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ABSTRACT
Efficiently operating and managing large scale distributed and

federated systems is an extremely challenging problem. Current

solutions are a combination of centralized management and signif-

icant over-provisioning of the infrastructure. With the explosion

of new resource-intensive media applications and services, over

provisioning of the infrastructure is no longer a viable option.

Timely and accurate knowledge of the global environment (par-

ticularly the highly dynamic network path properties) is neces-

sary for management of performance SLAs, just-in-time resource

provisioning, near-optimal dynamic service placement and reuse,

construction of network service overlays, and fast detection of

failures and malicious attacks. Further, different applications re-

quire information about different aspects of the environment at

different timescales. We propose S3, a Scalable Sensing Service,

that achieves the above requirements and enables personalized

sensing of the environment as dictated by applications.

1. INTRODUCTION AND CHALLENGES
Efficient operation of large-scale distributed networked

systems such as enterprise networks, grid systems or sensor
systems remains a challenge for a number of reasons. One
of the crucial reasons is the lack of current and accurate
knowledge of the global state of the various components in
the system, including network attributes as well as individ-
ual machine attributes. Sensing infrastructure refers to such
a sub-system that measures, estimates, and enables querying
of the global state. The sensing capabilities of most com-
mercial management systems today suffer from the following
drawbacks: 1) monitor only a subset of application/system
metrics, 2) measure at coarse grain timescales, and 3) per-
form centralized processing of the measurement data.

Though such sensing might suffice for long term capacity
planning and management, it impedes real-time control and
decision making, which is important for several emerging
multi-media services. What is needed is a scalable sensing
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service (S3) that can securely provide customized informa-
tion at appropriate periodicity as required by different ap-
plications and services. S3 has been designed for scalable
and robust operation and can be used for a number of man-
agement tasks:

• Detection of failures and anomalous behavior: Link
failures, node failures, service failures, root cause di-
agnosis for poor application/service performance, and
suspicious activity such as DoS attacks, viruses, worms,
and spam mail.

• Resource placement and location: Adaptive placement
based on observed performance (e.g., choosing a host
with better availability for running a key service), place-
ment based on observed loads (replicate services based
on usage conserving key resources such as power).

• Better performance: Fast network path selection for
quick content transfers.

Design of a scalable sensing service need to tackle several
challenges. First, there are a large number of attributes (net-
work related and machine related) that need to be tracked.
Some attributes are highly dynamic (e.g., available band-
width on an end-to-end path or current load on a machine)
while others are slowly varying or static (bottleneck capacity
on a network path or processor type/OS version on a ma-
chine). The total number of individual metrics to be tracked
increases exponentially as the overall system grows. Second,
measuring everything at the smallest possible timescale is
impossible and smart estimation techniques are needed that
give an accurate approximation of the global state with low
measurement overhead. Third, multiple applications con-
ducting their own measurements could lead to high com-
munication overheads. Due to the lack of end-to-end QoS
in existing infrastructures, many applications/services are
forced to conduct their own measurements and make oper-
ational decisions based on these end-to-end measurements.
Further, the individual application level measurements may
be at different timescales ranging from seconds to even days.
For example, an end client could ping multiple web proxy
machines to identify the one that has the least latency, or a
media client player could measure the available bandwidth
to multiple servers and pick one that has the highest cur-
rent bandwidth. Other examples include building efficient
service overlays where the overlay nodes maintain node and
path properties to their neighbors. This causes much dupli-
cation of measurements leading to a high system overhead.

In Section 2, we describe the architecture of S3 - our scal-
able sensing service that tackles the above challenges. S3



comprises of three components: (i) sensor pods that are web-
service enabled collection of sensors and exposes interfaces
for various types of sensor invocations, (ii) sensing informa-
tion backplane that provides a programmable middleware
for aggregating and disseminating the sensor data, and (ii)
analysis engines that leverage the above two components for
providing scalable inference services.

We have built a prototype of S3 modules that we have
deployed on the PlanetLab. We are using this system in
a DARPA Internet Control Plane project called CHART
(Control for High-Throughput Adaptive Resilient Transport).
CHART combines a novel adaptive routing infrastructure
and a distributed network sensing infrastructure to improve
end-to-end performance across an unreliable network. The
sensing infrastructure monitors the state of underlying net-
work and conveys state information to the routing infras-
tructure. The combined system adaptively routes around
failed or congested links under fine real-time control to main-
tain high end-to-end throughput. To achieve this, constant,
pervasive sensing of network conditions including delay, loss,
bandwidth information is needed every few seconds to build
high throughput network overlay paths. We are using S3 as
the sensing infrastructure for the CHART project.

