A Principled Approach to Nondeferred Reference-Counting
Garbage Collection

Pramod G.

JoisHa

Hewlett-Packard Laboratories
pramod.joisha@hp.com

Abstract

Nondeferred reference-counting (RC) garbage collec8among
the oldest memory-management methods. Despite offeriitgien
advantages, little attention has been paid on how to cdyriaaple-
ment it for modern programming languages. This paper Its\isis
collection method and describes how to implement it for aenod
object-oriented language in an optimizing compiler.

The main contribution is a general algorithm that realizes o
form of nondeferred RC collection for an object-orientedgaage
having features such as exceptions, interior pointers, clojelct
pinning. The algorithm abstracts the pertinent charastiesi of in-
structions using concepts from data-flow analysis, suctefissk
information, so that instructions are handled in a uniforanmer,
instead of in an ad hoc or special-case way. The abstracted in
formation is used to systematically compute what incresent
decrements to do, even in the presence of subtle conditizis s
as exceptional control flow. These techniques enabled usrte ¢
pile a large suite of programs to use nondeferred RC callecti
The paper also discusses the modifications that were negessa
the compiler for supporting the inserted RC operations,rapdrts
measurements from a reference implementation.

Categories and Subject DescriptorsD.3.4 [Programming Lan-
guagek Processors—Memory Management (Garbage Collection),
Compilers, Code Generation

General Terms Algorithms, Languages

Keywords Reference Counting, Instrumentation, Static Analysis

1. Introduction

Nondeferred reference counting is one of the original foofnasu-
tomatic resource management. In the classic version, eanhged
resourcep has a count of the number of references to it [14, 10].
This is increased and decreased as referencesate created and
destroyedp can be reclaimed as soon as its count drops to zero.

requiring stack scanning, and garbage collection (GC) mapan
promptly reclaim memory, which can lead to better cacheqguerf
mance. These features make it attractive in situations evadow
memory footprint is desirable, such as applications for edaled
devices. However, it has rarely been used in practice becals
problems such as cycle reclamation and fragmentation, amap
ily because of the cost of maintaining up-to-date referemeets.

We have been investigating whether nondeferred reference-
counting (RC) garbage collection can be made practicaligint |
of advances in program analyses. By “nondeferred”, we magn a
RC technique that has three invariants: (1) all live dateelmosi-
tive reference counts; (2) the reference count is zero wheeaist
reference disappears; and (3) a zero reference count Brghiad
data. Thus, while classic (or standard) reference couigingnde-
ferred, Deutsch and Bobrow’s reference counting (caliefeérred
is not [12]. This definition does not imply perfect immediaafy
reclamation. A spectrum of nondeferred schemes is possatd
differing in how promptly dead data is reclaimed. The re@son
of dead data is with respect to the interface between thetoruta
and the collector’s run-time system. It is independentvbénthe
run-time system returns the reclaimed data back to theattboc

We recently published compiler optimizations that elindéna
significant number of RC updates in nondeferred RC colledtia,

19]. This paper addresses a different obstacle to demdingtra
the practicality of the approach. It shows how a compiler can
systematically convert an object-oriented program, withdern
language features, into one that uses the approach.

The paper describes solutions to the main problems in design
ing such a conversion algorithm: (1) How should instructidre
processed, so that object-oriented instruction sets cambdled
in a uniform way? (2) How should RC updates be inserted so that
dead data is reclaimed as early as possible? (3) How showddmo
language features, such as exceptions, interior pointetobject
pinning, be supported? The first is solved by identifyindrinstion
characteristics germane to nondeferred RC collectionahstiact-
ing them using concepts from data-flow analysis. The secadd a

The approach has advantages over other forms of resource manthird problems are solved using liveness techniques.

agement. It is incremental in time and space, having a 3 padz-
ity no worse than the mutator [20]. It can be implemented otith

TThis work was done when the author was at Microsoft Research.

