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Abstract—Datacenters need high-bandwidth interconnection
fabrics. Several researchers have proposed highly-redundant
topologies with multiple paths between pairs of end hosts for
datacenter networks. However, traffic management is necessary
to effectively utilize the bisection bandwidth provided by these
topologies. This requires timely detection of elephant flows—
flows that carry large amount of data—and managing those
flows. Previously proposed approaches incur high monitoring
overheads, consume significant switch resources, and/or have long
detection times.

We propose, instead, to detect elephant flows at the end hosts.
We do this by observing the end hosts’s socket buffers, which
provide better, more efficient visibility of flow behavior. We
present Mahout, a low-overhead yet effective traffic management
system that follows OpenFlow-like central controller approach for
network management but augments the design with our novel end
host mechanism. Once an elephant flow is detected, an end host
signals the network controller using in-band signaling with low
overheads. Through analytical evaluation and experiments, we
demonstrate the benefits of Mahout over previous solutions.

I. INTRODUCTION

Datacenter switching fabrics have enormous bandwidth de-
mands due to the recent uptick in bandwidth-intensive appli-
cations used by enterprises to manage their exploding data.
These applications transfer huge quantities of data between
thousands of servers. For example, Hadoop [18] performs an
all-to-all transfer of up to petabytes of files during the shuffle
phase of a MapReduce job [15]. Further, to better consolidate
employee desktop and other computation needs, enterprises
are leveraging virtualized datacenter frameworks (e.g., using
VMWare [29] and Xen [10], [30]), where timely migration of
virtual machines requires high throughput network.

Designing datacenter networks using redundant topologies
such as Fat-tree [6], [12], HyperX [5], and Flattened But-
terfly [22] solves the high-bandwidth requirement. However,
traffic management is necessary to extract the best bisection
bandwidth from such topologies [7]. A key challenge is that
the flows come and go too quickly in a data center to compute
a route for each individually; e.g., Kandula et al. report 100K
flow arrivals a second in a 1,500 server cluster [21].

For effective utilization of the datacenter fabric, we need to
detect elephant flows—flows that transfer significant amount
of data—and dynamically orchestrate their paths. Datacenter
measurements [17], [21] show that a large fraction of datacen-
ter traffic is carried in a small fraction of flows. The authors

∗This work was performed while Andrew and Wonho were interns at HP
Labs—Palo Alto.

report that 90% of the flows carry less than 1MB of data
and more than 90% of bytes transferred are in flows greater
than 100MB. Hash-based flow forwarding techniques such as
Equal-Cost Multi-Path (ECMP) routing [19] works well only
for large numbers of small (or mice) flows and no elephant
flows. For example, Al-Fares et al.’s Hedera [7] shows that
managing elephant flows effectively can yield as much as
113% higher aggregate throughput compared to ECMP.

Existing elephant flow detection methods have several lim-
itations that make them unsuitable for datacenter networks.
These proposals use one of three techniques to identify ele-
phants: (1) periodic polling of statistics from switches, (2)
streaming techniques like sampling or window-based algo-
rithms, or (3) application-level modifications (full details of
each approach are given in Section II). We have not seen
support for Quality of Service (QoS) solutions take hold,
which implies that modifying applications is probably an unac-
ceptable solution. We will show that the other two approaches
fall short in the datacenter setting due to high monitoring
overheads, significant switch resource consumption, and/or
long detection times.

We assert that the right place for elephant flow detection
is at the end hosts. In this paper, we describe Mahout, a
low-overhead yet effective traffic management system using
end-host-based elephant detection. We subscribe to the in-
creasingly popular simple-switch/smart-controller model (as in
OpenFlow [4]), and so our system is similar to NOX [28] and
Hedera [7].

Mahout augments this basic design. It has low overhead, as
it monitors and detects elephant flows at the end host via a
shim layer in the OS, rather than monitoring at the switches
in the network. Mahout does timely management of elephant
flows through an in-band signaling mechanism between the
shim layer at the end hosts and the network controller. At the
switches, any flow not signaled as an elephant is routed using
a static load-balancing scheme (e.g., ECMP). Only elephant
flows are monitored and managed by the central controller.
The combination of end host elephant detection and in-band
signaling eliminates the need for per-flow monitoring in the
switches, and hence incurs low overhead and requires few
switch resources.

We demonstrate the benefits of Mahout using analytical
evaluation and simulations and through experiments on a small
testbed. We have built a Linux prototype for our end host
elephant flow detection algorithm and tested its effectiveness.



