
Gaussian Interference Channel Capacity to Within
One Bit: the General Case

Raul H. Etkin
Hewlett-Packard Laboratories
Palo Alto, CA 94304, USA
Email: raul.etkin@hp.com

David N. C. Tse
Wireless Foundations

University of California, Berkeley
Berkeley, CA 94720, USA

Email: dtse@eecs.berkeeley.edu

Hua Wang
Dept. of Electrical and Computer

Engineering
University of Illinois, Urbana-Champaign

Urbana, IL 61801, USA
Email: huawang@uiuc.edu

Abstract— The characterization of the capacity region of the
two-user Gaussian interference channel has been an open prob-
lem for thirty years. The understanding on this problem has
been limited. The best known achievable region is due to Han-
Kobayashi but its characterization is very complicated. It is
also not known how tight the existing outer bounds are. In
this work, we extend our results of [1] to general (i.e. possibly
asymmetric) channels for the complete capacity region. We show
that the existing outer bounds can in fact be arbitrarily loose
in some parameter ranges, and by deriving new outer bounds,
we show that a simplified Han-Kobayashi type scheme can
achieve to within a single bit the capacity for all values of the
channel parameters. Using our results, we provide a natural
generalization of the point-to-point classical notion of degrees
of freedom to interference-limited scenarios.

I. I NTRODUCTION

Interference is a central phenomenon in wireless commu-
nication when multiple uncoordinated links share a common
communication medium. Most state-of-the-art wireless sys-
tems deal with interference in one of two ways:

• orthogonalize the communication links in time or fre-
quency, so that they do not interfere with each other at
all;

• allow the communication links to share the same degrees
of freedom, but treat each other’s interference as adding
to the noise floor.

It is clear that both approaches can be sub-optimal. The first
approach entails ana priori loss of degrees of freedom in
both links, no matter how weak the potential interference
is. The second approach treats interference as pure noise
while it actually carries information and has structure that can
potentially be exploited in mitigating its effect.

These considerations lead to the natural question of what
is the best performance one can achieve without making any
a priori assumptions on how the common resource is shared.
A basic information theoretic model to study this question
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is the two-user Gaussian interference channel (GIFC), where
two point-to-point links with additive white Gaussian noise
interfere with each other (Figure 1). The capacity region of
this channel is the set of all simultaneously achievable rate
pairs (R1, R2) in the two interfering links, and characterizes
the fundamental tradeoff between the performance achievable
in the two links in face of interference. Unfortunately, the
problem of characterizing this region has been open for over
thirty years. The only case in which the capacity is known
is in the strong interference case, where each receiver has a
better reception of the other user’s signal than the intended
receiver [2]–[4]. The best known strategy for the other cases is
due to Han-Kobayashi [2]. This strategy is a natural one and
involves splitting the transmitted information of both users
into two parts: private information to be decoded only at
own receiver and common information that can be decoded
at both receivers. By decoding the common information, part
of the interference can be cancelled off, with the remaining
private information from the other user treated as noise. The
Han-Kobayashi (HK) strategy allows arbitrary splits of each
user’s transmit power into the private and common informa-
tion portions as well as time sharing between multiple such
splits. Unfortunately, the optimization among such myriads of
possibilities is not well-understood, so while it is clear that
it will be no worse than the above-mentioned strategies as it
includes them as special cases, it is not very clear how much
improvement can be obtained and in which parameter regime
would one get significant improvement. More importantly, it
is also not clear how close to capacity are the achievable rates
of the scheme and whether there will be other strategies that
can do significantly better.

The main result in this paper is that a very simple HK type
scheme with a single private-common power split can in fact
achieve within1 bit/s/Hz of the capacity of the channel for
all values of the channel parameters. That is, for all rate pairs
(R1, R2) in the interference channel capacity region,(R1 −
1, R2 − 1) is achievable by this simple strategy. This result
is particularly relevant in the high SNR regime, where the
achievable rates are high and in fact grow unbounded as the
noise level goes to zero. Through this result, we are able to
characterize the interference channel capacity region to within
one bit.



In [1] we presented our results for the symmetric capacity
of symmetric GIFCs, i.e. the maximum rate that can be
simultaneously achieved by both users. In this conference
paper, we present our results for the complete capacity region
of general asymmetric GIFCs.

