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Gaussian Interference Channel Capacity to
Within One Bit

Raul H. Etkin, Member, IEEE, David N. C. Tse, Member, IEEE, and Hua Wang

Abstract—The capacity of the two-user Gaussian interference
channel has been open for 30 years. The understanding on this
problem has been limited. The best known achievable region is due
to Han and Kobayashi but its characterization is very complicated.
It is also not known how tight the existing outer bounds are. In this
work, we show that the existing outer bounds can in fact be arbi-
trarily loose in some parameter ranges, and by deriving new outer
bounds, we show that a very simple and explicit Han–Kobayashi
type scheme can achieve to within a single bit per second per hertz
(bit/s/Hz) of the capacity for all values of the channel parameters.
We also show that the scheme is asymptotically optimal at certain
high signal-to-noise ratio (SNR) regimes. Using our results, we pro-
vide a natural generalization of the point-to-point classical notion
of degrees of freedom to interference-limited scenarios.

Index Terms—Capacity region, Gaussian interference channel,
generalized degrees of freedom.

I. INTRODUCTION

I NTERFERENCE is a central phenomenon in wireless
communication when multiple uncoordinated links share

a common communication medium. Most state-of-the-art
wireless systems deal with interference in one of two ways:

• orthogonalize the communication links in time or fre-
quency, so that they do not interfere with each other at all;

• allow the communication links to share the same degrees
of freedom, but treat each other’s interference as adding to
the noise floor.

It is clear that both approaches can be suboptimal. The first ap-
proach entails an a priori loss of degrees of freedom in both
links, no matter how weak the potential interference is. The
second approach treats interference as pure noise while it ac-
tually carries information and has structure that can potentially
be exploited in mitigating its effect.

These considerations lead to the natural question of what is
the best performance one can achieve without making any a
priori assumptions on how the common resource is shared. A
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Fig. 1. Two-user Gaussian interference channel.

basic information theory model to study this question is the two-
user Gaussian interference channel, where two point-to-point
links with additive white Gaussian noise (AWGN) interfere with
each other (Fig. 1).

The capacity region of this channel is the set of all simul-
taneously achievable rate pairs in the two interfering
links, and characterizes the fundamental tradeoff between the
performance achievable in the two links in the face of interfer-
ence. Unfortunately, the problem of characterizing this region
has been open for over 30 years. The only case in which the ca-
pacity is known is in the strong interference case, where each
receiver has a better reception of the other user’s signal than the
intended receiver [1], [2]. The best known strategy for the other
cases is due to Han and Kobayashi [1]. This strategy is a natural
one and involves splitting the transmitted information of both
users into two parts: private information to be decoded only at
the intended receiver and common information that can be de-
coded at both receivers. By decoding the common information,
part of the interference can be canceled off, while the remaining
private information from the other user is treated as noise. The
Han–Kobayashi strategy allows arbitrary splits of each user’s
transmit power into the private and common information por-
tions as well as time sharing between multiple such splits. Un-
fortunately, the optimization among such myriads of possibili-
ties is not well-understood, so while it is clear that it will be no
worse than the above-mentioned strategies as it includes them
as special cases, it is not very clear how much improvement can
be obtained and in which parameter regime would one get sig-
nificant improvement. More importantly, it is also not clear how
close to capacity can such a scheme get and whether there will
be other strategies that can do significantly better.

In this paper, we make progress on this state of affairs by
showing that a very simple Han–Kobayashi type scheme can in
fact achieve rates within 1 bit/s/Hz of the capacity of the channel
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for all values of the channel parameters. That is, this scheme can
achieve the rate pair for any in the
interference channel capacity region. This result is particularly
relevant in the high signal-to-noise ratio (SNR) regime, where
the achievable rates are high and grow unbounded as the noise
level goes to zero. In fact, in some high-SNR regimes, we can
strengthen our results to show that our scheme is asymptotically
optimal. The high-SNR regime is the interference-limited sce-
nario: when the noise is small, interference from one link will
have a significant impact on the performance of the other. The
low-SNR regime is less interesting since here the performance
of each link is primarily noise-limited and interference is not
having a significant effect.

The key feature of the scheme is that the power of the private
information of each user should be set such that it is received at
the level of the Gaussian noise at the other receiver. In this way,
the interference caused by the private information has a small
effect on the other link as compared to the impairments already
caused by the noise. At the same time, quite a lot of private in-
formation can be conveyed in the own link if the direct gain is
appreciably larger than the cross gain. Moreover, the scheme in-
volves only a single private–common split and no time-sharing
is needed.

A key step in obtaining our result is the introduction of
the new concept of generalized degrees of freedom, a natural
generalization of the classical notion of degrees of freedom in
point-to-point communication to multiuser scenarios. This no-
tion provides a useful tool to approximate interference-limited
performance in the high-SNR regime. Using the generalized
degrees of freedom framework as guidance, we show that
the gap between the performance of our proposed scheme
and existing outer bounds in the literature is small in some
parameter regimes but arbitrarily loose in others. We derive
new outer bounds to cover for the other parameter ranges. Like
the existing bounds, the new outer bounds are also based on
giving extra side information to the receivers. But unlike the
existing bounds, the side information in the new outer bounds
is not sufficient for any of the receivers to decode the message
from the other user.

The rest of the paper is structured as follows. In Section II,
we describe the model. Section III focuses on the symmetric
rate point in the symmetric interference channel, where the re-
sults can be described in the simplest form. Results on the en-
tire capacity region for the general two-user channel are ex-
plained in Section IV. Section V investigates how the general-
ized degrees of freedom in the general case depend on the var-
ious channel parameters. Section VI provides intuition about the
simple Han–Kobayashi scheme used in this paper. Section VII
explores some analogies between our results and those of El
Gamal and Costa on a deterministic interference channel [3].

Regarding notation, we will use lowercase or uppercase let-
ters for scalars, lowercase boldface letters for vectors, and calli-
graphic letters for sets. For example, we write or for scalars,

for a vector, and for a set. We use to denote binary
entropy of a discrete random variable or vector, to denote
binary differential entropy of a continuous random variable or
vector, and to denote mutual information. In addition, un-
less otherwise stated, all logarithms are to the base .

II. MODEL

In this section, we describe the model to be used in the rest of
this paper. We consider a two-user complex Gaussian interfer-
ence channel. In this model, there are two transmitter–receiver
pairs, where each transmitter wants to communicate with its cor-
responding receiver (cf. Fig. 1).

This channel is represented by the equations

(1)

where for is subject to a power constraint ,
i.e., , and the noise processes are
independent and identically distributed (i.i.d.) over time.

While the capacity region of the complex Gaussian inter-
ference channel may depend on the phases of the channel
gains , the inner and outer bounds that we present in
this paper only depend on the magnitudes . As a re-
sult, we can use for our bounds a parameterization in terms
of the signal-to-noise and interference-to-noise ratios. For

, let be the SNR of user , and
be the interfer-

ence to noise ratio of user 1 (2). As will become apparent from
our analysis, this parameterization in terms of and
is more natural for the interference channel, because it puts in
evidence the main factors that determine the channel capacity.

For a given block length , user communicates a message
by choosing a codeword from a codebook

, with . The codewords of this code-
book must satisfy the average power constraint

Receiver observes the channel outputs
and uses a decoding function to get the esti-
mate of the transmitted message . The receiver is in error
whenever . The average probability of error for user
is given by

where the expectation is taken with respect to the random choice
of the transmitted messages and .

A rate pair is achievable if there exists a family of
codebook pairs with codewords satisfying the
power constraints and , respectively, and decoding func-
tions , such that the average decoding error
probabilities go to zero as the block length goes to
infinity.

The capacity region of the interference channel is the clo-
sure of the set of achievable rate pairs.

