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Abstract—Knowledge of the network path properties such as
latency, hop count, loss and bandwidth is key to the performance
of overlay networks, grids and p2p applications. Network opera-
tors also use these metrics for managing and diagnosing problems
in their networks. However, the size of the Internet makes the task
of measuring these metrics immensely difficult. A more scalable
approach of inference and estimation of these metrics based on
partial measurements has been recently adopted.

Current inference approaches do not adapt to different net-
work topologies and the evolution of the network over time. In
this paper, we propose a novel learning based approach, called
Minerva, for the inferencing of inter-node properties. Minerva
uses partial measurements to create signature-like profiles for
the participating nodes. These signatures are later used as
input to a trained Bayesian network module to estimate the
different network properties. We have built a system based
on our approach and present performance results from real
network measurements obtained from the Planet-Lab testbed.
The sensitivity of the system to different parameters including
training set, measurement overhead, and size of network have
also been studied in this paper.

I. INTRODUCTION

A number of emerging popular applications are being de-
ployed using overlay networks which require the knowledge
of end-to-end network metrics such as latency, hop count,
bandwidth and loss. Driven by the measurement overheads
for the scale of the Internet, the research community has
produced numerous systems that attempt to estimate and infer
network metrics and vital signs using partial measurements.
Given the deterministic nature of the heuristics used in most
of the existing inference mechanisms, they fail to perform
accurately over a diverse set of network topoplgies. Similarly,
these approaches can not incorporate the time based variation
of metrics or the evolution of network topologies over time.
In this paper, we make a case for the use of machine learning
techniques and probabilistic methods in the inference of net-
work path properties. We have developed a new inferencing
framework and built a prototype, called Minerva, that can
learn the latent characteristics of diverse network topologies
not captured by deterministic methods.

It must be noted that we are not proposing yet another new
inference algorithm; instead we propose a new methodology
that can also improve existing algorithms to work well on a

range of network topologies. Our method consists of extracting
signature-like profiles for nodes from a limited number of
measurements. As we explain later, the signature generation
can be based on the use of similar heuristics as used by the
existing inferencing algorithms. A subset of signatures and
truth values is used to train a learning-based system, based on
Bayesian networks [6], [8], which can then be used to infer
all-pair properties. We show through experimental results that
such a learning-based approach provides superior results when
compared to existing systems. Our methodology also adapts to
changes in the underlying topology and is able to incorporate
time of day as an input in the inference mechanism. Though
the focus of this paper is on inference for network latency
and proximity between nodes, our methodology can be easily
applied to other metrics of interest such as loss, bandwidth,
etc. The paper proceeds with the discussion of related work
in Section II. We then describe our methodology and system
in Section III. In Section IV, we discuss the summary of the
evaluation data and the results obtained. We finally conclude
in Section V.

II. RELATED WORK

In recent past, two scalable services, iPlane [9] and S [23],
have been deployed for providing Internet path properties.
Such services rely on tools and algorithms for scalably infer-
encing Internet path properties. In this section, we review only
the techniques to estimate network distances and proximity
since we apply the learning based approach to estimate these
metrics.

NetQuest [18] proposes a framework for selecting the type
of measurements needed in order to provide maximum infor-
mation needed to infer properties. Even though both Minerva
and NetQuest use Bayesian learning to achieve better inference
of network metrics, our approach is different as it extends over
existing systems, as we show in the following sections, instead
of creating a whole new framework. The reasoning behind our
solution is mainly due to the fact that we wanted to extend on
systems that researchers and network administrators might be
comfortable dealing with. Doing so we show the advantage of
using machine learning in general, and Bayesian learning more



specifically, to improve the performance of existing familiar
systems instead of revamping the whole infrastructure.

