
Minimizing Rulesets for TCAM Implementation
Rick McGeer, Praveen Yalagandula

HP Labs, Palo Alto, CA

Abstract—Packet classification is a function increasingly used
in a number of networking appliances and applications. Typically,
this consists of a set of abstract classifications, and a set of
rules which sort packets into the various classifications. For
packet classification at line speeds, Ternary Content-Addressable
Memories (TCAMs) have become a norm in most networking
hardware. However, TCAMs are expensive and power-hungry.
Hence, a packet classification ruleset need to be minimized before
populating the TCAM. In this paper, we formulate the Ruleset
Minimization Problem for TCAM as an abstract optimization
problem based on two-level logic minimization, and propose
an exact solution and a number of heuristics. We present
experimental results with two different datasets—artificial filter
sets generated using ClassBench tool suite and a real firewall
Access Control List (ACL) from a large enterprise. We observe
an average reduction of 41% in artificial filter sets and 72.5%
reduction in the firewall ACL using the proposed heuristics.

I. INTRODUCTION

Packet classification is a core function of several network
appliances, including firewalls, switches, network address
translators (NATs), and routers. The problem of packet classi-
fication can be formulated as follows: given a sequence of
overlapping rules, each of which is defined as a Boolean
expression over a set of header fields, match the incoming
packet to the first matching rule. Simple examples are packet
forwarding rules based on source and destination IP addresses,
traffic monitoring based on transport protocol, and traffic
shaping based on source or destination port number.

Packet classification is in the critical path for packet for-
warding and hence must be performed at the line speeds.
Assuming an average packet size of 300 bytes, a 24-port
Gig switch must process each packet in about 0.1µsec. For
this reason, network appliance manufacturers often use ternary
content-addressable memories (TCAMs) to speed processing.
But, TCAMs are expensive, power-hungry, and not expandable
(once the appliance is built, the TCAM size is fixed). On the
other hand, rulesets can be large and are specified with focus
on readability by human operators. All these factors strongly
motivate minimization of ruleset size before populating the
TCAMs with those rules.

While efficient ruleset search has received a great deal
of attention, the problem of minimizing rulesets is only of
recent interest, and previous approaches [1]–[5] have been
heuristic in nature and focused mainly on reducing the rules
with port ranges in either the source port or destination
port fields. Recent work by Liu et. al. [6], [7], use decision
diagram based heuristics to minimize the rulesets. In contrast
to these approaches, our focus is to formulate and study the
ruleset minimization problem in the light of Boolean logic
minimization.

The problem of ruleset minimization is superficially similar
to the general problem of two-level logic minimization [8],
a classic problem from undergraduate digital design. In fact,
the similarity is quite striking. In both cases, one is given
a specification consisting of a list of fixed-width bit fields,
where each bit may be 1, 0, or - (wildcard); the problem is to
minimize the length of the list while retaining the semantics of
the original list. This resemblance is best seen by considering
an example. Consider a toy domain with four-bit addresses
and two protocols, TCP and UDP. Imagine a firewall with two
rules; accept everything with addresses 0-6, and UDP packets
with addresses 12-15. If addresses are encoded in the usual
way in the first four bits, and the TCP protocol is encoded
with a 1 and the UDP protocol with a 0 in bit 5, then these
two rules become:

00--- /* accept any protocol on ports 0-3 */
0-0-- /* accept any protocol on ports 0,1,4,5 */
0--0- /* accept any protocol on ports 0,2,4,6 */
11--0 /* accept UDP packets on ports 12-15 */

These are exactly the rows that would appear in a TCAM
implementation of these rules. They are also the input specifi-
cation to a two-level minimization problem (and, actually, in
this case also the output – this is the minimum representation,
given the encoding of the problem).

There are two distinct differences between the ruleset
minimization problem and the two-level logic minimization
problem. The first, trivial distinction is given by the example
above: each rule in a ruleset minimization problem leads to
several terms in a TCAM implementation or two-level function
specification. All this means is that a ruleset specification
is a (slightly) high-level specification of a two-level logic
function, and generating the appropriate function is a me-
chanical exercise. The second, major distinction is that two-
level logic minimization assumes that each term of the two-
level function will be tested in parallel. However, rulesets are
specified assuming that they are tested in a sequential manner.
And, since TCAMs output the index of the first matching
entry, TCAM operation is also semantically equivalent to
testing rows in a sequential order. This has major consequences
where there are multiple targets of a TCAM (in almost all
cases, there are always at least two: Permit and Deny
or equivalent actions). Entries in a TCAM specification can
assume the preceding entries have failed, and therefore each
entry can implicitly incorporate the negative, or complement,
of all of the preceding entries. Formulating this into a variant
of two-level minimization problem, Minimal Sequential Cover
problem, is one of our major contributions.

Our strategy for the ruleset optimization for TCAM imple-
mentation is as follows:

1) Expand each rule into a set of terms (or in the two-level
minimization or logic synthesis jargon, cubes).

2) For each target (e.g., Permit or Deny), find the explicit
logic function associated with the target, as a set of
cubes.

3) Use a variant of two-level logic minimization, the
Minimal Sequential Cover algorithm, to exactly find a
minimal set of cubes.

Overall, our contribution is to formulate the Ruleset Min-
imization Problem as a mathematical optimization problem
strongly related to the problem of two-level logic synthesis [8],
and offer both exact and approximate algorithms to solve this
problem. We present experimental results with two different
datasets—artificial filter sets generated using ClassBench tool
suite [9] and a real firewall Access Control List (ACL) from
a large enterprise with about 1400 rules. We observe an
average reduction of 41% in the artificial filter sets and 72.5%
reduction in the firewall ACL using our proposed heuristics.