The key feature of our simple HK scheme is that the power
of the private information of each user should be set such that
it is received at the level of the Gaussian noise at the other
receiver. In this way, the interference caused by the private
information has a small effect on the other link as compared
to the impairments already caused by the noise. At the same
time, quite a lot of private information can be conveyed in the
own link if the direct gain is appreciably larger than the cross
gain.

To prove that this scheme is within one bit of optimality,
we need good outer bounds on the capacity region of the
interference channel. The best known outer bound [5] is based
on giving extra side information to one of the receivers so that
it can decode all of the information from the other user (the
Z-channel and related bounds). It turns out that while this
bound is sufficiently tight in some parameter regimes, it can
be arbitrarily loose in others. We derive new outer bounds
and show that very simple HK type schemes can get within1
bit/s/Hz of this outer bound for all range of parameters. Our
outer bounds are motivated by the bounding techniques of [7]
used to establish the capacity region of a class of deterministic
interference channels.

The rest of the paper is structured as follows. In Section
II we describe the model. The main results are described in
Section III. Using our results, we derive in Section IV a notion
of generalized degrees of freedom.

II. M ODEL

In this section we describe the model to be used in the
rest of this work. We consider a two-user GIFC. In this model
there are two transmitter-receiver pairs, where each transmitter
wants to communicate with its corresponding receiver (cf.
Figure 1). This channel is represented by the equations:

y1 = h11x1 + h21x2 + z1, y2 = h12x1 + h22x2 + z2,

where fori = 1, 2, xi ∈ C is subject to a power constraintPi,
i.e., E[|xi|2] ≤ Pi, and the noise processesZi ∼ CN (0, N0)
are i.i.d. over time.
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Fig. 1. Two-user Gaussian interference channel.

It is easy to see that the capacity region of the interfer-
ence channel depends only on four parameters: the signal

to noise and interference to noise ratios. Fori = 1, 2, let
SNRi = |hii|2Pi/N0 be the signal to noise ratio at receiver
i, and INR1 = |h21|2P2/N0 (INR2 = |h12|2P1/N0) be the
interference to noise ratio at receiver1 (2). As will become
apparent from our analysis, this parameterization in termsof
SNR and INR is more natural for the interference channel,
because it puts in evidence the main factors that determine
the channel capacity.

For a given block lengthn, useri communicates a message
mi ∈ {1, . . . , 2nRi} by choosing a codeword from a codebook
Ci,n, with |Ci,n| = 2nRi . The codewords{ci(mi)} of this
codebook must satisfy the average power constraint:

1

n

n
∑

t=1

|ci(mi)[t]|
2 ≤ Pi

Receiver i observes the channel outputs{yi[t] : t =
1, . . . , n} and uses a decoding functionfi,n : Cn → N to get
the estimatem̂i of the transmitted messagemi. The receiver
is in error whenever̂mi 6= mi. The average probability of
error for useri is given by εi,n = E[P (m̂i 6= mi)], where
the expectation is taken with respect to the random choice of
the transmitted messagesm1 and m2. Note that due to the
interference among users, the probability of error of each user
may depend on the codeword transmitted by the other user.

A rate pair(R1, R2) is achievable if there exists a family
of codebook pairs{(C1,n, C2,n)}n with codewords satisfying
the power constraintsP1 and P2 respectively, and decoding
functions{(f1,n(·), f2,n(·)}n, such that the average decoding
error probabilitiesε1,n, ε2,n go to zero as the block lengthn
goes to infinity.

The capacity regionR of the interference channel is the
closure of the set of achievable rate pairs.

III. M AIN RESULTS

In order to derive an inner bound for the GIFC capacity
region we will use a simple communication scheme that is a
special case of the general type of schemes introduced by Han
and Kobayashi in [2]. Let us first describe the HK setup that
is usually employed for the GIFC. For a given block length
n user i chooses a private message from codebookCu

i,n and
a common message from codebookCw

i,n. These codebooks
satisfy the power constraintsPui andPwi with Pui+Pwi = Pi.
The sizes of these codebooks are such that|Cu

i,n|·|C
w
i,n| = 2nRi .

After selecting the corresponding codewords useri transmits
the signalxi = c

u
i + c

w
i by adding the private and common

codewords. The private codewords must be decoded by the
own receiver, while the common codewords must be decoded
by both receivers.

The HK scheme allows to generate the codebooks using
arbitrary input distributions, and allows to do time sharing
between multiple strategies. A characterization of the HK
achievable region in terms of single letter expressions is given
in [2, Theorem 4.1]. Recently, a simplified yet equivalent HK
achievable region was given in [6].