There are schemes that use landmark techniques for net-
work distance estimation. Landmark schemes such as Global
Network Positioning (GNP) [11] use a node’s distances to
a common set of landmark nodes to estimate the node’s
physical position. In these schemes the nodes conduct mea-
surements to every landmark node. The intuition behind such
techniques is that if two nodes have similar latencies to the
landmark nodes, they are likely to be close to each other. In
GNP, landmark nodes measure the Round Trip Times (RTTs)
among themselves and use this information to compute the
coordinates in a Cartesian space for each landmark node.
These coordinates are then distributed to the clients. The client
nodes measure RTTs to the landmark nodes and compute the
coordinates for themselves, based on the RTT measurements
and the coordinates of the landmark nodes it receives. The
Euclidean distance between nodes in the Cartesian space is
directly used as an estimation of the network distance. GNP
requires that all client nodes contact the same set of landmarks
nodes, and the scheme may fail when some landmark nodes
are not available at a given instant of time. The Lighthouse [13]
scheme addresses this problem.

Despite the variations, current landmark techniques share
one major problem. They cause false clustering where nodes
that have similar landmark vectors but are far away in network
distance are clustered near each other.

Vivaldi [3] is another scheme that assigns a coordinate space
for each host, but it does not require any landmarks. Instead of
using probing packets to measure latencies, it relies on piggy-
backing probes on data packets when two hosts communicate
with each other. With the information obtained from passively
monitoring packets (e.g., RPC packets), each node adjusts its
coordinates to minimize the difference between estimates and
actual delay. Although Vivaldi is fully distributed, it takes
time to converge, requires applications to sample all nodes
at relatively same rate to ensure accuracy, and expects packets
to add Vivaldi-specific fields.

Netvigator [17] is an attempt to leverage triangular in-
equality and improve the performance of landmark-based
measurements. Instead of ping measurements, each node con-
ducts traceroutes to selected landmark nodes. Thus each node
collects the distance information not only to the andmarks
but also to the intermediate routers. The nodes (including the
end-nodes, landmarks and intermediate routers) that appear
in multiple traceroutes are called milestones. A triangular
inequality based clustering heuristic, called Min-Sum, utilizing
the distance between the nodes and milestones is used to
estimate the distance between various nodes and the mile-
stones. Hence, Min-Sum is an upper bound on the distance
between the various nodes. While the performance results from
PlanetLab measurements are promising, the tightness of this
upper bound is dependent on the coverage of the underlying
topology by the traceroute measurements. In this paper we use
Min-Sum as a candidate for comparing the performance of our
approach.
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Fig. 1. Minerva Architecture

III. LEARNING-BASED INFERENCE METHODOLOGY

All of the inferencing techniques described in the previous
section lack applicability to diverse network topologies as
well as adapatability to time variation of the network metrics.
This requires nodes to repeat their measurements continuously,
thereby increasing the measurement overhead to ensure more
accurate results. We now describe Minerva, a new approach
that leverages learning based techniques to increase adapatabil-
ity of the network property inferencing algorithms. Minerva’s
inferencing engine can be trained to achieve a degree of
“expertise” and adapt to the changes in network topology as
well as time-based variations of network metrics. We believe
that such a system can greatly improve the accuracy of existing
inferencing algorithms. Figure 1 shows the two main compo-
nents of our system, namely, the Profiler and the Learning-
based Inference Engine. Figure 1 also shows the flow-chart
for the inference mechanism. Like existing inferencing tools,
our goal is to infer the path properties of the complete network
using only selected partial measurements. As we mentioned
earlier, Minerva uses measurements similar to those of the
deterministic algorithms. In the system presented in this paper
each node conducts traceroute measurements only to a set
of selected landmarks, like the landmark-based approaches,
such as NetVigator [17]. The function of the profiler is
to take these node measurements and extract signature-like
profiles for each node. These signatures attempt to capture
the topological relationships among different nodes in the
network. Just like the heuristics used in deterministic inference
algorithms, the signature generation schemes are based on the
known invariants in the network.

As shown in Figure 1, the inferencing engine takes the
node signatures generated by the profiler as input to estimate
the path properties between any two nodes. Intially, the
inferencing module undergoes a training phase. The training



measurement data consists of a subset of the node mea-
surements for signature generation as well as true end-to-
end measured values of the metrics of interest. Thus the
measurement overhead of Minerva is marginally higher than
the overhead of similar deterministic schemes. During the
training phase, both the signatures and true values are provided
to the learning engine. Based on the training, the inference
engine can learn about the latent dependencies in the system.
Once trained, the inference engine can take the signatures from
any two nodes, say node A and node B, to provide a final
estimate for the network path property between the nodes A
and B. The inference engine might need to be retrained as
the size of the network grows significantly. It is the training
ability of Minerva, that increases the adaptability to diverse
network topologies. We believe Minerva can be used for
estimating various path properties. In this paper, we evaluate
its performance for inferring latency (as a QoS parameter)
and the number of hops (as a topological view), among the
nodes. Studying and evaluating other metrics is part of on-
going research.