II. TERMINOLOGY

A Boolean space of dimension n, denoted Bn is a space
of n variables, x1, ..., xn, where each xi ∈ {0, 1}. A Boolean
function over Bn is a mapping Bn → {0, 1}. If the domain
of f is Bn , then f is said to be completely-specified. If the
domain of f is not Bn, then the set Bn − Dom(f) is said
to be the don’t-care set of f . Appropriate assignment of the
values 0 and 1 to elements of the don’t-care set is an important
technique in logic minimization. The set T ⊂ Bn defined as
{T : x ∈ Bn|f(x) = 1} is called the on-set of f , and the
members of T are called minterms of f . The set F ⊂ Bn

defined as {F : x ∈ Bn|f(x) = 0} is called the off-set of
f . The function f(x) = 1 ⇐⇒ f(x) = 0 is called the
complement of f .

A point of Bn is conventionally written as a vector of
n integers, each taken from the set {0, 1}. A rectangular
subspace or, more commonly, cube of Bn is a vector over
the space x1, ..., xn, where each xi ∈ {{0}, {1}, {0, 1}}. A
cube of Bn is conventionally written as a vector of n integers
over the set {0, 1, 2}, where 2 indicates the set {0, 1}. It may
also be written xi1

1 ...xin
n , where each ij indicates the value of

xj . A more conventional shorthand, which we will use here,
writes x

{1}
i as xi, x

{0}
i as xi, and elides x

{0,1}
i . Thus, over

the space B3, the subspace {1}{0}{0, 1} is written as 102 or
x1x2.

A subspace c of Bn such that f(x) = 1∀x ∈ c is called
an implicant of f , and a maximal implicant of f is called a
prime implicant or simply prime of f . Any function f may be
written as a union of implicants of f . A set C of implicants of
f such that every minterm of f is contained in some member
of C is called a cover of f . The goal of the two-level logic
synthesis algorithm is simply to find a minimal cover of an
input function.

The problem of two-level logic synthesis has been ex-
tensively studied since it was formulated by W. V. Quine

over 50 years ago. Exact methods of solution were devised
as soon as the problem was formulated, and simple exact
algorithms have been a staple of elementary digital design
since the 1950’s. Excellent approximate methods were devised
in the 1970’s and early 1980’s, culminating in the Espresso
algorithms [8]. Though the problem has been shown to be NP-
hard (and is thought to be complete in Σ2), the availability of
this large body of literature and algorithms permits us to use
these powerful techniques to attack the ruleset minimization
problem.

III. THE RULESET MINIMIZATION PROBLEM

The mapping of rulesets to a TCAM offers us a guide to the
formulation of the ruleset minimization problem as a variant
of the classic two-level logic synthesis problem. Any TCAM
entry realizes a cube of Bn, where n is the number of bits
in the TCAM entry. Realization of a rule as a set of TCAM
entries therefore corresponds to a disjunction of spaces where
the rule is met – in other words, to a Boolean function. In the
following, we define few terms before formulating the precise
definition of a ruleset specification.

A header space of a packet is the space of bits of some
subset of the fields of the packet header. For example, the
space (Source IP, Dest IP, Source Port, Dest Port, Protocol)
defines a 104-bit space. We do not specify in advance which
fields of the header make up the header space for a particular
ruleset: we merely observe that any ruleset inherently defines
a header space, and that every header space is a Boolean space
of some dimension.

A target is a Boolean function over a header space.
Classic examples of targets are Accept, Deny,
Accept-with-log, and Deny-with-log. Intuitively,
a target represents the total set of conditions forming the
classification of a packet.

A rule is a cube over a header space, and is a component of a
function. For rules with ranges, we expand them into multiple
cubes. For example, for the rule Accept 0-6 discussed in
the Section I, we simply expand the rule into the appropriate
cube set with three cubes. Henceforward, we will use cube
and rule interchangeably.

Definition 1: A specification of a TCAM is a sequence
of pairs (r1, t1)...(rN , tN), and a set of targets, henceforth
referred to as target universe, T = {T1, .., Tm}, where each
ri is a cube (a rule) and ti ∈ T .

It is tempting to consider targets as simply disjunctions
of rules, but this misses important semantic information.
Consider the rules, for targets Deny and Permit, taken
from [1], shown in Table I. Note that the rule for Permit
is simple: unity. But this does not mean that every packet
is permitted. The rule implicitly incorporates the complement
of the preceding Deny rules. The actual rule for Permit is
shown in Figure 1.

With this observation in hand, the semantics of rules and
targets are complete. Since the actual semantics of a rule
depends on where it appears with respect to other rules,
the rules have a total order imposed. In the following, we

not ((dest IP = 10.112.*.* & 5000 < source port < 65535 & protocol = UDP) |
(source IP = 32.75.226.* & 1001 < dest port < 2000 & protocol = ICMP) |
(source IP = 199.36.184.* & 49152 < source port < 65535 & protocol = ICMP))

Fig. 1. Actual Rule for Permit in Table I

Rule Source IP Dest IP Source Port Dest Port Prot Action
1 * 10.112.*.* 5000-65535 * UDP deny
2 32.75.226.* * * 1001-2000 ICMP deny
3 199.36.184.* * 49152-65535 * ICMP deny
4 * * * * * permit

TABLE I
SAMPLE RULES

formulate the exact function associated with each rule in a
TCAM specification.

Suppose the target universe be T = {T1, ..., Tm}, and the
ruleset be (r1, t1), ..., (rn, tn) in a given TCAM specification.
For each target Tj , we define an index set Ij , s.t. ∀i ∈ Ij , tj =
Tj , which essentially is the set of indices of the rules with Tj

as the target. Plainly, Ij ∩ Ik = ∅ (no rule is a component
of two targets), and, for each 1 ≤ i ≤ n, i ∈ Ij for exactly
one j (each ri is a component of exactly one target). Let fj

be the logic function associated with rule rj . This function
is the intersection of the explicit function associated with rj

(Boolean space defined by the cube) and the implicit function
(complement of the logic functions for every other target in the
preceding rules). Let gj denote the explicit function associated
with a rule rj . We can write the implicit function ĥj as follows:

ĥj =
j−1∏
i=1

fi (1)

We then have:
fj = gj ĥj (2)

We can simplify (1) by substituting (2) and expanding using
De Morgan’s law,

ĥj =
j−1∏
i=1

(gi + ĥi) (3)

Computing the implicit function just based on the above
equation can be a tedious procedure. We simplify it further in
the following.

