
A Principled Approach to Nondeferred Reference-Counting
Garbage Collection

Pramod G. Joisha†

Hewlett-Packard Laboratories
pramod.joisha@hp.com

Abstract
Nondeferred reference-counting (RC) garbage collection is among
the oldest memory-management methods. Despite offering unique
advantages, little attention has been paid on how to correctly imple-
ment it for modern programming languages. This paper revisits this
collection method and describes how to implement it for a modern
object-oriented language in an optimizing compiler.

The main contribution is a general algorithm that realizes one
form of nondeferred RC collection for an object-oriented language
having features such as exceptions, interior pointers, andobject
pinning. The algorithm abstracts the pertinent characteristics of in-
structions using concepts from data-flow analysis, such as def/use
information, so that instructions are handled in a uniform manner,
instead of in an ad hoc or special-case way. The abstracted in-
formation is used to systematically compute what increments and
decrements to do, even in the presence of subtle conditions such
as exceptional control flow. These techniques enabled us to com-
pile a large suite of programs to use nondeferred RC collection.
The paper also discusses the modifications that were necessary in
the compiler for supporting the inserted RC operations, andreports
measurements from a reference implementation.

Categories and Subject DescriptorsD.3.4 [Programming Lan-
guages]: Processors—Memory Management (Garbage Collection),
Compilers, Code Generation

General Terms Algorithms, Languages

Keywords Reference Counting, Instrumentation, Static Analysis

1. Introduction
Nondeferred reference counting is one of the original formsof au-
tomatic resource management. In the classic version, each managed
resourceρ has a count of the number of references to it [14, 10].
This is increased and decreased as references toρ are created and
destroyed.ρ can be reclaimed as soon as its count drops to zero.

The approach has advantages over other forms of resource man-
agement. It is incremental in time and space, having a spatial local-
ity no worse than the mutator [20]. It can be implemented without

† This work was done when the author was at Microsoft Research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

VEE’08, March 5–7, 2008, Seattle, Washington, USA.
Copyright c© 2008 ACM 978-1-59593-796-4/08/03. . . $5.00

requiring stack scanning, and garbage collection (GC) maps. It can
promptly reclaim memory, which can lead to better cache perfor-
mance. These features make it attractive in situations where a low
memory footprint is desirable, such as applications for embedded
devices. However, it has rarely been used in practice because of
problems such as cycle reclamation and fragmentation, and primar-
ily because of the cost of maintaining up-to-date referencecounts.

We have been investigating whether nondeferred reference-
counting (RC) garbage collection can be made practical, in light
of advances in program analyses. By “nondeferred”, we mean any
RC technique that has three invariants: (1) all live data have posi-
tive reference counts; (2) the reference count is zero when the last
reference disappears; and (3) a zero reference count implies dead
data. Thus, while classic (or standard) reference countingis nonde-
ferred, Deutsch and Bobrow’s reference counting (calleddeferred)
is not [12]. This definition does not imply perfect immediacyof
reclamation. A spectrum of nondeferred schemes is possible, each
differing in how promptly dead data is reclaimed. The reclamation
of dead data is with respect to the interface between the mutator
and the collector’s run-time system. It is independent ofwhenthe
run-time system returns the reclaimed data back to the allocator.

We recently published compiler optimizations that eliminate a
significant number of RC updates in nondeferred RC collection [17,
19]. This paper addresses a different obstacle to demonstrating
the practicality of the approach. It shows how a compiler can
systematically convert an object-oriented program, with modern
language features, into one that uses the approach.

The paper describes solutions to the main problems in design-
ing such a conversion algorithm: (1) How should instructions be
processed, so that object-oriented instruction sets can behandled
in a uniform way? (2) How should RC updates be inserted so that
dead data is reclaimed as early as possible? (3) How should modern
language features, such as exceptions, interior pointers and object
pinning, be supported? The first is solved by identifying instruction
characteristics germane to nondeferred RC collection, andabstract-
ing them using concepts from data-flow analysis. The second and
third problems are solved using liveness techniques.

The use of liveness in GC is not new [13, 26, 25, 1, 2, 15].
However, unlike this effort, all past work considers it for atracing
collector. Specifically, past efforts perform a live-rangeanalysis to
determine the live roots at each GC-safe point. Only data reachable
from these live roots is retained. In this work, liveness is used
to compute thedeath pointsof references, so that dead data is
reclaimed as soon as possible. This is an important distinction,
and arises from a basic difference between tracing and reference
counting: one looks at live matter and the other at dead matter [4].

There are complications when dealing with reference deaths
that do not exist when dealing with live roots. A challengingone is
modeling the effects of exceptions. Previous work for tracing col-
lectors did not have to specially treat exceptions, beyond perhaps

representing them using factored edges in the control-flow graph
(CFG) [9]. And exceptions pose no problems to deferred RC col-
lectors because only heap references are counted. For nondeferred
RC collection, however, the conversion algorithm must insert RC
updates at the appropriate CFG points so as to ensure that when an
exception is thrown, data no longer accessible is reclaimed.

The conversion algorithm is intraprocedural. Hence, it is usable
in both a static setting—either in whole-program or separate compi-
lation modes—as well as a dynamic setting, such as compilingjust-
in-time in a virtual machine. It is presently implemented inan op-
timizing compiler from Microsoft Research called Bartok, and has
been successfully used to compile numerous large programs,in-
cluding Bartok itself, into nondeferred RC-collected versions. Mea-
surements demonstrating the single-thread performance ofsome of
these converted programs have been reported elsewhere [17,19].
This paper presents data relating to the algorithm itself.

The rest of this paper is organized as follows. Section 2 presents
the algorithm for implementing one form of nondeferred RC collec-
tion. We call this form ARCS (Anticipatory Reference Counting for
the Stack) because it eagerly applies decrements on local references
using liveness. A step in the algorithm intercepts the values of live
references whose death points are inaccessible. Section 3 describes
how these references are computed in the presence of exceptional
control flow. Section 4 discusses the representation of RC updates
so that downstream phases can operate unchanged. Section 5 shows
how the eagerness of reclamation can be traded with code qual-
ity. Section 6 explains the special treatment of methods outside the
scope of the algorithm, such as some in the run-time system. Sec-
tion 7 gives data from an implementation of the algorithm. Last,
Section 8 discusses related work, and Section 9 concludes.

2. A Conversion Algorithm for ARCS Collection
This section describes a compiler phase calledRC update insertion
that automatically converts a program into one that uses ARCS
collection. ARCS collection neither requires GC maps nor the
scanning of stacks. The phase determines program points at which
RC updates should be inserted so as to safely decrement reference
counts as early as possible. An “RC update” is an RC incrementor
decrement on an object targeted by a referencer. It is denoted as
RC+(r), RC−(r) or R̂C−(r), and is a no-op ifr is null.

Three main issues had to be solved in designing this phase. The
first was figuring a common abstraction for all the instructions so
that the insertion algorithm could be expressed in general terms.
As Section 2.3 will show, the same algorithm can handle both
an instruction likegetfield in Java [21] and a compare-and-
exchange kind of instruction. The second issue was the treatment
of reference deaths in the presence of language features such as
exceptions. The third was the handling of special pointers into the
interior of objects, which the garbage collector is required to honor.

