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Abstract

This paper discusses audio enhancement when a strong, additive
noise is present only during a known or easily detected period of mod-
erate length (of around one second). The signals may contain intel-
ligible components such as speech or music, and may also contain
desired, but unintelligible, background components such as rivers or
waterfalls. A first estimate synthesizes the unintelligible components
from the noise-free neighboring spectrogram. A second estimate re-
covers the intelligible components using spectral attenuation. The
two estimates are combined using ideas from statistical process con-
trol. Tests with audio containing digital camera zoom motor noise,
and with simulations, validate the approach.

1. PROBLEM STATEMENT

Recovery is desired of an audio signal with strong additive
noise that occurs only in a finite time interval. This situation
may occur in communications interference or, the motivation
for this work, in digital cameras while the zoom motor runs.
Assume the signal consists of intelligible components such as
speech or music that are sensitive to distortion, and unintel-
ligible components such as rivers, waterfalls, etc., that allow
higher distortion, and may therefore be synthesized. In the
time domain,

x(t) = s(t) + η(t) = sI(t) + sU (t) + η(t), (1)

where the noisy signal x(t) is the sum of signal s(t) and noise
η(t). The signal s(t) is composed of two components, sI(t),
the intelligible component, and sU (t), the unintelligible com-
ponent. The quantity η(t) is assumed to be non-zero only
when t1 ≤ t ≤ t2.

Discretizing Equation 1 and applying the discrete short-
time Fourier transform results in the situation shown in Fig-
ure 1, and corresponding to the following equation:

X(n, k) = S(n, k) + N (n, k)
= SI(n, k) + SU (n, k) + N (n, k). (2)

Here, the noisy signal x(t) is transformed to the discrete-
time, short-time transform X(n, k), with time index, k, and
spectral index, n. There are corresponding spectral quanti-
ties for all of the terms in Equation 1. Component SI(n, k)
represents the intelligible signal, and SU (n, k) represents the
unintelligible signal. The time-limited noise to be reduced,
N (n, k) is non-zero only for times k such that k1 ≤ k ≤ k2.
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Fig. 1. Schematic of the problem in the short-time spectral
domain.

The solution below uses the information before the noise pe-
riod to synthesize, during the noise period, the unintelligible
signals. The information during the noise period is used in
a spectral attenuation to estimate the intelligible signal. The
solution described below provides, without complex auditory
segmentation, a separation, S = SI + SU , based on the ran-
domness of the spectrogram in the noise free region 0 ≤ k <
k1, and also based on the average signal and noise energy in
the same noise-free region.

2. DESCRIPTION OF THE METHOD

Figure 2 shows the processing steps, together with example
spectrograms. The top left has the spectrogram for about three
seconds of input audio — brighter, warmer colors representing
more energy. Piano notes occur throughout, and loud zoom
noise occurs in the middle. Traditional noise reduction [1] for
Equation 2 estimates noise characteristics and applies spectral
subtraction [2] or attenuation [3]. This is a component of the
current solution, but for low SNRs, it leaves noticeable resid-
uals seen in the spectrogram on the bottom of Figure 2. The
new solution additionally uses the spectrogram, |X(n, k)|, of
the noise free period 0 ≤ k < k1 to synthesize the unintel-
ligible background during the noise period, k1 ≤ k ≤ k2.
The top middle of Figure 2 shows the synthesized spectro-
gram. From the figure, one sees this spectrogram does not
reproduce the intelligible component (the piano notes). The
final result combines the synthesized estimate and the tradi-
tional estimate. The residual zoom noise is much reduced, and
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Fig. 2. Audio processing diagram together with example spectrograms for audio with piano and zoom noise.

the piano notes during the noise period are evident, in the final
spectrogram shown on the top right of the figure. The final
estimate Ŝ(n, k), is a frequency-weighted combination,

Ŝ(n, k) = α(n)Ŝ1(n, k) + (1 − α(n))Ŝ2(n, k). (3)

Here, Ŝ1(n, k) corresponds to the synthesized spectrogram
random texture estimate, and Ŝ2(n, k) corresponds to the spec-
tral attenuation estimate. Only magnitudes are modified.

Figure 3 refers to the derivation of Ŝ1(n, k). To compute
Ŝ1(n, k), the short-time energy, E(ka), of the signal X(n, k)
is calculated for each ka ∈ [0...k1 − 1]. Assuming pauses in
the intelligible signal, SI(n, k), the lower values of E(k) oc-
cur when only SU (n, k) is present. Thus, the spectrogram time
slices (vertical slice for a given ka) with the smaller E(ka), in
the period before the noise period, are pseudo-randomly sam-
pled to generate k2 − k1 + 1 synthetic spectrogram time slices
for the noise period. In this way, Ŝ1(n, k) approximates the
unintelligible signal.

The Structure Estimation block of Figure 2 computes weight
α(n) for each frequency n. Intuitively, α(n) are set so that
Ŝ1(n, k) dominates for frequency bins with mostly unintelli-
gible signal, and Ŝ2(n, k) dominates when it is predicted that
intelligible frequencies will occur during the noise period. The
quantity α(n) in Equation 3 is set using two considerations. A
first factor is the randomness of the expected signal (corre-
sponding to unintelligibility) within that spectral bin. A sec-
ond factor is the amount of signal energy within a spectral bin
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Fig. 3. Computing short-time power from the spectrogram.

during the noise-free period compared to the amount of noise
energy expected in that spectral bin during the noise-period.