We will consider a simple scheme where the codebooks
are generated by using i.i.d. random samples of a Gaussian



CN (0, σ2) random variable withσ2 = Pui, Pwi. In addition,
we fix the choice of private and common message powers,
i.e. we do not time share between multiple strategies with
different private/common message power splits. We denote by
INRpj the interference to noise ratio at receiverj due to the
private message transmitted by useri, i.e.

INRpj =
|hij |2Pui

N0

for i, j = 1, 2, i 6= j. This HK scheme is denoted by
HK(INRp2, INRp1), and the corresponding achievable region
is denoted byR(INRp2, INRp1).

The channel is in weak interference whenSNR1 > INR2

andSNR2 > INR1. In this case we choosePui such thatINRpj

is as close to 1 as possible. WhenINRpj = 1 the interference
created by the private message has the same power as the
Gaussian noise. Note that settingINRpj = 1 is only possible
when INRj ≥ 1. When INRj < 1 we setINRpj = INRj . The
following theorem states that this scheme achieves rates within
1 bit/s/Hz of capacity.1

Theorem 1: The achievable region

R
(

min(1, INR2), min(1, INR1)
)

is within one bit of the capacity region of the GIFC with
weak interference. That is, for any rate pair(R1, R2) in the
interference channel capacity region,(R1 − 1, R2 − 1) is in
R

(

min(1, INR2), min(1, INR1)
)

.
In order to show that the schemeHK

(

min(1, INR2),
min(1, INR1)

)

achieves a region close to capacity, we need to
derive good outer bounds to the GIFC capacity region. The HK
achievable region of [2], [6] is expressed in terms of bounds
for R1, R2, R1 + R2, 2R1 + R2, and R1 + 2R2. We can
obtain an outer bound for the capacity region by computing
upper bounds forR1, R2, R1 +R2, 2R1 +R2, andR1 +2R2.
The upper bounds forR1 and R2 can be obtained from the
single user capacity bounds that result from ignoring the effect
of interference:

R1 ≤ log (1 + SNR1) (1)

R2 ≤ log (1 + SNR2) . (2)

Upper bounds forR1+R2 can be obtained from the Z-channel
bounds that result when a genie provides side informationx1

(x2) to receiver 2 (1). These bounds are given by:

R1 + R2 ≤ log (1 + SNR2) + log

(

1 +
SNR1

1 + INR1

)

(3)

R1 + R2 ≤ log (1 + SNR1) + log

(

1 +
SNR2

1 + INR2

)

.(4)

As was shown in [1] the Z-channel bounds can be arbitrarily
loose in some parameter ranges, and therefore, a new sum rate
upper bound is required. This is given in the following lemma:

Lemma 1: The sum capacity of the GIFC is upper bounded
by:

1Due to space limitations we only provide sketches of the proofs of our
results. The interested reader can refer to [9] (arXiv:cs/0702045) for complete
derivations.

R1 + R2 ≤ log

(

1 + INR1 +
SNR1

1 + INR2

)

+ log

(

1 + INR2 +
SNR2

1 + INR1

)

. (5)

Proof: Define s1 = h12x1 + z2, s2 = h21x2 + z1, and
consider the genie-aided channel of Figure 2 where a genie
provides side informations1 to receiver 1, ands2 to receiver
2. In this channel, for any code with block lengthn we can
write:

n(R1 + R2−εn) ≤ I(xn
1 ;yn

1 , sn
1 ) + I(xn

2 ;yn
2 , sn

2 )

=h(sn
1 ) − h(sn

1 |x
n
1 ) + h(yn

1 |s
n
1 ) − h(yn

1 |x
n
1 , sn

1 )

+ h(sn
2 ) − h(sn

2 |x
n
2 ) + h(yn

2 |s
n
2 ) − h(yn

2 |x
n
2 , sn

2 )

=h(sn
1 ) − h(zn

2 ) + h(yn
1 |s

n
1 ) − h(sn

2 )

+ h(sn
2 ) − h(zn

1 ) + h(yn
2 |s

n
2 ) − h(sn

1 )

=h(yn
1 |s

n
1 ) + h(yn

2 |s
n
2 ) − h(zn

1 ) − h(zn
2 )