III. SYMMETRIC GAUSSIAN INTERFERENCE CHANNEL

A. Symmetric Channel and Symmetric Rate Point

In order to introduce the main ideas and results in the sim-
plest possible setting, we start our analysis of the interference
channel capacity region by considering a symmetric interfer-
ence channel and the symmetric rate point.
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In the symmetric interference channel we have
and , or

equivalently, and . In addition, the
symmetric capacity is the solution to the following optimization
problem:

Maximize:
Subject to:

where is the capacity region of the interference channel.
Due to the convexity and symmetry of the capacity region of

the symmetric channel, the symmetric capacity is attained at the
point of the capacity region that maximizes the sum rate

. Since the capacity region is known in the strong interference
case when , we will focus on the case where

. In addition, we will concentrate on the
situation where , i.e., the interfering signal power is at
least as large as the noise power. The case is not so
interesting because the communication is essentially limited by
noise. We will address this case briefly later.

B. A Simple Communication Scheme

We will use a simple communication scheme that is a spe-
cial case of the general type of schemes introduced by Han and
Kobayashi in [1]. For a given block length , user chooses a
private message from codebook and a common message
from codebook . These codebooks satisfy the power con-
straints and with . The sizes of these code-
books are such that . After selecting the cor-
responding codewords, user transmits the signal
by adding the private and common codewords. The private code-
words are meant to be decoded by receiver , while the common
codewords must be decoded by both receivers.

The general Han and Kobayashi scheme allows to generate
the codebooks using arbitrary input distributions, and allows to
do time sharing between multiple strategies. We will consider
a simple scheme where the codebooks are generated by using
i.i.d. random Gaussian variables with the appropriate variances.
Let , that is, is the interference-
to-noise ratio created onto the nonintending receiver by the pri-
vate message. We choose , i.e., the interference cre-
ated by the private message has the same power as the Gaussian
noise.1 In addition, we use a fixed strategy, i.e., we do not do
time sharing.

Why do we choose ? From the point of view of a
single user, that is, if we do not take interference into account,
one should make the private message power as large as pos-
sible (i.e., set ). However, due to interference, it
may be convenient to reduce the private message power, so that
part of the interfering signal (the common message) can be de-
coded and subtracted at the other receiver. We see that there
is a tradeoff between achieving a large rate at one’s link and
minimizing the interference caused at the other user’s link. In
Fig. 2 we plot the single-user rate as a function of the interfer-
ence power created by the private message of the other user. We

1Note that this is possible with the available power under the assumption
� �. If � � one can choose � , but will not consider this

case in this section.

Fig. 2. Rate versus interference power level. The choice � � (0 dB) does
not create too much interference and it achieves a large private message rate.

can see that if we choose , the effect of the interfer-
ence caused by the private message is small. At the same time,

allows to obtain a relatively large private message
rate in the direct link. We will give a deeper explanation later on
in Section VI.

We will show that this simple scheme allows us to achieve
a symmetric rate close to the symmetric rate capacity of the
channel. In order to determine the symmetric rate that we can
achieve with this scheme, it is useful to think of each user as
being split into two virtual users: private user and common
user . Let be the multiple-access channel formed by
virtual users , and , and receiver 1, with the signal
from virtual user being treated as noise. In a similar way, let

be the multiple-access channel formed by virtual users
, and , and receiver 2, with the signal from virtual user

being treated as noise. Since the common messages must
be decoded by both receivers, while the private messages must
be decoded only by the intended receiver, we see that the rates
achievable by a the Han and Kobayashi scheme correspond to
the intersection of the capacity regions of and .

Among all the possible rate assignments for the private and
common messages of this scheme, we choose the private rates
of both users, as well as the common rate of both users to be
equal, i.e., and . We also fix a de-
coding order at each receiver, so that the common messages are
decoded first, while the private message is decoded last. This
choice of rates and decoding order allows for an easy analysis
of the scheme and, as will be shown later, also achieves a sym-
metric rate close to capacity.

Since the private message is decoded last, while the private
message of the other user is treated as noise, the private rate of
each user is given by

Since each receiver decodes the common messages first, both
private messages are treated as noise when decoding the
common messages. With this decoding order, the sum rate of
the common messages must satisfy two constraints

(2)
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Fig. 3. Intersection of the MAC regions corresponding to virtual users� and� at receivers 1 and 2, when the signals from virtual users � and � are treated
as noise. The left graph corresponds to the case in which the sum-rate constraint (2) is active, while the right graph corresponds to the case in which the sum-rate
constraint (3) is active. In both cases, the symmetric rate point is indicated. Note that due to the symmetry in the channel and power allocations, the multiple-access
regions at receivers 1 and 2 are mirror images of each other with respect to the line � � � .

and

(3)

where (2) arises from the sum rate constraint of the multiple-ac-
cess channel (MAC) formed by virtual users and at re-
ceiver 1 (or receiver 2) when the messages from virtual users
and are treated as noise, and (3) arises from the individual
rate constraint of decoding the message of virtual user at re-
ceiver 2 and virtual user at receiver 1, treating the messages
from virtual users and as noise (see Fig. 3).

Therefore, with the simple Han and Kobayashi scheme we
obtain a symmetric rate

(4)

By comparing (2) and (3) we can determine the parameter
ranges in which each of the terms of the in (4) is
active. Define

and

and

(5)

Then, the first (second) term of the is active in .
We denote by the symmetric rate expression that
results in .

We can gain further insight into the achievable rate (4) and
the different parameter regimes , by considering how the
ratio varies for different interference levels. Di-
viding (4) by , we obtain for
and the expression in (6) at the bottom of the page.
We define the interference level as the ratio of and
in decibels, that is,

and rewrite (6) as a function of

(7)

By inspecting (7) we can readily identify three different
regimes. The first term of the is active in (7) when

. This corresponds to the parameter range , in
which the MAC constraint (2) is active. For , the
second term of the is active in (7), which corresponds
to the parameter range . In this range, the MAC constraint (3)
is active. In addition, we can further identify two subregimes,
depending on whether (the first term of the

is active) or (the second term of the
is active). Fig. 4 shows how varies with

in the different parameter regimes.

C. Known Upper Bounds

In order to evaluate the performance of our communication
scheme, we can compare the symmetric rate achieved with an
upper bound. We can obtain this upper bound by considering

(6)
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Fig. 4. Achievable rate as a fraction of single-user capacity versus interference
level.

Fig. 5. Genie-aided two-user interference channel. A genie provides signal �
to receiver 1.

any outer bound to the interference channel capacity region eval-
uated at . The best known outer bound to the interfer-
ence channel capacity region is that given in [6, Theorem 2].
We analyze this bound in Appendix A, and provide in this sub-
section an alternative bound that has similar performance and is
easier to obtain and analyze.

We will consider a general interference channel so that the
upper bounds that we derive are not restricted to the symmetric
interference channel. Consider a modified interference channel,
where a genie provides the side information to receiver 1 (see
Fig. 5).

Since is independent of we can write for any block of
length

and it follows that receiver 1 can get an interference-free signal
by subtracting the interference using the side information
provided by the genie. Therefore, we obtain that the genie-aided
channel is equivalent to the one-sided interference channel de-
picted in Fig. 6.

The sum-rate capacity of a one-sided interference channel for
the case of is known from previous results [8]
and will be explicitly derived in Section IV-A. It is given by

one-sided IC

(8)

Fig. 6. One-sided interference channel.

Fig. 7. Upper bound and achievable Han–Kobayashi rate (relative to single-
user capacity) as a function of the interference level �.

and since the aid of the genie can only increase the capacity
region of the interference channel, we obtain the upper bound
for the symmetric rate

(9)

In order to compare this bound with the rate obtained with
our simple Han–Kobayashi scheme we approximately compute
the ratio for and

(10)

We see that (10) coincides with (7) when , but (10)
and (7) differ when (see Fig. 7).

Fig. 7 suggests that the bound (9) is reasonably tight in the
parameter range . It turns out that the upper bound (9) and
the lower bound (4) differ by at most 1 bit/s/Hz in the param-
eter range . This can be checked by writing for the parameter
range
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(11)

where we used the assumption in the last inequality.
We also observe in Fig. 7 that the gap between the upper

bound and the achievable rate can be arbitrarily large in the pa-
rameter range .2 This large gap could be due to a very subop-
timal scheme, a loose upper bound, or both. It turns out that the
large gap is due to the looseness of the upper bound.