The randomness of the signal is determined in the spectral
domain. If x and y are Normal RVs, corresponding to the real
and imaginary components of the Fourier transform, their joint
probability density function (pdf) is given by,

f(x, y) =
1

2πσ2
e−(x2+y2)/2σ2

. (4)

Then the magnitude, r =
√

x2 + y2, has a Rayleigh [4] pdf
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Fig. 4. Analysis of randomness for each spectral band.

given by

f(r) =
r

σ2
e−r2/2σ2

u(r). (5)
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Fig. 5. Control charts using Rayleigh random variables for
magnitude of spectra for the example of white Gaussian noise
input on top, and speech at the bottom.

A one-sided control chart [5] was derived, with the Rayleigh
distribution of Equation 5 used for the random variables in the
spectrogram frequency slice (horizontal slice for each n, ex-
amples shown in Figure 4), for 0 ≤ ka < k1. Figure 5 shows
control charts, for a single, mid-frequency spectral band, for
two different input signals. The top shows the control chart
when the input is white Gaussian random noise. In this case,
the variable is in control. The bottom shows the control chart
when the input is speech. In this case, it is seen that the vari-

able is out of control (there are points outside the upper control
limit).

The frequency slice is assumed unintelligible background
when it remains within the control limits. In this case, α(n) =
1. When intelligible components are otherwise detected, α(n)
is set to

α(n) = 1 − Ps(n)
Ps(n) + Pη(n)

. (6)
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Fig. 6. The quantity α(n) for two different input signals. The
top shows a speech example, and the bottom shows a piano
example.

Here, Ps(n) refers to the signal power for spectral band n,
during the noise-free period, and Pη(n) corresponds to a pre-
calculated average noise power (during the noise period) for
the same spectral band. The quantities Ps and Pn are normal-
ized so that each of their sums, over spectral index, is one.
This normalization is used to avoid, since the SNRs are very
low, having degenerate α(n) ≈ 1. A final modification, useful
for the case where the signal is mostly random, is made. If the
proportion of spectral bands in control is near one, replace the
in control band alphas with α = 1.

Figure 6 shows two examples of the calculated α(n). The
top of the figure shows an example where the input signal is
speech, and the bottom of the figure shows an example where
the input signal is piano. In the figure, because the audio sig-
nals were resampled, α(n) = 1 for the higher frequency spec-
tral bands.



3. EXPERIMENTAL RESULTS

The results were first tested with zoom motor noise samples
captured by digital camera video. Since the noise is non-
stationary, as seen in the top left spectrogram of Figure 2,
a time-dependent spectral subtraction was used for the tradi-
tional processing. Training was done with 12 zoom noise sam-
ples captured during quiet. Testing was done with independent
samples. Informal, subjective evaluations found improved re-
sults over traditional processing. Particularly, when mostly un-
structured signals occurred, the noise appeared largely elimi-
nated. The results with structured signals varied, but the results
were still improved over the traditional processing.

Representative results of simulations used to calculate SNRs
are presented. A fifth-order autoregressive model was fit to the
zoom noise data, reproducing its spectral characteristics. Sim-
ulated noise with this AR model, one second in length, with
power adjusted so SNR = −5 db, was added to the middle of
three second audio samples. Since the noise for these simula-
tions is stationary, the attenuation method [3] was applied as
the traditional processing block. Then, the SNRs for the new
versus the standard method were compared.

AUDIO
SNR SNR ‖x − ky‖

new standard new standard
speech 4.0 4.3 4.9 4.3
piano 6.9 6.5 7.2 6.5
sin 21.9 10.8 21.9 11.1
sweep .86 12.6 .90 12.6
WGN 4.5 6.1 4.5 6.2

Table 1. SNR and scaled SNR for five simulations.

Table 1 shows results of the simulations for various input
signals. The table shows two different comparisons. The first
comparison, shown in the second and third columns, is stan-
dard SNR. The second comparison, shown in the fourth and
fifth columns, is scaled SNR, where the estimate is allowed to
have a scale factor, before comparing to the original. Study-
ing the table shows that both the new and standard methods
improve objective SNR values. From the examples, it is seen
that signals which are constant in frequency (piano notes, sin
waves) do the best, in terms of SNR, with the new method.
In the important case of speech, the new method has slightly
lower SNR, but slightly higher scaled SNR. This may be due to
the particular way the α(n) are calculated, causing a slight, but
overall gain change in the restored signal. Subjectively, even in
the case of speech, the new method seems better than the stan-
dard method. The example with white Gaussian noise (WGN),
the restored SNR for the new method is low because the signal
is being synthesized, but the subjective result is dramatically
better. Finally, an artificially generated frequency sweep has
the worst SNR results possible with the new method because
it erroneously predicts the frequency bands that the signal will

have during the noise period.
Both the new and standard methods offer objective im-

provements in SNR. The difference in improvements between
the two methods varies depending on the input signals. This is
because the traditional methods minimize objective error cri-
teria whereas the new method synthesizes a signal that may be
perceptually similar to the original, but is not faithful to the
original signal. Nevertheless, informal listening to the simula-
tions preferred the new method.

4. CONCLUSIONS

The approach taken here makes the easy problems easy by us-
ing information before the known noise period. Many of the
results seem subjectively equal or better than standard process-
ing. The new method requires an additional memory buffer to
store a length of spectrogram. If latency is allowed, non-causal
estimates are possible by using the information after the noise
period as well as the information before the noise period.
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