2.1 Preliminaries

The phase operates on the program’s intermediate representation
(IR) through a series of three stages. In the first, it is converted to
a canonicalfactored control-flow graph(FCFG) [9]. A live-range
analysis is then performed to determine reference death points in
the FCFG. The last stage inserts RC increments just after definition
points, and RC decrements just after either definition or death
points. The decrements are inserted just after death pointsif we can
statically determine last use via liveness information; otherwise,
they are inserted just after definition points.

The insertion phase could be run at various places in a pipeline
of phases—when the IR is at a high level, a medium level or after
it has been lowered into native code. In our implementation,it is
applied on a high-level IR. This facilitates optimizationsthat may

S::= T := A

A ::= &R | &R[I] | &(W.F) | & .F | T± I

W ::= R | T

R∈ set of local reference variables,
T ∈ set of local interior-pointer variables,
F ∈ set of static and instance fields,
I ∈ set of integer-valued expressions.

Figure 1. The syntax of interior-pointer definitions.

not be easily identifiable in other IRs [17]. This of course means
that downstream phases will have to preserve the invariantsthat the
inserted RC updates impose.

2.1.1 Supported Language Features

At the IR level, we assume two kinds of pointers relevant to garbage
collection: referencesthat resemble the object references in Java
and C#, andinterior pointersthat resemble the managed pointers
in .NET [8]. Interior pointers are similar to conventional pointers
in that they are dereferenceable. However, they are associated with
strong typing information, and can only be used in a few well-
defined ways. For this paper, the syntaxS of their definitions is
given by the grammar in Figure 1.

In the grammar, the “member access” operator (‘.’) extractsa
field, given a reference or an interior pointer to the field’s container.
The “address of” operator (‘&’) returns the address of a local ref-
erence, array element or field. Thus, &(W.F) is an interior pointer
to a field, and &.F is an interior pointer to a static field.

The grammar restricts interior pointers to reside in local vari-
ables. It does not permit the assignment of function-returned inte-
rior pointers to local variables. (They can however be passed into
functions.) These restrictions are in line with those in MSIL, the
low-level common language in .NET [8];1 they do not indicate a
limitation of the insertion approach.

Interior pointer and reference variables can also carry an at-
tribute calledpinned. This prevents the garbage collector from re-
claiming (or moving) target objects until the interior pointer or ref-
erence variables are redefined, or until their lexical scopes end [8].

Last, statements can throw exceptions. Exceptions can be ex-
plicit (as with thethrow statement), or implicit.

2.1.2 The Factored Control-Flow Graph

The insertion phase transforms an FCFG representation of a func-
tion. As in a standard control-flow graph, nodes in an FCFG rep-
resent basic blocks. But its arcs can be of two types:normal arcs,
which denote the normal flow of control from the end of one basic
block to the beginning of another, andexception arcs, which rep-
resent the flow of control fromanywherewithin a basic block to
the header block of an exception handler. As an example, Figure 7
shows a basic blockB containing two statementss ands′, each of
which could throw an exception. The exception is processed by a
handler having the header blockB′. Although the figure shows only
one handler, a basic block could have multiple exception arcs leav-
ing it, each to the header block of a different handler.

Exception header blocks contain a special statement calledan
exception assignmentthat catches and assigns the thrown exception
to anexception variable. The IR represents this statement as

c := catch(),

1 MSIL stands for Microsoft Intermediate Language.

capture returned references

subsume interior pointers with shadows

compute liveness, taking into account pinned semantics

insert RC updates against definitions and deaths

insert RC increments against explicit intrafunction throws

insert standard RC decrements into exception headers

in
je

c
ti
o
n

a
n
a
ly

si
s
p
re

p
ro

c
e
ss

in
g

Figure 2. The six steps of the RC update insertion phase, when the
phase operates on a high-level IR. The steps are organized into the
preprocessing, analysis and injection stages.

wherec is the exception variable.

2.2 The Three Stages of the RC Update Insertion Phase

Figure 2 displays the three stages of the insertion phase. The first
preprocesses the IR to a normal form so as to simplify subsequent
stages. A traditional live-range analysis, modified to model the
pinned semantics, is performed in the second stage. The third
stage introduces RC updates for local and heap references; their
placement is guided by the previously derived liveness information.

2.2.1 Preprocessing Stage

This stage has two steps. The first replaces statements of theform

F (x, y, . . .),

whereF returns a reference, with statements of the form

ṫ := F (x, y, . . .),

whereṫ is a compiler-generated temporary. This ensures that sub-
sequent stages do not have to worry about memory leaking due to
function-returned references that are not captured.

The second step pairs every interior pointer with a compiler-
generated local reference called ashadow. The objective is to ig-
nore the definitions and deaths of interior pointers in subsequent
stages. (Later stages would still have to handle writes of references
into the stack and heap through interior pointers.) This is accom-
plished by introducing definitions and uses of an interior pointer’s
shadow so as to tightly contain the interior pointer’s lifetime.

Shadowing Interior-Pointer Definitions For instance, if~p is the
shadow of an interior pointerp , then the following is the transfor-
mation for a definition ofp that points it into an array object:

p := &r [e] ➞ ~p := r
p := &r [e]

From Figure 1, note thatr must be a local reference. Ifp were
defined to point into the stack (say, by assigning the addressof r
to it), then the following would be the code produced:

p := &r ➞ ~p := null
p := &r

To handle definitions involving offset calculations on interior
pointers, the compiler inserts basic blocks with the following code:

p := q ±e ➞ w := (q ±e)−~q
if w ≥ 0∧w < sz,
~p := ~q

else
~p := findstart(q ±e)

end
p := q ±e

In the transformed code,~p and~q are the shadows of the interior
pointersp andq , e is an integer-valued expression, andsz is the
statically determined size of the object pointed to by~q . The code
uses a service calledfindstart provided by the allocator. Ifp points
into an object in the heap,findstart(p) returns a reference to the
start of the object. Otherwise, it returnsnull.

If the expressionq ±e typically arises from intra-object data ac-
cesses, then the predicatew ≥ 0∧w < szwill be true in most cases.
Since the code’selse branch would then be the infrequent path, the
cumulative cost of usingfindstart will not be appreciable.2

Shadowing Interior-Pointer Uses The shadowing step also intro-
duces uses of shadows, so as to tightly subsume the lifetimesof the
corresponding interior pointers. In the case of interior pointers used
in a non-call instruction, this is done by creating fake usesof their
shadows after the instruction:

. . . := . . . p . . . ➞ . . . := . . . p . . .
fakeuse(~p)

In the case of interior pointers passed into a function, the function’s
signature is rewritten to include the shadow:

r := F (p , . . .) ➞ r := F (p , ~p , . . .)