We have also built a Mahout controller, for setting up switches
with default entries and for processing the tagged packets from
the end hosts. Our analytical evaluation shows that Mahout
offers one to two orders of magnitude of reduction in the
number of flows processed by the controller and in switch
resource requirements, compared to Hedera-like approaches.
Our simulations show that Mahout can achieve considerable
throughput improvements compared to static load balancing
techniques while incurring an order of magnitude lower over-
head than Hedera. Our prototype experiments show that the
Mahout approach can detect elephant flows at least an order
of magnitude sooner than statistics-polling based approaches.

The key contributions of our work are: 1) a novel end
host based mechanism for detecting elephant flows, 2) design
of a centralized datacenter traffic management system that
has low overhead yet high effectiveness, and 3) simulation
and prototype experiments demonstrating the benefits of the
proposed design.

II. BACKGROUND & RELATED WORK

A. Datacenter networks and traffic

The heterogeneous mix of applications running in datacen-
ters produces flows that are generally sensitive to either latency
or throughput. Latency-sensitive flows are usually generated
by network protocols (such as ARP and DNS) and interactive
applications. They typically transfer up to a few kilobytes.
On the other hand, throughput-sensitive flows, created by,
e.g., MapReduce, scientific computing, and virtual machine
migration, transfer up to gigabytes. This traffic mix implies
that a datacenter network needs to deliver high bisection
bandwidth for throughput-sensitive flows without introducing
setup delay on latency-sensitive flows.

Designing datacenter networks using redundant topologies
such as Fat-tree [6], [12], HyperX [5], or Flattened But-
terfly [22] solves the high-bandwidth requirement. However,
these networks use multiple end-to-end paths to provide this
high-bandwidth, so they need to load balance traffic across
them. Load balancing can be performed with no overhead
using oblivious routing, where the path a flow from node i
to node j is routed on is randomly selected from a probability
distribution over all i to j paths, but it has been shown to
achieve less than half the optimal throughput when the traffic
mix contains many elephant flows [7]. The other extreme is
to perform online scheduling by selecting the path for all new
flows using a load balancing algorithm, e.g., greedily adding
a flow along the path with least congestion. This approach
doesn’t scale well—flows arrive too quickly for a single sched-
uler to keep up—and it adds too much setup time to latency-
sensitive flows. For example, flow installation using NOX can
take up to 10ms [28]. Partition-aggregate applications (such
as search and other web applications) partition work across
multiple machines and then aggregate the responses. Jobs have
a deadline of 10–100ms [8], so a 10ms flow setup delay can
consume the entire time budget. Therefore, online scheduling
is not suitable for latency-sensitive flows.

B. Identifying elephant flows

The mix of latency- and throughput-sensitive flows in the
data centers means that effective flow scheduling needs to
balance visibility and overhead—a one size fits all approach is
not sufficient in this setting. To achieve this balance, elephant
flows must be identified so that they are the only flows touched
by the controller. The following are the previously considered
mechanisms for identifying elephants:

• Applications identify their flows as elephants: This solu-
tion accurately and immediately identifies elephant flows.
This is a common assumption for a plethora of research
work in network QoS where focus is to give higher
priority to latency and throughput-sensitive flows such
as voice and video applications (see, e.g., [11]). How-
ever, this solution is impractical for traffic management
in datacenters as each and every application must be
modified to support it. If all applications are not modified,
an alternative technique will still be needed to identify
elephant flows initiated by unmodified applications.
A related approach is to classify flows based on which
application is initiating them. This classifies flows using
stochastic machine learning techniques [27], or using
simple matching based on the packet header fields (such
as TCP port numbers). While this approach might be
suitable for enterprise network management, it is un-
suitable for datacenter network management because of
the enormous amount of traffic in the datacenter and the
difficulty in obtaining flow traces to train the classification
algorithms.

• Maintain per-flow statistics: In this approach, each flow
is monitored at the first switch that the flow goes
through. These statistics are pulled from switches by
the controller at regular intervals and used to classify
elephant flows. Hedera [7] and Helios [16] are examples
of systems proposing to use such a mechanism. However,
this approach does not scale to large networks. First,
this consumes significant switch resources: a flow table
entry for each flow monitored at a switch. We’ll show
in Section IV that this requires considerable number of
flow table entries. Second, bandwidth between switches
and the controller is limited, so much so that transferring
statistics becomes the bottleneck in traffic management
in datacenter network. As a result, the flow statistics
cannot be quickly transferred to the controller, resulting
in prolonged sub-par routings.

• Sampling: Instead of monitoring each flow in the net-
work, in this approach, a controller samples packets from
all ports of the switches using switch sampling features
such as sFlow [3]. Only a small fraction of packets are
sampled (typically, 1 in 1000) at the switches and only
headers of the packets are transferred to the controller.
The controller analyzes the samples and identifies a flow
as an elephant after it has seen sufficient number of sam-
ples from the flow. However, such an approach can not
reliably detect an elephant flow before it has carried more
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Fig. 1: Mahout architecture.

than 10K packets, or roughly 15MB [25]. Additionally,
sampling has high overhead, since the controller must
process each sampled packet.