We define:

hj =
j−1∏
i=1

gi (4)

Lemma 1:
fj = gjhj (5)

Proof: Note that since fj = gj ĥj , fj ⊆ gj and therefore
fj ⊇ gj . Hence,

j−1∏
i=1

gi ⊆
j−1∏
i=1

fi

or gjhj ⊆ gj ĥj . To complete the proof, we show that gjhj ⊇
gj ĥj . To see this, let m be an arbitrary minterm of fj . Hence,
m ∈ gj ĥj , which implies m ∈ gj . Now, all we must show is
that m ∈ hj . But this is evident. Since m 6∈ fi for all i < j,

m 6∈ gi for all i < j, since fi ⊇ gi for all i. Hence m ∈ hj ,
QED.

With this lemma, we can use the alternate, simpler form of
fj in Eq. 5. Once we have the functions for each rule, the
logic function associated with target Tj is easy:

Tj =
∑
i∈Ij

fi (6)

Note that this formulation is now independent of any rule order
and we have an explicit form for each target function. We can
now formalize this in a sequence of definitions, which gives
us our mathematical optimization problem.

Definition 2: Given a sequence of cubes c1, .., cn, the im-
plicit function of cube ci, denoted c̃i, is the function defined
as:

c̃i = cic1c2...ci−1

Definition 3: Given a specification of a TCAM
(r1, t1)...(rn, tn), {T1, ..., Tm}, the explicit function of
a target Tj is the function:

Tj =
∑

1≤i≤n,ti=Tj

r̃i

It is clear that these definitions recapitulate in a formal sense
the derivation ending in (6) above. The explicit functions Tj

are those that must be realized by the cubes in a TCAM. With
these in hand, we can now formally state the conditions under
which a set of cube/target pairs is a valid TCAM realization
of a specification.

Definition 4: A sequence of cube/target pairs
(c1, d1), ..., (ck, dk) is said to implement a specification
(r1, t1), ..., (rn, tn), T = {T1, ..., Tm} of a TCAM if and only
if,

• 1 ≤ i ≤ k, di ∈ T .
• for each (cj , dj) pair with dj = Tm, c̃j ∈ Tm.
• for each explicit function of Tm,

Tm =
∑

1≤j≤k,dj=Tm

c̃j

The purpose of these definitions is to formalize the intuitive
notion of what it means for a cube to be a valid entry in a
TCAM, and what it means for a set of targets to be precisely
implemented by a TCAM: each cube will explicitly select
exactly one target Tj in the case that none of the cubes
preceding it in the sequence are selected, and the set of cubes
cover all the cases of the rules.

Formally, the TCAM Minimization Problem can be stated
as follows:

Problem 1: Given a TCAM specification
(r1, t1), ..., (rn, tn), {T1, ..., Tm}, find a sequence of
N cube/target pairs (c1, d1), ..., (cN , dN), such that

(c1, d1), ..., (cN , dN) implements the given TCAM
specification and such that no other cube/target pair sequence
smaller than N implements the given TCAM specification.

We can now turn to the complexity of this problem and the
minimization procedure. The overall procedure is given by a
two-step process:

1) Form the explicit functions (6) of the problem.
2) Minimize the two-level form of the functions.
Step (1) of this procedure emerges as a side effect of the

complexity discussion in the next section. In the subsequent
section, we turn to step (2), a much more complex procedure.

IV. COMPLEXITY

It is interesting to consider the complexity class of the
Problem 1. In this section, we demonstrate that the formal
problem has a verification oracle in Σ1, and hence the problem
itself is in Σ2. Thus the problem is in the same class as the
general circuit minimization problem.

We show that this problem is in Σ2 by demonstrating
that its verification procedure is polynomially reducible to
circuit equivalence. Circuit equivalence is well-known to be
polynomially transformable to satisfiability (a variant of this
was used by Richard Karp [10] to demonstrate the NP-
completeness of 3SAT). Since the verification procedure for
TCAM Minimization is thus in Σ1 (i.e., in NP), it follows that
TCAM Minimization is in Σ2.

We show the reduction by deriving a logic circuit real-
izing a cube/target pair sequence (c1, t1)..., (ck, tk), target
set {T1, .., Tn} and demonstrating that the circuit size is a
polynomial function of k, n, and s, where s is the number of
TCAM bits.

We present the procedure buildCircuit in Figure 2.
The AND and OR operators in this algorithm create AND
and OR gates in the network, and ZERO and ONE are the
logic 0 and 1 functions, respectively. We refer to Ti, ti, ci, k,
and n as target_function[i], target[i], cube[i],
num_cubes, and num_targets, respectively.

We must show:
1) The functions target_function[i] computed by

the algorithm are the explicit functions Ti of the speci-
fication; and

2) The size of the circuit is polynomial in the size of the
original specification.

Lemma 2: At the end of the mth iteration of the loop 6-9
in algorithm buildCircuit, the following invariants hold:

1) last = c1c2...cm

2) cube = c̃m

3) 1 ≤ j ≤ n, target_function[j] =∨
i≤m,ti=Tj

c̃i

Proof: Induction on m. For m = 1, Invariant 2 is assured
by line 6 of algorithm buildCircuit. Line 2 ensures that
at the entry to the loop in line 5, target_function[j]
= 0 for all j. Since Invariant 2 holds, by line 9 Invariant
1 holds. Since Invariant 2 holds, line 8 ensures Invariant 3
holds. Now assume the lemma is true after m − 1 iterations.