As described in the Section II, many systems target latency
estimation. Given the higher accuracy of Netvigator, we picked
it for evaluating the performance of Minerva in estimating
path latencies. Netivgator uses Min-Sum as its basic algorithm
for estimating inter-node latency. We are not aware of any
mechanism or algorithm proposed for hop count estimation.
Thus, we modify the Min-Sum algorithm, used for latency
estimation in [17], in order to estimate hop count in addition to
latency and use it for comparison purposes. When we evaluate
our algorithm for latency estimation, we also compare it to
Vivaldi [3]. Before describing our system, we start with a brief
description of the Min-Sum [17] algorithm so as to introduce
various terms. We then describe our profiling algorithm fol-
lowed by Bayesian techniques used in our inference engine.

A. Min-Sum Algorithm

As mentioned earlier, the Min-Sum algorithm proposes esti-
mating network latencies among nodes using heuristics based
on triangular inequality. We now provide a short summary of
its operation.

In a system with N nodes and L landmarks, each node
conducts traceroute measurements to every landmark. We
refer to these measurements as the discovery of the uplink
routes. In addition, if we are considering the asymmetric
Min-Sum algorithm where routes on the network can be
asymmetric, then each landmark will also conduct traceroute
measurements to every node on the network. We refer to this
set of measurements as the discovery of the downlink routes.
The result is 2 « IV x L measurements. Every time a router is
encountered more than once, in the traceroute measurements,
its status is “promoted” to milestone. Note that the definition
of a router includes the landmarks themselves, even if they
are, physically, servers or end-nodes. We denote the set of
common milestones encountered on the uplink routes from
node 4 and the downlink routes to node j as L(i, 7). The Min-
Sum algorithm then estimates the distance between a node

Calculate Node Histogram Profile { // from i to j
obtain M; vp & M downs
calculate distances D; yp from i to M yp;
calculate distances Dj gown from M gouwn 0 7;
map D; ,p to a histogram H; yp;
map D; gown 0 a histogram H; qown;
Pi,]' = [Hi,upa Hj,down];}

Fig. 2. Node Histogram Profiling Algorithm Pseudocode

and a node j as:
man(dist(i,1) + dist(l, §)),Vl € L(4, j), (1)

where dist(i,l) is the distance from node ¢ to milestone
l, whether that distance is latency or hop count. In fact,
considering the intuition of triangular inequality, the Min-
Sum algorithm provides an upper-bound estimate for network
latency among nodes.

B. Profiling

As mentioned earlier, the profiler extracts node signatures
from the measurements conducted by each node. The signa-
tures, by design, do not carry the explicit identity of the node
in question. By doing so, we aim at creating an inference
engine that adapts with the dynamics of the network related
to nodes joining and leaving, where signatures can sufficiently
reflect nodes behaviour without attaching an identity of a
specific node to a profile. This idea draws similarity from
the approach used in detecting worms on the Internet by
creating signatures of their behaviour. Though we explored
several signature-generating algorithms, we only discuss and
present results from one scheme called Node Histogram. We
now describe the operation of the Node Histogram algorithm, a
summary of its pseudocode is presented in Figure 2. The Node
Histogram profiling algorithm is designed to retain topological
information about the position of nodes with respect to all
milestones encountered with traceroute measurements. When
conducting measurements to landmarks, a node ¢ encounters
a set of milestones that we denote by M; ,,,. The distances
to these milestones is represented by the vector D; ,,. Node
1 converts D; 4, into a histogram that we denote by H; 4.
Lets consider an example network with a diameter of 12
hops. Assume it has a Node x with the following distances
to milestones vector D; ., = [2,2,3,5,6,6,6,8,10]. Map-
ping this vector into a 12-dimensional histogram, we obtain
Hiwp =10,2,1,0,1,3,0,1,0,1,0,0]. Note that the histogram
starts with 1 as the minimum distance. In the above example,
since we had no milestone that is 1 hop away from Node x, we
set the first value to 0. However, we have two milestones that
are each 2 hops away, thus, we set the second value to 2, and so
on. In our implementation, H; ., is a 32-dimensional vector,
representing the maximum number of hops as defined in
traceroute measurements. Similarly, a histogram is built for the
downlink measurements for every node denoting the distances
from the milestones to the node. We denote the downlink
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Fig. 3. Simple Bayesian Network Structure

