
The CHART System: A High-Performance, Fair Transport
Architecture Based on Explicit-Rate Signaling∗

Jack Brassil
HP Labs

Rick McGeer
HP Labs

Raj Rajagopalan
HP Labs

Puneet Sharma
HP Labs

Praveen Yalagandula
HP Labs

Sujata Banerjee
HP Labs

David P. Reed
HP Labs

Sung-Ju Lee
HP Labs

ABSTRACT
TCP/IP is known to have poor performance under condi-
tions of moderate to high packet loss (5%-20%) and end-
to-end latency (20-200 ms). The CHART system, under
development by HP and its partners under contract to the
US Defense Advanced Research Projects Agency, is a care-
ful re-engineering of Internet Layer 3 and Layer 4 proto-
cols to improve TCP/IP performance in these cases. The
CHART system has just completed the second phase of a
three-phase, 42-month development cycle. The goal for the
42-month program was a 10x improvement in the perfor-
mance of TCP/IP under conditions of loss and delay. In
independent tests for DARPA at Science Applications In-
ternational Corporation, the CHART System demonstrated
a 20x performance improvement over TCP/IP, exceeding the
goals for the program by a factor of two. Fairness to legacy
TCP and UDP flows was further demonstrated in DARPA
testing. We describe the CHART System as a set of five
interacting services and protocol improvements which act
together to make TCP/IP robust under conditions of loss
and latency, and we describe and detail the test regime and
performance results.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Net-
work Architecture and Design—Packet-switching net-
works; C.2.2 [Computer-Communication Networks]:
Network Protocols—Protocol architecture (OSI model);
C.2.3 [Computer-Communication Networks]: Net-
work Operations—Network Monitoring ; C.2.5 [Computer-
Communication Networks]: Local and Wide-Area Net-
works—Internet (e.g., TCP/IP)

General Terms
Algorithms, Design, Experimentation, Measurement, Per-
formance, Security, Standardization

Keywords
Quality of Service, Flow-based Routing, Explicit-Rate, Vir-
tualization, Overlay

∗This work was supported in part by DARPA Contract
N66001-05-9-8904 (Internet Control Plane). This work Ap-
proved for Public Release, Distribution Unlimited

1. INTRODUCTION
The Control for High-Throughput Adaptive Resilient Trans-
port (CHART) project is a 42-month effort between HP
Labs and its partners to add an intelligent control plane to
the Internet. In particular, the CHART project introduces
a suite of new signaling protocols between network systems
and end hosts, and among network systems, to provide en-
hanced TCP performance, quality-of-service guarantees to
applications such as IP television and voice over IP, and
a high degree of network information between network ele-
ments and end hosts and among network elements. The need
for an intelligent control plane arises from the reality that
the Internet Protocol stack arose in an era of limited applica-
tions (bulk data transfer), low capacity, and expensive mem-
ory and processing. The resulting design deliberately sacri-
ficed Quality-of-Service(QoS) to provide best-effort service
that makes no guarantee on the quality of routes. Further,
Internet performance depends on the transmission rate of
the end host. Since today’s endpoint protocols, particularly
TCP, originated in an era of expensive processing and mem-
ory, they were designed to infer network state from measure-
ments that could be made at the endpoints. In particular,
packet loss was taken as an indicator of network congestion,
and as a result TCP implementations reduce transmission
speed in the presence of packet loss. Thus, end-to-end per-
formance degrades rapidly in response to relatively minor
loss of link quality.

The CHART program is designed to address this problem
through two principal architectural innovations to the Inter-
net Layer 3 and Layer 4 protocols:

1. Fine-grained signaling and sensing within the network
infrastructure to detect subtle and transient link fail-
ures and route around them; and

2. Explicit agreement between end hosts and the routing
infrastructure on transmission rate, which will permit
the end hosts to transmit at the agreed rate indepen-
dent of loss and delay.

CHART achieves these innovations through the following set
of loosely-coupled services:

1. A network-wide real-time network monitoring service



(the “Chart Sensing Infrastructure” or CSI) that is re-
liable, efficient, scalable, and secure.

2. A new generation of network elements which monitor
and control flows, and which explicitly communicates
available bandwidth to new and existing flows.

3. A new TCP driver, TCP-Trinity, which implements
the explicit-rate protocol on the end hosts.

All of the infrastructure software overlay elements (the net-
work sensing overlay and the software routing overlay) run
on a dispersed collection of commodity IA-32 computers run-
ning a containerized version of the Linux Fedora Core op-
erating system. These computing nodes may be dedicated
to supporting CHART, or may be a shared decentralized
computing overlay such as PlanetLab [13].

It is important to note that explicit signaling encompasses,
in many ways, a fundamental redesign of the basic premises
of the network, offering a number of new opportunities and
requiring new devices and capabilities. The fundamental
new opportunity is the ability to overlay dynamic virtual
circuits onto packet-switched networks: channels with guar-
anteed properties and isolation. In this sense, it is a mar-
riage of virtualization technology with the network: this
offers a degree of isolation difficult to achieve in packet-
switched networks; and since it is used only for applications
which demand high quality-of-service, it still permits high
bulk throughput on the common channel. The fundamen-
tal new services and capabilities required are the abilities
familiar in the rest of information technology; particularly,
the ability to explicitly allocate and manage network re-
sources much as we today manage computation, memory,
and storage. Various attempts have been made before to
introduce this capability into the network, from ATM to the
Resource ReSerVation Protocol (RSVP)[3], to MultiProto-
col Label Switching (MPLS)[17] to Differentiated Services
(DiffServ)[2]. CHART is a deep exploration of the concept
of explicit signaling, its effects on network performance, re-
quirements on the endpoints and the in-network elements,
and new security requirements.

Explicit signaling means explicit resource allocation, and a
contract between the network and an endpoint and appli-
cation. Implicit in this is the notion of priority and pre-
emption. High-priority requests must be able to pre-empt
resources allocated to other users. Moreover, the network
must be able to offer certificates that requested resources
were actually delivered to the requester.