C. OpenFlow

OpenFlow [23] aims to open up traditionally closed de-
signs of commercial switches to enable network innovation.
OpenFlow switches maintain a flow-table where each entry
contains a pattern to match and the actions to perform on a
packet that matches that entry. OpenFlow defines a protocol for
communication between a controller and an OpenFlow switch
to add and remove entries from the flow table of the switch
and to query statistics of the flows.

Upon receiving a packet, if an OpenFlow switch does not
have an entry in the flow table or TCAM that matches the
packet, the switch encapsulates and forwards the packet to the
controller over a secure connection. The controller responds
back with a flow table entry and the original packet. The switch
then installs the entry into its flow table and forwards the
packet according to the actions specified in the entry. The flow
table entries expire after a set amount of time, typically 60
seconds. OpenFlow switches maintain statistics for each entry
in their flow table. These statistics include a packet counter,
byte counter, and duration.

The OpenFlow 1.0 specification [2] defines matching over
12 fields of packet header (see the top line in Figure 3). The
specification defines several actions including forwarding on a
single physical port, forwarding on multiple ports, forwarding
to the controller, drop, queue (to a specified queue), and
defaulting to traditional switching. To support such flexibility,
current commercial switch implementations of OpenFlow use
TCAMs for flow table.

III. OUR SOLUTION: MAHOUT

Mahout’s architecture is shown in Figure 1. In Mahout, a
shim layer on each end host monitors the flows originating
from that host. When this layer detects an elephant flow, it
marks subsequent packets of that flow using an in-band sig-
naling mechanism. The switches in the network are configured
to forward these marked packets to the Mahout controller. This
simple approach allows the controller to detect elephant flows
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Fig. 2: Amount of data observed in the TCP buffers vs. data observed
at the network layer for a flow.

without any switch CPU- and bandwidth-intensive monitoring.
The Mahout controller then manages only the elephant flows,
to maintain a globally optimal arrangement of them.

In the following, we describe Mahout’s end host shim layer
for detecting elephant flows, our in-band signaling method for
informing controller about the elephant flows, and the Mahout
network controller.

A. Detecting Elephant Flows

An end host based implementation for detecting elephant
flows is better than in-network monitoring/sampling based
methods, particularly in datacenters, because: (1) The network
behavior of a flow is affected by how rapidly the end-point
applications are generating data for the flow, and this is not
biased by congestion in the network. In contrast to in-network
monitors, the end host OS has better visibility into the behavior
of applications. (2) In datacenters, it is possible to augment
the end host OS; this is enabled by the single administrative
domain and software uniformity typical of modern datacenters.
(3) Mahout’s elephant detection mechanism has very little
overhead (it is implemented with two if statements) on com-
modity servers. In contrast, using an in-network mechanism
to do fine-grained flow monitoring (e.g., using exact matching
on OpenFlow’s 12-tuple) can be infeasible, even on an edge
switch, and even more so on a core switch, especially on
commodity hardware. For example, assume that 32 servers
are connected, as is typical, to a rack switch. If each server
generates 20 new flows per second, with a default flow timeout
period of 60 seconds, an edge-switch needs to maintain and
monitor 38400 flow entries. This number is infeasible in any
of the real switch implementations of OpenFlow that we are
aware of.

A key idea of the Mahout system is to monitor end host
socket buffers, and thus determine elephant flows before
and with lower overheads than with in-network monitoring
systems. We demonstrate the rationale for this approach with
a micro-benchmark: an ftp transfer of a 50MB file from a host
1 to host 2, connected via two switches all with 1 Gbps links.

In Figure 2, we show the cumulative amount of data
observed on the network, and in the TCP buffer, as time
progresses. The time axis starts when the application first
provides data to the kernel. From the graph, one can observe
that the application fills the TCP buffers at a rate much higher
than the observed network rate. If the threshold for considering
a flow as an elephant is 100KB (Figure 2. of [17] shows that



Algorithm 1 Pseudocode for end host shim layer
1: When sending a packet
2: if number of bytes in buffer ≥ thresholdelephant then
3: / * Elephant flow */
4: if last-tagged-time - now() ≥ Ttagperiod then
5: set DS = 00001100
6: last-tagged-time = now()
7: end if
8: end if

more than 85% of flows are less than 100KB), we can see
that Mahout’s end host shim layer can detect a flow to be
an elephant 3x sooner than in-network monitoring. In this
experiment there were no other active flows on the network.
In further experimental results, presented in Section V, we
observe an order of magnitude faster detection when there are
other flows.