histogram vector by H; gown. Thus, the input to the Bayesian
module consists of the concatenation [H; up, H; down) When
estimating the distance from node ¢ to node j.

Visualizing the Node Histogram profiling algorithm, if a
node sits in the center, the algorithm builds a vector that in-
cludes all milestone information for a node. It aggregates these
milestones as concentric circles. The circles have increasing
order radii and different “intensities” corresponding to the
number of milestones that are at a certain distance from the
node. The Node Histogram algorithm generates an anonymous
profile that does not carry the specific node’s identity.

C. Bayesian Techniques

In our framework, we use Bayesian Networks as the under-
lying learning and inferencing technique. The block diagram
of our proposed estimation Bayesian algorithm is depicted
in Figure 3. In describing the Bayesian algorithm, with a
slight abuse of notation, we are going to refer to the Bayesian
network nodes as components in order to avoid confusion with
the use of the word node to denote participating machines on
the physical network. Thus, expanding the Bayesian network,
as shown in Figure 3, Block 3 has the profiles of the nodes as
input, and is a continuous Gaussian component. In addition,
Block 2 is a hidden binary component, and Block 1 is the
output component acting as a 7T'-class classifier. Thus, the
output of the Bayesian network is a 7T'-dimensional vector
representing the probability distribution of the 7' different
classes. In the case of hop numbers estimation 7' = 32
corresponding to the hop numbers between the two input
nodes. Note that this Bayesian network structure is a simple
classical structure, often used in other applications of Bayesian
Networks, where we have one component for each of the input
and output in addition to a hidden node. The goal of the
hidden component is to capture the latent relationships. We
also experiment with a more complex structure as presented
in Figure 4.

For example, if we need to estimate the distance from
node 7 to node j, we use the measurements from node i
to the landmarks and those from the landmarks to node j
as the input to the profiling module. This first module will
create the respective profiles of ¢ and j to feed into the
Bayesian estimation algorithm, and the second module of our
system will output a decision vector. The decision vector is
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Gaussian Gaussian
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Fig. 4. Modified Bayesian Network Structure

basically the probability distribution of the distance being
in each of all the possible distance values. Thus, in our
system, the estimated distance is actually the position (or
index) of the maximum value in the 7-dimensional output
vector. Following the example of the previous section of
having 12-hops as our maximum, the input to the Bayesian
module consists of the profile of node ¢ using measurements
to the landmarks, while the profile of node j is based on
measurments from the landmarks. The Bayesian network then
processes these two profiles using the learned behavior from
the training data, and as a result, outputs a 12-dimensional
vector representing the probability distribution of the distance
from 7 to j. An example of such a vector is F;;
[0,0.156,0,0.135,0.15,0.05,0.254,0.1, 0.1, 0.005, 0, 0.05].
In this case, the maximum of the vector is 0.254 and is
the seventh element of the vector, thus, the estimate of the
distance, as reported by the Bayesian network, from node i
to node j is 7 hops.

As we mentioned before, the structure of the Bayesian
Network, as presented in Figure 3, is one of the most simple
standard ones. As the nodes in the system and the result
of their measurements became more complex, the Simple
Bayesian Network failed to capture all the characteristics of
the network. Thus, we extend the structure of the Bayesian
network, as presented in Figure 4, where we divide the input
into two vectors corresponding to the profiles of the two
nodes in question. We add another hidden block for the newly
introduced input node. This modification of the structure of
the Bayesian network takes into consideration the fact that
the input consists of two independent vectors, being the two
profiles of the two nodes in question, and treats these two
vectors as two separate variables. Note that following the
notation of Bayesian Networks, Figures 3 and 4 assume that
the processing flow is bottom-up, where the input feeds Block
3 and Block 3’ and the output is generated by Block 1. We
compare the performance of both Bayesian network structures
in Section IV. In our implementation, we used the Bayes Net
Toolbox (BNT) [1] on Matlab 7.0.1 [10].