1. proc buildCircuit
2. for i = 1 to num_targets
3. target_function[i] = ZERO
4. last = ONE;
5. for (i = 1 to num_cubes)
6. cube = AND(cubes[i], last)
7. target_number = target[i]
8. target_function[target_number] =

OR(target_function[target_number], cube)
9. last = AND(last, NOT(cubes[i]))

Fig. 2. Forming a Circuit from a Cube Set

1. proc tcam_formulation(cubes, targets)
2. buildCircuit()
3. for each target_function in circuit
4. target_function.flatten()
5. return target_functions

Fig. 3. Procedure for TCAM Formulation

In mth iteration, as before, Invariant 2 holds by line 6
and Invariant 3 by the induction hypothesis and line 8. By
induction, at the entry to the loop target_function[j]
=

∨
i≤m,ti=Tj

c̃i for each j. Line 8 OR’s in cube[i] for
target[m]. By Invariant 2, this is simply c̃m, and there-
fore target_function[target[m]] =

∨
i≤m,ti=tm

c̃i

for target[m].
The preceding lemma serves to demonstrate that the circuit

constructed by buildCircuit yields the correct functions
target_function. For polynomial complexity, note that
each iteration of the main loop creates exactly one OR and
one AND gate, and hence the resulting circuit is of polynomial
size in the size of the cube set.

The verification procedure for Problem 1 is as follows:
construct the circuit corresponding to the original cube set,
the circuit corresponding to the optimized cube set, and run
circuit verification on the two circuits. Since circuit verification
is well known to be in Σ1, it follows that Problem 1 is in Σ2.

It is important to note that algorithm buildCircuit can
be used to complete Step (1) of the TCAM minimization
procedure, above. We introduce the operator flatten, which
forms a set of cubes from a multi-level network i.e., convert
the function into its Disjunctive Normal Form (OR of ANDs).
This algorithm is shown in Figure 3. We stress that this is
not a practical solution. A simple multi-level network can
result in an exponential number of cubes – this procedure is
an existence proof, not an efficient solution.

Now that the complexity of the problem is analyzed, and a
procedure to generate a complete, order-independent, explicit
set of TCAM rows is given in the Figure 3, we turn to step
(2) of the TCAM minimization procedure: minimizing the set
of rows given by the formulation.

V. SEQUENTIAL COVER

The Ruleset Minimization Problem, naively, is the mini-
mization of the functions Tj defined in (6), as a standard
multi-valued minimization problem, which were derived by
Figure 3. This neglects two important facts, however. First, by
construction: Ti.Tj = 0, i 6= j, which indicates that standard
multi-valued minimization will simply yield the same result

1. minimize_sequential_cover(f1, ..., fm, DC)
2. if DC contains f1, ..., fm return ∅
3. find the primes P of f1, ...fm using DC as a don’t-care set
4. best_solution_size = -1
5. foreach prime p ∈ P
6. solution = minimize_sequential_cover(f1, ..., fm, DC + p)
7. if best_solution_size == -1 or size(solution) < best_solution_size
8. best_solution = p + solution
9. best_solution_size = size(best_solution)
10. return best_solution

Fig. 4. Exact Minimization Procedure for Rulesets

as a series of single-valued minimization problems. A more
important omission is the neglect of the precedence of the
TCAM evaluation of the rules. The realization of the Eq. 6
will be a sequence of cube-target pairs over the header space:
(c1, t1), ..., (ck, tk), where tj is the target of rule cj . A solution
which neglects precedence ordering insists:

∀j cj ⊆ Ti, where Ti = tj (7)

It is easy to see that if Eq. 7 is the sole constraint, besides the
obvious requirement of

Ti =
∑

tj=Ti

cj , (8)

then ruleset minimization is simply the standard logic synthe-
sis problem on the sequence of disjoint functions T1, ...Tn.
However, evaluation over a TCAM can be seen as a sequence
of ternary lookups where once one succeeds, the sequence is
abandoned. This permits us to expand the constraint in Eq. 7:

∀j cj ⊆ Ti +
j−1∑
l=1

cl, where Ti = tj (9)

The optimization problem (8)-(9) introduces an order depen-
dence into this problem. Formally, we introduce the two-
level minimization problem with sequential selection: Given
a sequence of functions T1, ..., Tn, Ti.Tj = 0 for i 6= j, find a
sequence of cubes c1, ..., ck such that, for each j there exists
some i such that

cj ⊆ Ti +
j−1∑
l=1

cl (10)

and, for each i

Ti ⊆
k∑

j=1

cj (11)

We define such a sequence of cubes as a sequential cover of
T1, ..., Tn. The ruleset minimization problem is therefore to
find a minimal sequential cover, a sequential cover with the
smallest number of cubes, of the target functions in Eq. 6.

VI. MINIMAL SEQUENTIAL COVER

The optimization problem given by (10)-(11) has not been
extensively studied. However, it is clearly related to the classic
two-level logic synthesis problem. Moreover, (10) simply
suggests that each preceding cube in a minimal solution acts
as a don’t-care set for the cube cj . This observation leads to

an exact minimization procedure shown in Figure 4, where
f1, f2, ..., fm are the target functions to implement in TCAM
and DC is initially set to ∅. Given a set of target functions, this
algorithm first lists all primes (all possible cubes) for each
function. Then with each one of those primes as dont-care,
it recursively calls itself to compute the best sized solution
possible with the chosen prime as the first cube in the final
sequence. In the following, we prove that this algorithm always
returns a minimal sequential cover.

Lemma 3: Procedure minimize_sequential_cover
returns an irredundant sequential cover of the functions
f1, ..., fm with respect to don’t-care set DC.