The need for pre-emption and allocation immediately im-
plies the need for authentication and authorization.

The remainder of this document describes the CHART sys-
tem and results and is organized as follows. Section 2 gives
an overview of our solution, and the explicit bandwidth-
signaling protocol that is a core element of the solution. The
signaling protocol imposes significant security requirements.
In particular, the signaling protocol implements pre-emption
and prioritization, critical for high quality-of-service appli-
cations; as a result, signaling requests must be authenticated.
Section 3 gives an overview of the security architecture which

permits safe, undeniable authentication and ensures that ac-
cess is restricted to the requester. Section 4 details the hard-
ware and software network elements that monitor existing
bandwidth and grant or deny the request.

Once this solution is in place, a number of desired capa-
bilities become possible. In particular, high-performance
explicit-rate transport, fair to existing traffic, becomes pos-
sible. In section 5 we detail the design and implementation
of a high-performance explicit-rate TCP and UDP driver
and TCP proxy. Section 6 describes our global sensing ar-
chitecture. We conclude with a description of the results of
the program and a short summary.

2. DESCRIPTION OF THE SOLUTION
TCP/IP was designed in an era of low-loss, low-latency con-
nections, and where the capacity of network elements to do
computation was very limited. The resulting protocol suite
used in-band sensing of latency and packet loss as its pri-
mary tool to determine transmission rate. Further, there
was no mechanism to allocate and regulate bandwidth on a
flow-by-flow basis. This resulted in a protocol suite which
was quite effective, efficient, and fair in an environment of
reliable links and in an application space dominated by bulk
data transfer, which characterized the Internet for the first
generation of its existence.

This use case – bulk data transfer over reliable, low-latency
lines – was the sole use case motivating the Internet’s orig-
inal design. However, today’s Internet is characterized by
a wide variety of use cases, including QoS-intensive appli-
cations such as voice, video, and gaming, and high-latency,
lossy links. The original design assumptions of the Inter-
net are therefore no longer valid in an increasing variety of
situations. In particular, the Internet’s early choice to sac-
rifice guaranteed Quality of Service for individual flows in
order to ensure high bulk throughput and link utilization
now forces over-provisioning to deliver services with high
QoS demands [5] and loss and latency are no longer reliable
indicators of network congestion.

The CHART program is an exploration of the use of two
fundamental tools to approach this problem: direct network
sensing through a pervasive sensing plane and explicit in-
band signaling between network elements and end hosts to
assign transmission rates for individual flows.

Explicit signaling for transmission control has been proposed
before. An out-of-band signaling approach is at the heart of
the Resource ReSerVation Protocol (RSVP) [4] and in-band
signaling was proposed by Dukkipati et. al. in the Rate
Control Protocol [7]. The CHART program extends these
ideas in three significant ways:

• The ability of end-host applications to request specific
rates from the network and for the network to grant
these requests, critical for high-QoS applications, as
well as the ability for the network to simply grant the
best available rate based on current traffic conditions.

• The ability of a sensing overlay to perform the role
of the network in granting flow requests, through a
system of overlay flow management.



• Design of a new generation of network flow elements,
commercially available from Anagran Networks, to per-
form the network tasks of allocating bandwidth to and
managing individual flows.

At the heart of the innovation is an Explicit-Rate option
to the Internet Protocol (IP), implemented as an IPv6 op-
tion header and as a prefix to the TCP data field in IPv4.
The ER option permits an application and the network to
agree on a specific transmission rate, periodically renewed.
This permits (i) the network to allocate bandwidth to spe-
cific flows, ensuring quality of service to specific applica-
tions without over-provisioning and (ii) the endpoints to
simply transmit at the agreed rate, without resorting to
the complex control-loop used in standard TCP implemen-
tations. The result is the removal of dependence on la-
tency and loss in determining network performance. We
have implemented a Linux-based explicit rate-aware proto-
col stack, “TCP-Trinity,”which enables end hosts to acceler-
ate data transmission by bypassing the slow-start and con-
gestion avoidance phases of data transfer.

2.1 Signaling Objectives
The objective of the QoS mechanism is to permit the nec-
essary resources to be allocated to a flow as it traverses the
network. To permit real-time allocation and rapid renegotia-
tion in the face of changing network conditions, the signaling
scheme is in-band, and requires support in the participating
network elements. This will require hardware or microcode
support, a burden when compared to out-of-band software-
based schemes such as RSVP. The resource request and
response messages are incorporated into application data
packets, allowing the QoS requirements to be established
during the flow initiation from sender to receiver and back.
This signaling scheme can be used to set the rate, burst
tolerance, pre-emption priority, delay priority and charging
direction for a flow.

Signaling strategies for IPv4 and IPv6 use the same QoS
structure. For IPv4, the document specifies a QoS Struc-
ture to be added to the first data packet of a flow, requiring
a unique DiffServ code-point. The QoS structure immedi-
ately follows the transport header. For IPv6, the same QoS
information is added as a hop-by-hop option.

For both IPv4 and IPv6, each participating network element
in the path examines the QoS Structure and agrees to or
adjusts the rates requested to the rates it can support. If any
of the rate parameters have been changed by the network
elements in the flow path, this is communicated back to the
sender by the receiver.

The QoS defined within this signaling structure can support
four general types of service. The first is a fully guaran-
teed rate flow, which implies no oversubscription of network
resources. The second is a maximum rate flow, which al-
lows some oversubscription but virtually no packet loss. The
third is a variable rate flow, where available rate is combined
with a minimum rate guarantee. The fourth is an available
rate flow, one that can jump start the Transmission Control
Protocol (TCP) to the highest rate the network can sup-
port, eliminating slow-start problems. In the available rate

Figure 1: QoS Header Structure

case the capacity available based on network congestion is
fed back to the sender very rapidly at all times. This will
help to differentiate congestion problems from channel er-
rors (measured in bit error rates), permitting the sender to
then optimize packet error control without confusing it with
congestion.

