∈{1,...,K}
n∗(k) ≥

log(M)

log(1 + γ)

�
≤

log(1 + γ)M

log(M)
P

�
n∗(k) ≥

log(M)

log(1 + γ)

�
≤ e[log(M)+log log(1+γ)−log(log(M))]e

log(M)
log(1+γ)

[− log log(M)+C]

−→ 0 as M → ∞ (8.6)

8.2.2 An upper bound on the required bandwidth

Theorem 9 In the many SISO case with M users, under the assumptions described in Section 8.1,

for any ε > 0 the optimal number of required channels to satisfy the rate constraints Ri ≥ R satisfies

W ∗(M) ≤ log(1 + γ)

1 − ε
· M

log(M)
· (1 + o(1))

asymptotically, with probability going to 1 as M → ∞.

Proof: We will describe channel assignment algorithm that achieves the upper bound with probability

going to 1 as M goes to infinity. The algorithm proceeds in stages, one for each channel k. Let m(k)
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be the number of users that have not been allocated to a channel at stage k. Note that m(1) = M .

Also, let n = (1 − ε) log(M)/ log(1 + γ). The algorithm can be described as follows:

set k = 1;

while m(k) > M
log(M)2

{

find a group of n users among the m(k) that satisfy Ri ≥ R in channel k;

assign channel k to these n users;

set k = k + 1;

}

assign different M
log(M)2 channels to the remaining users;

Assume first that the algorithm succeeds in each stage in finding n users satisfying the rate con-

straints. Then the algorithm finds a feasible channel allocation that uses no more than M/n +

M/ log(M)2 channels, and it follows that W ∗(M) ≤ M/n + M/ log(M)2.

We now need to prove that the algorithm can find groups of n users satisfying the rate constraints

in all the stages where m(k) ≥ M/ log(M)2.

We start by computing a lower bound on the probability that the algorithm succeeds in finding a

group of n users satisfying the rate constraints at stage k, when there are m(k) users to choose from.

Without loss of generality, we label the m(k) users that have not yet been assigned a channel at

stage k from 1 to m(k), and define X(n) in a similar way as we did in the previous subsection:

X(n) =
∑

S⊆{1,...,m(k)}
|S|=n

1





ci,i(k)
N0B

P +
∑

j 6=i
j∈S

cj,i(k)
≥ γ , ∀i ∈ S





Letting G = {S ⊂ {1, . . . , m(k)} : |S| = n} and IS =
∏

i∈S 1

(

ci,i(k)
N0B

P +
P

j 6=i
j∈S

cj,i(k)
≥ γ

)

we can express

X(n) =
∑

S∈G IS .
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We want to find a lower bound on P (X(n) ≥ 1) or equivalently, an upper bound on P (X(n) = 0),

for which we will use the following lemma.

Lemma 7 Let λ = E[X(n)] and ∆ =
∑

S∈G
∑

T ∈G
S∩T 6=∅

E [ISIT ]. Then,

P (X(n) = 0) ≤ exp

(

−λ2

∆

)

Proof: We will follow the steps of the proof of Theorem 2.18 (ii) of [31] which states a similar result

in a very different setting.

Let Ψ(s) = E[e−sX ], s > 0. We will show first that

−(log Ψ(s))′ ≥ λe−s∆/λ , s > 0 (8.7)

which implies

− logΨ(s) ≥
∫ ∞

0

λe−u∆/λdu =
λ2

∆

(

1 − e−s∆/λ
)

(8.8)

By noting that lims→∞ Ψ(s) = P (X = 0) we immediately obtain the result.

In order to obtain (8.7), we represent −Ψ′(s) in the form

−Ψ′(s) = E
(

Xe−sX
)

=
∑

S∈G
E
(

ISe−sX
)

(8.9)

and for every S ∈ G we split X = YS + ZS , where YS =
∑

T ∈G
S∩T 6=∅

IT .

In order to proceed we need to prove the following lemma, which states a correlation inequality.

Lemma 8 Let g, h : R → R be two increasing or decreasing functions. Then,

E [g(YS)h(ZS)|IS = 1] ≥ E [g(YS)|IS = 1] E[h(ZS)]

Proof: Focusing on a single channel k and dropping the corresponding indices, we use successive

conditioning to write:

E [g(YS)h(ZS)|IS = 1] = E

8>>>>>><>>>>>>:E

26666664E

0BBBBBB@g(YS)h(ZS)

������������ {ci,i : i = 1, . . . , m}

{ci,j : i, j ∈ S}

IS = 1

1CCCCCCA������������ {ci,j : i, j ∈ S}

IS = 1

37777775������������ IS = 1

9>>>>>>=>>>>>>;
(8.10)
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We will apply twice a continuous version of the FKG (Fortuin, Kasteleyn and Ginibre ) [25] inequality

for multivariate totally positive of order 2 (MTP2) random vectors defined on Rn [32,41], which we

describe next.

Consider a pdf f(x) defined on X = X1 × · · · × Xn, were each Xi is totally ordered, satisfying

f(x ∨ y)f(x ∧ y) ≥ f(x)f(y)

where

x ∨ y = (max{x1, y1}, . . . , max{xn, yn})

and

x ∧ y = (min{x1, y1}, . . . , min{xn, yn})

Any pdf f(·) satisfying this property is called multivariate totally positive of order 2 (MTP2). In

particular, if X = R and the random variables {Xi}n
i=1 are independent, the corresponding joint

distribution is MTP2.

An important property satisfied by MTP2 random vectors is the following correlation inequality.

Let g(·) and h(·) be simultaneously monotone increasing or decreasing, and let the random vector

X be MTP2. Then

E[g(X)h(X)] ≥ E[g(X)]E[h(X)] (8.11)

We now apply this inequality to the inner expectation of (8.10). When we condition on

C =































{ci,i : 1 = 1, . . . , m}

{ci,j : i, j ∈ S}

IS = 1































the only resulting randomness is due to {ci,j : i, j ∈ {1, . . . , m}\S, i 6= j}, which are still conditionally

i.i.d., and hence MTP2. Since larger cross-gains ci,j , i 6= j, result in smaller SINR, both YS and ZS are
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decreasing on {ci,j : i, j ∈ {1, . . . , m}\S, i 6= j}, and therefore h(YS) and g(ZS) are both increasing

or decreasing on {ci,j : i, j ∈ {1, . . . , m}\S, i 6= j}. Applying (8.11):

E (g(YS)h(ZS) |C ) ≥ E (g(YS) |C )E (h(ZS) |C ) (8.12)

In the middle expectation of (8.10) we average over {ci,i : i ∈ {1, . . . , m}\S} keeping {ci,j : i, j ∈ S}

fixed. Since conditioned on {ci,j : i, j ∈ S} and {IS = 1}, {ci,i : i ∈ {1, . . . , m}\S} are i.i.d., the

corresponding random vector is MTP2. Also, since larger direct gains ci,i result in larger SINR, the 2

expectations on the right side of (8.12) are both increasing or decreasing on {ci,i : i ∈ {1, . . . , m}\S}.

Therefore, taking expectations on both sides of (8.12) and applying (8.11) we obtain:

E

2664E (g(YS)h(ZS) |C )

�������� {ci,j : i, j ∈ S}

IS = 1

3775 ≥ E

2664E (g(YS) |C ) E (h(ZS) |C )

�������� {ci,j : i, j ∈ S}

IS = 1

3775
≥ E

2664g(YS)

�������� {ci,j : i, j ∈ S}

IS = 1

3775E

2664h(ZS)

�������� {ci,j : i, j ∈ S}

IS = 1

3775
(8.13)

We finally note that ZS is independent of {ci,j : i, j ∈ S}, and it follows that the second factor

in the RHS of (8.13) is constant as a function of {ci,j : i, j ∈ S} and can be pulled out from the

outer expectation of (8.10). Therefore, by taking expectations on both sides of (8.13), averaging

over {ci,j : i, j ∈ S} conditioned on {IS = 1}, we obtain:

E [g(YS)h(ZS)IS = 1] ≥ E















E









g(YS)

∣

∣

∣

∣

∣

∣

∣

∣

{ci,j : i, j ∈ S}

IS = 1









E









h(ZS)

∣

∣

∣

∣

∣

∣

∣

∣

{ci,j : i, j ∈ S}

IS = 1









∣

∣

∣

∣

∣

∣

∣

∣

IS = 1















= E















E









g(YS)

∣

∣

∣

∣

∣

∣

∣

∣

{ci,j : i, j ∈ S}

IS = 1









∣

∣

∣

∣

∣

∣

∣

∣

IS = 1















E [h(ZS)]

= E [g(YS)|IS = 1]E[h(ZS)] (8.14)

Then, using Lemma 8 with g(t) = h(t) = e−st and letting pS = E(IS),

E
(

ISe−sX
)

= pSE
[

e−sYSe−sZS |IS = 1
]
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≥ pSE
[

e−sYS |IS = 1
]

E[e−sZS ]

≥ pSE
[

e−sYS |IS = 1
]

Ψ(s) (8.15)

Recall that λ = E(X) =
∑

S∈G pS . From (8.9) and (8.15), by applying Jensen’s inequality twice,

first to the conditional expectation and then to the sum, we obtain

− (log Ψ(s))
′

= −Ψ′(s)

Ψ(s)
≥
∑

S∈G
pSE

(

e−sYS |IS = 1
)

≥ λ
∑

S∈G

1

λ
pS exp [−E (sYS |IS = 1)]

≥ λ exp

[

−
∑

S∈G

1

λ
pSE (sYS |IS = 1)

]

= λ exp

[

− s

λ

∑

S∈G
E(YSIS)

]

= λe−s∆/λ (8.16)

In order to use the Lemma 7 we will get an upper bound on ∆/λ2. We first compute an upper

bound on E(ISIT ) where S, T ∈ G and |S ∩ T | = i.

E(ISIT ) = E





∏

i∈S
1

(

ci,i(k)
N0B

P +
∑

t6=i
t∈S

ct,i(k)
≥ γ

)

∏

j∈T
1

(

cj,j(k)
N0B

P +
∑

t6=j
t∈T

ct,j(k)
≥ γ

)





≤ E





∏

i∈S
1

(

ci,i(k)
N0B

P +
∑

t6=i
t∈S

ct,i(k)
≥ γ

)

∏

j∈T \S
1

(

cj,j(k)
N0B

P +
∑

t6=j
t∈T

ct,j(k)
≥ γ

)





= E

[

∏

i∈S
1

(

ci,i(k)
N0B

P +
∑

t6=i
t∈S

ct,i(k)
≥ γ

)]

E





∏

j∈T \S
1

(

cj,j(k)
N0B

P +
∑

t6=j
t∈T

ct,j(k)
≥ γ

)





=

[

P

(

ci,i(k)
N0B

P +
∑

t6=i
t∈S

ct,i(k)
≥ γ

)]2n−i

(8.17)

And now we upper bound ∆/λ2, letting p = P

(

ci,i(k)
N0B

P +
P

t6=i
t∈S

ct,i(k)
≥ γ

)

:

∆

λ2
=

∑

S∈G
∑

T ∈G
S∩T 6=∅

E [ISIT ]

E[X(n)]2
≤
(

m
n

)
∑n

i=1

(

n
i

)(

m−n
n−i

)

p2n−i

(

m
n

)2
p2n

=
n
∑

i=1

(

n
i

)(

m−n
n−i

)

(

m
n

) p−i =
n
∑

i=1

ai (8.18)

where ai =
(n

i)(
m−n
n−i )

(m
n)

p−i. Now define bi = ai+1/ai and note that since bi = (n−i)2

(i+1)(m−2n+i+1)p
−1

decreases with i, bi ≤ b1. Therefore ai ≤ bi−1
1 a1.
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Recalling the value of p computed in (8.3):

p =
e−γN0B/P

(1 + γ)n−1
, (8.19)

and since n = (1 − ε) log(M)/ log(1 + γ) and m ≥ M/[log(M)]2 we have:

b1 =
(n − 1)2

2(m − 2n + 2)
p−1

≤ [log(M)]2

2[log(1 + γ)]2
· 1

M/[log(M)]2 − 2 log(M)/ log(1 + γ) + 2
· eγN0B/P−log(1+γ) · M1−ε

≤ M−ε′ (8.20)

for any ε′ < ε, for M large enough. It follows that b1 → 0 as M → ∞, and we have b1 < 1 for M

large enough.

Then we can write:

∆

λ2
≤

n
∑

i=1

ai ≤ a1

n−1
∑

i=0

bi
1 ≤ a1

1 − b1
=

(

n
1

)(

m−n
n−1

)

(

m
n

)

p−1

1 − b1
= n2

∏n−2
i=0 (m − n − i)
∏n−1

i=0 (m − i)

p−1

1 − b1

≤ n2

m

p−1

1 − b1

≤ [log(M)]4

M [log(1 + γ)]2
· M1−ε · eγN0B/P−log(1+γ)

1 − M−ε′

≤ M−ε′ (8.21)

for any ε′ < ε, for M large enough.

Using Lemma 7 we have that at any stage k such that m(k) > M
[log(M)]2

P (X(n) = 0) ≤ exp
(

−M ε′
)

Therefore, the probability of the algorithm succeeding in log(1+γ)
1−ε · M

log(M) consecutive stages can be

lower bounded by:

P (algorithm succeeds) ≥
[

1 − exp
(

−M ε′
)]

log(1+γ)
1−ε · M

log(M)

≈ exp

[

− log(1 + γ)

1 − ε
· M

log(M)
exp

(

−M ε′
)

]

−→ 1 as M → ∞(8.22)

Therefore, the algorithm succeeds in finding feasible n user groups while m(k) > M/[log(M)]2 and
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can find a feasible allocation with at most log(1+γ)
1−ε · M

log(M) (1 + o(1)) channels with probability going

to 1 as M → ∞.

8.3 Many broadcast systems and multiple access systems

We now consider the cases where users are grouped into systems and either the transmitters,

or the receivers of the users of the same system are collocated. The main difference between these

cases and the many SISO case analyzed before is that the channels gains {ci,j}i,j are no longer

independent. To simplify the analysis, we will assume that γ, the minimum SINR required to achieve

rate R, is larger than 12. This assumption together with the dependence among the channel gains

of the users belonging to the same system imply that users of the same system must be assigned to

different channels. Since this last requirement is the same regardless of the kind of system (multiple

access, or broadcast) the results of this subsection can be applied to any combination of multiple

access and broadcast systems sharing the same spectrum.

Since we are adding further constraints on feasible channel assignments with respect to the

many SISO case, it follows that the lower bound of Theorem 8 still holds for the multiple access and

broadcast cases for any number of users per system.

Also, the requirement of using different channels for the users of the same system implies

that the number of required channels is lower bounded by the size of the largest system. It follows

that in order to have any hope of being able to obtain a bandwidth scaling Θ(M/ log(M)) as in the

many SISO case, the size of the largest system cannot exceed a scaling of Θ(M/ log(M)).

We will show that if the systems have size s = 2 log(1+γ)
1−ε · M

log(M) an approximately similar

upper bound on W ∗(M) to Theorem 9 holds (the only difference in the bounds is a factor of 2).

Note that smaller values of s put fewer restrictions on feasible channel assignments, and result in a

similar upper bound on W ∗(M).