Even though the bound (8) is not as good as the bounds
presented in [6], all these bounds have the same worst case
1-bit/s/Hz gap with respect to our simple communication
strategy in the parameter range . Also, in the parameter range

all these bounds are arbitrarily loose.
Why are all these bounds loose in ? The problem is that

they rely, in one way or another, on giving side information
to receiver 1 so that he can eventually cancel the interfering
signal from user 2. We can gain some intuition about why these
bounds are loose in by considering our simple communica-
tion scheme in the genie-aided channel of Fig. 5. The side infor-
mation provided by the genie allows receiver 1 to subtract the
interference generated by transmitter 2. The rates of the virtual
private users and are in this case

and we see that virtual user gains at most 1 bit/s/Hz due to the
help of the genie. The sum rate of the MAC formed by virtual
users and at receiver 2 does not change due to the aid
of the genie. Therefore, the sum rate constraint (2) still holds.
However, due to the aid of the genie receiver 1 can decode the
message of virtual user and the sum rate constraint (3) does
not appear in this case.

In , the sum rate constraint (2) is active in the original
channel, and the aid of the genie does not allow to increase the
sum rate by a large amount. In this regime, the bound obtained
from the genie-aided channel is good. In contrast, in , the
sum rate constraint (3) is active in the original channel, and the
genie effectively releases this constraint by providing enough
information to receiver 1 to decode the message of virtual user

. Since in the constraint (2) is larger than (3) (and the gap
between the two constraints can be made arbitrarily large), the
bound obtained from the genie-aided channel is loose.

D. A New Upper Bound

In order to derive a tighter sum rate bound for the param-
eter range we will make use of the help of genies, but will

2Note that in Fig. 7 the rates are plotted relative to � and any nonzero
gap in the figure translates into an unbounded gap in the rates as ��.

avoid giving too much information to either receiver. The in-
formation that we will provide will not allow either receiver to
completely decode the message of the interfering transmitter.
The new sum-rate upper bound is given in the following the-
orem, which we state for a general (not necessarily symmetric)
Gaussian interference channel.

Theorem 1: For a Gaussian interference channel as defined
in Section II, (1), the sum-rate is upper-bounded by

(12)

Proof: Define

and consider the genie-aided channel where a genie provides
to receiver 1 and to receiver 2 (see Fig. 8). Clearly, the ca-
pacity region of this genie-aided channel is an outer bound to the
capacity region of the original interference channel. Therefore,
we can obtain an upper bound for the sum-rate of the original
channel by computing an upper bound on the sum-rate of the
genie-aided channel. For a block of length we can bound the
sum-rate of the genie-aided channel in the following way:

(13)

where the last inequality follows by the fact that removing con-
ditioning cannot reduce differential entropy, and as

.
Let and , we have
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Fig. 8. Genie-aided two-user Gaussian interference channel. A genie provides
signals � to receiver 1 and � to receiver 2.

(14)

where in step we use the fact that the circularly symmetric
complex Gaussian distribution maximizes conditional differen-
tial entropy for a given covariance constraint, in step we use
Jensen’s inequality applied to a function that, as can be easily
checked, is concave, and in step we used the fact that the
function is increasing on and . Similarly, we have

(15)

Thus, we have

Letting and we get the desired upper bound.

It is interesting to note that the upper bound of Theorem 1 can
be achieved with a communication scheme where each receiver
treats interference as noise. In the genie-aided channel used to
derive the upper bound, the side information provided by the
genie compensates for the harm that interference produces on
the other link by giving a boost in the own rate in the direct

Fig. 9. Upper bound of Theorem 1 and achievable Han–Kobayashi rate (rela-
tive to single-user capacity) as a function of the interference level �.

link. Thus, making the signal more random by not sending any
common information results in an overall improvement in the
sum rate.

We now specialize the bound of Theorem 1 to the symmetric
interference channel to obtain the following upper bound on the
symmetric rate:

(16)

To see how this bound performs in the different regimes we
compute the ratio of and for and

(17)
which we plot in Fig. 9.

Observing Fig. 9, the new upper bound seems to match the
Han–Kobayashi achievable rate in the regime , where the
upper bound (9) is loose. In fact, this new bound has a finite gap
with respect to the achievable symmetric rate with our simple
scheme in the parameter range . To verify this we compute

(18)

and we find that the gap in the symmetric rate with respect to
the new upper bound is at most 1 bit/s/Hz in .

Using (11) and (18) we see that when our simple
scheme is at most 1 bit/s/Hz away from the symmetric rate
channel capacity. Proving that the simple scheme is at most
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1 bit/s/Hz away from capacity when is straightfor-
ward. We can set and use as a symmetric rate
upper bound the single-user capacity. The difference between
the achievable rate and the upper bound is

(19)

E. Small Gap Between Lower and Upper Bounds

In Sections III-C and III-D we showed that the
Han–Kobayashi scheme that sets the private message power
so that the interference created is at noise level achieves
a symmetric rate within 1 bit/s/Hz of the upper bounds.
Therefore, we obtained a characterization of the symmetric
capacity to within 1 bit/s/Hz. The finite and small gap between
the lower and upper bounds on the symmetric capacity was
obtained by direct calculation of the difference between
the bounds. In this subsection, we present a more intuitive
explanation for the tightness of the bounds.

We can decompose the total gap between the lower and upper
bounds in two components and , arising from the fol-
lowing two steps.

1) Fix Han–Kobayashi strategy (i.e., set , decode
first the common messages , and then the pri-
vate message or 3) and see how the symmetric rate
changes when varying the channel from the given interfer-
ence channel to the genie-aided interference channel used
in the bounds. The gap quantifies the rate change due
to the side information for the fixed strategy.

2) Fix the channel to the genie-aided interference channel,
and change the Han–Kobayashi strategy by varying
from to . The gap quantifies the rate change in
the genie-aided channel when is varied.

Referring to Fig. 10, corresponds to the difference in the
rates between points and . corresponds to the difference
in the rates between points and .

Since achieves the capacity of the genie-aided
channel (one can show that the sum rate upper bounds can
be achieved by generating the codewords and with
i.i.d. circularly symmetric complex Gaussian components of
variance , and treating interference as noise at the decoder),
the sum quantifies the rate change from the initial
Han–Kobayashi strategy in the original channel (lower bound),
to the capacity achieving strategy in the genie-aided channel
(upper bound). It follows that a small gap between the lower
and upper bounds can only occur if both and are small.

To achieve a small value of , the help of the genie
should not change the relevant rate constraints for the initial
Han–Kobayashi strategy. Fig. 3 and the discussion at the end
of Section III-C describe the active constraints for the different
weak interference regimes.

3With some abuse of notation, we use � �� � � � �� � to denote the private
and common messages, and also to denote the symbols of the codewords actu-
ally sent over the channel.

Fig. 10. Gap between the achievable rate with the Han–Kobayashi scheme
that sets � � and the symmetric capacity upper bound decomposed into
two components: � and � . � results from fixing and changing the
channel; � results from increasing to in the genie-aided channel.

In addition to achieving a small value for , the help
of the genie should result in a small value of . arises
when we vary the communication strategy from the initial
Han–Kobayashi strategy to the capacity achieving strategy in
the genie-aided channel. The sum capacity of the genie-aided
channels that we used can be explicitly computed by treating in-
terference as noise. Unfortunately, it is hard to compute bounds
for the interference channel when the interference is not treated
as noise. In the original channel, setting, achieves
good performance, but in general, setting (treating
interference as noise) may result in very small rates. The role
of the genie in the genie-aided channel is to compensate for
the loss in the sum rate when is increased from to .
Increasing beyond in the original channel may produce
a loss in the rate of common message due to increased interfer-
ence. However, the genie provides just enough side information
to compensate for this loss while making optimal.