2.2 The Explicit-Rate Protocol
The TIA-1039 [15] Explicit-Rate protocol is best understood
as a transport-neutral mechanism by which the end hosts
and network elements can negotiate a renewable explicit
rate. In the ideal case, any transport protocol should be
able to use this facility. Moreover, since available band-
width along a path is the minimum of the available band-
width along each link, rate negotiation must take place be-
tween the end host and each network element along the
path. The net result is an IP-layer design: the rate request
and response ought to be in a header explicitly accessed by
routing elements (and thus should not be higher than Layer
3). Further, since Layer 2 headers can be entirely replaced
and rewritten by routing elements, the explicit rate option
should not be in the Layer 2 header: if it is, each routing
element requires that its neighbor preserve a specific piece
of Layer 2 information.

The result is an IP option: option fields must be supported
by all IPv6 routing elements, and thus in a v6 network one
can rely on the preservation of option fields throughout the
network. The option fields are shown in Figure 1.

The fields depicted in Figure 1 give a total of 12 bytes for
the option header. Available Rate(AR) and Guaranteed
Rate(GR) are 2-byte fields, encoded as 14-bit floating point
numbers with a zero bit and a reserved bit. The lower 5 bits
of the floating point number are the exponent, and the nine
high-order bits are the base, giving a range of values from
(1, 241). They are in units of kilobits per second, permitting
a rate of approximately 4 Terabits per second, or about 40
lambda in today’s highest-end technology.

The PP and DP fields are used to indicate to the network
element the pre-emption priority (lower-priority flows are to
be pre-empted to accommodate the rate request of this flow)
and delay priority (this flow is to be accelerated past lower
priority flows) of this flow. The CD field is an internal field
which indicates the direction and status of the option field,
so that elements can correctly interpret this signal as a re-
quest or response. Status of the request/response is also
indicated. The TP field indicates type of flow (TCP, UDP,
etc) and the BT field indicates the ability of the flow to
tolerate deviation from the agreed rate. The CH field sup-
ports charging information and field QoS Version specifies
the specific version of the protocol in use. The M, or modi-



fied field, is set to 0 by a requester and set to 1 if any field
was modified during a request or renegotiate phase, and set
to 0 and not changed on a response.

Since network conditions change, rate requests are renego-
tiated every 128 packets or one second, whichever is more
frequent. This procedure and rate are similar to those used
in Available Bit Rate (ABR) signaling in ATM [1]. If we con-
sider a Voice-over-IP flow sending a 3 kilobit packet every
50 ms, we see that rate renegotiation occurs at the maxi-
mum interval of every second, or after about sixty kilobits
have been transmitted. Even if we consider the case of max-
imum packet size of 12 kilobits (assuming an MTU of 1500
bytes), rate negotiation occurs no less frequently than the
transmission of every megabit.

3. SECURITY
Security enhancements in a commercial product are, by def-
inition, for protecting value, either in the context of a busi-
ness model or of information assets in field deployment. The
common commercial business model for QoS services (such
that those supported by the TIA-1039 protocol) is predi-
cated upon the service provider providing superior connec-
tivity (higher bandwidth, lower latency, less jitter, etc.) to
some target consumer. Threats to this business model in-
clude commonplace threats such as theft of paid service as
more exotic threats such as service disruption by prejudicial
agents. The addition of security mechanisms to any sys-
tem will incur additional cost, thus the goal of security is
to enhance the design so that the appropriate security can
be achieved at a reasonable cost. We note that the scope of
security here is limited to the QoS signaling aspect and does
not cover securing the legacy aspects of the service. For ex-
ample, the security of the data flow itself is outside the scope
of this project. Accordingly, we have attempted to provide
a reasonable level of control and resistance against theft-
of-service attacks on the provision and maintenance of QoS
service with appropriate protocols and cryptography-based
security mechanisms.

Mindful of the fragile nature of security solutions, we impose
some meta-requirements on our design: (i) the security de-
sign must adhere to and reuse standards as much as possible,
(ii) security must be minimal and the design must allow for
future extensions and additions, and (iii) security functional-
ity must be, to the extent possible, offloaded from functional
devices such as proxies and routers onto separate security-
specific entities. In the following, we describe the specific
security requirements as well as how we address these re-
quirements in CHART. The security requirements for TIA-
1039-based service can be divided into three categories: user
authentication/authorization, control signal protection, and
key management.

User authentication/authorization (AA): The primary
defense against the threat of theft of service in most systems
is user AA. We note that this requirement holds only when
users need to be identified or differentiated for the purpose
of restricting access to service or different levels of service.
Even though the baseline use case for CHART does not in-
clude differentiated services, specific target uses such as the
NCS GETS use case require that specific users (first respon-
ders) need to be able to access specific services preferentially.

Furthermore, note that because the TIA 1039 design works
wholly within TCP and UDP flows, the concept of a user is
outside the protocol and consequently user AA is required
solely for manageability of the protocol. In the CHART
project, the decision point for user AA is the AA server,
the enforcement point is the entry point of the flow (which
may be the ingress flow router or the client proxy), and
user credentials are X.509 certificates issued and signed by
a universal Certification Authority. The user on the client
presents (over https) his X.509 certificate to the AA server
of the administrative domain of the current network. The
AA server validates the credentials and creates a time-bound
authorization for that client machine’s IP address based on
administrative policy stored in the AA server. The enforce-
ment points periodically download current authorizations
from the AA server. When a new flow request is received by
an enforcement point, it automatically accepts or rejects the
request based on the authorizations downloaded into that
enforcement point from the AA server. If the client is au-
thorized, standard TIA 1039 processing proceeds, otherwise
the request is either dropped silently or accorded a “free”
service level that is set by policy. A similar (mirrored) im-
age of this protocol occurs at the server end with the egress
router and server proxy.