Thefakeuse operator is later lowered into a no-op.3

2.2.2 Live-Range Analysis Stage

Let defsmust(s) andusesmay(s) be the sets of local references that
must be defined and that may be used in a statements. Then the
following relates local references live before and afters [22]:

livein(s) = (liveout(s)−defsmust(s))∪usesmay(s). (1)

We say a local referencedies across sif it belongs to the set

dieacross(s) = (livein(s)∪defsmust(s))− liveout(s). (2)

These are references that can be decremented just afters, without
turning their uses further down the control-flow path into dangling
references. Supplementary decrements may be needed, however,
to prevent memory leaks. Specifically, additional decrements are
needed if (1) references are both defined ins and live on entry to
it, or (2) references other than those indefsmust(s) are defined in
s (say, through interior pointers). Section 2.2.3 shows a decrement
sequence that covers all these cases.

Modeling thepinned Semantics A decrement cannot be inserted
after the last use of apinned referencer because the object that
it targets must be held until its redefinition, or until the end of its
lexical scope. Simply treatingr as live throughout a scope is not
a solution, because a decrement is needed just before each ofits
redefinitions. Our solution is to extendr ’s live ranges so that they
span the definition points ofr and reach the end of their lexical
scopes. This can be done by introducing a fake use ofr in two
places: (1) into each statements whosedefsmustset containsr :

uses′may(s) = usesmay(s)∪{r } if r ∈ defsmust(s), (3)

and (2) at the ends of basic blocks that mark the ends of scopes.
A fine point, which will become clear in Section 2.2.3, is that

the correctness of thepinned treatment does not depend on the
precision of thedefsmustset.

2 Under an optimization for the accessing of two arrays at the same index,
q andq ± e can fall on two different objects [13]. In MSIL, this would
require thepinned attribute on bothp andq , which is equivalent to using
thefixed construct on both the arrays at the C# source level.
3 To preventfakeuse from being reordered by other phases, it should model
an anti-dependence relation. A way to do this is to introducefakeuse(r)
only after thelast uses ofr , and to have it kill the argumentr after use.

Liveness of Thrown ReferencesBesides returned references, ref-
erences that are expressly thrown (using thethrow statement) from
basic blocks lacking a handler for the exception are considered live
on exit from the function. If a basic block could implicitly throw
an exception and no handler already exists for it, a default one is
created that simply re-throws the exception via athrow.

2.2.3 Injection Stage

RC updates are inserted by this stage in three steps using liveness
information. The first step injects increments for reference defini-
tions, and decrements for reference deaths or redefinitions. (The
statements processed are those that exist before this stage.) The
second step injects increments against explicitly thrown references
having exception handlers in the function. (This can be established
by comparing the static type of the thrown reference with thestatic
type of the exception variable.) The increment is injected just be-
fore thethrow. The third step introduces decrements for local ref-
erences that die in a basic block into that block’s exceptionheader
(if it has one). It is important that the last two steps occur after the
first; doing so guarantees that in an adjoining pair of RC updates on
the same reference, the increment always precedes the decrement.

Injection Step 1: Inserting RC Updates against Definitions and
Deaths This step is best explained by describing its net effect on
statements. Depending on whether the statement is a call or non-
call instruction, the net effect is one of the code patterns shown in
Figures 3 and 4. In these figures, and all other code in this paper,
anRC+ indicates an increment, and anRC− andR̂C− a decrement.
The difference betweenRC− andR̂C− is that the former is inserted
on the basis of reachability changes in the object graph, andthe
latter on the basis of liveness information. We therefore refer to
RC− as astandard decrement, and toR̂C− as aneager decrement.
(We use the term “standard” because decrements done in standard
versions of reference counting are of this type [20].)

Non-Call Instructions Let ldefs(s) be the set ofl-value expres-
sions [22] of all references (stack and heap) thatmaybe defined in
a statements. Let L (Q) be the set of l-values for variables in a set
Q. Then, whens is not a call, the code after injection corresponds to
one of the two templates in Figure 3. The two templates are neces-
sary because the compiler’s knowledge of whatwill be defined may
not be the same as whatcouldbe defined. When its information on
the two match, more efficient code can be generated, in accordance
with the template on the left. Otherwise, the compiler will have to
generate code according to the template on the right.

In the two templates, as well as elsewhere in this paper, dot ac-
cents are used to represent temporaries. The other variables belong
to the following sets of references:

ai ∈ defsmust(s),

bi ∈ defsmust(s)∩ livein(s),

di ∈ dieacross(s),

wi ∈ defsmust(s)−usesmay(s),

pi ∈ ldefs(s).

(4)

The compiler produces code according to the left template, if it
can determine thatL (defsmust(s)) andldefs(s) are equal.4 The first
set of RC updates it generates are increments againstai , which are
references that must be defined ins. The next set of RC updates
are decrements againstsegueing live references. These are live
references that can transition to a redefined state by going through

4 It may appear thatldefs(s) could be written asL (defsmay(s)), where
defsmay(s) is the “may” analogue ofdefsmust(s). This, however, is not the
case becausedefsmust(s) traditionally contains only local variables.

L (defsmust(s)) = ldefs(s) L (defsmust(s)) 6= ldefs(s)

ṫ1 := b1
ṫ2 := b2

...
ṫk := bk

s
RC+(a1)
RC+(a2)

...
RC+(al)
RC−(ṫ1)
RC−(ṫ2)

...
RC−(ṫk)
R̂C−(d1)
R̂C−(d2)

...
R̂C−(dm)

w1 := null
w2 := null

...
wn := null
u̇1 := ∗p1
u̇2 := ∗p2

...
u̇k := ∗pk

s
RC+(∗p1)
RC+(∗p2)

...
RC+(∗pk)
RC−(u̇1)
RC−(u̇2)

...
RC−(u̇k)
R̂C−(d1)
R̂C−(d2)

...
R̂C−(dm)

Figure 3. Templates of code produced by the insertion phase, after
processing a non-call instructions. Code matches either template,
depending on whetherL (defsmust(s)) equalsldefs(s).

an inaccessible death point. Their values befores are therefore
captured iṅti , for doing decrements afters. Segueing live references
are discussed further in Section 3. The last set of RC updatesare
decrements against references that die acrosss.

Code corresponding to the second column of Figure 3 is pro-
duced whenL (defsmust(s)) and ldefs(s) cannot be determined to
be equal. The assignments to ˙ui capture values of references poten-
tially to be overwritten ins, by applying the dereference operator
(‘∗’) on l-value expressions inldefs(s). Decrements are applied on
them, after increments are applied on references that may bede-
fined ins.5 Decrements against thewi would exist earlier, because
they die before their redefinition ins. They are hence assignednull
to preclude double decrements due to theRC−(u̇i). If an alias anal-
ysis can prove that api will point to a wq, then the statementswq
:= null, u̇i := ∗pi andRC−(u̇i) can be omitted.

The decrements against the ˙ui are standard decrements, since
they come from references being overwritten. Those againstthedi
are eager decrements because they arise from references dying.

It should be mentioned that to insert the eager decrements, new
basic blocks may have to be created. This will be the case whens is
the last statement in a basic block with two or more outgoing arcs,
and references die along one arc but not the others.