Mahout uses a shim layer in the end hosts to monitor
the socket buffers. When a socket buffer crosses a chosen
threshold, the shim layer determines that the flow is an
elephant. This simple approach ensures that flows that are
bottlenecked at the application layer and not in the network
layer, irrespective of how long-lived they are or how many
bytes they have transferred, will not be determined as the
elephant flows. Such flows need no special management in
the network. In contrast, if an application is generating data
for a flow faster than the flow’s achieved network throughput,
the socket buffer will fill up, and hence Mahout will detect
this an an elephant flow that needs management.

B. In-band Signaling

Once Mahout’s shim layer has detected an elephant flow,
it needs to signal this to the network controller. We do this
indirectly, by marking the packets in a way that is easily
and efficiently detected by OpenFlow switches, and then the
switches divert the marked packets to the network controller.
To avoid inundating the controller with too many packets of
the same flow, the end host shim layer marks the packets of
an elephant flow only once every Ttagperiod seconds (we use
1 second in our prototype).

To mark a packet, we repurpose the Differentiated Services
Field (DS Field) [26] in the IPv4 header. This field was
originally called the IP Type-of-Service (IPToS) byte. The
first 6 bits of the DS Field, called Differentiated Services
Code Point (DSCP), define the per-hop behavior of a packet.
The current OpenFlow specification [2] allows matching on
DSCP bits, and most commercial switch implementations
of OpenFlow support this feature in hardware; hence, we
use the DS Field for signaling between the end host shim
layer and the network controller. Currently the code point
space corresponding to xxxx11 (x denotes a wild-card bit) is
reserved for experimental or local usage [20], and we leverage
this space. When an end host detects an elephant flow, it sets
the DSCP bits to 000011 in the packets belonging to that flow.

Algorithm 1 shows pseudocode for the end host shim layer
function that is executed when a TCP packet is being sent.

C. Mahout Controller

At each rack switch, the Mahout controller initially config-
ures two default OpenFlow flow table entries: (i) an entry to
send a copy of packets with the DSCP bits set to 000011 to the
controller and (ii) the lowest-priority entry to switch packets
using NORMAL forwarding action. We set up switches to per-
form ECMP forwarding by default in the NORMAL operation
mode. Figure 3 shows the two default entries at the bottom.
In this figure, an entry has a higher priority over (is matched
before) entries below that entry.

When a flow starts, it normally will match the lowest-
priority (NORMAL) rule, so its packet will follow ECMP
forwarding. When an end host detects a flow as an elephant
and marks a packet of that flow. That packet marked with
DSCP 000011 matches the other default rule, and the rack
switch forwards it to the Mahout controller. The controller
then computes the best path for this elephant, and installs a
flow-specific entry in the rack switch.

In Figure 3, we show a few example entries for the ele-
phant flows. Note that these entries are installed with higher
priority than Mahout’s two default rules; hence, the packets
corresponding to these elephant flows are switched using the
actions of these flow-specific entries rather than the actions of
the default entries. Also, the DS field is set to wildcard for
these elephant flow entries, so that once the flow-specific rule
is installed, any tagged packets from the end hosts are not
forwarded to the controller.

Once an elephant flow is reported to the Mahout controller,
it needs to be placed on the best available path. We define the
best path for a flow from s to t as the least congested of all
paths from s to t. The least congested s-t path is found by
enumerating over all such paths.

To manage the elephant flows, Mahout regularly pulls
statistics on the elephant flows and link utilizations from the
switches, and uses these statistics to optimize the elephant
flows’ routes. This is done with the increasing first fit algo-
rithm given in Algorithm 2. Correa and Goemans introduced
this algorithm and proved that it finds routings that have at
most a 10% higher link utilization than the optimal routing
[13]. While we cannot guarantee this bound because we re-
route only the elephant flows, we expect this algorithm to
perform as well as any other heuristic.