Proof: We proceed by induction on the size of the on-
set (f1 + f2 + ... + fm)DC. When DC contains f1, ..., fm,
the only irredundant sequential cover is the empty set, and
the procedure returns this. Now assume the lemma holds
for |(f1 + f2 + ... + fm)DC| < N , and consider the case
|(f1 + f2 + ... + fm)DC| = N . We choose a prime p, which
contains at least one point of the on-set (f1+f2+...+fm)DC.
Hence, the recursive call on line 6 is a call to the procedure
where (f1 + f2 + ... + fm)DC < N , and so by induc-
tion the procedure returns an irredundant sequential cover of
(f1+f2+ ...+fm)DC + p. Suppose the algorithm returns the
sequential cover p, p1, p2, ..., pn. Since recursive call returns
irredundant sequential cover, we only need to show that p
is essential for this cover. We prove this through a simple
contradiction. Suppose p is not essential, then p1 should have
been in the set of primes found in line 3. In this case, when
line 5 choose this prime p1 and line 6 is executed with DC+p1

as dont-care set, the recursive call would have returned with
p2, ..., pn (based on induction hypothesis and the assumption
that p is not essential) which would have led to a smaller sized
solution. Since line 7 always chooses the best solution, this
function should have returned p1, p2, ..., pn as the solution.
Hence the contradiction; so, the solution returned by the
function is irredundant. In order to complete the proof all we
need observe is that we execute line 9 at least once, but this is
trivial: on the first iteration of the loop 5-9 best solution size
is -1, and so the condition on line 7 is true, and so we’ll
execute line 8.

The preceding lemma demonstrates that
minimize_sequential_cover returns an irredundant
cover. In order to prove that this returns a minimal cover, we
need one more lemma.

Lemma 4: Let c1+c2+...+cN be a minimal solution of the

sequential minimization problem {f1, ..., fm} with don’t-care
set DC. Then there is a minimal solution p1 + c2 + ... + cN ,
where p1 is a prime of {f1, ..., fm} with don’t-care set DC.

Proof: If we choose a prime p1 ⊇ c1, the result follows
immediately. Since c1 + ... + cN is a cover, and p1 ⊇ c1,
p1 + c2 + ... + cN ⊇ c1 + ... + cN , hence p1 + ... + cN is
a cover. Further, p1 + ... + cN is irredundant, since otherwise
p1 + ... + cj−1 + cj+1 + ... + cN is a cover, and |p1 + .. +
cN | < |c1 + ... + cN |, implying c1 + ... + cN is not minimal.
|p1 + ...+cN | = |c1 + ...+cN |, hence p1 + ...+cN is minimal.

These two lemmas suffice to demonstrate the correctness of
minimize_sequential_cover.

Theorem 1: Procedure minimize_sequential_cover
returns a minimal sequential cover of the functions f1, ..., fm

with respect to don’t-care set DC.
Proof: (Omitted for space) Straightforward proof by

induction similar to Lemma 2.
Procedure minimize_sequential_cover is clearly

expensive. It is an exhaustive-search algorithm, which further
involves a potentially exponential procedure (generate all
primes) at each step. This is clearly more expensive than
the classic Quine-McClusky logic synthesis algorithm, and far
more expensive than the efficient McGeer-Sanghavi-Brayton
procedure [11]. However, it serves as a baseline for heuristic
procedures.

VII. DUAL-TARGET CASE: PERMIT AND DENY

In all of the datasets we have access to (see Section VIII),
only PERMIT rules are specified along with (sometimes
implicit and sometimes explicit) DENY-all rule at the end.
At first blush, it appears that such a case is indistinguishable
from standard two-level minimization. However, appearances
are deceiving: this common case does yield extra opportunities
for optimization. The implicit complement function can be
made explicit, its cubes incorporated in the solution, and the
results can be used to minimize beyond that of minimizing a
single PERMIT function.

To take a simple example, consider a ruleset with a four-
bit address (0-15). The explicit rule given is to PERMIT all
accesses for ports 0-7 and ports 9-15. The minimum two-level
logic solution for this is

PERMIT 0---
PERMIT --1-
PERMIT ---1

which is three rules. However, the implicit complementary
rule is DENY 8. Using this, and using this as an implicit don’t-
care, we arrive at a two-entry solution:

DENY 1000
PERMIT ----

This is obviously a toy, trivial example. It is easy to build
this into more complex examples, involving multiple PERMIT
and DENY rules intermixed. This example serves to show
the fundamental feature exploited in TCAM minimization not

1. proc single_target(cubes)
2. complement = negate(cubes)
3. minimize_sequential_cover(cubes,

complement, nil)

Fig. 5. Algorithm for a dual-target function

1. proc optimize(rules, complement)
2. dc = empty
3. foreach cube c of complement
4. next_dc = dc + c
5. next_rules = minimize(rules, dc)
6. if (size(next_rules) <

size(rules))
7. dc = next_dc
8. rules = next_rules
9. return (dc, rules)

Fig. 6. Heuristic Complement Subset Algorithm

available in two-level minimization, the use of early rules as
don’t-cares for subsequent rules.

The general algorithm for a dual-target case is shown
in Figure 5. Again, this procedure is highly inefficient;
negating, or complementing, a set of cubes can lead to an
exponential blowup in the number of cubes (the Achille’s
Heel function x1x2x3 + x4x5x6 + ... + x3n−2x3n−1x3n is
one well-known example), and then of course procedure
minimize_sequential_cover is exponential. However,
it serves as a baseline for heuristic and approximate algo-
rithms.

A. Subsets of the Complement

The complement does not need to be formed completely
to get some of the benefits of optimization. A subset of
the complement can be formed when the entire complement
cannot be, and this can be used for optimization. This can
either be done by enumerating cubes of the complement
until a sufficient number of cubes have been reached, or by
quantification.

The algorithm in Figure 6 is a greedy heuristic which uses
a subset of the complements to reduce the number of cubes in
the TCAM. This algorithm returns a subset of the complement
as the first rows of a TCAM, and then a set of rules for
the original function. For example, if the function were a set
of rules for PERMIT, this function would first create a set
of DENY rules which would precede all the PERMIT rules.
The size of the original TCAM is reduced over the optimized
TCAM since the algorithm ensures that each complement cube
added deletes at least one original cube.

B. Quantification

A second strategy to form a subset of the complement set
is through the mathematical operation of quantification.