Call Instructions The treatment is different whens is a call in-
struction, and corresponds to one of the two templates in Figure 4.
The templates have different goals: the one on the left avoids un-
necessary storage retention across a function call, while the one on
the right inserts fewer RC updates. In particular, if the Retention
Avoidance (RA) template is used and an actual reference parame-

5 If a reference does not actually get stored into a location pointed to bypj
(1≤ j ≤ k), then theRC+(∗pj) andRC−(u̇j) cancel out.

Retention Avoidance Code Reuse

v̇1 := x
v̇2 := y

...
RC+(v̇1)
RC+(v̇2)

...
R̂C−(d′1)
R̂C−(d′2)

...

r := F (v̇1, v̇2, . . .)

R̂C−(d′′1)
R̂C−(d′′2)

...

r := F (x , y , . . .)

R̂C−(d1)
R̂C−(d2)

...

Figure 4. Templates of alternative code sequences for the call
instruction r := F (x , y , . . .). The choice of template depends
on decisions regarding issues such as storage retention, instruction
cache performance, and implementation complexity.

ter x is used last ins, then the storage targeted byx will be freed
before the call returns, assuming no other references aliasx . The
Code Reuse (CR) template, on the other hand, replaces all caller-
side increments with a single set of increments on the calleeside.

The RA template realizes its goal by splitting the decrements
into two groups, one that occurs before the call and one afterthe
call. The first group consists of decrements ond′i , where

d′i ∈ (dieacross(s)∩usesmay(s))−addrtaken(s). (5)

The setaddrtaken(s) consists of references whose addresses are
passed intoF ; an example of such a reference is the local variable
z , if & z is passed intoF . These references are considered live
for the entire duration of the call. The second group consists of
decrements against the remaining references that die across s:

d′′i ∈ dieacross(s)− (usesmay(s)−addrtaken(s)). (6)

Increments against the ˙vi in Figure 4 account for the actual-
to-formal copying of reference parameters at function-invocation
time. Because there will be decrements insideF against the for-
mal counterparts (unless the formal counterparts are thrown or re-
turned), no decrements should be applied on the ˙vi afterF returns.

In the RA template, the original reference arguments are re-
placed by the ˙vi in the transformed call instruction. This is because
thed′i are these arguments, and thêRC− operations occurring be-
fore the call kill them. (The reason for this is explained in the dis-
cussion for the third step in this stage.)

In the CR template, all of the inserted decrements come afters,
against the references that die across it (Equation (4) defines thedi).
No other RC updates or assignments are inserted on the callerside.
For the transformed sequence to work, increments must be inserted
on the callee side, against the formal reference parameters.

In both the templates, interior pointers passed into the call need
no special consideration because they are indirectly takencare of
through their shadows (see Section 2.2.1). No increment is applied
against the returned reference because an increment would have
already occurred when it is defined inF . (As stated in Section 2.2.2,
returned references are considered live on exit from a function.
Therefore, they will not have a decrement after their last definition.)

There are other issues that concern these templates; these are
discussed in the technical report version of this paper [18].

Injection Step 2: Inserting Increments againstthrow Excep-
tions that are explicitly thrown from basic blocks without exception
handlers are treated the same way as returned references. That is,
no decrement against the thrown reference exists after its last defi-
nition, because it is considered live on exit from the function. This
is why exception assignments are regarded as call instructions, be-
cause this avoids an increment against the exception variable when
the exception is caught further up the call stack.

On the other hand, when explicitly thrown references are caught
in the same function, the absence of an increment against theex-
ception variable at the exception assignment point must be coun-
tered by an increment at the point of thethrow statement, or earlier.
Hence the second step in this stage.

Injection Step 3: Inserting Decrements into Exception Headers
If the statements in Figures 3 or 4 was to throw an exception,
none of the ensuing RC updates will get executed. The increments
among them should not happen anyway, because an exception-
throwing non-call instructions does not side-effect a program’s
variables. However, among the decrements, those against refer-
ences that die acrosss should be performed. Since any statement
in a basic blockB could throw an exception, the third step inserts
decrements against references in the set

D′ =
(
livein(B)∪ (

⋃

s∈B

defsmust(s))
)
− livein(B′) (7)

into B’s exception headerB′. (The setslivein(B) and livein(B′) in
Equation (7) are references that are live on entry toB andB′.)

When an exception is thrown at execution time, decrements on
a subset ofD′ would have already occurred inB, due to references
that die inB. This means that the decrements inserted intoB′ could
operate on dangling references. To forestall this, theR̂C− operation
is given the following semantics: It sets its operand reference to
null after doing the decrement. We call this thedecrement-and-
assign-null (DAN) semantics. Suppose that the operand isx ; then
the solution does not conflict with later uses ofx because thêRC−
operation is introduced just after the death point ofx .

An outcome of this solution is that thenull assignments against
thewi in Figure 3 become unnecessary.

Because theRC− operation is based on reachability (i.e., refer-
ences being overwritten), it does not need to have the DAN seman-
tics. It is enough for it to just do a decrement. Since an exception
header cannot itself throw an exception, this means that thedecre-
ments inserted intoB′ can be of the standard kind.

2.3 Examples

To demonstrate how the insertion phase transforms specific state-
ments, we consider its effect on Java’sgetfield instruction, and
an atomic compare-and-exchange instruction calledcmpxchg.

A possible IR forgetfield iso.f, whereo is a local reference
and f a field. The phase considers it a non-call instruction. The
compiler computesdefsmust(s) and ldefs(s) to be{o } and{&o };
it thus determines thatL (defsmust(s)) equalsldefs(s). Hence, the
transformed code matches the left template in Figure 3:

o := o.f ➞ ṫ1 := o
o := o.f
RC+(o)
RC−(ṫ1)
R̂C−(d1)
R̂C−(d2)

...
R̂C−(dm)

Thedi in the above are references that die acrosss. They will form a
nonempty set, if the statement could throw an exception and if livein
at the beginning of the exceptional control-flow path is a proper
superset ofliveout(s).

The cmpxchg instruction is similar to theCompareExchange
method in .NET’sSystem.Threading.Interlocked class [8].
It takes an interior pointerp to a reference, a pair of references
x andy , and comparesy with the reference atp for equality. If
equal, the reference atp is replaced byx and the original reference
at p is returned. If unequal, only the reference atp is returned.
The insertion phase regards the statement as a non-call instruction.
The compiler determinesdefsmust(s) and ldefs(s) as being{r }
and {p ,&r }. Now, depending on whether an alias analysis can
prove thatp always equals &r , the transformed code could match
either of the two patterns in Figure 3. The code below is when
L (defsmust(s)) andldefs(s) cannot be ascertained as being equal:

r := cmpxchg(p , x , y) ➞ u̇1 := ∗p
u̇2 := ∗(&r)
r := cmpxchg(p , x , y)
RC+(∗p)
RC+(∗(&r))
RC−(u̇1)
RC−(u̇2)
R̂C−(d1)
R̂C−(d2)

...
R̂C−(dm)

Two trivial optimizations are possible on the above code. First,
∗(&r) is replaceable byr . Second,RC+(∗(&r)) and RC−(u̇1)
cancel out becauser equals ˙u1 after thecmpxchg statement.