D. Discussion

a) DSCP bits: In Mahout, the end host shim layer uses
the DSCP bits of the DS field in IP header for signaling
elephant flows. However, there may be some datacenters
where DSCP may be needed for other uses, such as for
prioritization among different types of flows (voice, video, and
data) or for prioritization among different customers. In such
scenarios, we plan to use VLAN Priority Code Point (PCP) [1]
bits. OpenFlow supports matching on these bits too. We can
leverage the fact that it is very unlikely for both these code
point fields (PCP and DSCP) to be in use simultaneously.
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Algorithm 2 Offline increasing first fit
1: sort(F); reverse(F) /* F: set of elephant flows */
2: for f ∈ F do
3: for l ∈ f .path do
4: l.load = l.load - f .rate
5: end for
6: end for
7: for f ∈ F do
8: best paths[f].congest = ∞
9: /* Pst: set of all s-t paths */

10: for path ∈ Pst do
11: congest = (f.rate + path.load) / path.bandwidth
12: if congest < best path.congest then
13: best paths[f] = path
14: best paths[f].congest = congest
15: end if
16: end for
17: end for
18: return best paths

b) Virtualized Datacenter: In a virtualized datacenter,
a single server will host multiple guest virtual machines,
each possibly running a different operating system. In such
a scenario, the Mahout shim layer needs to be deployed in
each of the guest virtual machines. Note that the host operating
system will not have visibility into the socket buffers of a guest
virtual machine. However, in cloud computing infrastructures
such as Amazon EC2 [9], typically the infrastructure provider
makes available a few preconfigured OS versions, which in-
clude the paravirtualization drivers to work with the provider’s
hypervisor. Thus, we believe that it is feasible to deploy the
Mahout shim layer in virtualized datacenters, too.

c) Elephant flow threshold: Choosing too low a value for
thresholdelephant in Algorithm 1 can cause many flows to
be recognized as elephants, and hence cause the rack switches
to forward too many packets to the controller. When there
are many elephant flows, to avoid the controller overload, we
could provide a means for the controller to signal the end hosts
to increase the threshold value. However, this would require
a out-of-band control mechanism. An alternative is to use
multiple DSCP values to denote different levels of thresholds.
For example, xxxx11 can be designated to denote that a flow
has more than 100KB data, xxx111 to denote more than 1MB,

xx1111 to denote more than 10MB, and so on. The controller
can then change the default entry corresponding to the tagged
packets (second from bottom in the Figure 3) to select higher
thresholds, based on the load at the controller. Further study
is needed to explore these approaches.

IV. ANALYTICAL EVALUATION

In this section, we analyze the expected overhead of de-
tecting elephant flows with Mahout, with flow sampling, and
by maintaining per-flow statistics (e.g., the approach used by
Hedera). We set up an analytical framework to evaluate the
number of switch table entries and control messages used
by each method. We evaluate each method using an example
datacenter, and show that Mahout is the only solution that can
scale to support large datacenters.

Flow sampling identifies elephants by sampling an expected
1 out of k packets. Once it has seen enough packets from
the same flow, then the flow is classified as an elephant. The
number of packets needed to classify an elephant does not
affect our analysis in this section, so we ignore it for now.
Hedera [7] uses periodic polling for elephant flow detection.
Every t seconds, the Hedera controller pulls the per-flow
statistics from each switch. In order to estimate the true rate of
a flow (i.e., the rate of the flow if its rate is only constrained
by its endpoints’ NICs and not by any link in the network),
the statistics for every flow in the network must be collected.
Pulling statistics for all flows using OpenFlow requires setting
up a flow table entry for every flow, so each flow must be sent
to the controller before it can be started, so we include this
cost in our analysis.

We consider a million server network for the following
analysis. Our notation and and the assumed values are shown
in the Table I.

Hedera [7]: As table entries need to be maintained for all
flows, the number of flow table entries needed at each rack
switch is T ·F ·D. In our example, this translates to 32·20·60 =
38, 400 entries at each rack switch. We are not aware of any
existing switch with OpenFlow support that can support this
many entries in the flow table in the hardware—for example,
HP ProCurve 5400zl switches support up to 1.7K OpenFlow
entries per linecard. It is unlikely that any switch in the near



Parameter Description Value
N Num. of end hosts 220 (1M)
T Num. of end hosts per rack switch 32
S Num. of rack switches 215 (32K)
F Avg. new flows per second per end host 20 [28]
D Avg. duration of a flow in the flow table 60 seconds
c Size of counters in bytes 24 [2]

rstat Rate of gathering statistics 1-per-second
p Num. of bytes in a packet 1500

fm Fraction of mice 0.99
fe Fraction of elephants 0.01

rsample Rate of sampling 1-in-1000
hsample Size of packet sample (bytes) 60

TABLE I: Parameters and typical values for the analytical evaluation

future will support so many table entries given the expense of
high-speed memory.

The Hedera controller needs to handle N ·F flow setups per
second, or more than 20 million requests per second in our
example. A single NOX controller can handle only 30,000
requests per second; hence one needs 667 controllers to just
handle the flow setup load [28], assuming that the load can
be perfectly distributed. Flow scheduling, however, does not
seem to be a simple task to distribute.