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

VEE'08, March 5-7, 2008, Seattle, Washington, USA.
Copyright(© 2008 ACM 978-1-59593-796-4/08/03. . . $5.00

The use of liveness in GC is not new [13, 26, 25, 1, 2, 15].
However, unlike this effort, all past work considers it fotracing
collector. Specifically, past efforts perform a live-rarggalysis to
determine the live roots at each GC-safe point. Only datzhadze
from these live roots is retained. In this work, liveness sedi
to compute thedeath pointsof references, so that dead data is
reclaimed as soon as possible. This is an important digimct
and arises from a basic difference between tracing andemfer
counting: one looks at live matter and the other at dead mdfte

There are complications when dealing with reference deaths
that do not exist when dealing with live roots. A challengorg is
modeling the effects of exceptions. Previous work for tigatol-
lectors did not have to specially treat exceptions, beyarthgps

representing them using factored edges in the control-fiaply
(CFG) [9]. And exceptions pose no problems to deferred RE col
lectors because only heap references are counted. Forfeamrde
RC collection, however, the conversion algorithm must ihBeC
updates at the appropriate CFG points so as to ensure thatamhe
exception is thrown, data no longer accessible is reclaimed

The conversion algorithm is intraprocedural. Hence, isishie
in both a static setting—either in whole-program or segacampi-
lation modes—as well as a dynamic setting, such as compilstg
in-time in a virtual machine. It is presently implementedamop-
timizing compiler from Microsoft Research called Bartokdehas
been successfully used to compile numerous large progriams,
cluding Bartok itself, into nondeferred RC-collected vens. Mea-
surements demonstrating the single-thread performarsenoé of
these converted programs have been reported elsewherg@dL7,
This paper presents data relating to the algorithm itself.

The rest of this paper is organized as follows. Section 2gntss
the algorithm for implementing one form of nondeferred R0am
tion. We call this form ARCS (Anticipatory Reference Cougtfor
the Stack) because it eagerly applies decrements on Ideaénees
using liveness. A step in the algorithm intercepts the \&hfdive
references whose death points are inaccessible. SectiescBloes
how these references are computed in the presence of exalpti
control flow. Section 4 discusses the representation of Riates
so that downstream phases can operate unchanged. Sedtions s
how the eagerness of reclamation can be traded with code qual
ity. Section 6 explains the special treatment of methodsidethe
scope of the algorithm, such as some in the run-time systegy. S
tion 7 gives data from an implementation of the algorithmstl.a
Section 8 discusses related work, and Section 9 concludes.

2. A Conversion Algorithm for ARCS Collection

This section describes a compiler phase caR€dupdate insertion
that automatically converts a program into one that uses &RC
collection. ARCS collection neither requires GC maps na th
scanning of stacks. The phase determines program pointsieth w
RC updates should be inserted so as to safely decremerenmeéer
counts as early as possible. An “RC update” is an RC increment
decrement on an object targeted by a referendeis denoted as
RC,(r), RC_(r) or RC_(r), and is a no-op if is null.

Three main issues had to be solved in designing this phage. Th
first was figuring a common abstraction for all the instrutsico
that the insertion algorithm could be expressed in generahg.

As Section 2.3 will show, the same algorithm can handle both
an instruction likegetfield in Java [21] and a compare-and-
exchange kind of instruction. The second issue was thentie#t

of reference deaths in the presence of language featurbsasuc
exceptions. The third was the handling of special pointeis the
interior of objects, which the garbage collector is reqit@honor.

2.1 Préiminaries

The phase operates on the program’s intermediate repatisent
(IR) through a series of three stages. In the first, it is caadeto

a canonicafactored control-flow grap{FCFG) [9]. A live-range
analysis is then performed to determine reference deatitgii
the FCFG. The last stage inserts RC increments just afteritiefi
points, and RC decrements just after either definition orthdea
points. The decrements are inserted just after death gbiméscan
statically determine last use via liveness informatioreotvise,
they are inserted just after definition points.