3. The Capturing of Segueing Live References
We sayr is a “segueing live reference” at a program pointP if it is
live at P, if there is a subsequent pointQ at which it is redefined,
and if all points betweenP andQ are inaccessible in the IR. For
instance, thebi in Figure 3 are references overwritten ins, but
that are live when control reachess. They are all segueing live
references because theycango from being live to being redefined
by passing through a death point inside the statement.6

Segueing live references are determined using the predicate

bi ∈ defsmust(s)∩ livein(s), (8)

and not by using what would appear as the more obvious choice:

bi ∈ defsmust(s)∩usesmay(s). (9)

This is because when an exceptional control-flow path emanates
from s, livein(s) can be a proper superset ofusesmay(s).

As an example, consider Figure 7, and supposeldefs(s) is such
thatL (defsmust(s)) andldefs(s) are equal. Then RC updates fors
will be injected in accordance with the first column in Figure3. Let
x be a local reference such that

x ∈ defsmust(s),

x 6∈ usesmay(s),

x ∈ livein(B′).

Then from Figure 3, no decrement would be applied afters on the
old value ofx , if segueing live references were calculated using
Equation (9). This will lead to a memory leak if the old value is the
last reference to an objectandcontrol normally flows throughs.

6 We say “can” because control can also flow along an exceptional path.

1 x := u
2 RC+(x)

...
3 y := x
4 RC+(y)

...
5 · · ·y · · ·

6 R̂C−(y)
...

7 · · ·x · · ·

8 R̂C−(x)

1′ x := u
2′ RC+(x)

...
3′ y := x
4′ RC+(x)

...
5′ · · ·x · · ·

6′ R̂C−(x)
...

7′ · · ·x · · ·

8′ R̂C−(x)

1′′ x := u

2′′ RCx+ (x)
...

3′′ y := x

4′′ RC
y
+ (x)

...
5′′ · · ·x · · ·

6′′ R̂C
y
− (x)

...
7′′ · · ·x · · ·

8′′ R̂C
x
− (x)

Figure 5. An illustration of the problem of representing thêRC−
operation. In the middle is the result after the copy propagator
processes code on the left, wrongly replacingy on Line 6′ by x .
On the right is the result if a two-operand representation were used.

4. Representing Eager Decrements in the IR

The DAN (decrement-and-assign-null) semantics of thêRC− op-
eration has consequences on the way it is modeled in the IR. Its
decrement action utilizes a referencevalue, while its kill action af-
fects a referencelifetime. Although value and lifetime may relate
to the same variable, they need to be separately representedin the
IR so that downstream phases correctly treat the RC updates.

To motivate the issue, consider the left code fragment in Fig-
ure 5, which shows an IR after the insertion phase. TheR̂C−(y)
andR̂C−(x) on Lines 6 and 8 are due to the last uses ofy andx
on Lines 5 and 7. Assume a copy propagator is run on this IR, and
that it propagatesx into the occurrences ofy on Lines 4, 5 and 6.
The result is the middle fragment in Figure 5. The transformation,
however, is wrong because the reaching definition ofx on Line 7′

is changed tonull. The problem arises from propagating a value
into an operation that has both use and kill roles associatedwith it.

Of course, copy propagation can be taught to recognize the spe-
cial semantics of̂RC−. But a better approach is to represent̂RC−
in such a way so that existing phases continue to work unchanged.
Our solution is to use two operands for thêRC− operation, one for

each role. We represent it aŝRC
a
− (b), where the superscripta is

the killed reference, and where the parenthetical argumentb is the
used reference. To a compiler phase that only manipulates values,
such as copy propagation, the superscript will be opaque, but not
the parenthetical argument. If this two-operand representation were
used, the copy propagator will correctly transform the leftfragment
into the right fragment in Figure 5.

The superscript is essentially the label of a live range. Since the
RC+ operation is inserted at definition points, it is useful to also
give the operation a superscript that denotes the live rangeof the
corresponding definition. This is shown in the right fragment in
Figure 5. These superscripts are valuable for RC optimizations that
are based on lifetime information [17, 19].

The compiler eventually lowerŝRC
a
− (b) into a pair of state-

ments. The first statement calls therelease method onb to do
the decrement, and the second assignsnull to a . Why not just use
such a statement pair in the high-level IR instead of the nonstandard

R̂C
a
− (b) representation? The reason is that a general code motion

phase, which does not specially recognize therelease(b) state-
ment, may move a use ofb from before the statement to after. This
can cause the creation of a dangling reference, as shown in Figure 6.

1 · · ·b · · ·

2 R̂C
a
− (b)

1′ · · ·b · · ·
2′ release(b)
3′ a := null

1′′ release(b)
2′′ · · ·b · · ·
3′′ a := null

Figure 6. An example of the problem with representinĝRC
a
− (b)

as arelease-null statement pair. A code motion phase could move
the use ofb on Line 1′ to after Line 2′, producing the fragment on
the right. This could turnb on Line 2′′ into a dangling reference.

B

s

s′

release(y)
y := null

release(y)
y := null

release(y)release(y)release(y)

B
′

Figure 7. An obstructed dead-code elimination opportunity. InB

andB′ are the lowered representations of̂RC
y
− (y) andRC−(y). If

sdoes not throw an exception, buts′ does, thenull assignment inB
precludes a repeat decrement inB′ on the same object.

The root of the issue is that the parenthetical argument may be
an object’s last reference. So transformational phases that extend
live ranges can frustrate therelease-null representation by intro-
ducing a use between the statement pair. It is for this reasonthat the
lowering should happen after all such phases have executed.

The lowering phase also convertsRCa+ (b) into a call to the
addref method onb , which does the increment. The superscript
is ignored here, since it has no role in the operation’s semantics.

The IR after the RC updates have been lowered can be safely
operated upon by other phases, if those phases satisfy threecondi-
tions: (1) they do not introduce new objects, in the form of state-
ments such asz := allocobj(T) (these will lead to leaks); (2) they
do not extend existing reference lifetimes; and (3) new references
introduced by them have lifetimes subsumed by the lifetimesof ex-
isting aliasing references. These conditions are sufficient, but not
necessary.

5. Trading Code Quality with Eagerness
Because of exceptional control-flow paths, not all of thenull as-
signments that come from lowering thêRC− operations can be re-
moved. For instance, consider a basic blockB, in whichsands′ are
two adjacent statements. Suppose both could throw an exception
that is serviced by a common handler. Assume thaty dies across
s, is not redefined after that inB, and is not live on entry to the
handler’s header blockB′. Then the insertion phase will insert an

R̂C
y
− (y) afters, as well as anRC−(y) into B′. Figure 7 shows the

result after thêRC− andRC− operations are lowered.
The key point in Figure 7 is that thenull assignment cannot

be removed. This is because the exception thrown byB might be
due tos′, and nots. Thus, there is a reaching use inB′ of this null
assignment. Obviously, the assignment could have been removed if
there was another definition ofy after it but befores′.