2. S3 ARCHITECTURE
The S3 architecture (see Figure 1) comprises of three com-

ponents: Sensor Pods, Sensing Information Management
Backplane, and Scalable Inference Engines. We describe
these components in detail along with a discussion of appli-
cations leveraging S3 in the following sections.

2.1 Sensor Pods
A sensor pod is a web-service enabled collection of light-

weight measurement and monitoring sensors that collect in-
formation at a machine. This information spans both net-
work properties such as connectivity to the Internet, latency
to some other machine in the system, bandwidth to another
machine, and machine attributes such as machine’s current
CPU load, free memory, and number of processes. These
sensors gather information actively (e.g., send some packets
on a network link to detect available bandwidth) or passively
(e.g., infer the current RTTs of a link from communication
pattern of a TCP connection on the same link). Simple sen-
sors can also be created to extract already existing SNMP
MIB data from different network elements.

As shown in Figure 1, along with sensors, each sensor
pod has a Data Repository (DR) to store information mea-
sured by different sensors, a Configuration Repository (CR)
to store sensing configurations that are used to determine
which sensor to invoke, how frequently to invoke, how long
to invoke, what parameters to supply on sensor invocation,
and how to store the information returned by the sensor.
Also each sensor pod has a controller that coordinates the
invocation of sensors based on the configuration information
provided to the sensor pod. Sensor pods expose interfaces
for both querying the data in DR and for setting new con-
figurations in CR through web service API. Exposing sensor
pod interfaces as a web service in our architecture enables
sensor composition — new sensors can be easily built by
composing information generated by some existing sensors.

Sensor pod allows authenticated and authorized applica-
tions and users to install new sensors, supply sensing con-
figurations, and query information gathered using sensors.

Mechanisms such as thresholding are built into each sensing
pod to reduce communication costs and ensure that metrics
that exhibit very low variability, as specified by an applica-
tion, are not disseminated by the sensing pod. Also, network
metric values that become stale for whatever reason are re-
ported along with a timestamp denoting when they were
measured to ensure that they are not used in a real-time
decision.

A sensor pod optimizes the number of sensor invocations
(to minimize network communication and computation costs)
by analyzing sensing configurations supplied by different ap-
plications for a unique sensor. For example, if two applica-
tions need to measure the latency to the same destination
machine but at different periodic rates, say once in 6 seconds
and once in 10 seconds, then our subsystem invokes the sen-
sor at the higher rate (once in 6 seconds) and stores that as
an answer for both sensing configurations. Also if multiple
applications invoke the same sensor for one-shot measure-
ment and if those invocations overlap, then the sensor pod
performs only one measurement and returns the same value
to all requesting applications. Thus, our sensor pod de-
sign effectively eliminates the redundant monitoring traffic
incurred by applications if each conducts its own measure-
ments. We are developing a measurement scheduler to limit
the measurement overhead under a specific fraction of the
network capacity (e.g. 1% of the link capacity).

2.2 Sensing Information Management Back-
plane

The sensing backplane is a data aggregation and manage-
ment middleware that collects measurement data from the
individual sensor pods on physical machines in the system
and provides a programmable substrate for application ser-
vices to aggregate the data in an efficient and scalable man-
ner. In a sensor pod, either sensors can insert the measured
data directly into the sensing backplane or the controller
can insert data from DR based on the configurations stored
at the sensor pod. Clients of the sensing infrastructure can
either specify how to aggregate the data or subscribe to ex-
isting aggregate feeds of the data.

Scalability both in terms of management of large amounts
of sensing information as well as fast query-response time is
a key goal of this component. We leverage SDIMS [31] (Scal-
able Distributed Information Management System), which is
a data aggregation framework that scales to a large number
of machines and large number of data attributes and sup-
ports flexible interfaces to support wide-range of distributed
applications. We employ SDIMS to scalably aggregate and
disseminate collected network and node state information.
In the following, we first briefly describe SDIMS and present
details on how the sensing backplane uses SDIMS.