F. Generalized Degrees of Freedom

In the preceding analysis, we see the utility of the approxima-
tions like (7), (10), (17) both in identifying the different regimes
of interest as well as in developing the relevant upper bounds for
the different regimes. We can formalize the approximations of
this nature through the following type of definition. Define, for
a fixed

(20)

If there were no interference between the two links (i.e., ),
then the capacity per link is just the AWGN capacity

. Hence, . This can be interpreted as each link
having the full degree of freedom to itself. Since interference
cannot help in communicating each user’s message, it follows
that and, therefore, for . We
can think of interference as effectively reducing the degrees of
freedom of the channel, and thus it is natural to think of
as a generalized degree of freedom. The approximations we
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made can be thought of as computing analogous limits for the
achievable rates and upper bounds. Since the lower and upper
bounds on the symmetric capacity we derived earlier differ by
at most one bit, they allow us to precisely characterize .
For , this is plotted in Fig. 9. corresponds to
the strong and very strong interference regimes, and since the
capacity is known in these regimes, we can compute in
a straightforward way.

In the very strong interference case, each user can decode the
interfering message before decoding his own message [2]. After
decoding the interference and subtracting it from the received
signal, the user effectively gets an AWGN channel for commu-
nicating his own message. It follows that the symmetric capacity
in the very strong interference case is

(21)

The channel is in the very strong interference situation whenever
. Taking logs and assuming

, the very strong interference condition becomes
. In this regime, we obtain , and therefore,

interference does not reduce the available degrees of freedom of
the channel.

In the strong interference regime, each receiver is able to de-
code both messages. The capacity region of the interference
channel is given by the intersection of the capacity regions of
the two MACs formed by the two transmitters and each of the
receivers. In the symmetric case, the sum capacity of both MACs
is the same and the corresponding symmetric capacity is given
by

(22)

The symmetric channel is in the strong interference situation
whenever it is not in very strong interference and ,
which after taking logs becomes

This condition and (22) together with the assumption
imply that . It follows

that under strong interference the generalized degrees of
freedom are

(23)

We now have the complete picture shown in (24) at the bottom
of the page, and

(25)

The generalized degrees of freedom are plotted in Fig. 11,
together with the performance of the baseline strategies of or-
thogonalizing the users (in frequency or time) and treating inter-
ference as noise. Note that orthogonalizing between the links, in
which each link achieves half the degrees of freedom, is strictly
suboptimal except when and . Treating interfer-
ence as noise, on the other hand, is strictly suboptimal except
for .

Note that there are five regimes in which the qualitative be-
haviors of the capacity are different. The first three regimes fall
into the weak interference regime, and the characterization of
the symmetric capacity in these regimes is a consequence of the
new results that we obtained. In these regimes, the interference
is not strong enough to be decoded in its entirety. In fact, in
regime 1, where the interference is very weak, treating interfer-
ence as noise is optimal. In regimes 2 and 3, where the inter-
ference is not very weak, decoding it partially can significantly
improve performance.

Interestingly, the capacity is not monotonically decreasing
with in the weak interference regime. Increasing has
two opposing effects: more common information can be de-
coded and canceled but less private information can be sent
under the constraint . Depending on which of these
two effects dominates, the capacity increases or decreases with

.
In regime 1, where treating interference as noise is optimal,

the common messages carry negligible information. In this
regime, the loss in the private rate due to the increase in
makes the capacity decrease with . However, once interfer-
ence becomes strong enough to reach regime 2, the users can
start using common information to partially cancel interfer-
ence. As the interference level increases, more and more of this
common information can be decoded and partially canceled,
and this effects dominates the behavior of capacity with .
Therefore, capacity increases with in regime 2. However,
as increases further to reach regime 3, the gains obtained
by partially canceling interference through the common mes-
sages are not enough to offset the loss of rate in the private
information. In this regime, capacity decreases with until

(24)

Authorized licensed use limited to: Hewlett-Packard via the HP Labs Research Library. Downloaded on February 27, 2009 at 19:14 from IEEE Xplore.  Restrictions apply.



ETKIN et al.: GAUSSIAN INTERFERENCE CHANNEL CAPACITY TO WITHIN ONE BIT 5543

the strong interference regime is reached. Since in the strong
interference regime all the information is common information,
increasing increases capacity. Finally, in the very strong
interference regime all the interference can be canceled before
decoding the useful information, and interference does not have
any effect on capacity.

It is worthwhile to note that the communication strategies pre-
sented in [8] also showed nonmonotonic behavior under weak
interference. However, it was not clear whether this was the ac-
tual behavior of capacity or just an artifact of possibly loose ca-
pacity inner-bounds. What we demonstrated here is that in fact
it is the former.

G. Tight Characterization of Symmetric Capacity

Our simple Han and Kobayashi type scheme, together with
the symmetric capacity upper bounds (9) and (16) allowed us
to characterize the symmetric capacity to within 1 bit/s/Hz. We
will now show that in some parameter ranges, the gap between
the upper bound (16) and the rates achievable with some im-
proved communication schemes vanishes for .

The communication scheme that sets the private message
power so that the interference generated onto the other receiver
is at noise level (i.e., ) is “universal” in the sense
that the same scheme can be used to achieve a symmetric rate
within 1 bit/s/Hz of capacity in the weak interference regime,
regardless of the values of the parameters.

However, we can further improve the achievable symmetric
rate by modifying the communication scheme for different pa-
rameter ranges. In regime 1, when , we
can simply assign and not use common messages
at all. As stated in the previous subsection, this scheme achieves
a symmetric rate

(26)

and the gap between this rate and the upper bound (16) is

(27)

Note that the same gap would be obtained with any scheme that
uses such that as .

Recall that . Regime 1 corresponds to .
In this regime, (27) implies that for fixed as

. Therefore, we have that for the
symmetric capacity is tightly characterized by

(28)

In regime 2, where , we can choose
, where

(29)

is fixed but arbitrary. This choice of makes the received
interference power corresponding to the private message to
go to zero as . Note that in regime 2 we
have and, therefore,

as .
Fixing the decoding order so that the private messages are

decoded last, this scheme achieves a symmetric rate

(30)

where means that the difference between the left- and right-
hand sides goes to zero as , follows from the
fact that and as , and

follows because the second term of the dominates
due to (29).

From the upper bound (16) we obtain

(31)

Comparing (30) with (31) we see that the difference
as and therefore in regime

2 the symmetric capacity is given by

(32)

We note that both in regimes 1 and 2 we have some flexibility
in setting the private message power to asymptotically achieve
the symmetric capacity. In regime 1 we can choose any private
message power as long as when .
In a similar way, in regime 2 we can use any private message
power that satisfies as . In both
cases, setting does not asymptotically achieve the
symmetric capacity, but results in a symmetric rate no smaller
than 1 bit/s/Hz from it. Unfortunately, in regime 3 the only
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Fig. 11. Generalized degrees of freedom for two suboptimal schemes versus capacity. These suboptimal schemes are treating interference as noise and orthogo-
nalizing the users over time or frequency.

choice of private message power that achieves a symmetric rate
with bounded difference from the upper bound (9) is

, and this choice of private message power does not re-
sult in a gap that vanishes as .

In the strong interference regime, the symmetric capacity is
given by

(33)

which asymptotically approaches for as
.

Finally, in the very strong interference regime the symmetric
capacity is given by

(34)

which asymptotically approaches for .
We summarize the results of this subsection in the following

theorem.

Theorem 2: Let . For
and , the approximation given in

(35), shown at the bottom of the page, is asymptotically tight in
the sense that the difference between and the approxima-
tion goes to zero as go to infinity with fixed.

IV. WITHIN ONE BIT OF THE GENERAL CAPACITY REGION

In the previous section, we showed that a simple Han–
Kobayashi scheme can achieve to within one bit of the sym-
metric rate of the symmetric Gaussian interference channel.
We will show that this is also true for the whole capacity region
of the general two-user Gaussian interference channel (not
necessarily symmetric). Depending on the parameters of the
Gaussian interference channel ( , and ),
we can divide the analysis of the Gaussian interference channel
into the following three cases.

1) Weak interference channel:
In this case, the parameters of the Gaussian interference
channel satisfy and .

(35)
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2) Mixed interference channel:
In this case, the parameters of the Gaussian interference
channel satisfy and , or

and .
3) Strong interference channel:

In this case, the parameters of the Gaussian interference
channel satisfy and .