Quantification is a specific subclass of a general operator
calculus on Boolean functions; quantifiers act to remove
variables. In particular, given a variable x and function f , the
existential quantifier of f with respect to x, denoted ∃xf , is
given by the function: ∃xf = fx + fx, where fx is function f
simplified with x set to 1, and fx is f simplified with x set
to 0.

1. proc quant_heuristic(rules)
2. rules1 = minimize(rules)
3. vars = vars_to_quantify(rules1)
4. rules2 = existential_quantify(rules1,

vars)
5. optimize(rules1, complement(rules2))

Fig. 7. Quantification Heuristic Procedure

The dual quantifier to the existential quantifier is the univer-
sal quantifier ∀xf , and it is given by the function ∀xf = fxfx.

One can quantify against a set of variables by using the
relations:

∃x∃yf = ∃xyf,∀x∀yf = ∀xyf

Critically for our application, an analog of DeMorgan’s Law
(and, in fact, a direct consequence of DeMorgan’s Law) holds:
∃xf = ∀xfx with the obvious dual:∀xf = ∃xfx.

Note that: ∀xf ⊆ f ⊆ ∃xf . From these, we can conclude
that:

∃xf = ∀xf ⊆ f

The above suggests that we can form a subset of the com-
plement set for a function by quantifying the given function
over few variables and taking complement of that quantified
function. Further, in sum-of-products form, ||∃xf || ≤ ||f ||, im-
plying that existential quantification can be performed safely.
In fact, operationally, one takes the existential quantifier of f
with respect to x simply by replacing 1 and 0 with − in the
entry for x in each cube of f .

The preceding discussion indicates an approximation proce-
dure: quantify out some variables and complement the result.
This will compute a subset of the complement. Consider an
example with a set of rules expressing PERMIT cases, where
addresses and flags are specified. Consider the existential
quantification of the flag variables: this yields the set of
addresses which should be permitted under some set of flag
values; the complement is the set of addresses which should
never be permitted, independent of the flag settings. This set
then can be used as the complement set for the algorithm in
Figure 6. The algorithm in Figure 7 gives a sketch of the
procedure.

C. A Hybrid Procedure

The procedure of Figure 7 often yields no improvement over
standard two-level minimization, because the existential quan-
tification yields too large a superset of the original function
– and thus too small a value for the complement. To see an
example, consider the case where almost all rules specify a
destination IP address – but a few do not. Quantifying out
all the variables outside the destination IP address, rules that
do not specify the destination address result in all wild-card
rules. Hence, the complement will be an empty set. Formally,
we consider the case where f(x, y) = g(x, y) + h(x), where
||h(x)|| << ||g(x, y)||. We believe that ∀xf(x, y) is a useful
don’t care set to optimize f , but if we blindly apply the
quantification we get:

∃xf(x, y) = ∃xg(x, y) + ∃xh(x) = ∃xg(x, y) + 1 = 1

1. proc partial_quantification
(f(x, y) = g(x, y) + h(x))

2. result = quant_heuristic(g)
3. return h, result

Fig. 8. Partial Quantification Procedure

and therefore ∀xf(x, y) = 0, which leads to no optimization.
The solution is to exclude h from the complemented don’t-

care optimization, and to put the rules for h directly into the
TCAM before complementing and optimizing g. We show this
procedure in Figure 8.

It is important to note that the ordering in the TCAM is
important here: the order must be h, DC, g′, where DC and
g′ are the result of the algorithm shown in Figure 6.

VIII. EXPERIMENTAL RESULTS

In this section, we describe the results from applying the
mechanisms described in the previous sections on several
artificial filter sets and a real firewall Access Control List.
All of the filter sets that we have access to belong to the dual-
target case as described in Section VII (a series of PERMIT
statements followed by a single DENY-all statement).

A. Datasets

There is a scarcity of real life filter sets that are available
to the general research community. ISPs are reluctant to
provide real filter sets for security and confidentiality reasons.
ClassBench [9], a suite of tools for benchmarking packet
classification algorithms and devices from Washington Uni-
versity at St. Louis, includes a filter set generator tool that is
shown to accurately model the characteristics of real life filters.
We use the 12 parameter files provided in the ClassBench
distribution [12] to generate filter sets that model 12 real filter
sets that authors of ClassBench had access to. For this initial
set of experiments, we generated filter sets with approximately
100 rules in each of them. Each rule contained two IP address
prefixes (source and destination), two port ranges (source and
destination), 8-bit transport protocol number, and 16-bits of
flags. An implicit DENY-all rule at the end is assumed for
these filter sets.

Fortunately, we were also able to get access to the Access
Control List (ACL) on a firewall of our enterprise. This filter
set has 1380 rules in total including a DENY-all rule at the
end. All rules in this filter set are based on the standard 5-
tuple (no flags field in contrast to the ClassBench generated
rules). Source port in all rules is set to any and there are only
few rules with destination port ranges specified (40/1380 =
2.89%). Only 9.85% rules have destination source port set to
any and the remaining rules (87.2%) have a single number
in the destination port (exact-match case). This distribution
of destination ports differs dramatically from the average
numbers reported in the ClassBench [9] paper: 40% wild-card
entries, 49% exact match entries, and 11% ranges.