IV. EVALUATION

We built a prototype of Minerva and evaluated its perfor-
mance based on measurement data collected using Planet-lab.
The current prototype can infer two network path metrics:



(1) latency and (2) number of hops between any two Planet-
lab nodes. In this section, we discuss the network metrics
measurements we conducted and then present the results of
evaluating and tuning the parameters of Minerva.

A. Measurement Setup

The evaluation was done using measurements collected on
the PlanetLab [14] platform that involved all 580 machines
participating in the network as of August 2005. We deployed
a modified version of the scriptroute suite of tools [16],
where we removed the restrictions on the number of simul-
taneous measurements that exist in the default distribution.
Our measurements engine, on every node, runs once every
8 hours collecting information using 3 tools, namely ping,
traceroute and rockettrace (a modified version of traceroute
that ships with scriptroute), targeted towards all other nodes on
PlanetLab. While conducting these measurements, each engine
on every node, independently chooses a random starting point
from the list of the PlanetLab nodes; this was essential so
that our massive measurements will not be mistaken for a
DDOS (Distributed Denial of Service) attack and ensure that
nodes are not in sync when sending their probing packets to
any specific node which would interfer with the measurement
results.

In the initial set of experiments, we choose a subset of
our PlanetLab measurements consisting of 113 nodes and 11
landmarks distributed as follows: 2 in Europe, 2 in Asia, 1
in South America, 4 on the East coast, 1 on the West coast
and 1 in the Middle of the US. We also use the simple
Bayesian network structure presented in Figure 3. We use
a small fraction of the actual collected measurements for
training the Bayesian network, corresponding to 500 sample
random measurements, which adds up to 3.95% of all possible
measurements of N(NN — 1) for N = 113. This will ensure
that Minerva, as a system, does not introduce a large overhead
of measurements. Note that the 113 nodes were chosen to
represent a high percentage of all PlanetLab sites, since a
typical site has several nodes. We then achieve our goal of
straining the algorithm using a heterogeneous and diverse set
of nodes, by starting with these 113 nodes and increasing
the number to include all 580 PlanetLab nodes from our
measurements.

When it comes to latency, defining the histogram of nodes
requires us to take a closer look at the data as the mea-
surements are not discrete values, as is the case of the
hop numbers. Based on the obtained latencies, we used a
granularity of 1 msec for latencies less than 50 msec, 10
msec for latencies between 50 msec and 500 msec, and a
granularity of 50 msec for latencies greater than 500 msec. We
also grouped all latencies greater than 1200 msec together as
one bin. This results in a vector whose dimension is 111 points.
Note that deciding on each group and its granularity is tunable
and can be modified based on the application requirements.

B. Evaluation Metrics

Besides the absolute error in inference, we use the accuracy
of the proximity estimation of a given metric to evaluate the
performance of our system. The accuracy metric captures how
well the system can rank nodes in terms of their proximity
(either for the number of hops or the latency) to a specific
node. Assuming that an algorithm returns a set of k nodes as
the closest estimates (we use the term “closest” when dealing
with latency or hop number proximity) for a certain node
that we denote by S;. Let the actual closest node to node i be
node j. Thus, the accuracy is 1 if j € S,i and O otherwise. The
k-accuracy of an algorithm is computed as the presence of the
closest node j to a certain node 7 in the set of the & closest
nodes as returned by the estimation system. More formally, it
is defined as follows:

: K2
o ={ 5 Lt @
, otherwise

Note that in many practical situations, a node 7 will query
the inference system for the k closest nodes. Then, node
will perform its own measurements to this set of nodes. The
reasoning behind this is that the estimation mechanism is
basically providing the k possible candidates of closest nodes
and it is up to the node 7 to perform its own measurements to
determine the actual closest among this set of nodes. Thus, it
is essential for the inference system to provide the querying
node ¢ with its actual closest node among the returned k nodes
while maintaining k¥ << N. Note that if £ is comparable
in magnitude to N then the whole purpose of an estimation
system is defeated since the node ¢ is launching k& additional
measurement on the network and the system cannot scale.
Note that as k increases, by definition, the accuracy increases.
The goal is to achieve as high an accuracy with as low k as
possible.