Control Signal Integrity Protection: Flow control in-
tegrity is necessary to protect against the threats of ser-
vice disruption and theft. Flow signals that are sent as
part of the TIA 1039 headers may be modified by malicious
agents that have access to the packets in transit such as on
legacy IP routers. Detection of such unauthorized modifi-
cation is achieved using hash-based message authentication
codes (HMAC) from the IPSEC standard, which currently
specifies SHA-256 as the hash algorithm. Since the signal
can be modified legitimately by 1039-capable routers on the
path, this HMAC is created on the entire 1039 header plus
some additional fields (source and destination IP Addresses)
and validated between two successive 1039-capable agents.
HMACs require a secret key be established between the
sender and receiver. This secret key is generated on demand
by the AA server and downloaded into each of the pair of
communicants. HMAC creation and validation is performed
on every 1039 hop, between client proxy and ingress router,
between successive 1039-capable routers, and between the
egress router and server proxy. Note that confidentiality of
the control signal is not a requirement and thus we do not
perform any encryption of the header. Similarly, HMACs
can only detect modification but cannot recover the origi-
nal message. Furthermore, our security mechanisms cannot
prevent an adversary from modifying behavior by selectively
dropping packets. All entities have to be configured to ig-
nore or drop all 1039 signals that do not have valid HMAC
entries. In the prototype, the HMAC is implemented using
the Open SSL library.

Key Management: HMACs require a shared secret (sym-
metric) key between sender and receiver. When a sender S
needs to send a HMAC’ed packet, it looks up its “next-hop”
table to determine the receiver R for that destination. If
the R cannot be found, it queries the AA server for R. To
create the HMAC, S can use a valid cached secret key for
the pair (S,R) or contact the AA server with a request for a
HMAC key for the pair. The AA server generates and serves



the required key using a strong pseudorandom generator if
a valid cached key is not available. Analogously, when a
packet is received by R, it can validate the HMAC using a
cached key or request the AA server for the key. The AA
server will reply with the key previously generated for the
pair. If the intended receiver in the signal was not R, then
the HMAC will fail as well. R then notifies the AA server
using another query that includes S, R, and the destination
address. In response the AA server will update the next-hop
table so that S will be notified in the next update. All keys
are refreshed by the AA server according to administrative
policy. The AA server also validates user credentials, which
are signed with a universal certificate authority whose public
key is known to the AA server. Functionally, there will be
one AA server per administrative domain though there may
be multiple copies for redundancy and to minimize latency.
Co-ordination between AA servers of two different domains
is done by hand on a bilateral basis. All communications
with the AA server are via https with mutual authentica-
tion. In the prototype, the AA server is implemented using
Apache.

4. FLOW MANAGEMENT ELEMENTS
The new mechanism required by the CHART program is
the ability of the network to route and manage flows, not
individual packets. This requirement implies the need for
a new generation of network appliance which can manage
flows.

Informally, a flow is the stream of packets from one user
to another that forms a specific file transfer or conversa-
tion. Formally, a flow is uniquely identified in IPv4 by the
five-tuple: source address, destination address, source port,
destination port, and protocol. In IPv6 a three-tuple (flow
label, source address, destination address) is used to iden-
tify the flow. Experimentally, the average flow is short-lived,
containing only about 14 packets.

Anagran networks has developed a hardware element, the
FR-1000 flow manager, which can support an aggregate band-
width of 48 Gbps through four line cards, each of which can
support 12 1Gbps or one 10Gbps port. The Anagran flow
managers maintain performance statistics on each outgoing
link. Flow statistics are exported via the industry standard
NetFlow protocol to a computer running network manage-
ment software (e.g., cflowd, flow-tools) to facilitate network-
wide traffic engineering.

Flow managers support network operation at high utiliza-
tion. Since the rate of each flow is controlled with a flow
manager, the total rate being fed to a trunk is also con-
trolled. By measuring the load on an output trunk and
feeding this information back to all the input ports, the to-
tal utilization of an output port can be controlled to within
5%. We anticipate that under a normal TCP traffic mix
the average utilization can be maintained above 80%, which
compares favorably to the relatively lower average utiliza-
tion of trunks in US carrier networks.

Flow managers achieve QoS guarantees by allowing equal-
ized load balancing among users, rapid TCP rate feedback,
and guaranteed rate, loss, and delay for voice and video
flows. This type of flow management is necessary in broad-

band networks to achieve high quality voice and video traf-
fic. For our purposes the QoS of a flow is described by the
parameters Guaranteed Rate (GR), Available Rate (AR),
Burst Tolerance (BT ), Delay Variance (DV ), and Prece-
dence or Pre-emption Priority (PP).

The flow manager controls the QoS of all active flows by
establishing QoS parameters for each flow upon setup, and
adjusting these parameters over the life of a flow.

The initial QoS parameters for a flow are based on the re-
quested QoS for the flow and the QoS of the available paths.
The requested QoS is determined either by an explicit re-
quest or by a rule based on a combination of fields in the
first packet of a flow (i.e., a given DiffServ code may indicate
Voice-over-IP (VoIP), which corresponds to QoS parameters
of GR equaling 82 kbps and DV of less than 10 milliseconds).
The available QoS of the paths that the flow could be routed
over is determined by measuring the QoS parameters of all
egress ports for a variety of flow classes (i.e., VoIP, video,
and data).

A sender requests a flow with available rate, guaranteed
rate, delay, and precedence parameters specified. The first
flow manager reduces the available rate to what it can sup-
port. Each subsequent flow manager in the path does the
same until the message reaches the receiver. The receiver
then reflects the agreed path rates to the sender, and the
sender confirms them across the network to release over-
commitments. A sender equipped with an Explicit-Rate
aware TCP stack (see Section 5) can immediately increase
its sending rate to the agreed rate, in this example 32 Mbps.
This rate can be maintained until the network needs to ad-
just the rate (up or down) due to cross-traffic.

4.1 An Explicit-Rate-Aware Software Overlay
The Explicit-Rate mechanism can extend to paths that do
not consist exclusively of flow managers in two scenarios:

1. The estimated available bandwidth along a sub-path of
legacy routers between two flow managers on a given
path would be used by the upstream flow manager to
compute the AR value corresponding to the “virtual”
link between the two flow managers.