≤
n

∑

i=1

[h(y1i|s1i) + h(y2i|s2i) − h(z1i) − h(z2i)] (∗)

where the last inequality follows by the fact that removing
conditioning cannot reduce differential entropy, andεn → 0
as n → ∞. Using the entropy maximizing property of the
circularly symmetric complex Gaussian distribution, and ap-
plying Jensen’s inequality to a concave and increasing function
we obtain:

1

n

nX
i=1

h(y1i|s1i) ≤ log

�
πe

�
N0 + |h21|

2P2 +
|h11|

2P1N0

N0 + |h12|2P1

��
and

1

n

nX
i=1

h(y2i|s2i) ≤ log

�
πe

�
N0 + |h12|

2P1 +
|h22|

2P2N0

N0 + |h21|2P2

��
.

Replacing these inequalities in (*) we obtain the desired upper
bound.

In order to derive upper bounds for2R1 + R2 and R1 +
2R2 we also use a genie to provide side information to the
receivers. To derive an upper bound for2R1+R2 consider the
interference channel of Figure 3 where receiver1 has been split
into two virtual receiversRxa

1 and Rxb
1. The genie provides

side informationx2 to receiverRxa
1 and side informations2

to receiverRx2.
ReceiversRxa

1 andRxb
1 need to decode the message trans-

mitted by transmitter 1, and each achieves a rateR1. Receiver
2 needs to decode the message transmitted by transmitter 2.
Using this genie-aided channel we obtain an upper bound for
the 2R1 + R2 capacity of the GIFC:

2R1 + R2 ≤ log (1 + SNR1 + INR1) + log

(

1 + SNR1

1 + INR2

)

+ log

(

1 + INR2 +
SNR2

1 + INR1

)

. (6)

Similarly we can obtain an upper bound forR1 + 2R2:

R1 + 2R2 ≤ log (1 + SNR2 + INR2) + log

(

1 + SNR2

1 + INR1

)

+ log

(

1 + INR1 +
SNR1

1 + INR2

)

. (7)
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Theorem 1 follows by comparingR
(

min(1, INR2),
min(1, INR1)

)

to the outer bound that results from the in-
tersection of the bounds (1)-(7).

Theorem 1 is applicable only when both links are in weak
interference. If one of the links experiences weak interference
while the other link experiences strong interference, we need
to change the communication scheme. Consider the “mixed
interference” channel whereINR1 ≥ SNR2 andINR2 < SNR1,
i.e. receiver 1 observes strong interference and receiver 2
observes weak interference. In any achievable scheme receiver
1 is able to decode the message of its own transmitter. After
decoding this message it can subtract it from the received
signal to get a cleaner version of the interfering signal. Because
of the strong interference condition, receiver 1 observes a
stronger version of the message transmitted by transmitter
2 than receiver 2, and can decode this message whenever
receiver 2 can do so. Therefore, the message transmitted
by transmitter 2 is common information, decodable by both
receivers. Therefore, for this mixed interference channel, we
chooseINRp2 = 0 in our simple HK scheme, so that user 2
sends only common information. User 1 still setsINRp1 as
close to 1 as possible. The following theorem states that this
scheme achieves a region within 1 bit/s/Hz of capacity:

Theorem 2: The achievable region

R
(

min(1, INR2), 0
)

is within one bit of the capacity region of the Gaussian
interference channel whenINR1 ≥ SNR2, INR2 < SNR1.

An equivalent theorem can be stated for the mixed interfer-
ence channel whereINR2 ≥ SNR1 and INR1 < SNR2:

Theorem 3: The achievable region

R
(

0, min(1, INR1)
)

is within one bit of the capacity region of the Gaussian
interference channel whenINR2 ≥ SNR1, INR1 < SNR2.
The proof of these theorems requires to derive new bounds.
We specify the bounds required to prove Theorem 3. The
bounds (1), (2) and (3) apply with no change to this case.

The Z-channel bound (4) needs to be changed because the
corresponding Z-channel has strong interference. The sum
capacity of the strong-interference Z-channel is known [8]:

R1 + R2 ≤ log(1 + SNR2 + INR2). (8)

The last bound that we require is an upper bound on2R1+R2.
The bound (6) needs to be changed in the following way:
referring to Figure 3 the genie needs to provide additional
side informations1 = h12x1 + z2 to receiverRxa

1 . With this
change in the genie-aided channel the2R1 + R2 capacity can
be explicitly computed, and the upper bound is given by:

2R1 + R2 ≤ log (1 + SNR1 + INR1) + log

(

1 +
SNR1

1 + INR2

)

+ log

(

1 + INR2 +
SNR2

1 + INR1

)

. (9)

The upper bounds required to prove Theorem 2 can be derived
in a similar way.