The obstruction comes from a combination of two factors: (1)
thenull assignment reaches a use inB′; and (2) it is notpostdomi-
natedby that use [22]. This lack of postdominance is a consequence
of the FCFG representation—it cannot be changed by moving the
null assignment to another possible point inB. But the first factor

B

s

s′

release(y)
y := null

release(y)release(y)release(y)

B
′

Figure 8. By relaxing the placement of̂RC
y
− (y) to the end ofB,

an opportunity for dead-code elimination will be created.

can be broken, by moving thenull assignment to afters′. Hence,

by relaxing the placement of̂RC
y
− (y) to a point further away from

the death point ofy , the dead-code elimination obstruction can be
lifted. Figure 8 displays the lowered form of one such placement.
Thenull assignment can now be removed, thereby improving the
code path throughB, at the expense of holding onto garbage longer.

6. Methods Outside the Insertion Phase’s Scope
In our implementation, run-time services for the RC collector are
packaged as part of the larger Bartok run-time system. The run-
time system is written in C#, and is compiled into the executable
code produced. Thus, the insertion phase also transforms code in
the run-time system to use nondeferred RC collection.

However, not all methods should have RC updates automati-
cally inserted into them. For instance, those invoked before the run-
time system’s data structures are initialized should not execute RC
updates. A way to flag a method outside the insertion phase’s scope
is by affixing annotations, calledattributes, to it. This section dis-
cusses four such attributes, which encapsulate different reasons for
suppressing automatic insertion. Rules governing their affixation
are explained. These rules can be mechanized, so as to automati-
cally deduce the methods that might need them.

A method isauto RC-suppressedif any of the four attributes is
attached to it. It is otherwise said to beauto RC-enabled.

6.1 Attributes for Suppressing Automatic Insertion

[PreInitRefCounts] This attribute is attached to methods in-
voked before run-time initialization. They constitute a small set,
belonging to a trusted computing base. Their typical tasks are to
allocate bootstrap memory for data structures in the allocator and
collector, and to run the allocator’s and collector’s static initializers.

[RecursiveRefCounts] Because the compiler eventually low-
ers RC updates into calls to theaddref and release methods,
any method transitively reachable fromaddref andrelease, in-
cluding addref andrelease, should not be in the scope of the
insertion phase. This is because an inserted RC update couldcause
an endless recursion at execution time. Suppressing insertion for
this reason is indicated by the[RecursiveRefCounts] attribute.

[ManualRefCounts] Certain methods may need to directly ma-
nipulate an object’s reference count. As an example, objectallo-
cation routines initialize an object’s reference count to 1. If RC
updates were automatically inserted into them, the programmer-
inserted reference-count manipulations could interact with the RC
updates to produce undefined results. Such methods are therefore
marked with the[ManualRefCounts] attribute.

[ZombieRefCounts] The insertion phase should also ignore
methods that have references tozombieobjects. These are objects
that have become garbage (i.e., reference counts have dropped to

[ManualRefCounts]
function allocobj(T)

1′ sz:= sizeof(T)
2′ x := allocmem(sz)
3′ y := x
4′ x.RC := 1
5′ y.vtable := T.vtable
6′ return y

1 sz:= sizeof(T)
2 z := allocmem(sz)
3 y := z

4 RC
y
+ (y)

5 z .RC := 1
6 y.vtable := T.vtable

7 R̂C
y
− (y)

...
8 · · ·z · · ·

9 R̂C
z
− (z)

Figure 9. The fragment on the right is the result of applying the
insertion phase on auto RC-enabled code. The code containedthe
statementz := allocobj(T). The method shown on the left was
inlined at this statement, just before running the insertion phase.

zero), but that are yet to be returned to the allocator. Between reg-
istration by the collector and return to the allocator, zombies can
be operated upon in a variety of ways—for instance, decrements
could be applied on their descendents, and they could be subjected
to assertion checks. If RC updates were automatically inserted into
zombie-referring methods, they could cause the resurrection of a
zombie at run time. This may lead to erroneous behavior, either in
the form of a memory leak, or a double registration by the collec-
tor (if the resurrected zombie falls back to the zombie state). The
[ZombieRefCounts] attribute is attached to prevent this.

6.2 Issues with Inlining Methods Before Automatic Insertion

If the insertion phase processes an auto RC-enabled methodafter
an auto RC-suppressed method is inlined into it, the result could be
an erroneous sequence of RC updates. We demonstrate the problem
by considering auto RC-enabled code that contains the statementz
:= allocobj(T). This statement assigns a newly allocated, uncon-
structed object of typeT to z .7 The compiler can choose to lower
the statement into an invocation of a run-time method that does the
job of allocobj. Such a method is shown in the first column of Fig-
ure 9. It allocates an appropriately aligned, zero-initialized memory
for the object, and sets up its reference count and vtable fields. Note
that the reference count of the vtable object is not adjusted; this is
because vtable structures are assumed to live forever.

Now supposez := allocobj(T) is lowered to a call toallocobj,
and the call is inlined, before the insertion phase processes the
auto RC-enabled code. Then the code obtained at the end of the
processing is shown on the right in Figure 9. Line 2 involves acall
to the run-time allocation routineallocmem. Hence, because it is
a call instruction, no increment is inserted against thez defined on
Line 2. Thez on Line 8 is a last-use occurrence in the original and
transformed codes. But because of the last use ofy on Line 6, the

R̂C
y
− (y) on Line 7 turnsz on Line 8 into a dangling reference.
The problem in this case arises from the wayallocobj was

written. If the definition ofy on Line 3′ was removed, and ifx
was used instead on Line 5′, then the inserted RC updates will not
conflict with the reference-count initialization on Line 5.

Our solution is to simply avoid such problems by not inlining
auto RC-suppressed methods into auto RC-enabled methods prior
to the insertion phase. Among the three other scenarios possible
when inlining happens before the insertion phase, there is one more
problematic case, which is also solved by not inlining. Thisis when
the caller is auto RC-suppressed and the callee is auto RC-enabled.

7 Only the vtable and RC fields are set up in such an object; all other fields
contain zeros.

There can be four other scenarios, which come from inlining the
calleeafter the insertion phase. They are not problematic, as long
as the caller and callee have correct RC update sequences [18].

7. Measurements
This section gives experimental data evaluating an implementation
of the RC insertion phase in Bartok. The data collected was for the
C# applications displayed in Table 1. These are single-thread pro-
grams that were first converted into MSIL using version 7.10 of the
.NET C# compiler. The MSIL files were then compiled by Bartok
into stand-alone x86 code. The platform for the experimentswas
an HP XW8000 workstation with an Intel Xeon 2.8GHz processor,
running Windows XP Version 2002 (Service Pack 2) in hyperthread
mode. The capacities of its RAM, primary cache and secondary
cache were 2GB, 8KB and 512KB respectively. (Measurements
demonstrating the run-time performance of the generated x86 bi-
naries on the same platform are in a recent paper [19].)