2. A software overlay flow manager along a given path
could compute the AR value for an outgoing overlay
link similarly to a flow manager and write the AR in-
formation onto QoS packets traversing the link.

In both cases, the available bandwidth information for a
given Internet path is provided by the CHART sensing sys-
tem.

The second case corresponds to what we call an Explicit-Rate
(ER) overlay. Figure 2 depicts how the ER overlay allows
the software overlay routing system to emulate the available
rate feature provided by the flow managers. IP QoS flows
with GR = 0 can be supported by an ER overlay even in
the absence of the hardware-based flow managers. Within
the ER overlay, a given overlay node computes an AR value
corresponding to each outgoing overlay link using available



CSI Bandwidth Sensor
determines available bandwidth 

on overlay links

ER1 ER2 ER3

Rate-aware Client
sends at rate 

R = min(ER1, ER2, ER3)

overlay 
node

overlay 
node

overlay 
node

Figure 2: An Explicit-Rate overlay.

bandwidth estimates obtained from the sensing infrastruc-
ture and internal packet queue lengths. The AR value for
an overlay link is reported to the flows traversing the link in
accordance with the TIA QoS signaling protocol [16].

The algorithm employed by the overlay node to compute
the AR value need not be the same as the algorithm used in
the hardware-based flow managers. We are currently exper-
imenting with an ER control algorithm based on the NEC
rate control algorithm for Available Bit Rate (ABR) ser-
vices in ATM networks [9]. This algorithm does not require
maintenance of per-flow state, has good performance char-
acteristics, and is stable. Besides supporting the IP QoS
flows (with zero GR value), the ER overlay can also support
Quick-Start TCP, an enhancement to TCP proposed within
the IETF [8]. Quick-Start TCP allows a flow to jump to
a large initial congestion window size via a signaling mech-
anism similar to the TIA IP QoS protocol, but does not
provide a full-fledged congestion control mechanism.

5. ENDPOINT ELEMENTS
The explicit-rate protocol described above was designed both
to permit flows which require a guaranteed rate (e.g., voice
and video flows) to reserve it, and also to significantly im-
prove the performance of best-effort TCP flows via the avail-
able rate (AR) mechanism. We have developed a new TCP
stack, TCP-Trinity to exploit this feature.

Under the available-rate mechanism, a TCP-Trinity sender
requests the available rate and receives the response in a sin-
gle round trip time. The sender then immediately jumps to
the explicit rate, and continues to transmit at that rate even
in the presence of packet loss and latency variation. The
available rate request is renewed every 128 packets, permit-
ting the network to signal changes in available bandwidth
to senders rapidly, giving an explicit mechanism to avoid
congestion.

We have developed a client system capable of exploiting the
availability of an end-to-end rate reservation through a net-
work of flow routers. An initial ER-aware X86-based PC
running the FC 4 operating system is used for the host.
The end system uses the proposed TIA QoS protocol [16].
The TCP/IP stack has been modified to support a “fast-
start” option invoked by a Linux ioctl() system call. When
“fast-start” is invoked for a connection the modified TCP/IP
stack will disable the TCP slow start algorithm and send at
the rate specified by the QoS parameters specified in the
fast-start ioctl call. The TCP-Trinity stack uses selective
acknowledgment and retransmission (SACK) for error re-
covery on QoS-enabled connections. In the absence of ER

S
ec
ur
e 
W
eb
 In
te
rf
a
ce

Controller

Latency

Lossrate

Bandwidth

Load

Capacity

Memory
Repository

Configuration
& Data

API: query, 
control, and 
notification

Figure 3: S3 sensor pod.

information from an ingress router, the client TCP-Trinity
stack operates in a conventional fashion.

6. S3

The primary goal of the Scalable Sensing Service (S3) is to
provide an easily accessible, accurate, and scalable network
monitoring service to monitor end-to-end network metrics
between participating nodes. Another important goal is to
provide flexible interfaces to applications that enable sharing
of measurement data across multiple applications and allow
monitoring at finer time scales as required for specific ap-
plications. Such a service eases network management tasks
such as root-cause analysis, better VoIP routing, and the
placement of computing, network, and storage resources.
Also, it allows end applications to make better decisions
based on the network status. For example, a client in a
Content Distribution Network can choose the best server
for which the path between the client and the server has the
highest available bandwidth compared to other servers.

In [23], we describe the S3 architecture with three compo-
nents:

(i) Sensor pods: Run at end nodes, these are collections
of sensors that expose interfaces for various types of sensor
invocations,

(ii) Sensing information backplane: Provides a pro-
grammable middleware for aggregating and disseminating
the sensor data, and

(iii) Inference engines: Infer end-to-end network met-
rics without performing all-pair measurements but through
performing only a few measurements and inferring the prop-
erties of all other end-to-end paths [18, 21].

As described in the introduction, the CHART system de-
pends on a sensing infrastructure to monitor the network
state and feed that information to other components of the
system. The monitoring and control component of CHART
uses sensor pods to perform periodic measurement of avail-
able bandwidth and latency metrics from each participating
node to the neighboring nodes in the CHART routing sub-
strate. Other components of the CHART system, such as
the TCP-Trinity driver, that uses the available bandwidth
measurements to decide the congestion window size instead
of observed packet losses, subscribe to these measurement
streams.



Sensors Purpose
PING Measures latency to a specified destination
TRACEROUTE Collects number of hops and latency on the

network path to a destination
PATHRATE [6] Measure capacity of the network path to a des-

tination
TULIP [12] Measures error rate of the network path to a

destination
SPRUCE [19],
PATHCHIRP [14]

Measure available bandwidth on the network
path to a destination

Table 1: A subset of network sensors in S3 deploy-
ment on PlanetLab.

A sensor pod is a web service-enabled collection of light-
weight measurement and monitoring sensors that collect in-
formation at a machine. This information spans both net-
work properties such as connectivity to the Internet, latency
to some other machine in the system, bandwidth to another
machine, and machine attributes such as machine’s current
CPU load, free memory, and number of processes. These
sensors gather information actively (e.g., send some packets
on a network link to detect available bandwidth) or passively
(e.g., infer the current RTTs of a link from communication
pattern of a TCP connection on the same link). Simple sen-
sors can also be created to extract existing SNMP MIB data
from different network elements.