SDIMS is a distributed system that runs on all machines
in the system and leverages Distributed Hash Table algo-
rithms (DHTs) (for example, [21]) to expose their internal
routing mesh as a set of multiple aggregation tree overlays
on top of the physical machines. As Figure 2 illustrates, each
physical node in the system is a leaf and each subtree rep-
resents a logical group of nodes. An internal virtual node is
simulated by one or more physical nodes at the leaves of the
subtree rooted at the virtual node. SDIMS exposes flexible
interfaces for applications to install arbitrary aggregation
functions (java objects) that are used to perform in-network
aggregation at the intermediate virtual nodes of data at the



Figure 1: S3 Architecture
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Figure 2: An example aggregation tree in an eight
node SDIMS. Also shown are the aggregate values
for a simple SUM() aggregation function.

leaves in an aggregation tree, update the data at the leaves,
and probe for the aggregated values at different levels in the
tree. The example in Figure 2 also illustrates how a simple
SUM operation is performed on an aggregation tree in an
eight node SDIMS.

The sensing backplane in the S3 architecture comprises of
SDIMS running on all backplane machines in the system and
extends SDIMS to support several functionalities common
in wide-scale network oriented monitoring we are target-
ing. One particular extension is to support efficient publish-
subscribe service. While publish is supported through up-
date interface in SDIMS, we need to extend the probe in-
terface of SDIMS to efficiently support subscribe requests.
In SDIMS, applications can perform a continuous probe to
receive aggregated values at specified levels in the tree but
there is no functionality for subscribers to specify that they
be notified only when the aggregated value satisfies a cus-
tom predicate. In current SDIMS with continuous probe,
subscribers have to get any changes to the aggregated value
and will have to filter out any changes that does not sat-
isfy their predicates. In S3, we extend SDIMS with probe
functions that allow applications to specify a subscription
predicate thus effectively filtering out unnecessary messages.

2.3 Scalable Inference Engines
Scalable Inference engines leverage configuration inter-

faces of sensor pods to perform periodic measurements at
the nodes in the system and leverage the scalable sensing
backplane to aggregate the measured data. The task of col-
lecting the complete information about network metrics is
an immense task both in terms of the infrastructure require-

ments as well as the measurement traffic. Scalable inference
engines estimate complete information about the relevant
network metrics based on partial information measured us-
ing the sensing pods. The main idea behind the inference
algorithms is to measure various metrics on a small num-
ber of network paths and use the information to infer the
properties of all the paths.

While scalable inference of all network properties is a chal-
lenge, a large body of research efforts (e.g., [30, 13, 29, 28]
successfully tackled latency estimation. Though these efforts
take different approaches, they all involve periodic measure-
ments from each node to few other nodes in the system
to answer for proximity or latency queries accurately re-
flecting the current status of the network. In S3, inference
engines use sensor pods to perform these periodic measure-
ments and the sensing backplane to gather the data in an
efficient manner using thresholding and in-network aggrega-
tion. Below we briefly describe how Netvigator [29] and its
distributed version [5], a scalable proximity/latency estima-
tion algorithm, can be plugged into our architecture.

Landmark clustering is a popular scheme used for network
distance estimation that uses a node’s distances to a set of
special nodes (referred to as landmark nodes) to estimate
the node position. In Netvigator, the sensing pod at each
node measures distances to a given set of landmarks, similar
to other landmark clustering techniques. Netvigator addi-
tionally records the distances to the milestones that are en-
countered while probing the landmarks. Instead of attempt-
ing to embed all the nodes in a global Cartesian-space based
on RTT measurements, Netvigator performs local clustering
for proximity estimation. Particularly, one scheme Netviga-
tor [29] uses to estimate latency from a node X to another
node Y is based on MIN-SUM formulation:

latency(X, Y ) = min
l∈L

{d(X, l) + d(Y, l)},

where L is the set of landmarks and milestones and d(X, l)
denotes the measured latency from node X to l.

In the S3 architecture, distributed Netvigator uses web
service interfaces of sensor pods to configure periodic invoca-
tions of traceroute sensor from each machine to chosen land-
mark nodes. These measurements are fed into the sensing
backplane and distance information to different landmark
nodes or milestones are aggregated along different aggrega-
tion trees exposed by the SDIMS middleware using an ag-
gregation function that tracks Top-k minimum distant nodes
from a given landmark or milestone. To answer the prox-
imity queries quickly, nodes subscribe to global aggregate
values in the aggregation trees corresponding to their Top-



K nearest landmarks or milestones. Nodes use the publish-
subscribe feature of the sensing backplane to filter out most
of the changes in the latency values that does not affect their
proximity information.