Table 1 displays the number of methods, statements and ba-
sic blocks processed for each program. The counts are inclusive
of .NET’s Base Class Library (BCL) and Bartok’s C# run-time
system, which get compiled into the outputted native code.8 The
method, statement and basic block counts consider all managed-
code methods, including the auto RC-suppressed ones. Amongthe
auto RC-suppressed methods are a number of increment and decre-
ment methods synthesized by the compiler forstruct types. These
are used forRC+, RC− andR̂C− operations onstruct variables.

All of the reported counts are in the high-level IR, which gen-
erally bears a one-to-one correspondence with MSIL. The column
labeled “Max.” in Table 1 is the maximum number of basic blocks
in a method before the insertion phase executes. This is 258 in
the majority of cases, which is the number of basic blocks in the
FormatCustomized method belonging to theDateTimeFormat
class in the BCL. The last two columns indicate the number of call
and non-call instructions, as classified by the injection stage and as
seen at its beginning (refer Figure 2). On average, non-callinstruc-
tions occur six times more often than call instructions. Thelast two
columns consider only auto RC-enabled methods; hence theirsum
is less than the number shown in the “Statements” column.

The times, in seconds, taken by the insertion phase to trans-
form the high-level program IRs is shown in Table 2. These times
were measured when running Bartok in the CLR (Common Lan-
guage Run-time), which is .NET’s virtual machine for executing
MSIL [8]. The table also shows the total number of statementsand
basic blocks immediately after the conversion. In general,the high-
level IR statements increase by about 48%; in the case of Bartok
compiling itself, the increase is a little over 80%. The increase
in the number of basic blocks is less pronounced, typically being
about 11%, and reaching up to 24% for Bartok. The new maximum
number of basic blocks is mostly 284, which is the number of basic
blocks in the transformedFormatCustomized BCL method.

The last three columns in Table 2 indicate the usage of the two
templates in Figure 3, both as absolute counts and as a percentage
(i.e., the left template’s usage as a percent of the total). For any
benchmark, the sum of the absolute counts equals the number
underneath the “Non-Call” column in Table 1. We thus see thatthe
more efficient template is used over 90% of the time in all cases.

Finally, Table 3 shows the sizes in kilobytes of the generated
x86 binaries. For comparison, a conversion phase to realizede-
ferred RC collection was also implemented in Bartok. The last two
columns in Table 3 show the sizes of the binaries produced with
this phase turned on. The “Base” columns give the sizes of the

8 Not all of the run-time system or BCL gets compiled into an outputted bi-
nary. There is a phase called “tree shaking” that only pulls in the referenced
portions of the class hierarchy, casting out the rest.

Benchmark Description Methods Statements
Basic Blocks Statement Types
Total Max. Call Non-Call

cmp File comparison tool, run on two 1006KB files. 1728 55242 14700 258 5458 30118

xlisp
Xlisp interpreter executingau, boyer, browse, etc., as part
of a workload of 21 Lisp programs. SPEC CINT95 port. 2167 71362 19188 693 7465 39722

othello Othello (aka Reversi) strategic board game, on an 8×8 grid. 1472 44112 11345 258 3839 23784

go Game of Life, on a 40×19 board. SPEC CINT95 port. 2108 127520 24429 258 7986 91322

satsol
Boolean formula satisfiability solver. Available fromwww.
research.microsoft.com/research/downloads.

1849 60529 15991 258 5997 33564

chess Chess-playing program. SPEC CINT2000 port. 1994 90004 21088 439 8221 54241

ahcbench
The Adaptive Huffman Compression algorithm applied on
files. Available from www.research.microsoft.com/
research/downloads.

1702 53235 13997 258 5067 29151

bartok MSIL to x86 ahead-of-time optimizing compiler, compiling
itself to use generational copying collection.

6322 457238 123000 495 71541 263001

Table 1. Details on C# programs transformed by the conversion algorithm to use ARCS collection.

Benchmark Time (secs)
Statements Basic Blocks L (defsmust(s)) = ldefs(s)?

Total % Increase Max. Total % Increase true false % true

cmp 1.063 82626 49.57 284 16296 10.86 27809 2309 92.33

xlisp 1.485 112871 58.17 866 21326 11.14 35787 3935 90.09

othello 0.797 65399 48.26 284 12479 10.00 21670 2114 91.11

go 2.281 175081 37.30 284 27236 11.49 88143 3179 96.52

satsol 1.186 90734 49.90 284 17757 11.04 31211 2353 92.99

chess 1.750 130488 44.98 493 23636 12.08 51725 2516 95.36

ahcbench 0.969 79298 48.96 284 15476 10.57 26877 2274 92.20

bartok 11.718 833103 82.20 622 153123 24.49 241426 21575 91.80

Table 2. Times for the conversion algorithm (run as part of compilation), as well as characteristics of the transformed code.

ARCS and DRC (deferred RC) baseline versions. The DRC bina-
ries contain code components not present in the ARCS binaries,
such as GC maps and a stack-scanning module. Despite this, the
sizes of the baseline ARCS versions are consistently largerthan
the baseline DRC versions. The “Opt.” column shows the sizes
of the ARCS versions after the coalescing and immortal object
RC update elision optimizations described in [17], and the three
overlooking-root-based optimizations discussed in [19].These op-
timizations statically detect and eliminate redundant RC updates on
stack references. The “Opts.+Inlining” and “Inlining” columns dis-
play the sizes of the ARCS and DRC binaries after the lightweight
RC updates in them are inlined [17]. These two columns show that
the sizes of the final binaries are comparable in many cases.

8. Related Work
In spite of RC collection’s long history, there has been no docu-
mented work on a principled approach to realizing it with a com-
piler. Compile-time RC collection research has been mainlyin the
areas of optimizations for deferred RC collection [5, 16, 11, 23] and
reference counting for achieving deterministic finalization [24].

A study by Diwan et al. demonstrated that large improvements
in an application’s heap usage is possible when accurate liveness
information is available [15]. It showed that increasing degrees of
liveness knowledge can enable increasing reductions in a program’s
heap footprint. The study gathered liveness data by performing a
run-time analysis of a program’s trace.

Benchmark
ARCS DRC

Base Opts. Opts.+Inlining Base Inlining

cmp 972 824 1056 852 1052

xlisp 1236 1028 1320 1068 1280

othello 840 736 928 752 940

go 1600 1296 1548 1340 1568

satsol 1028 864 1100 892 1092

chess 1308 1076 1352 1108 1332

ahcbench 944 808 1032 836 1024

bartok 6324 4240 5440 4176 4912

Table 3. File sizes, in kilobytes, of x86 ARCS and DRC versions.

In the ARCS collection scheme, reclamation can be initiatedat
any program instruction. In most previous efforts, it can beinitiated
at only a few places in a method, namely the GC-safe points. An
exception is the work by Stichnoth et al., which considers every
program point as being a GC-safe point. It addresses the resulting
problem of coping with a large number of GC maps [25].

Our work supports interior pointers. Past research has either
ignored them, or handled them using approaches different from
ours, e.g., the Diwan et al. derivation table technique [13].

A topic related to this work is unsafe compiler optimizations
that move references to earlier points in the code, causing prema-
ture reclamation of their referents [6].