As shown in Figure 3, along with sensors, each sensor pod
has a Data Repository (DR) to store information measured
by different sensors, a Configuration Repository (CR) to
store sensing configurations that are used to determine which
sensor to invoke, how frequently to invoke, how long to in-
voke, what parameters to supply on sensor invocation, and
how to store the information returned by the sensor. Also
each sensor pod has a controller that coordinates the in-
vocation of sensors based on the configuration information
provided to the sensor pod. Sensor pods expose interfaces
for both querying the data in DR and for setting new con-
figurations in CR through web service API. Exposing sensor
pod interfaces as a web service in our architecture enables
sensor composition — new sensors can be easily built by
composing information generated by some existing sensors.

A sensor pod optimizes the number of sensor invocations (to
minimize network communication and computation costs)
by analyzing sensing configurations supplied by different ap-
plications for a unique sensor. For example, if two applica-
tions need to measure the latency to the same destination
machine but at different periodic rates, say once in 6 seconds
and once in 10 seconds, then our subsystem invokes the sen-
sor at the higher rate (once in 6 seconds) and stores that as
an answer for both sensing configurations. Also if multiple
applications invoke the same sensor for one-shot measure-
ment and if those invocations overlap, then the sensor pod
performs only one measurement and returns the same value
to all requesting applications. Thus, our sensor pod de-
sign effectively eliminates the redundant monitoring traffic
incurred by applications if each conducts its own measure-
ments. We are developing a measurement scheduler to limit
the measurement overhead under a specific fraction of the
network capacity (e.g., 1% of the link capacity).

We have built a prototype of the S3 modules and deployed
them on on the PlanetLab testbed. This deployment has

been running since January 2006. We spent significant engi-
neering effort on multiple fronts to get to the current stage
where the entire system is automated and requires almost
zero maintenance and is easy to extend. Our current im-
plementation has a wide variety of sensors, some of which
are listed in Table 6, that leverage several open source net-
work monitoring tools for measuring various network path
metrics (latency, number of hops, available bandwidth, bot-
tleneck capacity, and loss rate). We are currently measuring
all-pair network metrics periodically.

We pull the measurement data from the sensor pods on all
nodes to a central node to provide the global views to other
researchers by making this data available online, and also to
archive the data for post-analysis of the Internet behavior.
A snapshot of the all-pair capacity and available bandwidth
metrics updated about every 4 hours is available at the fol-
lowing website: http://networking.hpl.hp.com/s-cube/

PL.

The data from the S3 deployment on PlanetLab was use-
ful for other research projects internal and external to HP
Labs. This data was used in substantiating the benefits
of bandwidth-aware routing in the overlay networks [10].
We were able to quantify the relationships between different
network metrics [22] to explore if a low-cost metric can be
monitored to deduce changes in a high-cost metric. We also
provided the data to researchers from Purdue, Microsoft Re-
search, Cornell, UIUC, UArizona, NTT Japan, and UCSD.

7. EXPERIMENTAL RESULTS
The CHART system has been designed to increase end-to-
end bulk file transfer throughput performance by a factor
of 10 in a challenging operational WAN environment. All
elements of the CHART system have been implemented and
undergone extensive testing on the PlanetLab, the Emulab
network emulation system at the University of Utah, and in
a DARPA testbed at Science Applications International on
a set of test networks developed by a testing team at SAIC.

To verify the performance of control plane enhancements,
DARPA has created a set of three network test scenarios.
Each scenario introduced up to 10 separate network impair-
ments or defects, such as an excessively high packet loss on
a link, or temporary link failure. Bulk data transfer tests
were performed using ftp.

The CHART solution was tested by SAIC on their testbed
in two four-week sequences of tests in the summer of 2006
and 2007. The mean result showed a TCP performance im-
provement over legacy Linux 2.6 by a factor of 20, exceeding
the goals for the entire program by a factor of 2.

Here, we demonstrate results obtained in Emulab[11] test-
ing. Unless otherwise noted, all results were obtained over
a nominal 100 Mb/sec capacity link. Times were measured
using iperf[20], using 60-second timed transmissions. Band-
width was reported by iperf and measured at the receiver.
All transmissions used 1-MByte initial windows at both sender
and receiver, set by sysctl.

The problem of standard TCP is illustrated in the chart in
Figure 4. Here, the decline in throughput of standard TCP



10
−2

10
−1

10
0

10
1

0

20,000

40,000

60,000

80,000

100,000

Percentage Loss Rate

T
hr

ou
gh

pu
t (

K
bp

s)

 

 

10 ms
20 ms
50 ms
100 ms

Figure 4: Performance of Legacy TCP under Loss
and Latency.

10
−2

10
−1

10
0

10
1

0

20,000

40,000

60,000

80,000

100,000

Percentage Loss Rate

T
hr

ou
gh

pu
t (

K
bp

s)

 

 

10 ms
20 ms
50 ms
100 ms

Figure 5: Performance of CHART TCP under Loss
and Latency.

with increasing latency is shown dramatically, at every loss
level. Note particularly the effect of loss, even at very small
latencies. At low latency, 10% loss, throughput is only about
600 Kb/sec – about equivalent to a reasonable cable modem.
At 100 ms latency, this degrades to about 180 Kb/s.

The contrast to the CHART system is shown in figure 5.
While some decline in performance due to increasing latency
is apparent, as is some decline due to loss, the degradation of
performance in response to increasing latency and loss is far
more graceful. In particular, 10% loss at no delay still admits
a throughput of over 65 Mb/s, and even at 100 milliseconds
latency throughput is still a respectable 2 Mb/s.