2We expect the bandwidth scaling law to remain Θ(M/ log(M)) if γ ≤ 1 since we conjecture that the maximum
number of users of the same system that can be assigned to the same channel would remain bounded for any fixed
γ > 0.
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Theorem 10 Let ε > 0 be arbitrarily small, and γ be the minimum SINR required to achieve rate

R as defined in (8.1). In the many MAC and many BC cases with M users and s = 2 log(1+γ)
(1−ε)

M
log(M)

users per system , under the assumptions described in Section 8.1, the optimal number of required

channels to satisfy the rate constraints Ri ≥ R satisfies

W ∗(M) ≤ 2 log(1 + γ)

(1 − ε)

M

log(M)
(1 + o(1))

asymptotically, with probability going to 1 as M → ∞.

Proof: The proof of this theorem is very similar to the proof of Theorem 9. The main difference is

that we must ensure that the channel assignment algorithm assigns different channels to the users

of the same system.

We will describe a channel assignment algorithm that achieves the upper bound with probability

going to 1 as M goes to infinity. The algorithm proceeds in stages, one for each channel k. Let m(k)

be the number of users of each system that have not been allocated to a channel at stage k. Note

that m(1) = s, the number of users per system. Also, let n = 1−ε
2 log(1+γ) log(M) be the number of

systems. The algorithm can be described as follows:

set k = 1;

while m(k) > M
log(M)3

{

find a group of n users (with no channel assignment) that \\

satisfy Ri ≥ R in channel k;

assign channel k to these n users;

set k = k + 1;

}

assign different
(1−ε)

2 log(1+γ)
M

log(M)2 channels to the remaining users;

Assume first that the algorithm succeeds in each stage in finding n users, each belonging to a different
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system, satisfying the rate constraints. Then the algorithm finds a feasible channel allocation that

uses no more than M/n + (1 − ε)M/(2 log(1 + γ) log(M)2) channels, and it follows that W ∗(M) ≤

M/n + M/(2 log(1 + γ) log(M)2).

We now need to prove that the algorithm can find groups of n users satisfying the rate constraints

in all the stages where m(k) ≥ M/ log(M)3.

We start by computing a lower bound on the probability that the algorithm succeeds in finding a

group of n users satisfying the rate constraints at stage k, when there are m(k) users in each system

to choose from.

Without loss of generality, we label the n ·m(k) users that have not yet been assigned a channel at

stage k from 1 to n · m(k). Let t(i) denote the system user i belongs to. Define X(n) as:

X(n) =
∑

S∈{1,...,nm(k)}
|S|=n

1





ci,i(k)
N0B

P +
∑

j 6=i
j∈S

cj,i(k)
≥ γ ∀i ∈ S





Letting G = {S ⊂ {1, . . . , nm(k)} : |S| = n, t(i) 6= t(j) ∀i, j ∈ S} and

IS =
∏

i∈S 1

(

ci,i(k)
N0B

P +
P

j 6=i
j∈S

cj,i(k)
≥ γ

)

we can express X(n) =
∑

S∈G IS .

We want to find a lower bound on P (X(n) ≥ 1) or equivalently, an upper bound on P (X(n) = 0),

for which we use Lemma 7 with the current definition of G, where we require that the users in

every element of G belong to different systems. Note that even though the channel gains are not

independent across all the users, they are i.i.d. for all the users in S for any S ∈ G with the new

definition of G. From this Lemma we have:

P (X(n) = 0) ≤ exp

(

−λ2

∆

)

where λ = E[X(n)] and ∆ =
∑

S∈G
∑

T ∈G
S∩T 6=∅

E [ISIT ].

In order to use the Lemma 7 we will get an upper bound on ∆/λ2. We first compute an upper

bound on E(ISIT ) where S, T ∈ G and |S ∩ T | = i:

E [ISIT ] = E





∏

u∈S
1





cu,u(k)
N0B

P +
∑

l∈S
l 6=u

cl,u(k)
≥ γ





∏

j∈T
1





cj,j(k)
N0B

P +
∑

l∈T
l 6=j

cl,j(k)
≥ γ
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≤ E





∏

u∈S
1





cu,u(k)
N0B

P +
∑

l∈S
l 6=u

cl,u(k)
≥ γ





∏

j∈T \S
1





cj,j(k)
N0B

P +
∑

l∈T \S
l 6=j

cl,j(k)
≥ γ









= E





∏

u∈S
1





cu,u(k)
N0B

P +
∑

l∈S
l 6=u

cl,u(k)
≥ γ







E





∏

j∈T \S
1





cj,j(k)
N0B

P +
∑

l∈T \S
l 6=j

cl,j(k)
≥ γ









=



P





cu,u(k)
N0B

P +
∑

l∈S
l 6=u

cl,u(k)
≥ γ









n 

P





cj,j(k)
N0B

P +
∑

l∈T \S
l 6=j

cl,j(k)
≥ γ









n−i

= pn
n · pn−i

n−i (8.23)

where we defined

pr , P





cu,u(k)
N0B

P +
∑

l∈R
l 6=u

cl,u(k)
≥ γ





for u ∈ R ⊆ G, with |R| = r. Using the fact that {cu,u(k), cl,u(k)} l∈R
l 6=u

are i.i.d. Exp(1) random

variables, we can compute pr explicitly:

pr =

∫ ∞

0

∫ ∞

γ(N0B/P+x)

e−c · xr−2

(r − 2)!
e−xdc · dx =

e−γN0B/P

(1 + γ)r−1
.

Using (8.23) we upper bound ∆/λ2:

∆

λ2
=

∑

S∈G
∑

T ∈G
S∩T 6=∅

E [ISIT ]

E[X(n)]2
≤ mn

∑n
i=1

(

n
i

)

(m − 1)n−ipn
n · pn−i

n−i

m2np2n
n

=

n
∑

i=1

(

n
i

)

(m − 1)n−i

mn

pn−i
n−i

pn
n

=

n
∑

i=1

ai (8.24)

where ai =
(n

i)(m−1)n−i

mn

pn−i
n−i

pn
n

. Now define bi = ai+1/ai and note that since

bi =
(n − i)

(i + 1)(m − 1)
e2(n−i−1) log(1+γ)+γN0B/P

decreases with i, bi ≤ b1. Therefore ai ≤ bi−1
1 a1.

Since n = 1−ε
2 log(1+γ) log(M), assuming that m ≥ M/[log(M)]3 we have:

b1 =
(n − 1)

2(m − 1)
e2(n−2) log(1+γ)+γN0B/P

≤ log(M)

4 log(1 + γ) (M/ log(M)3 − 1)
e(1−ε) log(M)+γN0B/P

≤ M−ε′ (8.25)
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for any ε′ < ε, for M large enough. It follows that b1 → 0 as M → ∞, and we have b1 < 1 for M

large enough. Then we can write:

∆

λ2
≤

n
∑

i=1

ai ≤ a1

n−1
∑

i=0

bi
1 ≤ a1

1 − b1
=

1

1 − b1
·
(

n
1

)

(m − 1)n−1

mn

pn−1
n−1

pn
n

≤ 1

1 − b1

( n

m

)

eγN0B/P (1 + γ)2(n−1)

≤ 1

1 − M−ε′
· log(M)

2 log(1 + γ)
· (log(M))3

M
eγN0B/P+(1−ε) log(M)

≤ M−ε′ (8.26)

for any ε′ < ε, for M large enough.

Using Lemma 7 we have that at any stage k such that m(k) > M
[log(M)]3

P (X(n) = 0) ≤ exp
(

−M ε′
)

Therefore, the probability of the algorithm succeeding in 2 log(1+γ)
(1−ε)

M
log(M) consecutive stages can be

lower bounded by:

P (algorithm succeeds) ≥
[

1 − exp
(

−M ε′
)]

2 log(1+γ)
(1−ε)

M
log(M)

≈ exp

[

−2 log(1 + γ)

(1 − ε)

M

log(M)
exp

(

−M ε′
)

]

−→ 1 as M → ∞(8.27)

Therefore, the algorithm succeeds in finding feasible n user groups while m(k) > M/[log(M)]3 and

can find a feasible allocation with at most 2 log(1+γ)
1−ε · M

log(M) · (1 + o(1)) channels with probability

going to 1 as M → ∞.
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Chapter 9

Discussion

When interference cannot be cancelled the best that one can do to avoid it is to orthogo-

nalize the systems in time or frequency. Orthogonalizing systems corresponds to allocating different

frequency channels (or time-slots) to the interfering systems. As the number of systems M grows, for

a fixed bandwidth requirement of each system, orthogonalizing all the systems in frequency requires

a linear growth of the required bandwidth with M . In order to avoid such a large increase in the

use of the spectrum resource, one can attempt to reuse the same frequency between two or more

systems. The network designer then faces the problem of allocating channels to systems so that the

aggregate received interference in each system is minimized. Our statistical analysis of interference

aggregation shows that a reasonable spectrum allocation approach is to allocate different frequencies

to systems close to each other. If the spectrum sharing protocol can guarantee that no other system

within a distance r0 from the given system is allocated the same channel, then the aggregate received

interference has finite mean and variance. Moreover, as r0 is chosen larger and larger, the aggregate

interference becomes more concentrated around its mean. This makes the performance of the pro-

tocol more predictable and results in a better quality of service. The probability distributions for

the aggregate interference derived in Chapter 7 can be used to analyze the performance of different

spectrum sharing protocols that trade off the value of r0 with the bandwidth assigned to each system
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for communication. In particular, the choice r0 = 0 corresponds to a spectrum sharing protocol with

full frequency reuse (i.e. code division multiple access (CDMA)). The results of Chapter 7 suggest

that CDMA may have very poor performance in spectrum sharing applications where the location

of transmitters and receivers cannot be controlled. This is due to the excessive interference created

by interferers located in the proximity of a given receiver.

In multi-user systems, when the fading process can be accurately tracked at the transmitter,

channel variations become beneficial. This is because channel fluctuations can be exploited by

scheduling users when their fading states are good. In this way one can ride the peaks of the

fading process obtaining what is called multi-user diversity gains [51]. For Rayleigh fading the

average rate of the system grows like log log M for an M user system due to multi-user diversity.

Therefore, to keep the rate of each user constant the bandwidth of the system should scale as

W (M) = Θ(M/ log log M). We see that in the single system case multi-user diversity provides a

gain of a factor log log M . In Chapter 8 we investigated if fading could provide similar gains in a

multi-system scenario, where the multiple systems interfere with each other.

Under some assumptions, we derived asymptotic lower and upper bounds on the bandwidth

required to guarantee a minimum rate R per system. These bounds state that the required bandwidth

scales as W (M) = Θ(M/ logM). From this expression, we observe a multi-system diversity gain of

the order of log M . Therefore, under our assumptions, fading provides significantly larger gains in

the multi-system scenario than in the single system case. This is because when multiple systems

are present we can exploit not only the good states of the channel gains, but also the bad states for

interference avoidance. In essence, we allocate the same channel to systems that do not interfere

much with each other. As the number of systems grows, the chance of finding more systems that

can share the same channel increases. However, as the number of systems sharing the same channel

grows, the aggregate interference increases and cannot be neglected. Our analysis tightly quantifies

how many systems can share the same channel while keeping the aggregate interference under control

to satisfy the rate constraint R. We also showed that similar multi-system diversity gains can be
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achieved when each system is either a broadcast system (downlink) or a multiple access system

(uplink) with at most Θ(M/ logM) users, where M is the total number of users in the network.
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Part III

Spectrum Sharing Between Selfish

Systems
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Chapter 10

Preliminaries

10.1 Introduction

In this last part of the thesis we look at the spectrum sharing problem from a different angle

than in the first two parts. So far we have been concerned with characterizing the performance that

can be achieved in a spectrum sharing situation between systems that cooperate with each other.

In addition, in Part I we characterized the whole capacity region of the interference channel without

specifying how to choose an operating point in this region. In practice, systems can be selfish and

may need incentives to comply with a given rule or protocol. In addition, the operating point should

be chosen to satisfy some fairness objective. In the rest of this thesis we analyze how the lack of

cooperation, and the need to achieve efficiency and fairness influences the spectrum sharing protocol

design1.

We study a scenario where multiple wireless systems share the same spectrum. For con-

creteness consider a typical urban area with 802.11 networks, bluetooth systems, walkie-talkies, etc.

co-existing and operating in the same unlicensed band, e.g. ISM, UNII, etc. The systems do not have

1Based on preliminary work that was presented in “Spectrum Sharing for Unlicensed Bands”, by Raul Etkin,
Abhay Parekh, and David Tse, First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access
Networks, Baltimore, Maryland, November 8-11, 2005. c©2005 IEEE.
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a common goal and do not cooperate with each other. We assume that spectrum is a scarce resource,

so that efficiency is a concern. We are interested in designing spectrum sharing rules and protocols

which allow the systems to share the bandwidth in a way that is fair, efficient and compatible with

the incentives of the individual systems.

A resource allocation is efficient if it is not possible to improve the performance of a given

system without degrading the performance of some other system. Usually, there are many efficient

operating points, each representing a different performance trade-off among the systems. Fairness

is related to the relative performance among the systems. It can be achieved by optimizing a global

utility function over the possible resource allocations. Different utilities represent different fairness

goals. Finally, an allocation is incentive compatible or self-enforcing if there is no incentive for an

individual system to deviate from it.

Current regulations provide a spectral mask which limits the total power and power spectral

density (PSD) that each transmitter can use. This is an attempt to limit the amount of interference

generated by each transmitter at other systems’ receivers. This approach, however, may severely

constrain the data rate when there are no other systems around. In addition, it does not provide

any performance guarantees nor does it avoid unfair situations. This is because the rate of a system

is limited by the aggregate received interference. Limiting the transmission power of an individual

system does not always result in acceptable received interference when the number of interfering

systems grows or the distance between the interferer and the receiver is small.

In order to attain efficient resource allocations in diverse situations the spectrum sharing

rules must be flexible. The rules should adapt to each specific scenario, taking into account the

number of systems sharing the spectrum in a given time and location, and considering the particular

interaction between the systems. However, adding flexibility to selfish systems may lead to inefficient

and unfair situations too. The following examples illustrate this point:

1. Two systems of similar power levels, treating each other as noise, as a result of greedy be-

havior may spread their power over the available bandwidth. From the selfish perspective
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of a greedy system, using more bandwidth results in better performance. Spreading may in

fact be a globally optimal behavior if the background noise level for each system (without the

interference from the other system) is high. However, if the background noise level is small,

this could result in vastly inferior performance relative to the regime in which the two systems

orthogonalize their signals. We analyze this situation in more detail in Chapter 11.

2. A bluetooth system might be forced to communicate at a negligible rate by the interference of

a much higher powered 802.11 transmitter, who transmits at full power to maximize its rate.

For example, if the bluetooth device is a headset attached to an 802.11 based VOIP (voice

over IP) phone, this could result in unacceptable voice quality.

The first example shows that a spectrum allocation may be fair but inefficient. Both systems get

similar rates, but these rates may be small compared to the best achievable performance. The second

example shows how asymmetry between the systems (in this case due to different power capabilities)

may lead to an unfair situation. We see that it is important for an allocation to simultaneously be fair

and efficient. In both cases one could obtain an efficient and fair sharing by designing appropriate

spectrum sharing rules (for example by assigning different frequency bands to the systems). However,

as the above examples show, selfish systems may not have an incentive to follow these rules.