The capacity region of the strong interference channel is al-
ready known [1], [7]. In the following, we will show that we
can get to within one bit of the capacity region of the Gaussian
interference channel for both the weak interference channel and
the mixed interference channel.

A. Outer Bound on the Capacity Region of the Gaussian
Interference Channel

Since the existing bounds on the capacity region of the
Gaussian interference channel can be arbitrarily loose, we need
a new outer bound. In the following subsections, we provide
a new outer bound on capacity region of the weak and mixed
interference channels.

1) Outer Bound for Weak Interference Channel: For
the weak interference channel, i.e., and

, we have the following outer bound on the
capacity region.

Theorem 3: The capacity region of the weak interference
channel is contained within the set of rate pairs sat-
isfying

(36)

Proof: We prove the bounds in (36) one by one.
1) The bounds on and are just the point-to-point ca-

pacity of the AWGN channel obtained by removing the in-
terference from the other user.

2) The first bound on is just the capacity of
the one-sided interference channel resulting from the
genie-aided channel in which a genie gives to receiver
1 (see Fig. 5). We already used this bound in the sym-
metric case. This bound is known from previous results
[8] but we provide here an alternative derivation since the

same bounding techniques will be useful for obtaining
the bounds for and . Using Fano’s
inequality we can write for any codebook of block length

(37)

where we defined

(38)

In the weak interference case we have ,
which implies

(39)

Since the capacity region of Gaussian interference channel
only depends on the marginal distribution of and ,
we can assume that there exists an i.i.d Gaussian random
vector , with , such that

(40)

Thus, we have

(41)

Using the worst case noise result [9], we can see that
is maximized when is i.i.d

Gaussian random vector with . Note
that is maximized when is a Gaussian random
vector with i.i.d. components and

is a Gaussian random vector with i.i.d. components
. A simple calculation leads to

(42)
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Fig. 12. Gaussian interference channel with three receivers.

3) The second bound on can be derived similarly by
using the genie-aided channel in which a genie gives to
receiver 2.

4) The third bound on has been proved in Sec-
tion III-D.

5) Next we bound . We consider the interference
channel drawn in Fig. 12, in which there are two identical
receivers ( and ) for user 1’s message, and one
receiver for user 2’s message. We can think of
as the sum of the rates at the three receivers. To derive an
upper bound, we consider the genie-aided channel where a
genie provides to receiver and to receiver
(see Fig. 13). For any codebook of block length we can
write

(43)

Fig. 13. Genie-aided three-receiver Gaussian interference channel. A genie
provides � to receiver �� and � to receiver �� .

Using similar reasons as those in the proof of the third
bound on , we have

(44)

and

(45)

Since , we can use the worst case noise result
to bound as

(46)

Combining all the above, we have

(47)

6) Similarly we can derive the bound for .

Remark 1: As mentioned, our first bound on is also
an upper bound on the sum rate of the one-sided interference
channel (also known as Z-channel) [4], [5], [8] generated by re-
moving the link from transmitter 2 to receiver 1. In the one-sided
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channel, this upper bound can actually be achieved by both users
when they communicate using codebooks generated from i.i.d.
samples of a Gaussian distribution at full power and receiver
2 treats the signal from transmitter 1 as noise. Hence, we have
a simple derivation of the sum capacity of the one-sided inter-
ference channel. Note that the proof of the sum capacity of the
one-sided interference channel of [4], [5], [8] is quite indirect. In
[5], the degraded Gaussian interference channel is introduced,
and the capacity region of the degraded Gaussian interference
channel is shown to be included in the capacity region of a de-
graded Gaussian broadcast channel. Moreover, the boundaries
of the two regions are shown to touch at one point . Later it was
shown in [4] that the one-sided interference channel is equiv-
alent to the degraded Gaussian interference channel. Recently,
the author of [8] has pointed out that through a slope calculation
in [5], the sum capacity of the degraded Gaussian interference
channel is achieved at point , thus establishing the sum ca-
pacity of the Gaussian one-sided interference channel.

Note that in our derivation of the first and second outer bounds
on the sum rate, the outer bound on , and the outer
bound on , we used the conditions and

. For this reason, this outer bound only holds for
the weak interference channel. Next we present an outer bound
on the capacity region of the mixed interference channel.

2) Outer Bound for Mixed Interference Channel: For the
mixed interference channel, i.e., and

, we have the following outer bound on the capacity re-
gion.

Theorem 4: For the Gaussian mixed interference channel, the
capacity region is contained within the set of rate pairs
satisfying

(48)

Proof: We prove this outer bound by examining the proof
of the bounds in (36).

1) The bounds on and still hold.
2) The proof of the first upper bound on the sum rate in (36)

needs the condition , which still holds in this
mixed interference channel. So we have the same bound.

3) The proof of the second upper bound on the sum rate in (36)
needs the condition , which does not hold.
Note that this bound is actually the sum capacity of the one-
sided interference channel in which the link from trans-
mitter 1 to receiver 2 is removed. When ,
we are dealing with a one-sided interference channel with
strong interference. It is shown in [4] that a sum-rate outer

Fig. 14. Gaussian interference channel with three receivers.

bound for this channel is the sum-rate of the MAC at re-
ceiver 1, i.e.,

(49)

and it is obviously an upper bound on sum-rate of the mixed
interference channel.

4) The third upper bound on the sum-rate in (36) still holds;
however, it is straightforward to show that the third bound
on is larger than the second bound on
in (48), so we do not need to include this bound.

5) The upper bound on in (36) still holds since
still holds. However, it is straightforward to

show that the bound on is larger than the sum
of the bound on and the second bound on in
(48), so we do not need to include this bound.

6) The proof of the bound on in (36) needs the con-
dition of , which is no longer true. To obtain
a bound that does not require the condition ,
we consider the interference channel drawn in Fig. 14, in
which there are two identical receivers ( and )
for user 2’s message, and one receiver for user 1’s message.
We can think of as the sum-rate at the three re-
ceivers of this new interference channel. To derive an upper
bound, we consider the genie-aided channel where a genie
provides both and to receiver and to receiver

(see Fig. 15)
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Fig. 15. Genie-aided three-receiver Gaussian interference channel. A genie
provides signals � and � to receiver �� , and � to �� .

Using similar reasons as those in the proof of Theorem 1
in Section III-D we can write

(50)

together with

(51)

and

(52)

Thus, we have

(53)

B. Achievable Scheme

The Han–Kobayashi scheme [1] is the best known achiev-
able scheme for the interference channel. Recently, a simpli-
fied yet equivalent Han–Kobayashi achievable region was given
in [10] which we state next in Lemma 1. The achievability of
this simplified region was later proved with a direct coding the-
orem in [11, Theorem 1] (see [11, Sec. VI-A] for a specializa-
tion of [11, Theorem 1] to a noncompound interference channel,
noting that the region of Lemma 1 is obtained by applying the
Fourier–Motzkin elimination procedure to the inequalities that
define in [11], together with and

).

Lemma 1: Let be the set of joint probability distributions
that factor as

(54)
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For a fixed , let be the set of satisfying

(55)

Then the Han–Kobayashi achievable region is given by
.

In (55), is the common information of user 1 (user
2) that can be decoded at both receivers, and is the time-
sharing parameter. For the Gaussian interference channel, if we
use Gaussian codebooks, and use and to denote the pri-
vate information of user 1 and user 2 respectively, we can write

(56)

where and are independent complex Gaussian
random variables. Different correspond to different
power splits between common and private messages, and dif-
ferent time-sharing strategies between the power splits.

Consider a fixed power splitting (i.e., we do not do time
sharing) between private information and common information
of the two users. Let and be the power of user 1 and
user 2’s private messages, respectively. We define to
be the interference-to-noise ratio of user 1’s private message
at receiver 2 and to be the interference to noise ratio of
user 2’s private message at receiver 1, i.e.,

(57)

It is clear that and . With
this definition, the SNR of user 1’s private message at receiver
1 is and the SNR of user 2’s private mes-
sage at receiver 2 is . We can parameterize
a Han–Kobayashi achievable scheme with a fixed power split-
ting by using and . We denote the Han–Kobayashi
scheme with parameters as ,
and the corresponding achievable region as .