These relative performance figures translate into a signifi-
cant performance increase for CHART TCP, particularly at
high latency and loss. The relative performance is shown in
figure 6. As can be seen from the figure, the CHART TCP
=-Trinity driver demonstrates a significant performance in-
crease over legacy TCP at all legacy/delay points, with dra-

10
−2

10
−1

10
0

10
1

0

5

10

15

20

25

30

35

Percentage Loss Rate

P
er

fo
rm

an
ce

 R
at

io

 

 

10 ms
20 ms
50 ms
100 ms

Figure 6: CHART TCP/Performance Ratio under
Loss and Latency

matic increases on the 5% and 10% loss curves.

Throughput is of course important, but it begs an even more
important question: fairness. TCP degrades quickly with in-
creases in loss and latency because loss is regarded by TCP
as a proxy for congestion: TCP controls congestion in the
network by reducing transmission speed. It is therefore easy
to make TCP robust in the face of loss: simply ignore loss.
Of course, there may be consequences for congestion con-
trol. A skeptic might argue that all we have demonstrated
is that it is easy to drive from the Lincoln Memorial to the
Capitol in two minutes at 9 o’clock AM on a Monday morn-
ing, as long as one is relatively unconcerned about collateral
damage.

We therefore have a greater burden. Not only must we
show that the CHART stack improves performance, we must
prove that it abides by the first law of the Internet: first,
cause no congestion.

In order to investigate the fairness properties of CHART
TCP, we first sought to determine whether CHART TCP
would reduce its channel consumption to accommodate other
flows. In order to test this, first we ran two legacy flows
against each other, at sufficiently low loss and delay that
each could individually fill the pipe. We then ran a single
CHART flow against a legacy flow under the same condi-
tions, and finally ran two CHART flows against each other.
In all cases, we calculated the fairness of one flow with re-
spect to the other as the complement of the total throughput
taken by the flow. We also measured the total throughput
of all flows.

The results are shown in figure 7. Results were compared
to a single legacy flow, labeled here as baseline. Fairness is
shown here as the percentage of total throughput taken by
the other flow. A score of 1.0 indicates that the flows were
perfectly balanced, whereas a score of under 1.0 indicates
that this flow took more than its share. We also measured
total throughput expressed as a percentage of the theoretical



0.92

0.94

0.96

0.98

1

1.02

1.04

1.06
Fa

ir
ne

ss

Pe
rc

en
ta

ge
 T

hr
ou

gh
pu

t

Baseline Legacy/Legacy Legacy/CHART CHART/CHART
92

93

94

95

96

97

98

99

Percentage Throughput

Figure 7: Fairness and performance of Flows in Fair-
ness Experiment

throughput of the line, with a theoretical maximum of 100%.

The single Baseline flow achieved 94% of theoretical max-
imum, and perfect fairness by definition (1.0). Conversely,
when CHART (QoS) was run against legacy TCP. it achieved
a fairness score of 1.04 – it gave the legacy flow about 8%
more bandwidth than it took – and the two flows together
achieved 97% of theoretical throughput.

As can be seen from the graph, the CHART flow was the
fairest flow of all, yielding a surplus of 8% of bandwidth to
a legacy flow. In the CHART/CHART case, bandwidth was
perfectly balanced between the flows. Further, this combi-
nation had the highest throughput, at 98% of theoretical
maximum.

This experiment demonstrates that the CHART solution is
fair between CHART flows, and is fair to legacy flows: in-
deed, fairer than legacy flows are to each other. However,
this case investigated the area where the latency and delay
were sufficiently small that legacy flows could fill the pipe.
This still leaves the case where the CHART flow can easily
fill the pipe, but the legacy flow cannot: will the CHART
flow reduce its throughput to make room for legacy?

In order to test this, we ran two sets of legacy flows in paral-
lel, and computed the aggregate bandwidth. We then ran a
set of CHART flows against a set of legacy flows, and deter-
mined the ratio of bandwidth consumed by the legacy flow
against the CHART flow against the mean of the two legacy
flows taken together. This ratio was taken as the fairness of
the CHART flow set to legacy flows. We also measured the
deviation of each flow set about its mean, and used this as
a measure of the internal fairness among a flow set.

The results are shown in in Figure 8. Note that all but one
case the deviation from the mean of the CHART flows was
smaller than the deviation of the legacy flows, indicating
greater internal fairness in the CHART flowset in each case
(perfect fairness here would be a deviation of 0.0).

Similarly, in four of the six cases legacy throughput actually

50ms/0% 100ms/0%500ms/0% 50ms/5% 100ms/5%500ms/5%
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

F
ai

rn
es

s

 

 

P
er

fo
rm

an
ce

 R
at

io

 

 

0

2

4

6

8

10

12

14

16

CHART Flow Deviation
Legacy Flow Deviation
CHART Fairness

Performance Ratio

Figure 8: Fairness and performance ratio of Legacy
and CHART flows in different Latency/Loss cases.

increased when competing against the CHART flows, shown
by the“CHART fairness”series. This series measures the ra-
tio of a legacy flowset competing against a CHART flowset.
A positive score indicates an increase in bandwidth when
competing against CHART; a negative score, a decrease in
bandwidth. Further, CHART did not lose its performance
advantage when competing with legacy flows, even though it
remained fair. The performance ratio of the CHART flowset
to the legacy flowset is also shown in Figure 8.

8. CONCLUSION
The CHART system offers a new approach to the problem
of improving end-to-end throughput performance, combin-
ing in-band signaling, decentralized performance measure-
ment and monitoring, and the strategic deployment of a new
generation of advanced flow managers. The combination of
network sensing and explicit signaling has been shown in
preliminary tests to increase throughput in the presence of
bad links by an order of magnitude or more for both pure
hardware and pure software implementations. A unique and
compelling aspect of CHART is that it permits the grad-
ual introduction of new flow management technology on the
network, where overlay nodes on the existing infrastructure
provide the immediate benefits of explicit signaling. Hard-
ware flow managers may be judiciously added to a network
to accommodate transmission rates up to 10 Gbps. Overlay
nodes also facilitate the introduction of new network appli-
cations.