The issue of incentives will play a central role in our analysis. We model the utility of a

system to be a function of rate, and incorporate power in the form of a maximum constraint. We

also make the following assumptions:

A1 The allocation is determined as the outcome of a game.

A2 For the purposes of computing system rates, the interference from other systems is treated as

noise.

A3 Each system calculates a set of operating points which are Nash Equilibria for the game.

A4 When there is more than one Nash Equilibrium point, the systems follow a convention (this
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could be an FCC mandate) to pick one of these points. Clearly, no system has any incentive

to unilaterally deviate from this point.

The key problem is therefore to design spectrum sharing rules which lead to a Nash equilibrium that

is fair and efficient. These rules are self enforcing, and as a result do not require the intervention of

an external authority to verify compliance. This is of particular importance with the advent of new

technologies like software-defined radios, which are inherently hard to certify and easy to alter.

We start by formulating a one shot game in which each system chooses its power allocation

once and for all, and this yields the data rates at the operating point. We find, by extending a result

of [13] that in low interference situations, the full-spread equilibrium is the only possible outcome of

the game. And in many cases, the rates that result from the full-spread equilibrium are suboptimal

(inefficient, unfair, or both). This is a negative result from the point of view of designing a standard,

as it would be desirable to have multiple equilibrium points to choose from.

However, systems operate and have to co-exist over a long period of time (days, months,

years), and in this context, it may be more reasonable to model the scenario as a repeated game where

systems play multiple rounds, remembering the past experience in the choice of the power allocation

in the next round. The situation brightens considerably once one considers repeated games. We

show that in a repeated game, any vector of rates in the achievable region that is component-wise

larger than the full-spread rates can be supported. Therefore, if the optimal rate vector (efficient

and fair according to some global objective) is component-wise greater than the full-spread rate

vector, there is no performance loss due to lack of cooperation.

In essence, the systems can enforce any such operating point by threatening to apply a

punishment if any individual system deviates from the power allocation that achieves the desired

operating point. The punishment is simply to apply the power allocation at the Nash equilibrium

of the static game whose rates are component-wise smaller.

The computation of the fair and efficient operating point and the choice of strategies that

achieve it require common knowledge of all the parameters (channel gains, power constraints, etc.).
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These parameters have to be measured and communicated among the systems. A selfish system may

have an incentive to falsify some of its parameters in order to obtain an advantage over the other

systems. We show that in most cases, dishonest behaviors can be detected and punished. Therefore,

by adding punishment to the parameter measurement process we can incentivize the systems to

behave truthfully.

In our work we provide a unified framework to study the issues of efficiency, fairness and

incentive compatibility in a non-cooperative spectrum sharing situation. Individual aspects of the

problem have been considered separately in many related papers. For example, Cioffi et al. propose

in [13] the iterative waterfilling algorithm (IWA) to obtain good power spectral allocations in digital

subscriber lines (DSL)2. Game theory is used to find equilibrium points of the algorithm, but selfish

behavior is never considered as part of the problem. Sufficient conditions for the uniqueness of the

equilibrium of the IWA (which coincide with the Nash equilibria of the Gaussian Interference Game

to be discussed in Chapter 12) have been presented in [36]. Popescu, et al. observed in [39] that

iterative waterfilling may lead to inefficient solutions. Trying to overcome some of the difficulties of

IWA, Huang, et al. propose in [30] to take into account the interference created onto other systems by

exchanging ”interference prices”. Under some assumptions on the individual utilities of the systems

and the global utility to be maximized, their algorithm converges to the optimal solution. Their

analysis, however, assumes cooperation among the systems. Obtaining efficient and fair allocations

requires solving optimization problems. The problem of optimizing resource allocations has been

studied in [10, 11, 48, 53, 54]. Many of these works rely on relaxations (which may not be applicable

to all scenarios) to solve the optimization with tractable complexity. Clemens and Rose study in [14]

a repeated game between selfish players in a wireless model. They use a genetic algorithm to find

good strategies in a limited strategy space. Their analysis, however, does not consider efficiency and

fairness issues, and the strategies that they find may not be incentive compatible. [37] considers the

issues of fairness and efficiency in non-cooperative wireless applications, and proposes the use of

2Since the channel models of the DSL and the wireless communication problems are essentially the same, the
results for DSL are applicable to the wireless setting.
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punishment to achieve a desired operating point. The games considered in [37], however, are games

of complete information with small strategy spaces, and are very different from the games considered

here.

The rest of Part III is organized as follows. In Section 10.2 we present the model to be

used in the following Chapters. Chapter 11 focuses on the issues of fairness and efficiency in an ideal

situation where systems cooperate with each other. Chapter 12 analyzes non-cooperative situations.

Section 12.3 considers the problem of channel measurement and exchange between possibly dishonest

systems. In Chapter 13 we introduce more general models than that of Section 10.2 and show that

our main results hold in a broader setting where we allow the systems to use arbitrary codes (i.e. non

Gaussian) and communication strategies (i.e. implement interference cancellation), and the systems

are formed by more than one transmitter or receiver. Finally Chapter 14 presents some conclusions

and open problems.

Preliminary versions of this research have been presented in [21] and [22].

10.2 Model

We model a situation in which M systems, each formed by a single transmitter-receiver

pair, coexist in the same area. Consider an M user Gaussian interference channel in discrete time

defined by:

yi[n] =
M
∑

j=1

hj,ixj [n] + zi[n]; i=1,. . . ,M (10.1)

where xi, yi, zi ∈ C and the noise processes are i.i.d. over time with zi ∼ CN (0, N0). By assuming

that the channel from each transmitter to each receiver has a single tap we are restricting attention

to the case of flat fading. The input of user i has an average power constraint Pi.

We will assume that each system treats the received interference as noise. This leads to a

tractable inner bound to the capacity region of the interference channel that we studied in Part I

when the number of systems M is larger than two. In addition, practical limitations such as decoder
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Figure 10.1: MxM Gaussian interference channel.

complexity, uncertainty in the estimation of {hj,i}, delay constraints, etc., may preclude the use of

interference cancellation techniques. Therefore the assumption of treating interference as noise may

be realistic in many cases. Moreover, most of our game theoretic results of Chapter 12 extend to any

achievable rate region of the interference channel. Therefore, the assumption of treating interference

as noise is not essential for the validity of most of our game theoretic results.

Finally, we will assume that the systems use random Gaussian codebooks, which means

that the transmitted signals look like white Gaussian processes. In Appendix A we consider a model

where the codebooks of the systems are allowed to be non-Gaussian, and show that most of our

results extend to this scenario.

Under these assumptions, using the capacity expression for the single user Gaussian chan-

nel, we can determine the maximum rate that system i can achieve for specific power allocations3:

Ri =

∫ W

0

log

(

1 +
ci,ipi(f)

N0 +
∑

j 6=i cj,ipj(f)

)

df (10.2)

where pi(f) is the power spectral density of the input signal of system i, and where for convenience

we defined ci,j = |hi,j |2. Note that due to the power constraints, pi(f) must satisfy:

∫ W

0

pi(f)df ≤ Pi (10.3)

3In all cases we use log(·) for a base 2 logarithm.
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The spectrum sharing problem that we consider is to determine a set of power allocations

{pi(f)} for the M systems, that maximizes a given global utility function while satisfying the power

constraints. This maximization results in allocations that are fair and efficient in a cooperative

scenario, i.e. free from the problem of incentives. In the next section we study the structure of the

optimal power allocations for any reasonable choice of global utility.
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Chapter 11

Cooperative Scenarios

11.1 Optimal Spectrum Allocations

Many of the fairness issues in spectrum sharing arise due to asymmetries between the

systems. Figure 11.1 shows three different examples where two systems operate in asymmetric

situations. In scenario (a) both systems have similar power capabilities (e.g. two 802.11 systems)

but due to the locations of the transmitters and receivers, one system receives large interference

while the other does not. Scenarios (b) and (c) describe situations where a high power system (e.g.

802.11 system) shares spectrum with a low power system (e.g. bluetooth system). In (b) all the

gains are comparable, so intuitively the weak system is in disadvantage. In (c) due to asymmetry in

the gains both systems can interfere with each other and one can imagine that a more fair situation

may result.

For concreteness we assign specific parameter values to each scenario. Without loss of

generality we can assume in all cases that c1,1 = c2,2 = 1, N0 = 1 and W = 1. In scenario (a) we

can assume P1 = P2 = 10, c1,2 = 10 and c2,1 = 0.5. For scenario (b) we set P1 = 10, P2 = 1, and

c1,2 = c2,1 = 1.1. Finally in (c) we set P1 = 10, P2 = 1, c1,2 = 0.5 and c2,1 = 10.

Imagine that in these three scenarios we want to maximize some global utility function
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Figure 11.1: Three examples of asymmetric situations between two systems sharing the same band. The
sizes of the antennas represent power capabilities, and smaller distances indicate higher gains.

U(R1, R2), that represents some fairness objective. We are interested in determining the maximum

value of U and the corresponding power spectral allocations that achieve it. In this section we will

show how to solve this problem efficiently.

We assume that all the parameters are know to all the systems performing the optimization.

In particular, we assume that the number of systems sharing the spectrum is common knowledge.

The difficulty of detection has been pointed out in [40], however, we will assume in this paper that

no such limitations exist. Practical algorithms for the estimation and exchange of parameters are

presented in Section 12.3.

Let R be the achievable rate region:

R =

{

R : Ri =

∫ W

0

log

(

1 +
ci,ipi(f)

N0 +
∑

j 6=i cj,ipj(f)

)

df
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and

∫ W

0

pi(f)df ≤ Pi with pi(f) ≥ 0 for i = 1, . . . , M

}

(11.1)

where R = (R1, R2, . . . , RM ) and let R∗ be the set of Pareto optimal points of R:

R∗ =
{

(R1, . . . , RM ) ∈ R : Ri ≥ R̃i ∀(R1, . . . , Ri−1,

R̃i, Ri+1, . . . , RM ) ∈ R, for i = 1, . . . , M
}

(11.2)

In words, a rate allocation is Pareto optimal (or efficient) if it is not possible to increase the rate of

any system without decreasing the rate of some other system.

Figure 11.2: Achievable set R and Pareto efficient set R∗ for scenarios (b) and (c). Indicated in the figure
are the optimal sum rate, and proportional fair points.

Figure 11.2 shows the achievable set and Pareto optimal set for scenarios (b) and (c). The

reason why for this specific choice of parameters in both scenarios we obtain the same sets will be

explained later in this section.

The choice of the utility function will strongly influence the fairness in the resulting allo-

cations. For example we may consider Usum(R1, R2) = R1 + R2 if we are interested in maximizing

the total sum rate. While in scenario (a) this choice of utility results in an optimal operating point

where R1 = R2, in scenarios (b) and (c) the resulting optimal allocations are very unfair for system
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2 (R2 � R1) (see Figure 11.2). A more fair allocation results from choosing the proportional fair

metric UPF (R1, R2) = log(R1) + log(R2) proposed in [33]. By applying the log(·) function to each

rate, we give higher priority to the system in disadvantage. We can see in Figure 11.2 how in sce-

narios (b) and (c) the use of the proportional fair metric results in a more fair allocation. Note that

in scenario (a) the use of UPF results in the same rates as when Usum is used.

For any utility function that is component-wise monotonically increasing in (R1, . . . , RM ),

the optimal rate allocation must occur in a point of the boundary R∗. So it is of interest to obtain

a simple characterization for R and R∗. For example, if we knew R∗ the problem of maximizing

Usum reduces to finding the point in R∗ that is tangent to the line of slope (−1).

At first glance, computing R requires to search over all possible power allocations pi(f)

that satisfy the power constraint. Since pi(f) are functions with arbitrarily many degrees of freedom,

the computation of R seems to be an infinite dimensional problem. However the following theorem

shows that we can restrict attention to piecewise constant power allocations, and as a result, the

problem of computing R has finite dimension.

Theorem 11 Any point in the achievable rate region R defined in (11.1) can be obtained with M

power allocations that are piecewise constant in the intervals [0, w1), [w1, w2), . . . , [w2M−1, W ], where

wi ≤ wi+1, i = 1, . . . , 2M − 2, for some choice of {wi}2M−1
i=1 .

Proof: We prove the theorem by defining a rate region R̃ and showing that it can be achieved with

piece-wise constant power allocations over at most 2M intervals. We then show that R ⊆ R̃.

Define the power vector

p = (p(1), . . . , p(M)) ∈ RM

and the rate vector

r = (r(1), . . . , r(M)) ∈ RM
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where each rate is computed assuming frequency flat power allocations over the bandwidth W , i.e.

r(i) = W log

(

1 +
ci,ip(i)

N0W +
∑

j 6=i cj,ip(j)

)

Also define A ⊂ R2M by

A = {(r,p) : p ≥ 0}

We will first show that if B = Convex Hull {A} any point in B can be achieved with a convex

combination of at most 2M points of A. This follows directly from Carathéodory’s theorem and it’s

extension (see [18], Theorem 18) by noting that A lies in R2M and it is connected.

We then define the rate region

R̃ = {r : (r,p) ∈ B and p ≤ (P1, . . . , PM )}

and show that R ⊆ R̃. Note that there is a one to one correspondence between points in R̃ and

piece-wise constant power allocations that satisfy the power constraints and are defined over at most

2M intervals.

We need to show that r ∈ R ⇒ r ∈ R̃. We will do this by first showing that if r ∈ R then there

is a sequence of rates {rn}n with rn ∈ R̃ such that limn→∞ rn = r. Finally, by showing that R̃ is

compact we will show that r ∈ R̃.

r ∈ R implies that there exist power allocations {pi(f)}M
i=1 that satisfy the power constraints and

that result in the rate vector r = (R1, . . . , RM ). Fix n, and partition the interval [0, W ) into n

intervals {Wk}n
k=1 defined by Wk = [(k−1)W/n, k·W/n). Let λk = 1/n for k = 1, . . . , n. Let p̃k(i) =

W · inff∈Wk
pi(f) and r̃k(i) = W log

(

1 +
ci,ip̃k(i)

N0W+
P

j 6=i cj,ip̃k(j)

)

for i = 1, . . . , M and k = 1, . . . , n.

Finally let pn =
∑n

k=1 λkp̃k and rn =
∑n

k=1 λkr̃k. Since
∫W

0 pi(f)df =
∑n

k=1

∫

Wk
pi(f)df ≥

∑n
k=1

∫

Wk
p̃k(i)/Wdf =

∑n
k=1 W/n · p̃k(i)/W =

∑n
k=1 λkp̃k(i) = pn(i) for i = 1, . . . , M , it follows

that pn ≤ (P1, . . . , PM ) and hence rn ∈ R̃. Also rn is an approximation to the integral that defines

r so it converges to it as the number of intervals n in which [0, W ] is partitioned goes to ∞.