Note that and corre-
spond to a Han–Kobayashi scheme where there is a fixed pri-
vate and common message power split and there is no time
sharing (i.e., the time-sharing random variable is a constant).
Therefore, , where is the general
Han–Kobayashi achievable region given in Lemma 1. In gen-
eral, the inclusion is strict, that is, varying the power allocations

and time sharing between multiple private and common mes-
sage power splits allows to achieve a larger rate region. How-
ever, we will see that the region achievable with a clever choice
of a fixed private and common message power split and without
time sharing is close to the capacity region of the channel.

To evaluate the Han–Kobayashi region (55) for the Gaussian
interference channel, even if we restrict ourselves to use only
Gaussian codebooks, we need to consider all possible power
splits and different time-sharing strategies among them. This
is in general very complicated and a calculation of a subset
of the Han–Kobayashi achievable region using some special
choices of power splitting and time sharing strategies can be
found in [8]. However, from the intuition we built in Section III,
we know that a good power splitting should have the property
that and , i.e., the interference-to-noise
ratio of each user’s private message at the other user’s receiver
is one. We also showed that this power splitting can achieve
to within one bit the symmetric rate capacity of the symmetric
Gaussian interference channel. In the next section, we will show
that this is also a good splitting for the entire capacity region.
More specifically, we will show that by choosing
as close to as possible, we can achieve rates within one bit of
the whole capacity region.

C. Within One Bit of the Capacity Region

Equipped with the new outer bound derived in Section IV-A1
and the intuition of a good power splitting in Section III, we are
now ready to prove our main result: a simple Han–Kobayashi
scheme can achieve to within one bit of the capacity region of
the Gaussian interference channel. First we provide a formal
definition of the within one bit notion.

Definition 1: An achievable region is said to be within one
bit of the capacity region if for any rate pair on the
boundary of the achievable region, the rate pair
is not achievable. Equivalently, is in the achiev-
able region for any rate pair in the capacity region.

Since the outer bound of the weak interference channel and
the outer bound of the mixed interference channel are different,
we treat these two channels separately in the following two sub-
sections.

1) Weak Interference Channel: Our main result is stated in
the following theorem.

Theorem 5: The achievable region

(58)

is within one bit of the capacity region of the Gaussian weak
interference channel.

Remark 2: The reason to consider the region
is because when

or , we cannot use the Han–Kobayashi scheme
HK . However, say in the case of , the
interference caused by user 2 at receiver 1 is even weaker than
the additive Gaussian noise. Thus, we shall not lose much of
the optimality by simply treating all of user 2’s signal as noise
at receiver 1, i.e., letting .
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Proof: It can be seen from (36) and (55) that both the
outer bound to the capacity region and the achievable region

are piecewise linear, and
only consist of straight lines with slopes ,
and . We define to be the difference between the
outer bound on in (36) (first constraint) and achievable

in , and similarly define
and . Note that if the rate

pair is on the boundary of the achievable region
, it must be on one of the

bounding straight lines. Thus, if the following holds

(59)

then the rate pair would be outside the
outer bound (36), and hence
is within one bit of the capacity region of the Gaussian weak
interference channel. We now show that (59) holds for the
different parameter ranges.

1) and
In this case, we have

(60)

It is straightforward to evaluate from Lemma 1.
The result is provided in the following corollary.

Corollary 1: The achievable rate region contains all
the rate pairs satisfying

(61)

If we denote the three bounds on the sum rate in the outer bound
(36) by , respectively, and the three bounds on the sum
rate in the inner bound (61) by , respectively, we have

(62)

and hence we can simply upper-bound by the maximum
of the differences between the th bound on in the outer
bound (36) and the corresponding th bound on in the
inner bound (61) for . We can readily compare (36)
and (61) term by term, and see that (59) is true. (See Fig. 16).
For example

(63)

2) and
In this case, we have

(64)

Evaluating the achievable region (55) with and
, we have the following achievable region

:
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Fig. 16. Comparison of Han–Kobayashi achievable region ��� �� and outer bound (36).

(65)

Since the second bound on is the sum of the
bound on and the bound on , the first and the third
bounds on are the same, and the bound on

is the sum of the bound on and the first bound on
, these three bounds are redundant and we have

the following simplified achievable region :

(66)

Comparing with the corresponding bounds in
(36) (use the first bound on in (36)), and using
the fact that , we can see that (59) is true. (See
Fig. 17).
3) and
In this case, we have

(67)

This case is similar to the previous case and we can show
that (59) is true. (See Fig. 18).
4) and
In this case, we have

(68)

Evaluating the achievable region (55) with
and and getting rid of redundant bounds,
we have the following region :

(69)

Note that is the achievable region obtained
by each user treating the other user’s signal as noise. Com-
paring this region with the outer bound (36), we can see
that (59) is true. (See Fig. 19)

Combining the above four cases, we have shown that (59) is
true for all values of and , given that
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Fig. 17. Comparison of Han–Kobayashi achievable region ��� � and outer bound (36).

Fig. 18. Comparison of Han–Kobayashi achievable region � � �� and outer bound (36).

. Thus, we have proved that the
achievable region

is within one bit of the capacity region of the Gaussian weak
interference channel.

2) Mixed Interference Channel: We assume that
and in the mixed interference channel. A

remarkable feature of this channel is that user 2’s message can
be fully decoded at receiver 1. Using this fact, a natural scheme
for user 2 is to use all of his power on the common message, i.e.,
set . We also let to be as close to as possible
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Fig. 19. Comparison of Han–Kobayashi achievable region � � � and outer bound (36).

using the intuition derived from the weak interference channel.
We have the following result.

Theorem 6: The achievable region

is within one bit of the capacity region of the Gaussian interfer-
ence channel when .

Proof: We only need to prove that (59) is true. There are
two cases to consider:

1)
In this case we use the Han–Kobayashi scheme HK .
By evaluating (55), we have the following result.

Corollary 2: The achievable rate region contains all
the rate pairs satisfying

(70)

Comparing in (70) with the outer bound (48), we can
see that (59) is true. (See Fig. 20).

2)
We use the Han-Kobayashi scheme HK , and
get the following Han-Kobayashi achievable region

:

(71)

We can see that the bounds on and
are redundant. Comparing this region with the outer bound
(48), we can see that (59) is true. (See Fig. 21).

Thus we have shown that (59) is true and we have proved
theorem 6.

D. Discussion on One-Bit Result

The achievable region discussed in the previous section is
not the largest possible. In fact, we can easily improve the
achievable region by using other private–common message
power splits. For example, Costa [4] pointed out that if we
require receiver 2 to fully decode user 1’s message before
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Fig. 20. Comparison of Han–Kobayashi achievable region ��� �� and outer bound (36).

decoding his own message, and we require receiver 1 to treat
user 2’s signal as noise, then the rate pair

(72)

is achievable. This rate pair is not inside . However, we
can achieve this rate pair by using the scheme HK ,
i.e., user 1 has only common message, and user 2 has only pri-
vate message. We do not intend to optimize over all possible
Han–Kobayashi strategies to get the largest achievable region,
which can be a very complicated task. In fact, the most impor-
tant point that we want to make with our one-bit result is that we
do not lose much by using a simple Han–Kobayashi strategy.

Our one-bit result shows that is a good approxima-
tion to the capacity region in the high-SNR, INR regime, since
one bit is a relatively small number compared to the rates of
the users. The high-SNR, INR regime corresponds to the inter-
ference-limited situation where interference plays a major role
in communication. The low-SNR, INR regime ( and

) is not very interesting since the effect of interference
is smaller than that of the additive Gaussian noise. Neverthe-
less, a loss of one bit in this regime may be large compared to
the rates of the users. However, in the low-SNR, INR regime we
can achieve the following region by simply treating interference
as noise:

(73)

Comparing this region with the simple point-to-point outer
bound

(74)

we can see that if is on the boundary of the achievable
region (73), then is outside of the capacity region.
We say that region (73) is within half of the capacity region. This
is a complementary result to our one-bit result. Note that treating
interference as noise is one special case of our Han–Kobayashi
scheme. In fact, we have similar results for all parameter values
for our scheme.