In this section, we compare the accuracy obtained by Min-
erva, using the profiling and estimation modules, as presented
in Section III, to the Vivaldi and Min-Sum algorithms, for
different subsets of the collected data in terms of metrics
of interest, number of nodes and landmarks. We also study
the sensitivity of the system to different parameters such as
training set, measurement overhead, and size of network.

C. Minerva Inference Performance

1) Accuracy: Comparing the accuracy for latency estima-
tion of Minerava, using the Node Histogram profiling algo-
rithm and the Modified Bayesian Estimation module, to Min-
Sum and Vivaldi, we observe the results in Figure 5. In the
measurements we obtained from PlanetLab, some of the nodes
were not responsive most of the time, if not always. For Vivaldi
and Min-Sum, we disregard these unreliable nodes and omit
them from the analysis, assuming the existence of a filtering
mechanism. However, we do not offer the same filtering for
the Bayesian Network estimator, expecting it to recognize such
nodes on its own with its inherent probabilistic properties. The
results shown in Figure 5 demonstrate clearly that the Bayesian
Network estimator is able to estimate distance among nodes
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and pick closest nodes much more precisely than Vivaldi and
Min-Sum. In fact, for a small value of k£ = 1, the Bayesian
Network system provides an accuracy of over 70%, while
Vivaldi is at 1.6% and Min-Sum at 13%; a clear advantage
of the Bayesian Network system. In addition, for £ = 10, the
Bayesian Network accuracy is at 88.9% compared to 16.4%
for Vivaldi and 70.5% for Min-Sum. One point, though, worth
noting, is that as k goes over 50, this advantage seems to
switch, and the Bayesian Network system seems to behave the
worst among the three algorithms. This is due to the advantage
we gave Min-Sum and Vivaldi by performing the filtering
described earlier. However, we argue that, for most practical
applications, choosing a high value of &, such as 50 or more,
is not desirable, since the list returned to node ¢ of possible
candidates is too long to be considered a useful answer.

Repeating the same experiment for hop-count estimation,
Figure 6 shows the results for the accuracy of Minerva’s hop-
count estimation and the Min-Sum algorithm. As was the
case with latency estimation, Minerva is highly accurate in
estimating the hop-counts between two nodes.

2) Absolute Error: We plot the absolute error of the latency
estimations in Figure 7. Note that Minerva does not provide
a numerical value for latency instead it is a pointer to a bin.
Our bins are explained at the beginning of this section. If the
estimator points to the same bin that holds the actual value,
we assume that the error is 0, otherwise the error is calculated
as the absolute value of actual value — center of the bin. For
example, if Minerva estimates the latency to belong to bin 3
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corresponding to [2 — 3] msec, while the actual value is 5.1
msec, then the absolute error is computed as 5.1-2.5 = 2.6
msec. While the accuracy, as a metric, shows that the answers
that Minerva provides can be used to rank node distances with
high probability correctly, Figure 7 shows that the estimates
are often representative of the actual latency values among
nodes since around 80% of the estimates had an absolute error
of less than 10 msec.

D. Scalability and Parameter Sensitivity

This section presents experiments targeted at understanding
the sensitivity of Minerva to several parameters of the system,
and its scalability to changes in the participating nodes. We
also include results aimed at characterizing the effects of using
a machine learning algorithm, more specifically Bayesian
networks, in our inference engine.

1) Number of Landmarks: An essential parameter to study
is the scaling effect of landmarks as the number of nodes
increases. In order to quantify the effect of the number of
landmarks, we present in Figure 8 the latency estimation
accuracy as we add nodes to the initial set of 113. The figure
shows that there is no noticeable decrease in the accuracy of
the estimates up till the number of nodes reaches 300. At
that point, an increase in the number of landmarks results in
higher levels of accuracy. Note though, that an increase of over
209% in the number of nodes, only requires a modest increase
of around 36% in the number of landmarks. As such, we can
claim that indeed the number of landmarks does not need to
increase in the same proportion as the number of nodes does.