128

To show that R̃ is compact, we need to show that it is closed and bounded. We first show that R̃

is bounded. Let r be any vector in R̃. Then we have:

r(i) =

2M
∑

k=1

λk r̃k(i)

=

2M
∑

k=1

λkW log

(

1 +
ci,ip̃k(i)

N0W +
∑

j 6=i cj,ip̃k(j)

)

≤ W log

(

1 +
ci,i

∑2M
k=1 λk p̃k(i)

N0W

)

≤ W log

(

1 +
ci,iPi

N0W

)

We finally show that R̃ is closed by showing that it contains its boundary. Since R̃ is convex, any

point r∗ in its boundary can be obtained as the solution to the optimization problem:

Maximize
M
∑

i=1

uir(i)

Subject to: (λ1, . . . , λ2M ) ≥ 0

2M
∑

k=1

λk = 1

r(i) =

2M
∑

k=1

λkW log

(

1 +
ci,ip̃k(i)

N0W +
∑

j 6=i cj,ip̃k(j)

)

p̃k ≥ 0, k = 1, . . . , 2M

2M
∑

k=1

λkp̃k ≤ (P1, . . . , PM ) (11.3)

for some choice of u = (u1, . . . , uM ). We need to show that the optimal value
∑M

i=1 uir
∗(i) and the

associated rate vector r∗ = (r∗(1), . . . , r∗(M)) are achieved within the optimization region of (11.3).

We will show that we can restrict attention to bounded power vectors. If some vector p̃k had an

arbitrarily large component, p̃k(i) say, the corresponding weight λk would need to be arbitrarily

small (at most Pi/p̃k(i)) to satisfy the power constraint. Since limx→∞(1/x) log(1 + x) = 0 this

arbitrarily large power would have a negligible effect in the corresponding rate. It follows that the

result of the optimization (11.3) is not altered by upper bounding the vectors p̃k. That is, for fixed

u there exists a vector p̄ such that if we add the constraint p̃k ≤ p̄ for k = 1, . . . , 2M in (11.3) the
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maximization problem remains the same. In this modified optimization problem the objective is a

continuous function and the optimization region is a compact set, so the optimum is attained within

the region.

Note that once we fix the choice of intervals to obtain a point in R, the M power allocations

are constant in the same intervals.

The result of Theorem 11 arises naturally from geometric considerations in our model where

frequency is a continuous variable. In the digital subscriber line (DSL) and wireless communications

literature the available bandwidth is often divided into N discrete channels, and frequency is treated

as a discrete parameter [13, 30, 53, 54]. This approximation of continuous frequency into discrete

channels makes the complexity of the resulting optimization scale with N . In the flat fading case

this is an artifact of the discretization of frequency, since the true complexity of the problem is a

function of the number of systems M and not the number of channels N .

For the special case of channels satisfying a pairwise high interference condition (which is

satisfied with the choice of parameters in scenarios (a), (b) and (c)), it turns out that the optimal

power allocations are orthogonal, and hence the characterization of R∗ is further simplified.

Theorem 12 Let (R1, . . . , RM ) be a Pareto efficient rate vector achieved with power allocations

{pi(f)}i=1,...,M . If ci,jcj,i > ci,icj,j then the power allocations pi(f) and pj(f) are orthogonal, i.e.

pi(f)pj(f) = 0 for f ∈ [0, W ].

Proof: We use Theorem 11 to restrict attention to piece-wise constant power allocations.

We will prove the theorem by contradiction. Assume that pi(f) and pj(f) are not orthogonal in

some interval, Wk say. Then, pi(f) = pi > 0 and pj(f) = pj > 0 for f ∈ Wk. Also let pr(f) = pr

for f ∈ Wk, r 6= i, j. Finally let Ii = N0 +
∑

r 6=i,j cr,ipr ( Ij = N0 +
∑

r 6=i,j cr,jpr) be the noise

plus interference PSD received by system i (j) without taking into account the interference received

from system j (i). We will show that the rates Ri and Rj can be increased simultaneously without

decreasing the rates Rr, r 6= i, j, thus showing that pi(f) and pj(f) cannot result in Pareto efficient
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rates.

We first split Wk into two equal intervals Wk,1 and Wk,2. We then modify pi(f) in Wk as follows:

pi(f) = pi + ∆i,1/2 for f ∈ Wk,1 and pi(f) = pi − ∆i,1/2 for f ∈ Wk,2. Note that the difference

in power levels between the two intervals is ∆i,1, which we choose to be sufficiently small. We

now run the iterative waterfilling algorithm1 restricted to the interval Wk with power constraints

pi|Wk| and pj |Wk|, starting with the power allocation pj(f). When system j waterfills first, it

observes a noise+interference with a difference in power levels between Wk,1 and Wk,2 of ci,j∆i,1.

After waterfilling, its own power allocation pj(f) has a difference ∆j,1 = − ci,j

cj,j
∆i,1 between the

two sub-intervals. When system i waterfills, it observes a noise plus interference with difference

cj,i∆j,1 = − cj,ici,j

cj,j
∆i,1 and after waterfilling, its power allocation has a difference in power levels

∆i,2 =
ci,jcj,i

ci,icj,j
∆i,1. Since by assumption

ci,jcj,i

ci,icj,j
> 1, the power differences ∆i,n and ∆j,n increase

in magnitude for increasing n, until the algorithm converges. Once the algorithm converges the

resulting power allocations in the interval Wk satisfy the properties:

• The power differences have positive magnitude: |∆i,∞| > 0 and |∆j,∞| > 0.

• The power allocations are waterfilling solutions to each other.

We will now show that these allocations, restricted to the interval Wk, result in higher rates for

all systems than the initial flat allocations. Let Ri(∆j) be the rate associated to the interval Wk

when system i uses a flat power allocation and system j uses a power allocation with a difference

∆j between the intervals Wk,1 and Wk,2.

Ri(∆j) =
|Wk|

2
log

[

1 +
ci,ipi

Ii + cj,i(pj − ∆j/2)

]

+
|Wk|

2
log

[

1 +
ci,ipi

Ii + cj,i(pj + ∆j/2)

]

Differentiating with respect to ∆j :

R′
i(∆j) =

|Wk|ci,icj,ipi

4 loge(2)
·
{

1

[Ii + cj,i(pj − ∆j/2) + ci,ipi]
· 1

[Ii + cj,i(pj − ∆j/2)]

1The iterative waterfilling algorithm consists of letting each system distribute its available power over the
noise+interference seen as if it was pouring liquid over a container. See [52] for a detailed explanation.
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− 1

[Ii + cj,i(pj + ∆j/2) + ci,ipi]
· 1

[Ii + cj,i(pj + ∆j/2)]

}

so it follows that R′
i(∆j) > 0 for ∆j > 0 and R′

i(∆j) < 0 for ∆j < 0. Therefore Ri(∆j) is minimized

for ∆j = 0. Equivalently, for fixed total noise plus interference power, assuming that system i uses

a flat power allocation, its rate is minimized when the total noise plus interference PSD is white. In

addition, if system i waterfills over the noise plus interference seen, its rate can only increase with

respect to the one obtained with a flat power allocation. So we conclude that after the iterative

waterfilling algorithm converges, the rate of system i is larger than the initial rate obtained with

flat allocations for systems i and j. A similar conclusion can be made for the rate of system j after

convergence of iterative waterfilling.

In addition, the rates of the other systems do not decrease with the modified power allocations of

systems i and j. If for example system r had zero power in the band k (i.e. pk = 0) then modifying

the power allocations of systems i and j does not change its rate. If on the other hand system r had

positive power in the band, the result of modifying the power allocations of systems i and j using

iterative waterfilling is to change the total noise plus interference seen by system r from a white

PSD to a colored PSD of equal power. By the analysis above, this change in the PSD of the noise

plus interference can only increase Rr.

The condition ci,jcj,i > ci,icj,j means that for systems i and j, the product of the channel

cross gains ci,jcj,i is greater than the product of the channel direct gains ci,icj,j . Note that the

condition can be satisfied even if one of the cross gains is small, by having the other cross gain

large enough. Also, note that the condition is independent of the power constraints {Pi, Pj} and

noise variance N0. In our three examples, we chose c1,1 = c2,2 = 1, so to check whether the

condition of Theorem 12 is satisfied, we only need to check that c1,2c2,1 > 1. In scenario (a) we have

c1,2c2,1 = 10 · 0.5 = 5, in scenario (b) we have c1,2c2,1 = 1.1 · 1.1 = 1.21, and in scenario (c) we have

c1,2c2,1 = 0.5 · 10 = 5, so in the three cases the condition is met.

In particular, if ci,jcj,i > ci,icj,j for any i 6= j, j = 1, . . . , M , we can achieve any Pareto
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efficient rate vector with frequency division multiplexing (FDM). In this case, the the maximization

of any concave, non-decreasing function of (R1, . . . , RM ) reduces to the optimization problem:

Maximize U

[

W1 log

(

1 +
c1,1P1

W1N0

)

, . . . , WM log

(

1 +
cM,MP1

WMN0

)]

subject to:

M
∑

i=1

Wi = W and Wi ≥ 0, i = 1, . . . , M (11.4)

which, as can be easily verified, is a concave optimization problem and can be efficiently solved. In

particular, the weighted sum rate utility UWS(R1, . . . , RM ) =
∑M

i=1 uiRi for non-negative weights

{ui}i, and the proportional fair utility UPF =
∑M

i=1 log(Ri) result in concave problems. These

results allow to easily compute the rates in Figure 11.2.

Note that since the Pareto efficient rates are obtained with orthogonal allocations when

c1,2c2,1 > 1 (for direct gains equal to 1), the actual values of the cross gains c1,2 and c2,1 have

no influence on the achievable region. This explains why scenarios (b) and (c) result in the same

achievable region and optimal rates.

When the conditions of Theorem 12 are not satisfied, we can use techniques such as La-

grangian methods to solve the problem of maximizing U(R1, . . . , RM ) with tractable complexity.
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Chapter 12

Non-cooperative Scenarios

Throughout the previous chapter we have implicitly assumed that the M systems cooperate

to maximize a global utility function by choosing appropriate power allocations. This assumption

may be realistic when the different systems are jointly designed with a common goal, are complying

with some standard or regulation, or are in fact transmitter-receiver pairs of a single global system.

However, in a spectrum sharing scenario where regulations may be lax and systems may

be competing with one another to gain access to the shared medium, assuming selfish behavior may

be more realistic. In this chapter we analyze how the lack of cooperation among systems may affect

the set of achievable rates.

We will consider the same model introduced in Section 10.2 under the assumption that the

different systems behave selfishly and rationally. We associate to each system i a utility function

Ui(Ri), which we assume concave and increasing in Ri
1. The systems are selfish in the sense that

they only try to maximize their own utility. The rationality assumption means that each system

will never choose a strictly dominated strategy2. We analyze the set of achievable rates in this

1Notice the difference between the utility Ui(Ri) of each individual system vs. the global utility U(R1, . . . , RM )
introduced in Chapter 11.

2A strategy si for player i is strictly dominated by strategy s′i if Ui(s1, . . . , si−1, s′i, si+1, . . . , sM ) <
Ui(s1, . . . , si−1, si, si+1, . . . , sM )) for each (s1, . . . , si−1, si+1, . . . , sM ) that can be constructed from the other players’
strategy spaces.
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non-cooperative scenario using non-cooperative game theory.

Once the set of non-cooperative achievable rates is determined, the operating point is

chosen by the protocol to achieve efficiency and fairness. We can think of this protocol as a widely

known standard that the systems can choose to follow or as a set of spectrum sharing rules imposed

by the regulation authority. In either case, a system knows the protocol, which specifies how to act

in every possible situation, but is free to comply with it or not. However, each system knows that

all other systems comply with the protocol3. This last remark is key in our game theoretic analysis.

12.1 Short interaction between systems: one shot game

We first consider a static game of complete and perfect information, usually referred to

in the literature as the Gaussian Interference Game [52]. The complete information assumption is

justified in Section 12.3 where we show that we can incentivize the systems to measure and exchange

their parameters truthfully.

The game has M players, the M systems. The strategy space Si of system i is the set

of power allocations pi(f), f ∈ [0, W ] that satisfy the power constraint (10.3). A strategy si for

user i is the choice of power allocation pi(f). For a given strategy profile (s1, . . . , sM ) the rate of

user i is given by (10.2). The players play simultaneously, and know the utility functions of all the

other players (N0, {ci,j}i,j , {Pi}M
i=1, W are common knowledge). A strategy profile {s∗i }M

i=1 is a Nash

Equilibrium (N.E.) of the game if

Ri(s
∗
1, . . . , s

∗
M ) ≥ Ri(s

∗
1, . . . , s

∗
i−1, si, s

∗
i+1, . . . , s

∗
M )

for all si ∈ Si, i = 1, . . . , M (12.1)

A direct consequence of the flat-fading and white noise assumption is the following fact:

Fact 1 The set of frequency-flat allocations pi(f) = Pi/W, f ∈ [0, W ] for i = 1, . . . , M is a Nash

Equilibrium of the Gaussian Interference Game.

3This is a consequence of the rationality assumption and the choice of a protocol that operates in a Nash equilibrium
of a game.
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This means that the best possible strategy for a given system is to spread its available

power over the total bandwidth whenever all the interfering systems are spreading their signals.

Fact 1 can be understood by noting that the best response of a system to a strategy profile of the

other systems is to waterfill the available power over the noise+interference seen. When all the other

systems use flat allocation, the waterfilling power allocation is flat, and it follows that flat allocations

are best responses to each other.

If the players randomize their actions, the (mixed) strategy of each player is the choice of

probability distribution used for the randomization. The utility that each user gets is the expected

utility, averaged over the random choices of actions of all the players. Taking into account these

changes in the definition of the strategies and the utilities, the concept of a mixed strategy Nash

equilibrium can be defined exactly as before.

When studying the set of N.E., one needs to consider both pure and mixed strategies.

However, in the case of the Gaussian Interference Game it turns out that we need only consider pure

strategies.

Theorem 13 The Gaussian Interference Game can only have pure strategy Nash equilibria. That

is, every mixed strategy N.E. of the game must consist of atomic distributions with a single atom,

and therefore is a pure strategy N.E.

Proof: In the Nash equilibrium, let FP be the distribution used by system i to select the power

allocation pi(f), and let FI be the distribution function of the total noise plus interference seen by

system i. The utility of system i at the N.E. is given by:

E[Ui] =

∫ ∫

Ui

{

∫ W

0

log

[

1 +
ci,ipi(f)

I(f)

]

df

}

dFP dFI

(a)

≤
∫

Ui

{

∫ ∫ W

0

log

[

1 +
ci,ipi(f)

I(f)

]

df dFP

}

dFI

(b)

≤
∫

Ui

{

∫ W

0

log

[

1 +
ci,i

∫

pi(f)dFP

I(f)

]

df

}

dFI

where (a) follows from the concavity of Ui(·), and (b) follows from the concavity of the log(·) function,
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using Jensen’s inequality in both cases. Since log(·) is strictly concave, we can only have equality

throughout when FP corresponds to a constant random variable. Furthermore,
∫

dFP pi(f) satisfies

the power constraint Pi and hence system i can increase its utility by using the power allocation

∫

dFP pi(f) whenever FP is not atomic with a single atom. It follows that for FP to be part of a

N.E. it must correspond to a constant.

If the channel gains across systems are sufficiently small the full-spread N.E. is the only

N.E. of the Gaussian game. The following theorem gives a sufficient condition for the uniqueness of

the full-spread N.E.

Theorem 14 If
∑M

j=1
j 6=i

cj,i

ci,i
< 1 for i = 1, . . . , M then the full-spread N.E. is the only N.E. of the

Gaussian Interference Game.