Theorem 7: The achievable region

(75)

is within half of the capacity region of the Gaussian weak inter-
ference channel.

Theorem 8: The achievable region

is within half of the capacity region of the Gaussian interference
channel when .

Proof: By comparing the achievable region with the corre-
sponding outer bound, we can prove these results after some al-
gebraic manipulation. The proofs of these two theorems are sim-
ilar to the proofs of Theorems 5 and 6, and hence are omitted.

We conclude this section two additional remarks.
1) We can achieve fairly good performance by using a simple

choice of the Han–Kobayashi scheme where is
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Fig. 21. Comparison of Han–Kobayashi achievable region � � �� and outer bound (36).

chosen as close to as possible. We will provide addi-
tional insights about why this choice is a natural one in
Section VI.

2) We derived a new outer bound on the capacity region of the
Gaussian interference channel. The one-bit result shows
that this outer bound is quite good in the high-SNR, INR
regime. The new bound is motivated by the results for a
certain class of deterministic interference channels of [3].
We will investigate the connection between our results and
those of [3] in Section VII.

V. GENERALIZED DEGREES OF FREEDOM REGION

At high SNR and INR, we can generalize the notion of de-
grees of freedom for the symmetric capacity of the symmetric
Gaussian interference channel to the entire region for all values
of parameters by focusing only on the first-order terms in

and . More precisely,
we use approximations such as

(76)

to provide an expansion of the capacity region of the Gaussian
interference channel which is accurate to first order. These first-
order approximations satisfy the property that the higher order
terms are . Therefore, the approximation error relative to

, etc., vanishes as . This property will be
useful in the derivation of the generalized degrees of freedom
region to be considered next.

Let denote the capacity region
of the interference channel with parameters

. Let be a scaled version of
given by

and let

We define the generalized degrees of freedom region as

With this definition, the capacity region can be approximately
expressed as the set of rate pairs such that

for .
The generalized degrees of freedom give a sense of

how interference affects communication. In the absence of in-
terference, each user can achieve a rate . Due to
interference, the single user capacity is scaled by a factor .
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In the following subsections we first compute the generalized
degrees of freedom region for the interference channels, then
present the generalized degrees of freedom region for two ex-
amples: the symmetric channel and the one-sided interference
channel.

A. Generalized Degrees of Freedom Region of Interference
Channel

1) Weak Interference Channel: For the weak interference
channel, by applying approximations like the ones of (76) to the
outer bound (36) and the achievable region (61), we can
easily see that the first-order expansions of the corresponding
bounds are equal, and the resulting first-order expansion of the
capacity region has the following form:

(77)

From (77), we have that the generalized degrees of freedom re-
gion is given by

(78)

2) Mixed Interference Channel: For the mixed interference
channel, by applying approximations like the ones of (76) to
the outer bound (48) and the inner bound (70), we can easily
see that the first-order expansions of the corresponding bounds
are equal, and the resulting first-order expansion of the capacity
region has the following form:

(79)

Note that the third bound on can be written as

(80)

which is larger than the second bound on . Hence, the
third bound on is redundant. The bound on is
the same as the sum of the bound on and the second bound on

, so it is also redundant. So we end up with a first-order
expansion of the capacity region of the form

(81)

Using (81) we obtain the generalized degrees of freedom region
for the mixed interference channel

(82)

3) Strong Interference Channel: The capacity region of the
strong interference channel is shown to be the intersection of
that of two MACs, and is given by

(83)

By applying approximations like the ones of (76), we obtain the
generalized degrees of freedom region for the strong interfer-
ence channel

(84)

B. Example 1: The Symmetric Channel

For the symmetric Gaussian interference the channel with
and ,
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Fig. 22. Generalized degrees of freedom region for the symmetric Gaussian interference channel.

we have and . In this case, for weak in-
terference channel in which , we have the following
generalized degrees of freedom region:

(85)

For a strong interference channel in which , we have the
following generalized degrees of freedom region:

(86)

The generalized degrees of freedom region of the symmetric
channel is plotted in Fig. 22. Note that the diagram for
corresponds to the very strong interference case, in which in-
terference does not reduce the available degrees of freedom
of the channel. We see that the degrees of freedom region is
not monotonically decreasing with in the weak interfer-
ence regime. As in the case of the symmetric rate, discussed

Fig. 23. Generalized degrees of freedom region for the symmetric Gaussian
weak interference channel using orthogonalizing scheme.

in Section III, there are three regimes in which the degrees of
freedom region shows different qualitative behaviors, namely,

, and .
If we use an orthogonalizing strategy, the generalized degrees

of freedom region that we can achieve is shown in Fig. 23. If we
treat interference as noise, the generalized degrees of freedom
region that we can achieve is shown in Fig. 24. So an orthogo-
nalizing strategy is strictly suboptimal except when and

, and treating interference as noise is strictly suboptimal
except for , as was already shown in Section III-F for the
symmetric rate.
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Fig. 24. Generalized degrees of freedom region for the symmetric Gaussian
weak interference channel when treating interference as noise.

C. Example 2: The One-Sided Interference Channel

For the one-sided interference channel shown in Fig. 6, we
have . In the weak interference case ,
by applying approximations like the ones of (76) to the achiev-
able region given in (66), we get the following first-
order expansion of the achievable region:

(87)

By examining the proof of the outer bound (36) we can easily
see that the previous first-order expansion of the achievable re-
gion is actually tight. Thus, we get the following generalized de-
grees of freedom region for the one-sided interference channel:

(88)

In Fig. 25 we plot the generalized degrees of freedom of the
weak one-sided interference channel. There are two different
cases.

1)
In this case, the generalized degrees of freedom region is

(89)

The entire region can be achieved by adjusting the power
of the long-range link and treating its interference as noise.
In particular, to achieve the corner point ,
user 1 transmits at full power and user two treats user 1’s
interference as noise. To achieve the corner point

, user 1’s transmitting power needs to be reduced
so that the received signal to noise ratio at receiver 1 is

, and user 2 treats user 1’s interference as noise.

2)
In this case, the generalized degrees of freedom region is

(90)

The corner point has to be achieved by a
private common split in user 1’s message. Treating inter-
ference as noise will only get to the point
which is strictly smaller.

We also draw the performance of the orthogonalizing scheme
in Fig. 25, which is suboptimal in both cases.

In the strong interference case , the capacity
of the one-sided interference channel is known. For complete-
ness, we present the corresponding generalized degrees of
freedom region in the following:

(91)

VI. PRIVATE VERSUS COMMON INFORMATION

In Section IV, we have shown that the simple Han–Kobayashi
scheme that sets the private message power so that
and achieves to within 1 bit/s/Hz of the capacity
region. We also argued that setting and
achieves a good tradeoff between obtaining a good direct link
rate and not causing excessive interference to the other link. In
this section, we will provide an alternative analysis that justifies
the choice and . In brief, we will argue
that the information received at the nonintending receiver that is
above the noise level should essentially be decodable, and hence
can be thought of as common information.

Consider a communication scheme that splits the message to
be sent into many submessages of small rate and power. The
transmitted message is the superposition of these submessages,
and has total power . Receiver 2 is able to decode the message
transmitted from its own transmitter, and subtract it from the
received signal , obtaining the signal . We further make
the optimistic assumption that receiver 1 can also decode and
subtract the interference received from transmitter 2, obtaining
a signal . This interference cancellation may not always be
possible, and therefore we will obtain an upper bound on the
rate of user 1. The resulting channels are

(92)

where and we normalized so that
.

We define the differential rates

(93)
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Fig. 25. Generalized degrees of freedom region of the weak one-sided interference channel for treating interference as noise, orthogonalizing, and optimal power
splitting.