The rate at which the controller needs to process the
statistics packets is

=
c · T · F ·D

p
· S · rstat

In our example, this implies (24 · 38400)/1500 · 215 ·
1 ≈ 20.1M control packets per second. Assuming that NOX
controller can handle these packets at the rate it can handle
the flow setup requests (30,000 per second), this translates to
needing 670 controllers just to process these packets. Or, if we
consider only one controller, then the statistics can be gathered
only once every 670 seconds (≈ 11 minutes).

Sampling: Sampling incurs the messaging overhead of
taking samples, and then installs flow table entries when an
elephant is detected. The rate at which the controller needs to
process the sampled packets is

= throughput · rsample ·
bytes per sample

p

We assume that each sample contains only a 60 byte
header and that headers can be combined into 1500 byte
packets, so there are 25 samples per message to the controller.
The aggregate throughput of a datacenter network changes
frequently, but if 10% of the hosts are sending traffic, the
aggregate throughput (in Gbps) is 0.10 ·N . We then find the
messaging overhead of sampling to be around 550K messages
per second, or if we bundle samples into packets (i.e., 25
samples fit in a 1500 byte packet), then this drops to 22K
messages per second.

At first blush, this messaging overhead does not seem
like too much overhead; however, as the network utilization
increases, the messaging overhead can reach 3.75 million
(or 150K if there are 25 samples per packet) packets per
second. Therefore, sampling incurs the highest overhead when
load balancing is most needed. Decreasing the sampling rate

reduces this overhead but adversely impacts the effects of flow
scheduling since not all elephants are detected.

We expect the number of elephants identified by sampling
to be similar to Mahout, so we do not analyze the flow table
entry overhead of sampling separately.

Mahout: Because elephant flow detection is done at the
end-host, switches contain flow table entries for elephant flows
only. Also, statistics are only gathered for the elephant flows.
So, the number of flow entries per rack switch in Mahout is
T ·F ·D ·fe = 384 entries. The number of flow setups that the
Mahout controller needs to handle is N ·F ·fe, which is about
200K requests per second, which needs 7 controllers. Also,
the number of packets per second that need to be processed
for gathering statistics is a fe fraction of the same in case of
Hedera. Thus 7 controllers are needed for gathering statistics
at the rate of once per second, or the statistics can be gathered
by a single controller at the rate of once every 7 seconds.

V. EXPERIMENTS

A. Simulations

Our goal is to compare the performance and overheads of
Mahout against the competing approaches described in the
previous section. To do so, we implemented a flow-level,
event-based simulator that can scale to a few thousand end
hosts connected using Clos topology [12]. We now describe
this simulator and our evaluation of Mahout with it.

1) Methodology: We simulate a datacenter network by
modeling the behavior of flows. The network topology is
modeled as a capacitated, directed graph and forms a three-
level Clos topology. All simulations here are of a 1,600
server datacenter network, and they use a network with a
rack to aggregation and aggregation to core links that are
1:5 oversubscribed, i.e., the network has 320Gb bisection
bandwidth. All servers have 1Gbps NICs and links have 1Gbps
capacity. Our simulation is event-based, so there is no discrete
clock—instead, the timing of events is accurate to floating-
point precision. Input to the simulator is a file listing the start
time, bytes, and endpoints of a set of flows (our workloads are
described below). When a flow starts or completes, the rate of
each flow is recomputed.

We model the OpenFlow protocol only by accounting for
the delay when a switch sets up a flow table entry for a flow.
When this occurs, the switch sends the flow to the OpenFlow
controller by placing it in its OpenFlow queues. This queue
has 10Mbps of bandwidth (this number was measured from
an OpenFlow switch [24]). This queue has infinite capacity,
so our model optimistically estimates the delay between a
switch and the OpenFlow controller since a real system drops
arriving packets if one of these queues is full, resulting in TCP
timeouts. Moreover, we assume that there is no other overhead
when setting up a flow, so the OpenFlow controller deals with
the flow and installs flow table entries instantly.

We simulate three different schedulers: (1) an offline sched-
uler that periodically pulls flow statistics from the switches,
(2) a scheduler that behaves like the Mahout scheduler, but



uses sampling to detect elephant flows, and (3) the Mahout
scheduler as described in Sec. III-C.