We observe similar behavior for the hop-count estimation,
as can be seen in Figure 12. Other inference algorithms such
as Min-Sum and GNP experience similar effects on accuracy
as the number of landmarks is increased.

2) Bayesian Network Classifier: As described in Sec-
tion III-C, we explored two Bayesian network classifiers for
Minerva. Figure 9 plots the hop-count accuracy using the
simple Bayesian Network classifier presented in Figure 3 and
compares it to the Modified Bayesian Network classifier of
Figure 4. We can see how the Modified Bayesian Network
is able to characterize the nodes with a higher accuracy. The
reason behind this lies in the fact that the two input histograms
represent two different nodes, and treating them as separate
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input variables makes it easier for the Bayesian network
classifier to characterize them, and extract their probabilistic
properties.

3) Retraining and Addition of New Nodes: In what follows,
we study the effect of increasing the network size on the
accuracy. We consider two scenarios: at first, we increase the
number of nodes and measure the accuracy of the system,
then we re-train the system in order to include the newly added
nodes and compare the results. This set of experiments aims at
understanding the cost of using a machine learning algorithm
and, more specifically, the frequency of its training phase.
Figure 10 depicts the accuracy of the tested networks for both
scenarios of re-train and no re-train for hop count. We observe
that re-training indeed does improve the accuracy. However, as
we will see next, this is mainly due to the fact that the network
that we used for the initial training (113 nodes) was too small
to yield enough information that can fully characterize the rest
of the nodes in the system. As the initial network size that is
used for training increases, we note that we can continue to use
the obtained Bayesian Network classifier for larger networks,
without re-training, since the data was enough to capture the
specifics of the topology of the network as a whole.

Note that as nodes are added to the network, new milestones
might emerge. These can be either routers that never appeared
before or routers that had appeared only once before the new
addition of nodes, thus did not qualify prior to this addition to
become milestones. In this case, we update the histograms of
the affected nodes to reflect the new milestones, despite the
fact that we may have used the old histograms of these nodes
for the training of the Bayesian Network classifier. In fact, we
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argue in here that this change does not affect the classifier
since the signature-like profiles of our system do not contain
the identity of the respective nodes and is meant to capture a
snapshot of the network characteristics.

In this set of experiments, we start with a subset of the
network consisting of 200 nodes and 15 landmarks. We extract
the signatures of the nodes and use 2000 samples for training
the Bayesian Network classifier. Note that we increase the
number of samples used for training as we increase the number
of nodes, however, the percentage is still modest compared
to the full N? measurements of 40000. Figure 11 shows the
accuracy of the classifier versus k for hop count. Then we
increase the number of nodes in the network and re-measure
the accuracy of the classifier without re-training the classifier.
We also show the accuracy for the nodes that were added
in each experiment to the initial network of 200 nodes. By
measuring the accuracy for these nodes, we are, actually,
testing how well the Bayesian Network classifier is able to
generalize rules from the initial observed data (i.e. that of
the initial 200 nodes) and use these observations to infer the
behavior of the newly introduced nodes.

As in any learning-based system, we need to train the
Bayesian Network classifier. This training is quite costly
in terms of computation resources, and requires end-to-end
measurements to be used for training. Thus, for the system to
be scalable, we need to keep this training to a minimum versus
the dynamics of the network as a whole, such as the addition of
nodes to the system. For example, we want a system that does
not need to be re-trained every time a node joins or leaves. We
now increase the number of nodes in our set and re-train for
every set of experiments. We plot the results of the accuracy
in Figure 12 showing that the accuracy does not deteriorate
as we increase /N and with a slight increase in the number of
landmarks L the percentage of correct classification depicted
in the accuracy remains in the same range showing that the
algorithm is able to characterize the topology correctly.