Fig. 26. Differential rates � ��� and � ��� for a symmetric channel where � 20 dB and � 10 dB.

which can be interpreted in the following way:
is the rate that can be achieved in a submessage of power

facing an interference of power in channel 1
. (See [12, p. 2802], where this concept is introduced). These

functions can also be interpreted as the marginal increase in rate
at interference level (or ).

Imagine we plot these two functions and let us see what hap-
pens as goes from to . For

. The marginal increase in rate in the direct link is much
larger than in the indirect link, and therefore the other receiver
has no hope of decoding this submessage if information is sent
at this rate. Thus, at this signal level, information should be
private, only decodable by receiver 1. When

and any information sent in the direct
link at this rate can also be decoded by the other receiver. At
this signal level, we should therefore be sending common in-
formation. Fig. 26 shows how the differential rates and

vary as a function of for a symmetric channel where
20 dB and 10 dB. We see

that when 10 dB, which corresponds to 0 dB, the
differential rates are approximately equal.

The above argument shows that the submessages that are de-
coded first and that face an interference level at

receiver 2 can be decoded by both receivers, and are therefore
common information.

We will now analyze in what situations there is a gain in
sending common information. Suppose we start with a nominal
strategy of sending all private information at full power on both
links. Each receiver treats the interference as noise.

How can we improve this strategy? From the preceding dis-
cussion, without loss of optimality we can convert the part of the
signals in both links above the other receiver’s noise level into
common information. We focus on the part of user 1’s signal
above receiver 2’s noise level, which we call . Assume that
this signal is getting a rate in the nominal strategy of treating
interference as noise. This can be viewed as common informa-
tion, decoded in the following ways by the two receivers: re-
ceiver 1 decodes first, treating the component sent by trans-
mitter 1 received at receiver 2 below noise level plus the inter-
ference from transmitter 2 as noise. From receiver 2’s point of
view, acts as interference to its own signal and therefore we
can view receiver 2 as decoding last, after decoding its own
information. Note that since the decoding order is different at
the two receivers, only receiver 1 is limiting the rate of . In
receiver 2, there is still slack: even if we increased the rate of
beyond , receiver 2 would still be able to decode. By the same

Authorized licensed use limited to: Hewlett-Packard via the HP Labs Research Library. Downloaded on February 27, 2009 at 19:14 from IEEE Xplore.  Restrictions apply.



5560 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 12, DECEMBER 2008

Fig. 27. Deterministic interference channel.

logic, the part of the signal above noise level sent from trans-
mitter 2 (call it ) also has slack at receiver 1.

This suggests that we can improve the performance by
changing the decoding order of in receiver 1. If we decode
an part of after decoding an part of ( swap of ordering
in receiver 1), then the rate assigned to can be improved from

to . Note that can still be decoded by receiver 2, since
there was slack in the first place. Also, the mutual information
achieved for at receiver 1 has decreased because its ordering
is slightly less favorable, but because there was slack for at
receiver 1, can still be decoded.

Thus, we have improved the rate of user 1 while keeping the
rate of user 2 invariant. Therein lies the power of viewing the
signal above noise level as common information: there is flexi-
bility in changing the decoding order. When viewed as private
information, the decoding order is fixed and there is slack in one
of the two receivers that cannot be exploited. That is in essence
the “structure” in the interfering signals that is not exploited in
treating interference as noise. By changing the cancellation or-
dering, we are reducing the slack in one of the receivers of the
common information.

VII. CONNECTION TO A DETERMINISTIC INTERFERENCE

CHANNEL

In Section VI, we argued that the portion of the received in-
terfering signal above the noise level should be common infor-
mation and that hidden below the noise level should be private.
In other words, the part of the received interfering signal that is
most visible to the other link is made common while the rest is
made private. This argument is only approximate, as the part of
the interfering signal below the noise level still has some visi-
bility to the other link. Therefore, the proposed strategy still has
up to one-bit gap to capacity.

There is in fact a channel in which part of the interfering
signal is completely invisible to the other link. This channel, in-
troduced by El Gamal and Costa in [3], is a special type of a de-
terministic interference channel. Because of the complete invis-
ibility of part of the signal, they can show that a Han–Kobayashi
strategy of assigning common information to the visible part and
private information to the invisible part is exactly optimal. Our
approach to the Gaussian interference channel is in fact based
on drawing analogies to this deterministic channel.

The deterministic interference channel of [3] is shown in
Fig. 27. In this channel, and are the inputs,

is the interference caused by at receiver 2, and
is the interference caused by at receiver 1. and are the
outputs, and they are deterministic functions of and

, respectively

(94)

In addition, there is an important assumption about the interfer-
ence signals and given by the following conditions:

(95)

The previous conditions are equivalent to the existence of func-
tions and such that

(96)

These conditions guarantee that each receiver can observe a
clean version of the interfering signal after decoding its own
message. This assumption is key for deriving the capacity re-
gion of the channel. One can argue that regardless of the com-
munication strategy, the signals and are common infor-
mation, since they can be cleanly observed after decoding the
own message. In addition, due to the functions and
part of the transmitted message is completely invisible to the
nonintending receiver. This part of the message becomes pri-
vate information.

In the deterministic channel, conditions (95) seem artificial,
but in the Gaussian channel analogous conditions arise more
naturally. For the Gaussian interference channel, receiver 2 can
observe after decoding . Similarly, we can
define , which is the signal that receiver 1
can observe after decoding the message . As we argued in
the case of the deterministic channel, the signals and can
be thought of as the common information that can be observed
after decoding the own message. The role of in
can be compared to the role of the function in the
deterministic channel, that is, hiding the private information to
the nonintending receiver.

The outer bounds derived in [3] to establish the capacity region
of the deterministic channel can be interpreted in terms of genie-
aided channels, with various combinations of given
to the receivers. Analogous genie-aided channels, with appro-
priate modifications of the side information, were used in Sec-
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tion IV to derive the outer bounds for the Gaussian interference
channel with weak and mixed interference.

The connection between Gaussian and deterministic channel
models is strengthened in several subsequent works since the
present work was first done. In [13], a class of noisy interfer-
ence channels is considered, which subsumes the Gaussian
interference channel and the El Gamal and Costa deterministic
interference channel as special cases. In [14], a deterministic
channel model is proposed to approximate general Gaussian
networks. When specialized to the two-user interference
channel, this model is a special case of the El Gamal and Costa
model and it is shown in [15] that in fact the capacity region of
this channel matches exactly the generalized degrees of freedom
region of the Gaussian interference channel we derived here.

APPENDIX A
ANALYSIS OF UPPER BOUND OF [6, THEOREM 2]

In this appendix , we will show that the upper bound of [6,
Theorem 2] achieves a worst case gap of 1 bits/s/Hz in the
parameter range with respect to the symmetric rate of our
simple Han–Kobayashi scheme of Section III-B. In addition, the
gap between this bound and the Han–Kobayashi scheme can be

unbounded in the parameter range . Therefore, the bound of
[6, Theorem 2] does not give better performance than the bound
(9) in terms of characterizing the symmetric capacity of the sym-
metric channel to within 1 bit/s/Hz.

The results of [6] are derived for the normalized interference
channel, i.e., , so in order to use the results,
we need to replace: .
Specializing [6, Theorem 2] to the complex symmetric interfer-
ence channel with
one obtains the symmetric rate upper bound given in (97) at the
bottom of the page.

Consider the case in which the first term of the of
(4) is active, that is, the parameter range . Then we can write
(98), also at the bottom of the page, where we used
for in the first inequality and the assumption
in the second inequality. It is easy to check that, for example, if

as . Therefore,
the worst case difference of 1 bit/s/Hz in (98) can actually occur.

We see that in the parameter range , the achievable strategy
and the upper bound differ for at most 1 bit/s/Hz. Therefore, in
this parameter range our simple scheme gives a bounded (and
small) gap with respect to the upper bound.

(97)

(98)
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We will now show that in the parameter range , the gap be-
tween our scheme and the upper bound (97) can be arbitrarily
large. In this parameter range we can write as
shown in the expression at the top of the page, where the in-
equality follows from discarding in the square
root. To show that this difference can be unbounded, take

. With this choice of parameters we get

where the right-hand side goes to infinity for .
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