CHART’s approach not only solves the end-to-end perfor-
mance problem sought by the DARPA Internet Control Plane
program, it also lays a foundation for future network-wide
applications. The reason for this is that once a computa-
tional overlay is deployed – in this case to support software
flow management – the overlay can be exploited for a variety
of other novel, decentralized applications.

9. ACKNOWLEDGEMENTS
The authors thank a large number of people who have con-
tributed over the years to the success of the CHART pro-
gram. We particularly acknowledge the unflagging support



of the US Defense Advanced Research Projects Agency, and
thank the program manager who conceived the Control Plane
program, Dr. Timothy Gibson (COL, US Army, Ret.), and
his able SETAs. We thank our supportive management over
the years: Frank Pietryka, Patrick Scaglia, Norm Jouppi,
Susie Wee, John Apostolopoulos, and Mike Freeman. The
CHART program owes an especially deep debt to the Em-
ulab testbed. We wish to take this opportunity to mourn
the tragic and premature loss of one of the genuinely great
men of systems computer science, and our close friend, Jay
Lepreau. We encourage the systems community to continue
to support Jay’s beloved and enduring legacy, Emulab, and
his students and successors: Mike Hibler, Eric Eide, and
Rob Ricci. We thank Craig Soules for careful reading of this
paper and insightful comments.

10. ADDITIONAL AUTHORS
Andy Bavier, Princeton University,
Larry Peterson, Princeton University,
Stephen Schwab, Sparta Inc.,
Larry Roberts, Anagran Inc.,
Alex Henderson, Anagran Inc.,
Bob Khorram, Anagran Inc.,
Shidong Zhang, George Mason University,
Soonyong Sohn, George Mason University,
Brian Mark, George Mason University,
Christian Heiter, HP,
John Spies, HP, and
Nicki Watts, HP.

11. REFERENCES
[1] ATM Forum. ATM Traffic Management Specification

Version 4.0 <af-tm-0056.000>, Apr. 1996.

[2] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang,
and W. Weiss. An Architecture for Differentiated
Services. IETF RFC 2475, Dec. 1998.

[3] B. Braden, L. Zhang, B. S., S. Herzog, and S. Jamin.
Resource ReSerVation Protocol (RSVP) – Version 1
Functional Specification. IETF RFC 2205, Sep. 1997.

[4] R. Braden, L. Zhang, S. Berson, S. Herzog, and
S. Jamin. Resource ReSerVation Protocol (RSVP) –
Version 1 Functional Specification. RFC 2205
(Proposed Standard), Sept. 1997. Updated by RFCs
2750, 3936, 4495.

[5] J. Brassil, B. Mark, R. McGeer, S. Schwab,
P. Sharma, and P. Yalagandula. The case for service
overlays. In Preparation, 2008.

[6] C. Dovrolis, P. Ramanathan, and D. Moore.
Packet-dispersion techniques and a
capacity-estimation methodology. IEEE/ACM
Transactions on Networking, 12(6):963–977, December
2004.

[7] N. Dukkipati, M. Kobayashi, R. Zhang-Shen, and

N. McKeown. Processor sharing flows in the internet.
In Thirteenth International Workshop on Quality of
Service (IWQoS), june 2005.

[8] A. Jain, S. Floyd, M. Allman, and P. Sarolahti.
Quick-start for tcp and ip. In Internet-draft
draft-ietf-tsvwg-quickstart-00.txt, May 2005.

[9] A. Kolarov and G. Ramamurthy. A control-theoretic
approach to the design of an explicit rate controller for

abr service. IEEE/ACM Trans. on Networking, 7(5),
October 1999.

[10] S.-J. Lee, S. Banerjee, P. Sharma, and P. Yalagandula.
Bandwidth-Aware Routing in Overlay Networks. In
Proc. IEEE INFOCOM, 2008.

[11] J. Lepreau. Emulab network emulation testbed.
http://www.emulab.net.

[12] R. Mahajan, N. Spring, D. Wetherall, and
T. Anderson. User-level Internet Path Diagnosis. In
Proceedings of the SOSP, Oct 2003.

[13] PlanetLab Consortium. Planetlab.
http://www.planet-lab.org.

[14] V. Ribeiro, R. Riedi, R. Baraniuk, J. Navratil, and
L. Cottrell. pathChirp: Efficient available bandwidth
estimation for network paths. In Proceedings of the
PAM 2003, La Jolla, CA, April 2003.

[15] L. Roberts. QoS Signaling for IP QoS Support. TIA
1039, July 2005.

[16] L. Roberts. TIA TR-34.1.7 Working Group (IP on
Satellite), chapter TIA TR-34.1.02/12.04.05: QoS
Signalling for IPv6 QoS Support. Telecommunications
Industry Association, 2005.

[17] E. Rosen, A. Viswanathan, and R. Callon.
Multiprotocol Label Switching Architecture. IETF
RFC 3031, Jan. 2001.

[18] P. Sharma, Z. Xu, S. Banerjee, and S.-J. Lee.
Estimating network proximity and latency. ACM
Computer Communications Review, 36(3):41–50, July
2006.

[19] J. Strauss, D. Katabi, and F. Kaashoek. A
measurement study of available bandwidth estimation
tools. In Proceedings of the ACM IMC 2003, Miami,
FL, October 2003.

[20] A. Tirumala, F. Qin, J. Dugan, J. Ferguson, and
K. Gibbs. Iperf version 2.02.

[21] R. Wouhaybi, P. Sharma, S. Banerjee, and
A. Campbell. Minerva: Learning to Infer Network
Path Properties. In Proc. IEEE INFOCOM, 2008.

[22] P. Yalagandula, S.-J. Lee, P. Sharma, and S. Banerjee.
Correlations in End-to-End Network Metrics: Impact
on Large Scale Network Monitoring. In Proc. IEEE
Global Internet Symposium, 2008.

[23] P. Yalagandula, P. Sharma, S. Banerjee, S.-J. Lee, and
S. Basu. S3: A Scalable Sensing Service for Monitoring
Large Networked Systems. In Proc. SIGCOMM
Workshop on Internet Network Management, 2006.