Proof: Let P be the set of vectors of power allocations ({p1(f)}, . . . , {pM (f)}) that satisfy the power

constraints P1, . . . , PM . The proof consists of showing that there exists a mapping T : P → P with

two properties:

• The set of fixed points of T coincides with the set of Nash equilibria of the GIG.

• T is a pseudocontraction with respect to some norm.

Let p∗ ∈ P be a fixed point of T . T is a pseudocontraction with respect to some norm ‖ · ‖ if there

exists α ∈ [0, 1) such that:

‖T (p) − p∗‖ ≤ α‖p− p∗‖ (12.2)

for all p ∈ P . If p̃∗ is any fixed point of T , the condition (12.2) implies that p̃∗ = p∗, and hence T

has a unique fixed point.

Given a power allocation vector p = ({p1(f)}, . . . , {pM (f)}) we define T (p) as the power alloca-

tion vector that results after each system waterfills its available power over the noise plus inter-

ference seen from the other systems, when they use the power allocations of p. In other words,

the ith component of T (p) is the power allocation of system i when it waterfills its total power Pi
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over the noise plus interference observed from the other systems, when they use power allocations

p1(f), . . . , pi−1(f), pi+1(f), pM (f). Since waterfilling is the best response of a system to a set of

power allocations of the other systems, p is a fixed point of T iff p is a N.E. of the GIG.

We define the norm ‖ · ‖ as the maximum component norm in the following way:

‖p‖ = max
i∈{1,...,M}

sup
f∈[0,W ]

|pi(f)|

We make the technical assumption that the power allocations {pi(f)} are bounded, so that ‖p‖ < ∞.

From Fact 1 we have that the set of flat allocations is a N.E. of the GIG, and hence is a fixed point

p∗ of T . We will now verify that T satisfies (12.2) with a modulus α = maxi

∑

j 6=i
cj,i

ci,i
which, by

assumption, is smaller than 1. Let p ∈ P and ∆ = ‖p − p∗‖. Then |pi(f) − p∗i (f)| ≤ ∆ for

I (f)

I  (f)

i

i*

L

L

i

i
*

c    p  (f) c    p  (f)i i
*

i,i i,i

0 fW

PSDs
seen by
Rxi

Figure 12.1: Power spectral densities seen at the receiver of system i when it waterfills over the
noise+interference Ii(f) and I∗

i (f).

f ∈ [0, W ] and i = 1, . . . , M . Let Ii(f) (I∗i (f)) be the noise+interference seen by system i when the

other systems use power allocations from p (p∗). Then it follows that |Ii(f) − I∗i (f)| ≤ ∆
∑

j 6=i cj,i

for f ∈ [0, W ]. Let p̃i(f) be the power allocation of system i after waterfilling over Ii(f). There are

two cases to consider:

1. p̃i(f) > 0 for all f ∈ [0, W ]. In this case the ”fluid” of system i covers all frequencies, and

hence the total fluid level Li is exactly the same as the one obtained when waterfilling over the

noise plus interference profile I∗i (f). In this case we have p̃i(f) − p∗i (f) = (I∗i (f) − Ii(f))/ci,i
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and it follows that |p̃i(f)− p∗i (f)| ≤ ∆
∑

j 6=i cj,i/ci,i for all f ∈ [0, W ], i = 1, . . . , M . It follows

that ‖T (p) − p∗‖ ≤ α‖p − p∗‖.

2. p̃i(f) = 0 in some frequencies. In this case, the ”fluid” of system i does not cover all frequencies,

and hence the total fluid level Li is lower than L∗
i , the level obtained when waterfilling over

the noise plus interference profile I∗i (f) (See Figure 12.1). In order to bound |p̃i(f) − p∗i (f)|

we look at the lowest valley and highest peak of p̃i(f). If the total fluid level Li was equal to

L∗
i , the analysis of 1) would imply that at the highest peak, p̃i(f) − p∗i (f) < ∆

∑

j 6=i cj,i/ci,i.

But since Li < L∗
i , this difference is even smaller. On the other hand, p̃i(f1) = 0 at some f1

implies that at the frequency f where Ii(f) reaches its highest peak (i.e. f ∈ arg maxf̃ Ii(f̃)),

(Ii(f) − I∗i (f))/ci,i > p∗i (f), and hence ∆
∑

j 6=i cj,i/ci,i > p∗i (f). Therefore, since at the

frequency f we have p̃i(f) = 0, it follows that p∗i (f) − p̃i(f) < α∆. The same condition

holds for any frequency f where p̃i(f) = 0 (lowest valleys of p̃i(f)), since p∗i (f) is constant.

Therefore, it follows that for all frequencies |p̃i(f) − p∗i (f)| ≤ α∆ for i = 1, . . . , M and we

conclude that ‖T (p)− p∗‖ ≤ α‖p− p∗‖.

Theorem 14 does not give us any information about the uniqueness of the Nash equilibrium

when the condition
∑M

j=1
j 6=i

cj,i

ci,i
< 1 for all i is not met.

While studying the equilibria of the iterative waterfilling algorithm, Luo and Pang derived

independently in [36] more general sufficient conditions for the uniqueness of the Nash equilibrium

than the one given in Theorem 14. Our condition is derived using a different method and provides

additional insight into the problem.

In many cases, the set of rates that results from the full-spread N.E. is not Pareto efficient

(i.e. is not in R∗) so there may be a significant performance loss if the M systems operate in this

point due to lack of cooperation. And in many cases this inefficient outcome is the only possible

outcome of the game. Consider for example a two system scenario (call it (d)) with c1,1 = c2,2 = 1,
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c2,1 = c1,2 = 1/4, W = 1, N0 = 1 and P1 = P2 = P . Note that in this case the condition of Theorem

14 is satisfied. If both users spread their signals, they obtain rates

RFS
1 = RFS

2 = log

(

1 +
P

1 + P/4

)

[bits/s/Hz] (12.3)

which tends to log(5)[bits/s/Hz] as P → ∞. However, if the systems orthogonalize their power

allocations using half of the bandwidth each, the resulting rates are:

R1 = R2 =
1

2
log (1 + 2P ) [bits/s/Hz] (12.4)

which tends to ∞ as P → ∞. The regime in which P � N0 corresponds to the high SNR regime.

In this regime, when the systems orthogonalize their power allocations they can communicate with

an interference free channel, and achieve large data rates. If on the contrary both systems spread

their signals, the signal to interference plus noise ratio becomes limited by interference, resulting in

a reduced communication rate. This example shows that the inefficiency resulting from choosing the

full-spread equilibrium can be arbitrarily large. The

If the Gaussian game has a Nash equilibrium in which the power allocations of the different

systems are orthogonal the performance loss due to lack of cooperation is bounded. In the following

theorem we present necessary and sufficient conditions for the existence of an orthogonal Nash

equilibrium.

Theorem 15 The Gaussian Interference game with M players has an orthogonal Nash equilibrium

(i.e. pi(f) > 0 ⇒ pj(f) = 0, ∀j 6= i, for all f ∈ [0, W ]) if for all sequences of indices i1, i2, . . . , ik,

2 ≤ k ≤ M , is 6= it for s 6= t the channel gains {ci,j} satisfy:

ci1,i2ci2,i3 . . . cik,i1

ci1,i1ci2,i2 . . . cik,ik

> 1. (12.5)

Furthermore, the existence of an orthogonal Nash equilibrium requires that for all sequences of indices

i1, i2, . . . , ik, 2 ≤ k ≤ M , is 6= it for s 6= t the channel gains {ci,j} satisfy:

ci1,i2ci2,i3 . . . cik,i1

ci1,i1ci2,i2 . . . cik,ik

≥ 1. (12.6)
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Proof: See Appendix A.

The necessary and sufficient conditions of Theorem 15 are quite restrictive in practice.

For example for three systems we need c1,2c2,1 > c1,1c2,2, c1,3c3,1 > c1,1c3,3, c2,3c3,2 > c2,2c3,3,

c1,2c2,3c3,1 > c1,1c2,2c3,3, and c1,3c3,2c2,1 > c1,1c2,2c3,3. For all these conditions to hold simultane-

ously, all system must interfere a lot with each other. We note that as the number of systems M

grows, the likelihood of finding a real situation where an orthogonal Nash equilibrium exists becomes

very small.

12.2 Long term interactions: a repeated game

Scenario (d) shows that there are situations in which the only possible outcome of the

game is very inefficient, and as a result, there is a large performance degradation due to lack of

cooperation. This negative result can be attributed to the static nature of the game that we defined.

Many wireless systems operate and co-exist with the same set of competing systems over a

long period of time. In this context, it may be more reasonable to model the scenario as a repeated

(or dynamic) game where systems play multiple rounds, remembering the past experience in the

choice of the power allocation in the next round. We will consider an infinite horizon repeated

game, where the Gaussian Interference Game is repeated forever. The utility of each player is

defined by

Ui = (1 − δ)
∞
∑

t=0

δtRi(t) (12.7)

where Ri(t) is the utility of user i in the stage game at time t, and δ ∈ (0, 1) is a discount factor

that accounts for the delay sensitivity of the systems. At the end of each stage, all the players can

observe the outcome of the stage-game and can use the complete history of play to decide on the

future action. A strategy in the repeated game is a complete plan of action, that defines what the

player will do in every possible contingency in which he may need to act.

One property of this repeated game is that sequences of strategy profiles that form a N.E.
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in the stage game, form a N.E. in the dynamic game4. Furthermore, the dynamic game allows

for a much richer set of N.E. This is an advantage from the point of view of policy making or

standardization. The systems can agree through a standardization process to operate in any N.E. of

the dynamic game. Having many equilibrium points to choose from gives more flexibility in obtaining

a fair and efficient resource allocation. A natural question that arises is what set of rates can be

supported as a N.E. of the repeated game. The following theorem, a general version of which is due

to Friedman [26, 27], gives a sufficient condition for the rate vector (R1, . . . , RM ) to be achievable

as the resulting utilities in a N.E. of the repeated game.

Theorem 16 Let RFS
i be the rate of system i when all the systems spread their power over the

bandwidth W , i.e. the rate obtained in the full-spread N.E. There exists a sub-game perfect N.E.5

of the dynamic Gaussian Interference Game with utilities (U1, . . . , UM ) = (R1, . . . , RM ) whenever

(R1, . . . , RM ) ∈ R and Ri > RFS
i for i = 1, . . . , M for a discount factor δ sufficiently close to 1.

Proof: Theorem C of [28] states that any utility vector that Pareto dominates the payoffs of a Nash

equilibrium of the stage game can be supported by a sub-game perfect N.E. of the repeated game for

a discount factor δ sufficiently close to 1. This Folk theorem is due to Friedman [26,27], although he

considered only Nash equilibria instead of perfect equilibria in his work. In the Gaussian Interference

Game the full-spread allocations form a N.E. (see Fact 1), and we can use (RFS
1 , . . . , RFS

M ) as the

payoff vector of the N.E. of the stage game in the Theorem above.

Let {pi(f)}M
i=1 be the power allocations that result in the rate vector (R1, . . . , RM ) (which always

exist since (R1, . . . , RM ) ∈ R). The strategy that each system follows to obtain the rate vector

(R1, . . . , RM ) in Theorem 16 is the following trigger strategy:

• at t = 1: use power allocation pi(f).

• at t = t0: if at time t = t0 − 1 every user j ∈ {1, . . . , M} used the power allocation pj(f) then

4For the reader familiar with game theory, these equilibria are in fact sub-game perfect Nash equilibria.
5The sub-game perfect N.E. is a refined and stronger version of the N.E. concept defined before. It guarantees

that the N.E. does not arise due to unbelievable threats.
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use pi(f). Otherwise spread the power over the total band, i.e. use the power allocation Pi/W

for f ∈ [0, W ]

The idea behind this strategy, is to ”cooperate” by using the required power allocation

as long as all the other systems cooperated in the previous stages. As soon as at least one system

deviates from the ”good” behavior, a punishment is triggered where all the other systems spread their

powers forever. Since the rates obtained by the systems once the punishment is triggered are lower

than those obtained with cooperation, it is in the system’s own interest to cooperate. Friedman’s

analysis shows that if δ is not too small, the above set of strategies forms a sub-game perfect N.E..

The sub-game perfection property of the N.E. guarantees that each system will indeed apply the

punishment once the punishing situation arises. This property makes the threats believable.

Applying these ideas to scenario (d), we can define a trigger strategy where system 1 uses

the first half of the bandwidth, and system 2 uses the second half, as long as in all the previous

stages both systems complied with this frequency allocation. If at some stage any of the systems

stops complying, a punishment is triggered where the systems spread their powers forever. For large

enough P this pair of strategies forms a N.E. where each system obtains a utility 1/2 log(1+2P ). This

shows how the punishment strategies within the dynamic game formulation allow us to overcome

the inefficiency that we observed in the static game.

Theorem 16 gives us a sufficient condition for a rate vector (R1, . . . , RM ) to be achievable

through a N.E. But if the condition of the theorem is not met we may still have hope to find some

other N.E. to support the desired set of rates. A natural question to ask is if there are other N.E.

that result in utilities (R1, . . . , RM ) with some Ri < RFS
i . The following theorem answers this

question negatively and provides a converse to Theorem 16.

Theorem 17 The rate RFS
i is the reservation utility of player i in the Gaussian Interference Game.

That is, player i can obtain a utility at least as large as RFS
i by using the power allocation pi(f) =

Pi/W , f ∈ [0, W ] regardless of the power allocations used by the other players. Therefore, the rate
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Ri obtained by user i in any N.E. of the Gaussian Interference Game must satisfy Ri ≥ RFS
i . The

same statement holds for the repeated Gaussian Interference Game.

Proof: We will first prove that for a white Gaussian input, the worst possible Gaussian interference

of given power is white. Since the power of each system is bounded to Pj , the total interference

power seen by system i is bounded to
∑

j 6=i cj,iPj . We will prove that I∗i (f) = N0 +
∑

j 6=i cj,iPj/W

for f ∈ [0, W ] minimizes

Ri =

∫ W

0

log

[

1 +
ci,iPi

WIi(f)

]

df

for noise+interference power bounded to N0W +
∑

j 6=i cj,iPj .

First, we need only consider Ii(f) satisfying
∫W

0
Ii(f)df = N0W +

∑

j 6=i cj,iPj , since increasing

the interference power can only reduce Ri. We will consider only Ii(f) that are continuous almost

everywhere. Let f1 and f2 in (0, W ), be any continuity points of Ii(f). Let I = [Ii(f1) + Ii(f2)]/2

and ∆ = Ii(f1)− Ii(f2). Then for a small band δ around f1 and f2 the resulting rate of system i is:

δRi = δ log

[

1 +
ci,iPi

W (I + ∆/2)

]

+ δ log

[

1 +
ci,iPi

W (I − ∆/2)

]

As was shown in the proof of Theorem 12 δRi is minimized for ∆ = 0. Therefore, we conclude that

for the minimizing Ii(f), Ii(f1) = Ii(f2). Since f1 and f2 are arbitrary continuity points of Ii(f),

we have that the optimal Ii(f) must be constant almost everywhere. It follows that Ii(f) = I∗i (f)

almost everywhere.