Figure 13 shows the effect of increasing the number of
nodes while using the results from the initial set of nodes
and the effect of re-training. While retraining with data and
measurements obtained for the added nodes improves the ac-
curacy, we note that the system did tolerate the introduction of
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these nodes without a significant deterioration in its accuracy,
especially for a small value of k. These results show that
Minerva is able to extend the previously observed behavior
of node to newly introduced nodes joining the network.

4) Bayesian Approximation Iterations: By definition, the
Bayesian Network algorithm relies on likelihood maximization
leading to the use of iterative approximation techniques [6],
[8]. Since the time required for training and, often, the quality
of the estimator are directly proportional to the number of
iterations during training, we wanted to study and understand
its effect on our system. In this section, we test the perfor-
mance of the whole system of profiling and estimation as we
change the number of iterations allowed during the training
stage of the Bayesian Network estimator. Figure 14 shows the
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accuracy plotted for the different values of k as we vary the
number of iterations. The network used for this experiment
consists of 552 nodes and 22 landmarks. We evaluate the
accuracy for 2, 4, 8 and 15 iterations during the training stage
for hop count estimation. We observe that for this larger set
of nodes, a small number of iterations does not provide a
high accuracy for a small value of k. In fact, the accuracy for
k = 2 was below 15% for the 2, 4 and 8 iterations. However,
as we increase the number of iterations to 15, the accuracy
jumps to around 80%, a major improvement. What happens
in here is due to the fact that Bayesian Network maximum
likelihood is trying to maximize its function and, just like any
other learning mechanism, uses these iterations to refine its
parameters. This behavior is not an artifact of our proposed
system, but is a normal behavior of any system that relies on
Bayesian Networks.

E. Inference of Time Varying Metrics

Using the collected data, we compare latency among the
same pairs of nodes over time. As expected, the variations are
quite considerable. Figure 15 shows the standard deviation
of differences in latency for the same set of pair of nodes.
The figure tells us that over 60% of measurements of pairs of
nodes in the network had a standard deviation greater than
100 msec, which can be considered as extreme variations
with time. Most of the current inference mechanisms do not
take time variation into consideration, as part of the system
design. This basically means that nodes have to continue to
repeat their measurements over the time in order to determine
its closest neighbors at any instance. Minerva, on the other
hand, can leverage the learning capability to accurately learn
and infer time variation of different metrics. To validate this
capability, we now show how Minerva can be tailored and
trained to infer inter-node latencies over time. We expand
the profiling vectors of nodes to include two flags: the first
indicating whether the specific measurement was taken on
a week day or a weekend day, the second indicating the
time period when the measurement was taken as morning,
afternoon, or night. This translates into an expanded profile
vector of 113 values corresponding to the 111 vector, presented
above, and the 2 new flags. Since the first flag is mainly binary
and the second one can take one of three possible values,
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we end up with a total of six combinations. We repeat the
training of the Bayesian Network estimation module using
3000 samples. We start with the same set of 500 samples used
in the experiment where time variations were not considered
and use six measurements corresponding to the six different
combinations. We then test the estimation for the whole
network by computing the accuracy of querying Minerva using
profiles that contain the 2 time flags. The results in Figure 16
show that our Bayesian Network estimator with the use of
the Node Histogram algorithm can estimate latencies and
infer their changes with time, with a high accuracy, a feature
that other latency and distance estimators do not consider. In
fact, the two plots in the figure are comparable showing that
expanding the profiles to include time information allowed
Minerva to learn about the behavior and continue to produce
reliable estimates. Note that the flags can be different and can
include further details of the latency changes such as hourly,
if the need be.

V. FUTURE WORK & CONCLUSIONS

The importance of accurately and efficiently estimating
locality of services and computing network distances between
different nodes has significantly increased due to proliferation
of p2p networks and is also evident from the abundance of
latency estimation schemes. Similar to applications’ use of
network latency to improve the download performance, the
number of hops between nodes can be potentially used as a
measure for path reliability. In this paper, we have presented

a learning based estimation approach for network and node
metrics that relies on probabilistic techniques, more specifi-
cally Bayesian Networks. To the extent of our knowledge, our
use of anonymous profiles coupled with learning techniques
is quite unique. We showed encouraging results leading us to
conclude that this approach is quite promising and can be used
in different applications.
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