The stat-pulling controller behaves like Hedera [7] and
Helios [16]. Here, the controller pulls flow statistics from
each switch at regular intervals. The statistics from a flow
table entry are 24 bytes, so the amount of time to transfer the
statistics from a switch to the controller is proportional to the
number of flow table entries at the switch. When transferring
statistics, we assume that the CPU-to-controller rate is the
bottleneck, not the network or OpenFlow controller itself.
Once the controller has statistics for all flows, it computes
a new routing for elephant flows and reassigns paths instantly.
In practice, computing this routing and inserting updated flow
table entries into the switches will take up to hundreds of
milliseconds. We allow this to be done instantaneously to
find the theoretical best achievable results using an offline
approach. The global re-routing of flows is computed using
the increasing best fit algorithm described in Algorithm 2. This
algorithm is simpler than the simulated annealing employed by
Hedera; however, we expect the results to be similar, since this
heuristic is likely to be as good as any other (as discussed in
Sec. III-C)

As we are doing flow-level simulations, sampling packets is
not straightforward since there are no packets to sample from.
Instead, we sample from flows by determining the amount of
time it will take for k packets to traverse a link, given its rate,
and then sample from the flows on the link by weighting each
flow by its rate. Full details are in [14].

a) Workloads: We simulate background traffic modeled
on recent measurements [21] and add traffic modeled on
MapReduce traffic to stress the network. We assume that the
MapReduce job has just gone into its shuffle phase. In this
phase, each end host transfers 128MB to each other host. Each
end host opens a connection to at most five other end hosts
simultaneously (as done by default in Hadoop’s implementa-
tion of MapReduce). Once one of these connections completes,
the host opens a connection to another end host, repeating this
until it has transferred its 128MB file to each other end host.
The order of these outgoing connections is randomized for
each end host. For all experiments here, we used 250 randomly
selected end hosts in the shuffle load. The reduce phase shuffle
begins three minutes after the background traffic is started
to allow the background traffic to reach a steady state, and
measurements shown here are taken for five minutes after the
reduce phase began.

We added background traffic following the macroscopic
flow measurements collected by Kandula et al. [17], [21]
to the traffic mix because datacenters run a heterogeneous
mix of services simultaneously. They give the fraction of
correspondents a server has within its rack and outside of its
rack over a ten second interval. We follow this distribution
to decide how many inter- and intra-rack flows a server starts
over ten seconds; however, they do not give a more detailed
breakdown of flow destinations than this, so we assume
that the selection of a destination host is uniformly random
across the source server’s rack or the remaining racks for an
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Fig. 4: Throughput results for the schedulers with various parameters.
Error bars on all charts show 95% confidence intervals.

intra- or inter-rack flow respectively. We select the number
of bytes in a flow following the distribution of flow sizes in
their measurements as well. Before starting the shuffle job,
we simulate this background traffic for three minutes. The
simulation ends whenever the last shuffle job flow completes.

b) Metrics: To measure the performance of each sched-
uler, we tracked the aggregate throughput of all flows; this is
the amount of bisection bandwidth the scheduler is able to
extract from the network. We measure overhead as before in
Section IV, i.e., by counting the number of control messages
and the number of flow table entries at each switch. All
numbers shown here are averaged from ten runs.

2) Results: The per-second aggregate throughput for the
various scheduling methods is shown in Figure 4. We com-
pare these schedulers to static load balancing with equal-cost
multipath (ECMP), which uniformly randomizes the outgoing
flows across a set of ports [7]. We used three different elephant
thresholds for Mahout: 128KB, 1MB, and 100MB, and flows
carrying at least this threshold of bytes were classified as an
elephant after sending 2, 20, or 2000 packets respectively. As
expected, controlling elephant flows extracts more bisection
bandwidth from the network—Mahout extracts 16% more
bisection bandwidth from the network than ECMP and the
other schedulers obtain similar results depending on their
parameters.

Hedera’s results found that flow scheduling gives a much
larger improvement over ECMP than our results (up to 113%
on some workloads) [7]. This is due to the differences in
workloads. Our workload is based on measurements [21],
whereas their workloads are synthetic. We have repeated our
simulations using some of their workloads and find similar
results: the schedulers improve throughput by more than 100%
compared to ECMP on their workloads.

We examine the overhead versus performance tradeoff by
counting the maximum number of flow table entries per rack
switch and the number of messages to the controller. These
results are shown in Figures 5 and 6

Mahout has the least overhead of any scheduling approach
considered. Pulling statistics requires too many flow table
entries per switch and sends too many packets to the controller
to scale to large datacenters; here, the stat-pulling scheduler
used nearly 800 flow table entries per rack switch on average
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Fig. 6: Average and maximum number of flow table entries at each
switch used by the schedulers.

no matter how frequently the statistics were pulled. This
is more than seven times the number of entries used by
the sampling and Mahout controllers, and makes the offline
scheduler infeasible in larger datacenters because the flow
tables will not be able to support such a large number of
entries. Also, when pulling stats every 1 sec., the controller
receives 10x more messages than when using Mahout with an
elephant threshold of 100MB.