If system i uses a white input, the worst case interference is obtained when all the other systems

spread their powers, and it follows that a rate at least as large as RFS
i is always achieved. Therefore,

there is no incentive for player i to play any strategy that results in a utility smaller than RFS
i .

An immediate consequence of Theorems 16 and 17 is that if the desired operating point

(R1, . . . , RM ) (i.e. the maximizer of a desired global utility) is component-wise greater than the

spreading rate vector (RFS
1 , . . . , RFS

M ) there is no performance loss due to lack of cooperation. How-

ever, when this condition is not satisfied, the best that one can do is to find the point (R1, . . . , RM ) ∈

R∗ that maximizes the global utility subject to (R1, . . . , RM ) ≥ (RFS
1 , . . . , RFS

M ).



144

Referring to Figure 12.2 we see that in scenario (b) the optimal sum rate point lies within

the achievable region in the non-cooperative setting. However, the optimal proportional fair point

lies outside of this set and cannot be supported without cooperation. The best that one can do in

the non-cooperative setting is to operate in the point indicated in the figure. In scenario (c) both the

optimal sum rate and optimal proportional fair rates are achievable in the non-cooperative setting.

Note that while in the cooperative case the specific values of the cross gains had no influence on

the achievable region (as long as the strong interference condition is satisfied) this is not true in the

non-cooperative setting. This is because large cross gains enable the systems to apply punishments,

and hence achieve a good N.E. through believable threats. In scenario (c) the large value of c2,1

allows system 2 to punish system 1 whenever it departs from the proportional fair allocation.
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Figure 12.2: Achievable rates with no cooperation for scenarios (b) and (c).

To further illustrate the concepts introduced in this and the previous section, consider a

two user scenario and assume that we use the proportional fair utility UPF to measure the global

performance. Without loss of generality we assume that c1,1 = c2,2 = 1, W = 1 and N0 = 1. Also



145

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c
2,1

c 1,
2

SNR = −10dB

0.
5

0.5

0.5

0.5

0.5 0.5

1

1

1

1

1

1
1.

5

1.5

1.5

1.5

2

2

2

2

2.
5

2.5

2.5

2.5

33

3

3

3.5

3.5

4

4

4.5

4.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c
2,1

c 1,
2

SNR = 10dB

10

10

10

10 10 10

20

20

20

20

30

30

30

30

40

40

50

50

Figure 12.3: Contour plots of (Ri − R̃i)/Ri(%) (percentage of rate loss with respect to the cooperative
solution) as a function of the cross gains c1,2 and c2,1, for SNR = −10, 10dB.

we take P1 = P2 = P and analyze the results in terms of the SNR = P/N0. At a given SNR we can

control the asymmetry between the two systems by varying the cross gains c1,2 and c2,1.

For a fixed set of parameters, using the results of Chapter 11 we optimize the power

allocations to maximize the proportional fair metric, obtaining R∗
1 and R∗

2 as the resulting rates.

In the non-cooperative scenario, R∗
1 and R∗

2 can only be supported by a N.E. if R∗
1 ≥ RFS

1 and

R∗
2 ≥ RFS

2 . If these inequalities are not satisfied, we obtain the best possible solution for the non-

cooperative case by maximizing log(R1) + log(R2) subject to the constraint Ri ≥ RFS
i , i = 1, 2,

being R̃1 and R̃2 the corresponding optimal rates. If R∗
i = R̃i for i = 1, 2 we conclude that there

is no loss due to lack of cooperation. If R∗
i > R̃i for i = 1 or i = 2 we measure the loss due to

lack of cooperation using maxi∈{1,2} 100(Ri − R̃i)/Ri, i.e. the percentage loss in rate for one of the

systems. Note that the other system will have a rate larger than the one obtained with cooperation.

In Figure 12.3 we see that for low SNR, the region of rate pairs (c1,2, c2,1) for which there is a loss

due to lack of cooperation is large, but this loss is quite small (about 5% in the worst case seen in

the figure). As the SNR increases, this region becomes progressively smaller, but the corresponding

performance loss is more significant. For SNR = 10dB this performance loss can be as large as 50%

of the proportional fair rates, but this only occurs in very asymmetric situations.

At low SNR performance is limited by noise not interference, so whether the systems
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cooperate or not does not have much influence in performance. At larger SNRs, interference becomes

the dominant performance limiter. In very asymmetric situations the full-spread point (RFS
1 , RFS

2 )

is such that RFS
1 or RFS

2 is large. In either of these cases, one system obtains a large enough rate

with the full-spread allocations, and a threat of the other system to apply the spreading punishment

is not effective to modify its behavior. Using Theorem 17 we see that if RFS
1 or RFS

2 is large,

the set of rates achievable in the non-cooperative situation is quite limited, and often it does not

include the optimal cooperative point. Fortunately, the level of asymmetry required to reach this

unfair situation increases with SNR. The same qualitative behavior should be observed with other

performance metrics and larger number of users.

The plots of Figure 12.3 illustrate the performance loss due to lack of cooperation when

there is asymmetry in the cross gains between the systems. One can do a similar analysis for the

case when the source of asymmetry is the transmission power instead of the cross gains.

12.3 Parameter measurement and exchange between selfish

systems

The games considered in Section 12.2 were games of complete information. This means that

all the parameters (power constraints, channel gains, etc.) are common knowledge to all the systems.

In practice, some of these parameters have to be measured, and the corresponding measurements

must be exchanged between the systems.

In a selfish environment it is possible that a system may try to tamper with the parameter

measurement and exchange process in order to obtain an advantage. This situation can be modeled

as a new game where we add in the action space of each system the different ways in which it

can alter the parameter measurement and exchange process. In this section we show, under some

assumptions, that this modified game has an efficient and fair Nash equilibrium for many reasonable

fairness goals. We accomplish this by defining a parameter measurement and exchange protocol and



147

showing that deviations from it can either be detected and punished or do not result in a better

utility for the deviant system.

12.3.1 Channel measurement and exchange protocol

To measure the channel gains {ci,j} the transmitters of the different systems take turns

in sending a pilot signal of normalized power. When transmitter i sends its pilot, all the receivers

measure simultaneously the value of the channel gain ci,j . After M time-slots all the channel gains

are measured. We assume the existence of a low rate control channel that the systems can use to

communicate with each other information about the parameters.

There are two ways in which a system may attempt to tamper with the measurement and

exchange process: (a) a system may transmit the pilot with different power level than the nominal

one; (b) a system may communicate fake channel measurement values. If these deviations pass

undetected, the resource allocation algorithm may lead to solutions that are unfair and inefficient.

In order to detect such deviations we add some detection mechanisms to the protocol.

These are:

• Test messages: System i transmits a test message using a predefined codebook of rate

R = W log (1 + ci,jPi/N0/W ) .

If ci,j is the true value of the channel gain between transmitter i and receiver j, system j

should be able to decode the message and feed it back to system i (using a low rate code) with

negligible probability of error. If on the other hand system j has reported a value of ci,j larger

than the true one, its error probability would be large, and the test would fail. Note that this

test can only check whether the value of ci,j reported by system j is larger than the true value.

• Multiple pilots: All transmitters j 6= i randomly select pilot powers Pj and transmit simul-

taneously white Gaussian signals. System j is required to broadcast the value of the total

interference power received at its receiver. The other systems can then exchange the random
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power values and check whether the reported interference power matches
∑

j 6=i cj,iPj . Since

system i does not know the values of Pj it can at most scale all values of {cj,i}j 6=i by the same

factor without being detected.

• Triangulation: This test uses a metric multi dimensional scaling technique [20] to determine the

location of transmitters and receivers from the channel gain measurements. The values of the

channel gains cannot be arbitrary; they must correspond to actual locations of transmitters

and receivers in a two or three dimensional space. If the path loss model only takes into

account the large-scale path loss (which is a function of the transmitter-receiver distance) we

can translate each channel measurement ci,j into a transmitter-receiver distance di,j . Given

these distances, the multi dimensional scaling technique finds locations for the transmitters

and receivers that match these measurements. However, if for example system i scales all

the channel gains {ci,j} (or {cj,i}) by the same factor, the match between the locations of

transmitters and receivers given by multi dimensional scaling and the distance measurements

will be bad. This is because transmitter (receiver) i cannot be simultaneously closer or farther

to all the other receivers (transmitters). In principle, this method works whenever the number

of transmitters and receivers is larger than the embedding dimension (2 in the plane or 3 in

the three-dimensional space).

In practice, the path loss model may include other effects besides large-scale path loss, such

as shadowing or multipath fading. In this case, the distance measurements obtained from the

channel gain measurements may be subject to some ”noise” that takes into account these path

loss uncertainties. If we assume that the shadowing and multipath fading between different

transmitters and receivers are independent random variables, the measurement errors in the

distance measurements will be independent. If the systems report the true measured gains, due

to statistical averaging the error between the measurements and the locations reconstructed by

multi dimensional scaling will be moderate. In addition, the error will not change significantly
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if we remove sequentially the measurements of each system. If on the contrary system i scales

all its measured gains simultaneously by the same factor (or equivalently, increases or decreases

its nominal pilot power during the measurement phase) the error between the measurements

and the locations reconstructed by multi dimensional scaling will be large and will decrease

substantially once we remove the measurements of system i from the reconstruction. The

accuracy of this detection technique will be larger when the number of systems is large, in

which case the measurement errors due to fading are reduced by the law of large numbers.

Finally note that even if we could accurately detect the location of the transmitter and receiver

of system i, we cannot make any statement about the direct channel gain ci,i in the case of

shadowing and multipath fading. This is because there is no averaging that allows us to remove

the effects of these attenuations in a single channel gain. Therefore, unless we use a simple path

loss model that only takes into account transmitter and receiver distance, the triangulation

technique can only detect falsely reported cross-gains scaled by a common factor.

• Rate detection: Some system j decodes some of system i’s messages, determines its communi-

cation rate, and feeds back the rate measurement to the other systems. This allows to detect

if a system is communicating at a rate smaller or larger than the one assigned by the resource

allocation algorithm. This technique requires that the SINR between the transmitter of system

i and the receiver of system j be larger than the SINR of system i. In addition, system j needs

to know the codebook used by system i, and should have the computational power to decode

the message. Note that the probability of finding a system satisfying these requirements in-

creases with the number of systems and the network density. In addition, note that if system

j fails in decoding system i’s message, the protocol could require some other system k, say,

to decode. It follows that the technique is robust against decoding failures of specific systems

which may be due to fading or other effects.
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12.3.2 A new repeated game

We modify the repeated game definition of Section 12.2 to add an initial stage of channel

measurement, exchange, and verification. In this initial stage, each system can either comply with the

protocol defined above or deviate from it. To deter selfish systems from deviating from the protocol

we introduce punishment strategies as we did in Section 12.2. If in this initial stage any deviation

is detected, a punishment is triggered in which all the systems spread their available power over

the total bandwidth forever. In addition, if at any stage of the repeated game any system deviates

from the power allocation or communication rate determined by the resource allocation algorithm,

a similar punishment is triggered.

We want to show that the above punishment strategies form a Nash equilibrium in the

modified repeated game whenever the corresponding game of Section 12.2 had such an efficient and

fair Nash equilibrium. Therefore we assume that the spreading rates obtained with punishment are

smaller than the rates allocated by the resource allocation algorithm under the true channel gains.

The test messages, multiple pilots, and triangulation techniques (under the assumption of

having a large and/or dense network) can detect any misrepresentation of the channel cross gains

by a single deviant system. In addition, if a system reports a direct channel gain larger than the

true value, the rate detection technique can detect that its communication rate is lower than the

one required by the resource allocation algorithm, which assumes a direct gain larger than the real

one.

Since any detected deviation from the protocol results in punishment, there is no incentive

for any individual system to misrepresent channel cross gains, or to announce a direct gain larger

than the true one.

It remains to show that there is no incentive for a system to report that its direct gain is

smaller than its true value. Since the rate detection technique can measure the communication rate,

if a system underestimates its direct gain, it will have to communicate at a rate compatible with

the reported gain to avoid being detected as a deviant. Therefore, we need to compare R∗
i , the rate
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assigned to system i by the resource allocation algorithm when system i reports its true direct gain

ci,i to the rate R̃∗
i assigned to system i when it reports a direct gain c̃i,i with c̃i,i < ci,i.

We state our results in the next two propositions.

Proposition 1 Let the resource allocation algorithm maximize R1 subject to Ri/R1 = αi > 0,

i = 2, . . . , M . Let c̃k,k < ck,k for some k. If R∗ and R̃∗ are the optimal rate vectors under ck,k and

c̃k,k respectively, then R∗
k ≥ R̃∗

k.

Proof: We first note that R̃, the achievable region when the direct gain of system k is c̃k,k, is a strict

subset of the achievable region R, that results from the direct gain ck,k (all other parameters being

equal in both cases). This is because for each feasible set of power allocations, the rate of system k

is strictly smaller when its direct gain is c̃k,k. The optimal rate vector R∗ (R̃∗) can be obtained
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Figure 12.4: Graphical solution to the optimization problem that maximizes the rates of the systems,
subject to R2/R1 = α, for two different values of the direct gain of system 2 (c2,2 > c̃2,2).

as the intersection of the line (1, α2, . . . , αM )t, t ∈ R, with the Pareto boundary of R (R̃). Since

R̃ ⊂ R the intersection of the line with the Pareto boundary occurs for smaller rates in R̃ than in

R (see Figure 12.4).

Proposition 1 shows that if the fairness goal is to maximize the rates of the systems for

fixed ratios between the rates, there is no incentive for system k to announce a smaller direct channel

gain. Note that if the Pareto boundaries of R and R̃ are smooth (i.e. have continuous derivatives)



152

the choice of αi = 1, i = 2, . . . , M , corresponds to maximizing a Max-Min fair metric.

If there is high interference among the systems, we can state an equivalent result for a

family of resource allocation algorithms that maximize a class of increasing and concave functions of

the rates. Special cases of these functions are the weighted sum of rates
∑M

i=1 αiRi for non-negative

weights {αi}i and the proportional fair metric
∑M

i=1 log(Ri).

Proposition 2 Assume that the strong interference condition ci,jcj,i > ci,icj,j holds for all pair

of systems i 6= j. Let U(R1, . . . , RM ) =
∑M

i=1 Ui(Ri) where Ui(Ri) is increasing and concave

on Ri for i = 1, . . . , M . Further assume that if Rk = Wk log(1 + ck,kPk/(WkN0)) then log(1 +

ck,kPk/(WkN0))∂Uk(Rk)/∂Rk decreases with increasing Wk and decreasing ck,k. Let c̃k,k < ck,k

for some k. If R∗ is the rate vector that maximizes U(R1, . . . , RM ) under ck,k and R̃∗ is the

corresponding maximizer under c̃k,k, then R∗
k ≥ R̃∗

k.