Finally, when the channel is in strong interference, i.e.
INR2 ≥ SNR1 and INR1 ≥ SNR2, the capacity region is
known from previous results [2], [4].

IV. GENERALIZED DEGREES OFFREEDOM

At high SNR, it is well known that the capacity of a point-
to-point AWGN link, in bits/s/Hz, is approximately:

Cawgn ≈ log SNR. (10)

The approximation is in the sense that forSNR > 0 dB, the
approximation error is within1 bit. Using our results, we can
derive analogous approximations of the interference-channel
capacity region.

Let C(SNR1, SNR2, INR1, INR2) denote the capacity
region of the interference channel with parameters
SNR1, SNR2, INR1, INR2. Let D̃ be a scaled version of
C(SNR1, SNR2, INR1, INR2) given by:

D̃(SNR1, SNR2, INR1, INR2) =
{( R1

log SNR1

,
R2

log SNR2

)

:

(R1, R2) ∈ C(SNR1, SNR2, INR1, INR2)
}

and let

α1 =
log SNR2

log SNR1

, α2 =
log INR1

log SNR1

, α3 =
log INR2

log SNR1

.

We define the generalized degrees of freedom region as:

D(α1, α2, α3) = lim
SNR1,SNR2,INR1,INR2→∞

α1,α2,α3 fixed

D̃(SNR1, SNR2, INR1, INR2)

With this definition, the capacity region can be approxi-
mately expressed as the set of rate pairs(R1, R2) such that:

R1 = d1 log SNR1 , R2 = d2 log SNR2

for (d1, d2) ∈ D.
The generalized degrees of freedomd1, d2 give a sense of

how interference affects communication. In the absence of
interference, each user can achieve a rateRi ≈ log SNRi.



Due to interference, the single user capacity is scaled by a
factor di.

Using the bounds (1)-(7) for the interference channel with
weak interference we can computeD explicitly. D(α1, α2, α3)
is given by the set of generalized degrees of freedom pairs
(d1, d2) that satisfy:

d1 ≤ 1 , d2 ≤ 1

d1 + α1d2 ≤ α1 + max{1 − α2, 0}

d1 + α1d2 ≤ 1 + max{α1 − α3, 0}

d1 + α1d2 ≤ max (α2, 1 − α3) + max (α3, α1 − α2)

2d1 + α1d2 ≤ max(1, α2) + max (α3, α1 − α2) + 1 − α3

d1 + 2α1d2 ≤ max(α1, α3) + max (α2, 1 − α3) + α1 − α2.
(11)

A similar characterization ofD can be made for the interfer-
ence channel with mixed interference, i.e. one link with strong
interference and the other link with weak interference.

In [1] we analyzed how the symmetric generalized degrees
of freedomdsym = Csym/ logSNR varies with the interference
level α = log INR/ log SNR. Having derived the generalized
degrees of freedom regionD, we can compute it for the
symmetric channel and analyze how it varies for the different
interference regimes. For a symmetric channel, the generalized
degrees of freedom regionD can be obtained from (11) by
settingα1 = 1, α2 = α3 = α, 0 < α < 1.

Figure 4 shows how the symmetric generalized degrees of
freedom vary as a function of the interference levelα. The
performance of the schemes that treat interference as noise,
and that orthogonalize the users is also plotted as a reference.
We note that there are 5 different regimes of operation depend-
ing on whether0 ≤ α < 1/2, 1/2 ≤ α < 2/3, 2/3 ≤ α < 1
(weak interference regimes); or1 ≤ α < 2, α ≥ 2 (strong
interference regimes). The symmetric generalized degreesof
freedom can be obtained from the generalized degrees of
freedom region by maximizingd = d1 = d2 for (d1, d2) ∈ D.

capacity

orthogonal (TDM or FDM)

interference treated as noise

Csym
dsym

log SNR
=

a =
log SNR

log INR

Fig. 4. Symmetric generalized degrees of freedom as a function of the
interference levelα.

The generalized degrees of freedom region gives a more
complete picture of how interference affects communication
at the different interference levels. Figures 5 and 6 show how
D varies for the different interference levelsα.
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