In the work by Sells and Tavares, RC operations were performed
on only references that live on the evaluation stack of the CLR [24].
(The evaluation stack is different from the call stack.) Their goal
was not to provide a complete GC—the CLR’s collector was used
for that—but to run finalizers as early as possible.

The C++ Standards Committee has proposedsmart pointer
classes for inclusion in a future C++ standard [3]. Smart point-
ers are a language aid for easing the management of dynamically
allocated resources. They resemble the standard C++ pointers, ex-
cept for under-the-hood bookkeeping in the form of RC operations.
This allows for the automatic deletion of a resource, once all smart
pointers to it are overwritten or go out of scope. Smart pointer im-
plementations are available as part of the Boost C++ Libraries [7].

9. Summary
This paper presented an algorithm for transforming an object-
oriented program into one that uses a nondeferred form of RC
collection. Rather than special-casing the treatment of instructions,
the algorithm handles them in a uniform way, by using abstrac-
tions based on data-flow analysis notions. Modern object-oriented
language features, such as object pinning, interior pointers and ex-
ceptions, are accounted for in the transformation. The algorithm
inserts two kinds of decrements to reclaim dead data, one based on
reachability and the other on liveness. Some of the complications
it copes with are the consideration of live references whosedeath
points are inaccessible, and exceptional control-flow paths.

The algorithm has been implemented in an optimizing compiler.
It has been used to successfully compile numerous large programs
into nondeferred RC-collected versions. The paper also discussed
the compiler issues that were addressed for this. These include
representing the eager decrements so that subsequent phases can
correctly operate on the IR, constraints on running phases like
method inlining before or after RC updates are inserted, andthe
treatment of code in the run-time system.

References
[1] Ole Agesen, David Detlefs, and J. Eliot Moss. Garbage Collection and

Local Variable Type-Precision and Liveness in Java VirtualMachines.
In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 269–279, June 1998.

[2] Bowen Alpern, C. R. Attanasio, John J. Barton, Michael G.Burke,
Perry Cheng, Jong-Deok Choi, Anthony Cocchi, Stephen J. Fink,
David Grove, Michael Hind, Susan Flynn-Hummel, Derek Lieber,
Vassily Litvinov, Mark F. Mergen, Ton Ngo, James R. Russell,Vivek
Sarkar, Mauricio J. Serrano, Janice C. Shepherd, Stephen E.Smith,
V. C. Sreedhar, Harini Srinivasan, and John Whaley. The Jalapeño
Virtual Machine. IBM Systems Journal, 39(1):211–238, 2000.

[3] Matt Austern. Draft Technical Report on C++ Library Extensions.
ISO/IEC DTR 19768, The C++ Standards Committee, June 2005.

[4] David F. Bacon, Perry Cheng, and V. T. Rajan. A Unified Theory
of Garbage Collection. InProceedings of the 2004 ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages,
and Applications, pages 50–68, October 2004.

[5] Jeffrey M. Barth. Shifting Garbage Collection Overheadto Compile
Time. Communications of the ACM, 20(7):513–518, July 1977.

[6] Hans-Juergen Boehm. Simple GC-Safe Compilation. InAddendum
to OOPSLA’91 Proceedings, October 1991.

[7] Boost C++ Libraries. Athttp://www.boost.org.

[8] Don Box and Chris Sells.Essential .NET: The Common Language
Runtime. Addison-Wesley Publishing Company, Inc., USA, 2003.

[9] Jong-Deok Choi, David Grove, Michael Hind, and Vivek Sarkar.
Efficient and Precise Modeling of Exceptions for the Analysis of
Java Programs. InProceedings of the ACM SIGPLAN/SIGSOFT
Workshop on Program Analysis for Software Tools and Engineering,
pages 21–31, September 1999.

[10] George E. Collins. A Method for Overlapping and Erasureof Lists.
Communications of the ACM, 3(12):655–657, December 1960.

[11] Alain Deutsch. On Determining Lifetime and Aliasing ofDynami-
cally Allocated Data in Higher-Order Functional Specifications. In
Proceedings of the ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, pages 157–168, January 1990.

[12] L. Peter Deutsch and Daniel G. Bobrow. An Efficient, Incremental
Automatic Garbage Collector.Communications of the ACM,
19(9):522–526, September 1976.

[13] Amer Diwan, Eliot Moss, and Richard Hudson. Compiler Support for
Garbage Collection in a Statically Typed Language. InProceedings
of the ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 273–282, June 1992.

[14] H. Gelernter, J. R. Hansen, and C. L. Gerberich. A FORTRAN-
Compiled List-Processing Language.Journal of the ACM, 7(2):87–
101, April 1960.

[15] Martin Hirzel, Amer Diwan, and Johannes Henkel. On the Usefulness
of Type and Liveness Accuracy for Garbage Collection and Leak
Detection. ACM Transactions on Programming Languages and
Systems, 24(6):593–624, November 2002.

[16] Paul Hudak. A Semantic Model of Reference Counting and its
Abstraction (Detailed Summary). InProceedings of the ACM
SIGPLAN Conference on LISP and Functional Programming, pages
351–363, April 1986.

[17] Pramod G. Joisha. Compiler Optimizations for Nondeferred
Reference-Counting Garbage Collection. InProceedings of the
International Symposium on Memory Management, pages 150–161.
ACM Press, June 2006.

[18] Pramod G. Joisha. A Principled Approach to NondeferredReference-
Counting Garbage Collection. Technical Report MSR-TR-2007-104,
Microsoft Research, August 2007.

[19] Pramod G. Joisha. Overlooking Roots: A Framework for Making
Nondeferred Reference-Counting Garbage Collection Fast.In Pro-
ceedings of the International Symposium on Memory Management,
pages 141–158. ACM Press, October 2007.

[20] Richard Jones and Rafael Lins.Garbage Collection: Algorithms for
Automatic Dynamic Memory Management. John Wiley & Sons, Inc.,
USA, 1996.

[21] Tim Lindholm and Frank Yellin. The Java Virtual Machine
Specification, Second Edition. The Java Series. Addison-Wesley
Publishing Company, Inc., USA, 1999.

[22] Steven S. Muchnick.Advanced Compiler Design and Implementa-
tion. Morgan Kaufmann Publishers, Inc., USA, 1997.

[23] Young Gil Park and Benjamin Goldberg. Reference EscapeAnalysis:
Optimizing Reference Counting Based on the Lifetime of References.
In Proceedings of the ACM SIGPLAN Symposium on Partial
Evaluation and Semantics-based Program Manipulation, pages 178–
189, June 1991.

[24] Chris Sells and Christopher Tavares. Adding ReferenceCounting
to the Shared Source Common Language Infrastructure. At
http://www.sellsbrothers.com/writing.

[25] James M. Stichnoth, Guei-Yuan Lueh, and Michał Cierniak. Support
for Garbage Collection at Every Instruction in a Java Compiler. In
Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 118–127, May 1996.

[26] David R. Tarditi, Greg Morrisett, Perry Cheng, Christopher Stone,
Robert Harper, and Peter Lee. TIL: A Type-Directed Optimizing
Compiler for ML. InProceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages 181–
192, May 1996.