Proof: The strong interference assumption and Theorem 12 imply that the optimal power allocations

are orthogonal, and the resulting optimization problem of maximizing U(R1, . . . , RM ) is concave. Let

L(W1, . . . , WM ) be the Lagrangian of the maximization of
∑M

i=1 Ui(Ri(Wi)) subject to
∑M

i=1 Wi =

W :

L(W1, . . . , WM ) =

M
∑

i=1

Ui(Ri(Wi)) − λ

(

M
∑

i=1

WM − W

)

(12.8)

Taking derivatives with respect to Wi we obtain the optimality conditions:

∂L(W1, . . . , WM )

∂Wi
=

∂Ui(Ri(Wi))

∂Wi
− λ = 0 (12.9)

for i = 1, . . . , M . We first note that since Ui(Ri(Wi) is concave on Wi its derivative ∂Ui(Ri(Wi))/∂Wi

is decreasing on Wi. Therefore, an increase in λ results in a reduction of Wi. In addition, we can

rewrite (12.9) as:

∂Ui(Ri(Wi))

∂Wi

=
∂Ui(Ri)

∂Ri

∂Ri(Wi)

∂Wi

=
∂Ui(Ri)

∂Ri

�
log

�
1 +

ci,iPi

WiN0

�
−

ci,iPi

WiN0 + ci,iPi

�
=

∂Ui(Ri)

∂Ri

log

�
1 +

ci,iPi

WiN0

�(
1 −

�
log

�
1 +

ci,iPi

WiN0

��
1 +

WiN0

ci,iPi

��−1
)

(12.10)

= λ (12.11)
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Assume that we replace ck,k by a smaller value c̃k,k leaving all the other parameters unchanged.

For the purpose of getting a contradiction, assume that this decrease in ck,k results in an increase

of the optimal λ. Then, by the observation that we made above, the optimal W ∗
i will decrease for

all i 6= k, since the equations that define their values for given λ do not depend on ck,k. In addition,

since W ∗
k = W −∑i6=k W ∗

i , the corresponding optimal W ∗
k increases.

Let f(x) = 1−[(1+1/x) log(1+x)]−1 for x > 0. Then, f ′(x) = [x−log(1+x)]/[(1+x)2 log2(1+x)] > 0,

and f(x) increases with x. Letting x = ck,kPk/(WkN0) we see that if ck,k decreases and Wk increases,

x and f(x) decrease. Since by hypothesis

∂Uk(Rk)

∂Rk
log

(

1 +
ck,kPk

WkN0

)

decreases with increasing Wk and decreasing ck,k, it follows that (12.10) decreases for i = k, contra-

dicting the assumption that we made that λ increases.

Therefore, for c̃k,k < ck,k, the optimal Lagrange multiplier λ decreases, W ∗
i increase for i 6= k, and

W ∗
k decreases. Having a smaller direct gain and a smaller bandwidth, the kth system obtains a

smaller rate R̃∗
k for any c̃k,k < ck,k.

Note that in the case of the weighted sum metric with non-negative weights {αi}i,Ui(Ri) =

αiRi, ∂Ui/∂Ri = αi and log(1 + ck,kPk/(WkN0))∂Uk(Rk)/∂Rk = αk log(1 + ck,kPk/(WkN0)) which

decreases with increasing Wk and decreasing ck,k. In the case of the proportional fair metric Ui(Ri) =

log(Ri), ∂Ui/∂Ri = 1/Ri and log(1 + ck,kPk/(WkN0))∂Uk(Rk)/∂Rk = 1/Wi which decreases with

increasing Wk. Therefore, if the resource allocation algorithm maximizes a weighted sum of rates or

a proportional fair metric, and the strong interference condition holds, there is no incentive for any

system to report a smaller value for its direct gain.

In summary, we have shown that in a dense network under some assumptions on the fairness

metrics and/or the channel gains, there is no performance loss due to selfish behavior even when the

channel gains are not known a priori to the systems.
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Chapter 13

Extensions

The model that we considered in Section 10.2 includes a number of simplifying assumptions:

systems have a single transmitter-receiver pair, the codebooks used are Gaussian, and interference

is treated as noise. In this chapter we show that the main results of Chapter 12 hold in more general

models that do not have some of these restrictions.

13.1 Non-Gaussian signals

The model introduced in Section 10.2 assumed that each system generated its codebook

randomly using a Gaussian distribution. We now consider a more general model in which the

different systems generate their codebooks using arbitrary distributions subject to a mean power

constraint. We analyze whether Theorems 16 and 17 hold in this more general setting.

One can imagine that with more freedom in the choice of input distributions, it may be

possible to exert a stronger punishment over a misbehaving system. In addition, a misbehaving

system may want to find its most robust input signal to maximize its rate once the punishment is

triggered. When system i misbehaves and the remaining systems apply a punishment, the interfer-

ence observed at the receiver of system i has a maximum power given by
∑

j 6=i cj,iPj . It is possible
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to analyze the rates that system i gets for different input and punishment signals by considering

a game between a sender x and an interferer z. Let Y = X + Z, and assume that X ∈ CN and

Y ∈ CN are independent, zero mean, circularly symmetric random vectors with covariance matrices

KX and KZ subject to trace constraints tr(KX) ≤ PX and tr(KZ) ≤ PZ . The strategy of each

player is to choose a distribution subject to the power constraint. Define the payoff of player x to

be I(X;Y) and the payoff of player z to be −I(X;Y). Since the payoffs sum to a constant (i.e. 0)

the game is a zero-sum game. In our context PX = ci,iPi and PZ =
∑

j 6=i cj,iPj .

The sender should choose its distribution pX to solve suppX
infpZ

I(X;Y) and the interferer

should choose its distribution pZ to solve infpZ
suppX

I(X;Y). In both cases, the supremum and infi-

mum are taken over all distributions satisfying the power constraints PX and PZ respectively. In this

way the sender maximizes its payoff under the worst possible interference, and the interferer maxi-

mizes its payoff when the sender can adapt its signal to the observed interference. It turns out that

the game has a saddle point and a saddle value, that is, suppX
infpZ

I(X;Y) = infpZ
suppX

I(X;Y)

which is achieved when both the input and interfering signals are white and Gaussian [3].

It follows that the strongest punishment that can be applied over a misbehaving system is

achieved when all the other systems use white Gaussian signals. Therefore, the punishments used

in Theorem 16 should still be white and Gaussian even if we have the freedom to choose other

distributions. Moreover, by using a white Gaussian signal any system i can obtain a rate at least

as large as RFS
i regardless of the distribution of the interfering signals. Therefore Theorem 17 still

holds under the more general model that we consider here. In particular, it is not possible to achieve

any rate vector with a component Ri < RFS
i even allowing for arbitrary input distributions.

13.2 General interference channel achievable regions

The model of Section 10.2 assumed that the systems treat interference as noise when

decoding their messages. This assumption results in a tractable inner bound to the capacity region
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of the Gaussian interference channel. However, as we know from the analysis of Part I, treating

interference as noise may be suboptimal in many cases. In particular, for the case of two systems we

can obtain a larger achievable rate region by using simple Han-Kobayashi schemes1. These schemes

require to decode part of the message transmitted by the interfering system, and once decoded, this

part of the interference can be cancelled out. This scheme implicitly assumes that the codebooks

used by the systems are common information. In this section we will extend Theorems 16 and 17

to allow for general communications strategies for the interference channel.

In order to extend our results, we need to be able to exert a strong punishment to a mis-

behaving system. As we discussed in Section 13.1, if the misbehaving system cannot cancel any

part of the interference (i.e. treats interference as noise) the strongest possible punishment signal is

white and Gaussian. Therefore, all that is required to extend our punishment strategies is to devise

a mechanism that prevents a misbehaving system from implementing interference cancellation once

the punishment is triggered. Toward this end, we design the spectrum sharing protocol so that each

system has two codebooks for communication: a shared codebook, and a private codebook. The

shared codebook is common knowledge to all the systems, and is used while all the systems comply

with the spectrum sharing protocol. For example, this codebook may consist of two component code-

books to implement the Han-Kobayashi strategy. On the other hand the private codebook (which

varies from system to system) is only known by each system, and is used during the punishment

stage of the spectrum sharing protocol.

It is easy to see that Theorems 16 and 17 directly extend to this new setting. That is, for

R in any achievable region of the Gaussian interference channel, R can be achieved by the modified

spectrum sharing protocol without assuming cooperation among the systems if and only if R > RFS ,

where RFS is the rate vector in the Gaussian full-spread Nash equilibrium.

1Refer to Part I for a description of the Han-Kobayashi communication scheme and the corresponding inner bounds
for the two-user Gaussian interference channel capacity region.
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13.3 Multi-user systems

We now consider a model where each system is formed by one transmitter and many re-

ceivers (broadcast system) or many transmitters and a single receiver (multiple access system). In

addition, we assume that each system can implement any (single system) capacity achieving commu-

nication strategy. That is, in the broadcast case the transmitter communicates data to the multiple

receivers using superposition coding, and each receiver decodes and subtracts the messages sent to

the weaker users before decoding its own message. In the multiple access case, the receiver performs

multi-user detection, that is, it successively decodes the messages and cancels the interference from

the different transmitters. However, each system treats the interference received from the other

systems as noise.

For the case of a single (degraded) Gaussian broadcast channel, if the background noise

is white, any point in the capacity rate region can be achieved by generating the codebook of each

user with an i.i.d. Gaussian distribution. When the messages are simultaneously transmitted using

superposition coding, the signal transmitted on the channel looks i.i.d. and Gaussian. Therefore,

for white background noise there is no loss of optimality for using white Gaussian signals to com-

municate.

Now consider a single receiver of the broadcast system. This receiver successively decodes

the messages sent to the different users, starting with the weakest user, treating the messages of the

other users as Gaussian noise. Once a message is decoded, it is subtracted from the received signal,

and the next user in increasing level of channel quality is decoded. The process continues until the

receiver decodes his own message. At each stage of the decoding process the receiver behaves as a

single user receiver. For this single user receiver, we can use the results of Section 13.1 to conclude

that the worst type of noise is white and Gaussian. That is, if the background noise distribution is

chosen by and adversary that has a power constraint, and whose goal is to minimize the rate at the

given receiver, he should choose a white and Gaussian noise distribution. It follows that the worst
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type of noise for the broadcast system as a whole is white and Gaussian.

A similar argument can be made for a single multiple access system. For white Gaussian

background noise, any point in the capacity region of the Gaussian multiple access channel can

be achieved by using i.i.d. random Gaussian codebooks at the different transmitters, and using

successive decoding at the receiver. Therefore, there is no loss of optimality for the system to use

white and Gaussian signals. In any point in space, the superposition of these signals looks white

and Gaussian, so the interference created by the system as a whole looks white and Gaussian.

The receiver in the multiple access system performs successive decoding and interference

cancellation. At each stage of the decoding process, the receiver decodes a message treating the

messages not yet decoded as noise. After decoding the message, it subtracts it from the received

signal to reduce the interference seen by the remaining messages. Using the same argument as in

the broadcast system case, the worst type of noise for the multi-user detection receiver is white and

Gaussian. Therefore, the worst type of noise for the multiple access system is white and Gaussian.

It follows that when many multiple access and broadcast systems share spectrum, white

Gaussian signaling forms a Nash Equilibrium of the resulting Gaussian interference game. This is

because white Gaussian codebooks are the best response of each system to a white and Gaussian

interference. In addition, the strongest punishment that the systems can exert over a misbehaving

system is to use white and Gaussian codebooks, so that the interference created onto the system

is white and Gaussian. Therefore, Theorems 16 and 17 directly extend to this multi-user systems

model.
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Chapter 14

Discussion

Our game theoretic analysis showed that in many cases, the fair and efficient operating

point can be enforced through punishment strategies. Moreover, the rates that can be obtained

with our punishment strategies are essentially the best that one can hope for in a non-cooperative

setting. Therefore our results are tight and quantify the best achievable performance with lack

of cooperation. The two system example that we presented shows that in most situations the

performance loss due to lack of cooperation is small, and vanishes with increasing SNR.

Under the assumption that interference is treated as noise, finding efficient and fair spec-

trum allocations requires solving a complex optimization problem. We showed that under strong

interference, frequency division multiplexing is optimal, and the resulting optimization problem is

convex. In the more general case, the problem was shown to be of finite dimension but with non-

convex structure. Finding efficient distributed algorithms that can be proved to converge to the

optimal solution remains an open problem.

We assumed flat fading channels throughout this third part of the thesis. An interesting

problem for future research is to extend our results for a general frequency selective channel model.

While the basic idea of enforcing cooperation through credible threats is applicable for the frequency

selective case, the choice of punishments and methods to make them credible require further study.
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The punishment strategies that we considered, which punish forever any deviation from the

desired behavior, are optimal for obtaining the largest achievable rate region in a non-cooperative

situation. However, in a practical setting where there may be measurement errors (in the parameters

or in the observation of the result of previous stages of the game), punishing forever may be too

strict. It is possible to modify the punishment to last a fixed number of stages, where this number

is chosen long enough to deter any misbehavior.
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Appendix A

Proof of Theorem 15

Theorem 15 The Gaussian Interference game with M players has an orthogonal Nash equilibrium

(i.e. pi(f) > 0 ⇒ pj(f) = 0, ∀j 6= i, for all f ∈ [0, W ]) if for all sequences of indices i1, i2, . . . , ik,

2 ≤ k ≤ M , is 6= it for s 6= t the channel gains {ci,j} satisfy:

ci1,i2ci2,i3 . . . cik,i1

ci1,i1ci2,i2 . . . cik,ik

> 1. (A.1)

Furthermore, the existence of an orthogonal Nash equilibrium requires that for all sequences of indices

i1, i2, . . . , ik, 2 ≤ k ≤ M , is 6= it for s 6= t the channel gains {ci,j} satisfy:

ci1,i2ci2,i3 . . . cik,i1

ci1,i1ci2,i2 . . . cik,ik

≥ 1. (A.2)

Proof: Every frequency f ∈ [0, W ] must be used by one and only one system. This follows because

if a particular frequency remained unused, some system could increase its rate by allocating some

power in it, and therefore the corresponding allocations cannot correspond to a Nash equilibrium.

Also, if two or more systems allocated power in the same frequency, the corresponding allocation

would not be fully orthogonal, which is the assumption here.

Let Wm be the set of frequencies f in which pm(f) > 0, and wm =
∫W

0
1(f ∈ Wm)df be the

bandwidth used by system m. We assume that wm > 0, m = 1, . . . , M (otherwise we would need
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infinite power density in some frequencies) and the observation of the previous paragraph implies

that
∑M

m=1 wm = W .

A given power allocation {pm(f)} is a Nash equilibrium of the Gaussian Interference Game (GIG) iff

it corresponds to a water-filling power allocation for every user. In the fully orthogonal case, pm(f)

corresponds to a water-filling power allocation iff:

pm(f) =















1/wm f ∈ Wm

0 f /∈ Wm

and ci,i/wi ≤ cj,i/wj , ∀j 6= i, i, j = 1, . . . , M .

This set of inequalities can be written as:

wj −
cj,i

ci,i
wi ≤ 0 ; j 6= i ; i, j = 1, . . . , M (A.3)

which constitutes a system of M(M − 1) inequalities. In addition to these inequalities, the vector

w = (w1, . . . , wM )T must satisfy wm > 0 for m = 1, . . . , M .