2.4 Applications
While existing Network Management Systems (NMS) ex-

tract MIB data from SNMP compliant routing elements that
provide device centric information, S3 enables applications
to obtain a fine grained flow-centric view and and to mon-
itor and control the performance of their flows (for e.g., by
switching to a better server or using a overlay path if the
current connection is not meeting required latency or band-
width constraints). Also, the flexibility and scalability of
the sensing backplane enables application to perform real-
time aggregation and analysis of information about flows at
thousands of end machines such as to detect and control
heavy hitters that use a significant fraction of the network
bandwidth, and to detect and control Internet worms.

As described in the introduction, the CHART system de-
pends on a sensing infrastructure to monitor the network
state and feed that information to other components of that
system including a DHT based routing substrate. A moni-
toring and control component of CHART uses sensor pods to
perform periodic measurement of available bandwidth and
latency metrics from each participating node to the neigh-
boring nodes in the CHART routing substrate. Other com-
ponents of the CHART system, such as a TCP Jumpstart
driver that uses the available bandwidth measurements to
decide the congestion window size instead of observed packet
losses, subscribe to these measurement streams.

A distributed malicious activity monitor can leverage the
sensing information backplane to detect misbehavior in large
scale networks such as Distributed Denial-of-Service attacks
(DDoS), massive port scanning to locate exploitable ser-
vices, Internet worms, and e-mail spam, that affect the per-
formance of legitimate applications. Consider a simple ex-
ample of IP traffic monitoring where the network adminis-
trator of a large enterprise wants to query for heavy hitters,
i.e., monitor all network flows that account for a signifi-
cant fraction (say 0.1%) of the volume of ongoing traffic. A
centralized approach of logging the entire data at a single
coordinator would either generate monitoring traffic whose
volume is proportional to the total traffic, or be too late in
detecting network anomalies, both of which are clearly unac-
ceptable. Instead, our SDIMS based sensing backplane can
scalably collect monitored data generated by sensing pods
at the individual nodes and analyze the data in an efficient
manner [11].

3. PROTOTYPE AND DEPLOYMENT
We have built a prototype of the S3 modules that is de-

ployed on on the Planet-Lab testbed. Currently, we de-
ploy and ensure the liveness of our service on Planet-Lab
nodes using vxargs [24] script run from a central manager.
In near future, we plan to switch to one of the distributed
frameworks like AppManager [1] to deploy and run our ser-
vice. Sensor pods are implemented as cgi scripts accessible
through any web-server that supports cgi. We currently use
Boa (http://www.boa.org), a light-weight open source web-
server. This framework enables third party measurements,
that is, measurements between two nodes can be initiated
by a third node. Our current implementation has a wide

Sensors Purpose
PING Measures latency to a specified destination
TRACEROUTE Collects number of hops and latency on the

network path to a destination
SPROBE [19],
PATHRATE [3]

Measure capacity of the network path to a des-
tination

TULIP [12] Measures error rate of the network path to a
destination

SPRUCE [22],
PATHCHIRP [18]

Measure available bandwidth on the network
path to a destination

Table 1: A subset of network sensors currently de-
ployed

variety of sensors, some of which are listed in Table 3, that
leverage several open source network monitoring tools for
measuring various network path metrics (latency, number
of hops, available bandwidth, bottleneck capacity, and loss
rate). To enable large scale concurrent measurements, we
had to modify some of the tools. We are currently measur-
ing all-pair network metrics periodically. We leverage the
web-services based sensing pod architecture to deploy vari-
ous sensors measuring different metrics and also to configure
the periodic measurements. Figure 3 shows an example of
accessing a web-enabled sensing-pod deployed on the Plan-
etlab. The sensing backplane is not yet integrated with the
sensing pods or analysis engines. This first version of S3 ser-
vice for PlanetLab was announced to the PlanetLab mailing
list on January 25, 2006. During the first month of the
service, it has received approximately 500 unique visitors
downloading about 12GB of data.

We also pull the measurement data from the sensor pods
on all nodes to a central node to provide the global views
to other researchers by making this data available online,
and also to archive the data for Internet behavior analysis.
A snapshot of the all-pair capacity and available bandwidth
metrics updated about every 4 hours is available at the fol-
lowing website: http://networking.hpl.hp.com/s-cube/

PL. We use the Pathrate tool [3] to measure bottleneck ca-
pacity of a path and the Spruce tool [22] to measure available
bandwidth on a path.