B. Methodology

In all our experiments, we used espresso [8] tool (now
distributed as part of ABC software [13] from UC Berkeley)

Parameters acl1 acl2 acl3 acl4 acl5 fw1 fw2 fw3 fw4 fw5 ipc1 ipc2 Avg
Filters 99 100 100 100 100 96 93 96 100 96 100 90
Cubes 153 226 207 177 127 476 178 176 702 241 163 90
Expansion Ratio 1.55x 2.26x 2.07x 1.77x 1.27x 4.96x 1.91x 1.83x 7.02x 2.51x 1.63x 1.03x 2.48x
Heuristic 1 81 119 201 173 127 461 3 43 611 125 142 38
% Reduction 47.1% 47.3% 2.9% 2.3% 0.0% 3.2% 98.3% 75.6% 13.0% 48.1% 12.9% 59.1% 34.15%
Execution time (sec) 0.03 0.93 0.10 0.24 0.04 5.39 0.01 0.56 132.24 89.95 0.21 0.40
Complement cubes 1931 43737 4689 9467 3303 100599 31 15772 95754 173125 13117 13964
Heuristic 2 |D0| 2 3 39 18 5 0 0 0 0 0 13 0
Heuristic 2 |P1| 70 92 124 118 105 461 3 43 611 125 97 38
Heuristic 2 Total 72 95 163 136 110 461 3 43 611 125 110 38
% Reduction (over H1) 11.1% 20.2% 18.9% 21.4% 13.4% 0% 0% 0% 0% 0% 22.5% 0%
% Reduction (overall) 52.9% 57.7% 21.3% 23.9% 13.4% 3.2% 98.3% 75.6% 13.0% 48.1% 32.5% 59.1% 41.6%
Execution Time(min.) 1.4 614 9.5 44.9 3.5 >720 0.01 108.8 >720 >720 47.4 64.4

TABLE II
RESULTS FROM EXPERIMENTS WITH CLASSBENCH GENERATED FILTER SETS.

for boolean logic minimization and for computing complement
of a given boolean function. To use espresso, we convert each
filter set rules into a set of cubes. Note that expanding rules
with port ranges results in multiple cubes [1], [2]. A rule in
ClassBench filter sets results in one or more 120-bit cubes and
a rule in our real ACL results in one or more 104-bit cubes.

We apply the following three heuristics on the datasets:
Heuristic 1: We run two-level logic minimization only on

the PERMIT rules.
Heuristic 2: (Based on algorithm in Figure 6) We use

espresso to compute complement of the permit rules. Because
of the large complement sizes in most cases, espresso runs for-
ever as it also performs a minimization step on the complement
set of cubes. To avoid this, we run espresso with “-Dd1merge”
option to only perform the expand operation and not perform
minimization step. Then, we run logic minimization on the
permit rules with each cube in the complement function (one
at a time) as the dont-care cube. We select those cubes from
the complement function that result in a reduction of cubes by
more than one. We refer to this deny set as D0 and this set is
placed in front of the permit cubes, referred to as P1, in the
sequential cover.

Heuristic 3: As mentioned earlier, complement sets can be
very large. So running Heuristic 2 for each of the cube in
a large complement set can lead to large running times. So,
we perform quantification on the cubes in the permit set with
respect to all dimensions except for few chosen dimensions.
For example, suppose we want to quantify on all bits except
destination IP address bits. For each cube in the permit set,
we modify all other bits to dont-cares except the destination
address bits. Then we remove the cubes that become dont-
cares in all bit positions as discussed in the Section VII-C.
Suppose the set of original permit cubes corresponding to these
removed quantified cubes be P0. We compute complement
function on the remaining cubes and run Heuristic 2 with
those complement cubes to find D0 and P1. Hence the final
order of result is P0, D0, and P1. We automated this heuristic
to quantify on source IP address, destination IP address,
combination of both IP addresses, source port, destination port,
and combination of both ports.

C. Results

ClassBench filter sets: We present the results from our

experiments with the filter sets generated by the ClassBench
tool in Table II. Note that ClassBench might output fewer
filters than requested as it generates requested number of filters
and then removes redundant filters, if any. We observe a varied
expansion ratios as we expanded the filter rules into cubes,
with an average of 2.48x. Most of them expanded by 2x or
less except in two cases where there is an expansion of 5x
and 7x. These two filter sets have a significant number of
rules with port ranges that are not “any”.

With Heuristic 1, we are able to achieve an average of
34% reduction in the number of cubes, though the reductions
varied heavily across different sets. In fw2 case, we observed
a 98% reduction; upon analysis of the ClassBench filter set,
we discovered one rule that subsumed a large number of other
rules. For four sets (acl3, acl4, acl5, and fw1), we observed
zero or very small reduction in the rules with this simple
heuristic.

We ran Heuristic 2 with a time limit of 12 hours. In all
cases where it found a non-empty D0 set Heuristic 2 was able
to achieve more than 10% reduction. Upon further analysis
of these case, we observed that this heuristic is eliminating
the cubes produced by range rules. Many of the range rules
in the filter sets that lead to blow up in the cubes are of the
type 1024-65535, which expands into 6 cubes. But by having
a single deny cube that represents range 0-1023, all those 6
cubes can be merged down to a single cube. This observation
has been previously made and leveraged by other researchers
in [1], [2].

Heuristic 2 did not complete execution in some cases
(denoted with “>720” in execution time) as the number of
complement cubes is very high (hundreds of thousands) and
also the execution time of an espresso minimization step is
in the order of few seconds to hundred seconds. We ran
Heuristic 3 for these rulesets with quantifications on source
IP address, destination IP address, combination of both IP
addresses, source port number, destination port number, and
combination of both port numbers. But we did not find any
further reduction in the ruleset size.

Real Firewall ACL: In Table III, we present the results
from our experiments with the filter set from a real firewall
ACL. As mentioned before, this filter set has very few range
rules and hence a small expansion factor of 1.1 when ex-
panding to cubes. Heuristic 1 is very effective on this filter

Number of Filters 1380
Number of Cubes 1504
Expansion Ratio 1.1x
Heuristic 1 900
Percentage Reduction 40.16%
Execution time (sec) 28.4
Number of complement cubes 145772
After Quantification (on all except Dest IP)
Number of complement cubes 347
Heuristic 3 |P0| 66
Heuristic 3 |D0| 179
Heuristic 3 |P1| 168
Heuristic 3 Total 413
Percentage Reduction (over H1) 54.1%
Percentage Reduction (overall) 72.5%

TABLE III
RESULTS FROM EXPERIMENTS WITH REAL FIREWALL ACL.

set achieving 40% reduction to 900 cubes. Heuristic 2 timed
out with out resulting in any further reduction because of the
large number of cubes in the complement. But Heuristic 3 was
successful with quantification on all bits except destination IP
address bits resulting in a 54% reduction on Heuristic 1 and
72.5% reduction compared to the original set.