We first prove that (A.2) is a necessary condition for the existence of a w > 0 (we use ’>’ to denote

component-wise inequality) that satisfies (A.3). Let w > 0 be such that (A.3) is satisfied, and

consider a particular sequence of indices i1, i2, . . . , ik, 2 ≤ k ≤ M , is 6= it for s 6= t. We need only

consider a subset of the inequalities (A.3), which for convenience we rewrite here as:

wi1 ≤ ci1,i2

ci2,i2
wi2 wi2 ≤ ci2,i3

ci3,i3
wi3 · · · wik−1

≤ cik−1,ik

cik,ik

wik
wik

≤ cik,i1

ci1,i1
wi1

By repeatedly replacing the wi in the right hand side of each inequality with the right hand side of

the following inequality we obtain:

wi1 ≤ ci1,i2

ci2,i2

· ci2,i3

ci3,i3

· · · cik−1,ik

cik,ik

· cik,i1

ci1,i1

wi1

and noting that wi1 > 0 the inequality (A.2) follows. Since this is true for any choice of the index

sequence we have proved the necessity of the conditions (A.2).

The conditions (A.3) are necessary and sufficient for the existence of an orthogonal Nash equilibrium.

If the inequality in (A.3) is replaced by strict inequality we get only a set of sufficient conditions
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for the existence of an orthogonal equilibrium. We now express this set of sufficient conditions in

matrix form.

Let A ∈ RM(M−1)×M be the matrix whose rows, indexed by the pair (i, j), i, j = 1, . . . , M , j 6= i

have 1 in the jth column, −cj,i/ci,i in the ith column and 0 in the other columns. Then, a sufficient

condition on for the existence of an orthogonal Nash equilibrium is:









A

−IM









w < 0 (A.4)

where IM is the M × M identity matrix, w = (w1, . . . , wM )T , and 0 ∈ RM is the all zeros vector.

Note that if w satisfies (A.4) then w̃ = (W/
∑M

m=1 wm)w also satisfies it, and
∑M

m=1 w̃m = W . So

it follows that there exists an orthogonal Nash equilibrium in the GIG if there exists w ∈ RM that

satisfies (A.4).

To prove the sufficiency of the conditions (A.1) we need to prove that if (A.1) is satisfied for every

choice of the index sequence, then there exists a w that satisfies (A.4). For this we use the theorem

of alternatives [6] to write the dual statement to (A.4):

∃w ∈ RM :









A

−IM









w < 0 ⇔ @λ ∈ RM2

: λ ≥ 0, λ 6= 0,
[

AT − IM

]

λ = 0 (A.5)

To prove that (A.1) implies that there is no λ that satisfies the three conditions in the right of (A.5)

we associate these three conditions to the feasibility of a non-zero flow in a generalized network flow

problem. For this we let x = (λ1, · · · , λM(M−1))
T and b = (λM(M−1)+1, · · · , λM2)T and rewrite the

conditions on the right of (A.5) as:

@(x,b) : x ≥ 0,b ≥ 0, (x,b)T 6= 0,ATx = b

We associate the equation AT x = b to a mass balance equation in a generalized network. Consider

a directed graph G with M nodes labeled 1, . . . , M and M(M − 1) arcs. Each column of AT has

two nonzero entries, one of which is 1 (in the jth row) the other being −cj,i/ci,i (in the ith row).
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We use each such column to represent an arc with origin in node j and end in node i, with arc gain

µj,i = cj,i/ci,i. The variable xk represents the flow that enters the arc defined by the kth column

of AT . In a generalized network the flow that exits a given arc may be larger or smaller than the

flow that enters the arc depending on the arc gain µ. The parameter bm represents a flow that

enters node m from the exterior. If bm > 0 there is a source in node m that generates flow, and if

bm < 0 there is a sink in node m that consumes flow. Row m of AT x = b indicates that the sum

of the flows that leave node m minus the sum of the flows that enter node m (multiplied by the

appropriate arc gains) must be equal to the flow generated in the node. Note that in our case the

special structure of the matrix AT results in a fully connected network, with two arcs (one in each

direction) connecting every pair of nodes (see Figure A.1).

1

2

M

m

m

mm

mm

1,2

2,M

M,22,1

1,MM,1

b

b

b

1

2

M

Figure A.1: Fully connected network with M nodes.

In a generalized network flow problem each arc (i, j) has an associated cost zi,j per unit of flow that

enters the arc. Also the flow of each arc may be upper and lower bounded by some constants. The

generalized network flow problem can be formulated as a linear program:

Minimize zT x

Subject to: ATx = b

lb ≤ x ≤ ub
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where z is the vector of arc costs, lb are the lower bounds on the arc flows and ub are the upper

bounds on the arc flows.

For our purposes we set lb = 0, z = −1, and do not use upper bound constraints (uncapacited

network). With these choices the linear program is in standard form. If the optimal value is ∞ we

have that the problem is infeasible, and if it is 0 the only feasible solution is x = 0. We need to

prove that if (A.1) holds, then the optimization problem is infeasible for b 6= 0, and is feasible with

optimal value 0 for b = 0.

A set of M linearly independent columns of AT is called a basis of the linear program. The

corresponding entries of x are called basic variables. A vector x that satisfies the inequality and

equality constraints of the linear program such that the non-basic variables satisfy the inequality

constraints with equality is called a basic feasible solution.

The constraints of the linear program define a polyhedron. By Corollary 2.2 of [5] every non-empty

polyhedron in standard form has at least one basic feasible solution. Theorem 2.8 of [5] states that

if the polyhedron defined by the constraints of the linear program has at least one basic feasible

solution, then either the optimal value is −∞ or there exists a basic feasible solution that is optimal.

It follows that for a linear program in standard form either:

• The problem is infeasible.

• The optimal value is −∞.

• There is a basic feasible solution that is optimal.

Therefore, assuming that we are in the third case, to solve a linear program we can restrict our

attention to basic feasible solutions. The simplex algorithm uses this fact to solve linear programs

efficiently.

We need to introduce some definitions which are extracted from [2]:

Definition 2 Let P be a path (not necessarily directed) from node s to node t. Let P̄ and P denote
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the sets of forward and backward arcs in P . We define the path multiplier µ(P ) of the path P as

follows:

µ(P ) =

∏

(i,j)∈P̄ µi,j
∏

(i,j)∈P µi,j

Property 1 If we send 1 unit of flow from node s to another node t along a path P , then µ(P )

units become available at node t.

Definition 3 Let W be a cycle (not necessarily directed) from a specified node s to itself whose

orientation has already been defined. Let W̄ and W denote the sets of forward and backward arcs in

the cycle. With respect to the cycle’s orientation, we define its cycle multiplier µ(W ) as follows:

µ(W ) =

∏

(i,j)∈W̄ µi,j
∏

(i,j)∈W µi,j

Sending flow along a cycle is the same as sending flow along a path except that the flow comes back

to itself. Property 1 implies that if we send 1 unit of flow along the cycle W starting from node s,

then µ(W ) units return to this node. If µ(W ) > 1, we create an excess at node s; in this case we

refer to the cycle W as a gainy cycle. If µ(W ) < 1, we create a deficit at node s; in this case we refer

to the cycle W as a lossy cycle. If µ(W ) = 1, the flow around this cycle conserves mass balance at

all its nodes; we refer to any such cycle W as a breakeven cycle.

Definition 4 A subgraph of G is an augmented tree if it is connected and it contains exactly one

cycle (see Figure A.2). A good augmented tree is an augmented tree whose cycle is either lossy or

gainy but not breakeven.

Definition 5 An augmented forest is a collection of node-disjoint augmented trees that span all the

nodes in G. A good augmented forest is an augmented forest whose components are good augmented

trees.

Definition 6 Suppose that the sets F, L and U define a partition of the arc set of G and that F

is a good augmented forest. We refer to the arcs in L as nonaugmented-forest arcs at their lower
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Figure A.2: Example of an augmented tree.

bounds, and the arcs in U as nonaugmented-forest arcs at their upper bounds. We refer to the triple

(F,U,L) as a good augmented forest structure.

Theorem 15.8 of [2] and the remark that follows it state that each good augmented forest structure

defines a basis of the generalized network flow problem and to each augmented forest structure we

can associate a basis of the linear program. Therefore in the search for a solution to the generalized

network flow problem we can restrict our attention to good augmented forest structures. This fact

is the essence of the generalized network simplex algorithm.

In our case we don’t have upper bound constraints on x and therefore U = ∅. The set L defines the

set of components of the basic point x with zero value. Let AT
F be the matrix obtained by extracting

from AT the columns corresponding to the arcs in F, and xF the corresponding arc flows. The fact

that the good augmented forest structure defines a basis for the generalized network flow problem

implies that the equation AT
F xF = b has a unique solution. If this solution satisfies the inequality

constraints xF ≥ 0 the corresponding basic point is feasible.

The above matrix equation can be decomposed into many matrix equations, one for each component

of the augmented forest structure. Each of these equations has a unique solution. We will now show

that if b ≥ 0 with b 6= 0 then the basic point is infeasible, and that if b = 0 then xF = 0.

Consider any good augmented forest of F. Since b ≥ 0 the mass balance equation implies that all
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flows in the non-cycle arcs must be flowing toward the cycle nodes. Therefore each cycle-node receives

a non-negative amount of flow from all non-cycle arcs. If all cycle arcs have the same orientation,

condition (A.1) implies that the cycle of the augmented forest is gainy. The mass balance equation

can only be satisfied by non-negative flows if all the flows in the cycle are zero and all flows arriving

at cycle-nodes from non-cycle arcs are also zero.

If the arcs in the cycle have different orientations, then there is at least 1 node in the cycle that

has two cycle arcs entering it. Since the amount of flow entering the node from non-cycle arcs is

non-negative, the only way in which mass balance can be satisfied with non-negative flows is by

having all flows entering the node equal to zero. This results from the fact that flows entering the

node don’t have a way of exiting it. Having a flow in a cycle arc equal to zero breaks the cycle and

forces all flows in cycle arcs to be zero too (the augmented forest becomes a tree with no sinks, so

any non-zero flow cannot leave the network and mass balance cannot hold). As before, it follows

that mass balance can only be satisfied by non-negative flows if all the flows in the cycle are zero,

and all flows arriving at cycle-nodes from non-cycle arcs are also zero.

To have all flows equal to zero we need b = 0. Since this is true for all augmented forests in F, the

statement that we want to prove follows.

Since the choice of the good augmented forest structure is arbitrary, it follows that for b = 0 all

basic feasible solutions are 0, and for b 6= 0, b ≥ 0 there are no basic feasible solutions.

Since our optimization problem is in standard form, the non-existence of basic feasible solutions for

b 6= 0 implies that the polyhedron defined by the constraints of the linear program is empty. In

other words, the problem is infeasible for b 6= 0.

To finish the proof of the theorem, we need to show that for b = 0 the only feasible point is x = 0.

In this way we would prove that for b = 0 the optimal value of the linear program is x = 0.

To get a contradiction, assume that there is a feasible point x̂ 6= 0. Then x̂ ≥ 0 with x̂k > 0 for

some k. Let ak be the kth column of AT , Ã be the matrix obtained by removing the kth column of
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AT , and x̃ be the vector obtained by removing the kth component of x̂. The feasibility of x̂ implies

that AT x̂ = 0. Then we can write Ãx̃ = −x̂kak with x̃ ≥ 0. Note that ak has exactly two non-zero

entries, one being 1 and the other being −µj,i = −cj,i/ci,i, where we assumed that the arc defined

by ak starts in node j and ends in node i. With this transformation we have a new generalized

network similar to the original network but with arc k removed, and a source of value x̂kµj,i at node

i and a sink of value x̂k at node j.

Consider a good augmented forest structure F of this modified network. There are two cases to

consider depending on whether the nodes i and j are in the same or different components of F.

If the nodes i and j are in different components of F then the good augmented forest that contains

node i has a non-zero source and no sinks. As was shown before, there is no flow that satisfies mass

balance for this good augmented forest and therefore F is infeasible.

If on the other hand the nodes i and j are in the same component of F, the source at node j and

the sink at node i can be replaced by an arc starting at node j and ending at node i with arc gain

µj,i and with an amount of flow x̂k > 0. With this transformation the resulting component has

no sources or sinks. Note that by introducing the extra arc we have generated a second cycle and

possibly a third cycle, so the resulting subgraph is not a good augmented tree anymore. Note that

the arc (j, i) is part of at least one of these cycles. The parts of the subgraph other than the cycles

and the nodes and arcs that connect them are trees with no sources or sinks and the flow going

through them must be zero. We can therefore just focus on the cycles and the nodes and arcs that

connect them. There are two cases to consider:

• Two cycles are created which share at most one vertex (see Figure A.3). If the orientations of

the arcs in any of the cycles do not follow the same direction then the flow in the corresponding

cycle must be zero (flows cannot be negative), the cycle is broken, and we are left with a good

augmented tree with no sources or sinks. The only feasible flow for this graph is the all zeros

flow, which contradicts the fact that arc (j, i) has a strictly positive flow.
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Figure A.3: Example where the addition of the arc (j, i) creates 1 additional cycle. The lower figure represents the
2 cycles with the corresponding cycle multipliers, and the connection between them.

Assuming that the orientation of the arcs in both cycles follow the same direction, we start

computing the flows that circulate in the cycle that contains the arc (j, i). Since the cycle is

gainy, there is a non-negative amount of flow that is generated, and that must leave the cycle

toward the other cycle. The other cycle receives a non-negative amount of flow, and since it is

gainy it cannot consume it. Therefore there is no feasible flow that satisfies mass balance.

• Three cycles are created which share 2 nodes, p and q (see Figure A.4).

Figure A.4: Example where the addition of the arc (j, i) creates 2 additional cycles. The figure on the right
represents the paths that form the 3 cycles, with their orientations, path multipliers and flows.

If the orientation of the arcs in any of the three paths that connect p and q are not the same,

then the flow in the corresponding path must be zero, one of the cycles is broken and we

are left with a good augmented tree with no sinks or sources. The only feasible flow for this

augmented tree is the all zeros flow, which contradicts the fact that arc (j, i) has a strictly
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positive flow. Assuming that the 3 paths have arcs with the same orientation, then the three of

them cannot be pointing from p to q (or q to p) simultaneously, as there would be no incoming

flow into node p. This would force the 3 outgoing flows to be zero. We would then have all

flows equal to zero contradicting the fact that arc (j, i) has a strictly positive flow. Then we

must have two outgoing paths and one incoming path at node p (or q). Let µ1 and µ2 be the

path gains of the two outgoing paths, and let y1 and y2 be the corresponding flows. Also let µ3

be the path gain of the remaining path, and let y3 be the corresponding flow. By considering

the mass balance equations we have:

y3 = µ1y1 + µ2y2

y1 + y2 = µ3y3

Therefore,

µ3 (µ1y1 + µ2y2) = y1 + y2

y1 (µ3µ1 − 1) + y2 (µ3µ2 − 1) = 0

The conditions (A.1) imply that µ3µ2−1 > 0 and µ3µ2−1 > 0 which with the above equations

and the non-negativity of feasible flows imply y1 = y2 = y3 = 0, contradicting the fact that

the flow in the arc (j, i) is strictly positive.

We see that in both cases the good augmented forest structure F is infeasible. Since the choice of F

was arbitrary, all basic solutions are infeasible. The constraints on the flows of the modified network

are given in standard form, so the absence of basic feasible solutions implies that the feasible region

is empty. This proves that there is no such x̃ such that Ãx̃ = −x̃kak with x̂k > 0, and we have a

contradiction.

Having proved that x = 0 is the only feasible point of the linear program for b = 0, it follows that

the optimal value is 0. The sufficiency of the conditions (A.1) follows.