We also provide estimated latencies between all planetlab
nodes as estimated by Netvigator. For every snapshot of
data collected, we compute the estimation error over a small
number of paths (about 5% of the total number of paths)
for which we have the actual measured latency. Figure 4(a)
plots the estimated delay versus the actual measured de-
lay for Netvigator for a single snapshot of Planet-Lab data.
The units for the axes in these plots are in microseconds.
In these scatter plots, the closer the points plotted are to
the diagonal, the better is the estimation. In our Planet-
lab experiments, the delay estimation with Netvigator was
the best, with a mean absolute estimation error of 23 msec,
followed by Vivaldi and GNP in this order.

In Figure 4(b), we present Netvigator latency estimation
results on the snapshots generated over a 7-day period be-
tween March 23 15:49:37 PST 2006 and March 30 19:12:05
PST 2006 and compute various statistics of the absolute
estimation error. These statistics are the mean, the 25th,
50th, 75th and 90th percentile of the absolute error. The
main observation is that the 25th, 50th and 75th percentile
absolute error is fairly low and stable across the entire time
period, with 75% of the measured latency having estimation
error less than 25 msec.

4. RELATED WORK

http://www.boa.org
http://networking.hpl.hp.com/s-cube/PL
http://networking.hpl.hp.com/s-cube/PL


Figure 3: Sensor Pod: Tulip hop-by-hop loss measurement

A large body of research has focused on developing sys-
tems for distributed monitoring, aggregation, and querying
in large networked systems. Examples of such systems in-
clude both commercial systems such as HP OpenView, IBM
Tivoli’s Total Monitoring Environment and CA’s Unicenter
as well as academic efforts such as Ganglia [7], IrisNet [15],
PIER [10], Sophia [27], SDIMS [31], and Astrolabe [23].
While any of these can potentially be leveraged for our sens-
ing information backplane, we chose SDIMS because of its
scalability and flexibility features.

Systems such as NetProfiler [14], STRIDER [26], and Peer-
Pressure [25] employ peer-to-peer information exchange for
trouble-shooting of different network or system configura-
tion problems. We believe NetProfiler can be implemented
as an analysis engine in our S3 architecture with NetPro-
filer’s data acquistion sensors—TcpScope, WebScope—deployed
in our sensor pods. Boutaba et al. citeboutaba01fcaps de-
scribe how Active Networks can enhance existing Network
Management and examine the impact on five areas of ISO
FCAPS framework [4]. We can view S3 as an active network
framework (note that sensor pods allow custom installation)
and leverage S3 system to deploy the techniques described
in this paper to improve current network management.

Our system shares many of its goals with the Network
Oracle [9] proposal and the Knowledge Plane [2] proposal.
In our work, we focus on designing and building a system
that can achieve a major subset of those goals and progress
toward understanding the issues involved in achieving the
grand goal of global pervasive monitoring and information
management infrastructure.

The scalable inferencing (e.g., [30]) of network properties

is still in research stages. The latency metric has received
the most attention, followed by the loss metric. IDMaps [6],
King [8], and M-coop [20] answer latency estimation queries
for any source and destination nodes by composing other
measured data and they need infrastructure support. Land-
mark based approaches such as Netvigator [29], Landmark
ordering [17], GNP [13], and Lighthouse [16] use landmark
nodes for network proximity estimation. While we have de-
scribed a distributed version of NetVigator in our architec-
ture section, the other inference algorithms can also be po-
tentially cast as analysis engines in our system.

5. CONCLUSIONS AND FUTURE WORK
We have presented S3, a scalable sensing service for real-

time and configurable monitoring and management system
for large networked systems. Our architecture comprises of
web-service enabled sensor pods with a variety of sensors
that measure or monitor both network metrics and node
metrics and expose flexible interfaces to satisfy a wide spec-
trum of sensor invocation policies. The sensing information
backplane provides a substrate to aggregate the measured
data from the individual machines in a scalable manner. Fi-
nally, analysis engines leverage the other two components to
provide inference and operation control services. We have
prototyped a subset of S3 modules and deployed them on
Planetlab to perform and aggregate all-pair measurements
of several network metrics. We currently provide a four-
hour period snapshot of inferred latency and bandwidth on
our project webpage. We plan to add data for more metrics
(e.g., loss rate) to this web site. We are currently work-
ing on the admission control policies, security, and privacy
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framework for the S3 architecture.
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