These simulations indicate that, for our workload, the value
of thresholdelephant affects the overhead of the Mahout con-
troller, but does not have much of an impact on performance
(up to a point: when we set this threshold to 1GB (not shown
on the charts), the Mahout scheduler performed no better than
ECMP). The number of packets to the Mahout controller goes
from 328 per sec. when the elephant threshold is 128KB to 214
per sec. when the threshold is 100MB, indicating that tuning
it can reduce controller overhead by more than 50% without
affecting the scheduler’s performance. Even so, we suggest
making this threshold as small as possible to save memory at
the end hosts and for quicker elephant flow detection (see the
experiments on our prototype in the next section). We believe
a threshold of 200–500KB is best for most workloads.

B. Prototype & Microbenchmarks

We have implemented a prototype of the Mahout system.
The shim layer is implemented as a kernel module inserted
between the TCP/IP stack and device driver, and the controller
is built upon NOX [28], an open-source OpenFlow controller
written in Python language. For the shim layer, we created a
function for the pseudocode shown in Algorithm 1 and invoke
it for the outgoing packets, after the IP header creation in
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Fig. 8: Testbed for prototype experiments.
the networking stack. Implementing it as a separate kernel
module improves deployability because it can be installed
without modifying or upgrading the linux kernel. Our con-
troller leverages the NOX platform to learn topology and
configure switches with the default entries. It also processes
the packets marked by the shim layer and installs entries for
the elephant flows.

Our testbed for experimenting different components of the
prototype is shown in the Figure 8. Switches 1 and 2 in the
Figure are HP ProCurve 5400zl switches running firmware
with OpenFlow support. We have two end hosts in the testbed,
one acting as the server for the flows and another acting as the
client. For some experiments, we also run some background
flows to emulate the other network traffic.

Since this is a not a large scale testbed, we perform
microbenchmark experiments focusing on the timeliness of
elephant flow detection and compare Mahout against Hedera-
like polling approach. We first present measurements of the
time it takes to detect an elephant flow at end host and then
present the overall time it takes for the controller to detect an
elephant flow. Our workload consists of a file transfer using
ftp. For experiments with presence of background flows, we
run 10 simultaneous iperf connections.

a) End host elephant flow detection time: In this ex-
periment, we ftp a 50MB file from Host-1 to Host-2. We
track the number of bytes in the socket buffer for that flow
and the number of bytes transferred on the network along
with the timestamps. We did 30 trials of this experiment.
Figure 2 shows a single run. In Figure 7, we show the time it
takes before a flow can be classified as an elephant based
on information from the buffer utilization versus based on
the number of bytes sent on the network. Here we consider
different thresholds for considering a flow as an elephant. We
present both cases of with and without background flows. It is
clear from these results that Mahout’s approach of monitoring
the TCP buffers can significantly quicken the elephant flow
detection (more than an order of magnitude sooner in some
cases) at the end hosts and is also not affected by the
congestion in the network.

b) Elephant flow detection time at the controller: In this
experiment, we measure how long it takes for an elephant flow
to be detected at the controller using the Mahout approach
versus using Hedera-like periodic polling approach. To be fair
to the polling approach, we have done the periodic polling
at the fastest rate possible (poll in a loop without any wait
periods in between). As can be seen from the Table II, Mahout
controller can detect an elephant flow in few milliseconds.
In contrast, Hedera takes 189.83ms before the flow can be
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Threshold 100KB 200KB 500KB 1MB
Mahout 1.531ms 1.712ms 3.820ms 5.479ms
Hedera 189.83ms 189.83ms 189.83ms 189.83ms

TABLE II: Time it takes to detect an elephant flow at the Mahout
controller vs. the Hedera controller, with no other active flows.

detected as an elephant irrespective of the threshold. All times
are same due to switch’s overheads in collecting statistics and
relaying it to the central controller.

Overall, our working prototype demonstrates the deploy-
ment feasibility of Mahout. The experiments show an order
of magnitude difference in the elephant flow detection times
at the controller in Mahout vs. a competing approach.

VI. CONCLUSION

Previous research in datacenter network management has
shown that elephant flows—flows that carry large amount of
data—need to be detected and managed for better utilization of
the multi-path topologies. However, the previous approaches
for elephant flow detection are based on monitoring the
behavior of flows in the network and hence incur long de-
tection times, high switch resource usage, and/or high control
bandwidth and processing overhead. In contrast, we propose a
novel end host based solution that monitors the socket buffers
to detect elephant flows and signals the network controller
using an in-band mechanism. We present Mahout, a low-
overhead yet effective traffic management system based on this
idea. Our experimental results show that our system can detect
elephant flows an order of magnitude sooner than polling
based approaches while incurring an order of magnitude lower
controller overhead than other approaches.
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