IX. RELATED WORK

Most of the previous work in TCAM rule optimization
focused on optimizing the rules with ranges. Dong et. al. [1]
propose a set of simple heuristics for minimizing the number
of TCAM entries for a given set of filter rules. Their approach
consists of applying four simple rules in an iterative fashion
until no more entries can be reduced. Liu et. al. in TCAM-
Razor [6] and Firewall Compressor [7] propose a dynamic
programming algorithm that first constructs a reduced decision
diagram, a canonical representation of a given ruleset, and
minimize the number of prefixes associated with each uplink
in the diagram. At the end, they run their all-match redundancy
removal algorithm [14] that is shown to be optimal. The au-
thors claim up to 96.1% reduction in some real world rulesets.
As a future work, we plan to explore how these techniques
map into the Boolean logic minimization framework that we
pursue in this paper.

In [5], Liu leverages the common case of range rules [15]:
there are only handful of distinct ranges in any particular field
of a rule. Liu proposes using a separate bit for each range and
hence claims great reduction in the number of TCAM entries.
In contrast to encoding using standard binary notation, [2], [4]
propose fence coding and gray coding of ranges in the rules to
reduce the total number of TCAM entries. These techniques
require converting the input from the standard binary encoding
to the encoding chosen for TCAM programming.

There have been several proposals that present better TCAM
architectures or even other novel hardware that can support
large number of filters. In [16], Dong et. al. propose adding
few registers and a bit of logic to the forwarding ASIC
to perform packet classification at wire speeds. Che et. al.
propose DRES [3], a dynamic range encoding scheme for
TCAM co-processors, where ranges are encoded using P2C
algorithm [17] that allows N ranges to be encoded using
only log2(N + 1) bits. This can be useful in designing next

generation switches but can not be used with the existing
network devices.

X. CONCLUSION

The goal of this paper is to formulate ruleset minimization
for TCAM implementation in a boolean optimization frame-
work. We present the formulation of the problem, analyze
the complexity, present an exact minimization algorithm, and
propose several heuristics. Our initial experimental results with
artificial filter sets and a real firewall ACL are promising; we
observe 72% reduction in the real firewall ACL rules with our
heuristics.

We only scratched the surface in terms of exploring heuris-
tics for the sequential cover problem and only for the dual-
target case. But, we believe that our formulation provides a
basic framework for incorporating heuristics proposed in other
papers into the Boolean logic minimization framework. As
future work, we plan to develop algorithms to tackle rulesets
with much larger number of rules, rulesets with more than two
actions, and incremental updates to the rulesets.

REFERENCES

[1] Q. Dong, S. Banerjee, J. Wang, D. Agrawal, and A. Shukla, “Packet
classifiers in ternary CAMs can be smaller,” in Proc. SIGMETRICS,
2006, pp. 311–322.

[2] A. Bremler-Barr and D. Hendler, “Space-Efficient TCAM-based Classi-
fication Using Gray Coding,” in Proc. INFOCOM, 2007, pp. 1388–1396.

[3] H. Che, Z. Wang, K. Zheng, and B. Liu, “DRES: Dynamic Range
Encoding Scheme for TCAM Coprocessors,” IEEE Transactions on
Computers, 2008.

[4] K. Lakshminarayanan, A. Rangarajan, and S. Venkatachary, “Algorithms
for advanced packet classification with ternary CAMs,” in Proc. SIG-
COMM, 2005, pp. 193–204.

[5] H. Liu, “Efficient Mapping of Range Classifier into Ternary-CAM,” in
Proc. HOT Interconnects, 2002, p. 95.

[6] C. R. Meiners, A. X. Liu, and E. Torng, “Tcam razor: A systematic
approach towards minimizing packet classifiers in tcams,” in ICNP,
2007.

[7] A. X. Liu, E. Torng, and C. Meiners, “Firewall compressor: An algo-
rithm for minimizing firewall policies,” in INFOCOM, Phoenix, Arizona,
April 2008.

[8] R. Brayton, A. Sangiovanni-Vincentelli, C. McMullen, and G. Hachtel,
Logic Minimization Algorithms for VLSI Synthesis. Kluwer Academic
Publishers, 1984.

[9] D. E. Taylor and J. S. Turner, “ClassBench: a packet classification
benchmark,” IEEE/ACM Trans. Netw., vol. 15, no. 3, pp. 499–511, 2007.

[10] R. M. Karp, Complexity of Computer Computations. Plenum, 1972,
ch. Reducibility among Combinatorial Problems, pp. 85–103.

[11] P. McGeer, J. Sanghavi, R. Brayton, and A. Sangiovanni-Vincentelli,
“Espresso-signature: A new exact minimizer for logic functions,” IEEE
Transactions on VLSI Systems, vol. 1, no. 4, pp. 432–440, December
1993.

[12] http://www.arl.wustl.edu/∼det3/ClassBench/index.htm.
[13] http://www.eecs.berkeley.edu/∼alanmi/abc/.
[14] A. X. Liu, C. R. Meiners, and Y. Zhou, “All-match based complete

redundancy removal for packet classifiers in TCAMs,” in INFOCOM,
April 2008.

[15] P. Gupta and N. McKeown, “Packet Classification on Multiple Fields,”
in Proc. SIGCOMM, 1999, pp. 147–160.

[16] Q. Dong, S. Banerjee, J. Wang, and D. Agrawal, “Wire Speed Packet
Classification Without TCAMs: A Few More Registers (And A Bit of
Logic) Are Enough,” in Proc. SIGMETRICS, 2007.

[17] J. van Lunteren and A. Engbersen, “Fast and scalable packet classifica-
tion,” IEEE Journal of Selected Areas in Communications, 2003.