The insertion phase could be run at various places in a pieli
of phases—when the IR is at a high level, a medium level or afte
it has been lowered into native code. In our implementatiois,
applied on a high-level IR. This facilitates optimizaticthsit may

S:=T:=A
A:=&R|&R[l] | &W.F) | &.F|T=£lI
W:=R|T

R € set of local reference variables,

T € set of local interior-pointer variables,
F € set of static and instance fields,

| € set of integer-valued expressions.

Figure 1. The syntax of interior-pointer definitions.

not be easily identifiable in other IRs [17]. This of courseams
that downstream phases will have to preserve the invarihatshe
inserted RC updates impose.

2.1.1 Supported Language Features

Atthe IR level, we assume two kinds of pointers relevant tbgge
collection: referencesthat resemble the object references in Java
and C#, andnterior pointersthat resemble the managed pointers
in .NET [8]. Interior pointers are similar to conventionaipters

in that they are dereferenceable. However, they are assdaidth
strong typing information, and can only be used in a few well-
defined ways. For this paper, the syntaxf their definitions is
given by the grammar in Figure 1.

In the grammar, the “member access” operator (') extracts
field, given a reference or an interior pointer to the fieldatainer.
The “address of” operator (‘&) returns the address of a loe&
erence, array element or field. Thus)V&F) is an interior pointer
to a field, and &F is an interior pointer to a static field.

The grammar restricts interior pointers to reside in locai-v
ables. It does not permit the assignment of function-retdiinte-
rior pointers to local variables. (They can however be phgs®
functions.) These restrictions are in line with those in MShe
low-level common language in .NET [8]they do not indicate a
limitation of the insertion approach.

Interior pointer and reference variables can also carrytan a
tribute calledpinned. This prevents the garbage collector from re-
claiming (or moving) target objects until the interior p@inor ref-
erence variables are redefined, or until their lexical ss@pel [8].

Last, statements can throw exceptions. Exceptions can be ex
plicit (as with thethrow statement), or implicit.

2.1.2 TheFactored Control-Flow Graph

The insertion phase transforms an FCFG representationwia f
tion. As in a standard control-flow graph, nodes in an FCFG rep
resent basic blocks. But its arcs can be of two typesmal arcs
which denote the normal flow of control from the end of one basi
block to the beginning of another, amsception arcswhich rep-
resent the flow of control fromanywherewithin a basic block to
the header block of an exception handler. As an exampleré&igu
shows a basic blocB containing two statementsands’, each of
which could throw an exception. The exception is processed b
handler having the header bloBk Although the figure shows only
one handler, a basic block could have multiple exceptios leav-
ing it, each to the header block of a different handler.

Exception header blocks contain a special statement catied
exception assignmettiat catches and assigns the thrown exception
to anexception variableThe IR represents this statement as

¢ := catch(),

1MSIL stands for Microsoft Intermediate Language.

[capture returned references] In the transformed codes and § are the shadows of the interior
pointersp and g, e is an integer-valued expression, asis the
[subsume interior pointers with shadows] statically determined size of the object pointed togayThe code

uses a service callethdstart provided by the allocator. Ip points
into an object in the heagindstart(p) returns a reference to the
start of the object. Otherwise, it returnsll.

If the expressiory +etypically arises from intra-object data ac-
cesses, then the predicate> 0N\ w < szwill be true in most cases.
Since the code’slse branch would then be the infrequent path, the
cumulative cost of usingindstart will not be appreciablé.

is preprocessing

|
»le

lanalysis'
~
0
[e]
3
el
c
(=g
o
=
@
=]
o
0
u
[nd
o
=
S
(£}
5
(=g
o
)
a
[n)
o
c
=
~+
=3
=1
=
o
Qo
»
@
3
o
S
f=
I}
»
-

»le

[insert RC updates against definitions and deaths]

[insert RC increments against explicit intrafunction throws]

v
(insert standard RC decrements into exception headers | Shadowing Interior-Pointer Uses The shadowing step also intro-
duces uses of shadows, so as to tightly subsume the lifetifitee
Figure2. The six steps of the RC update insertion phase, when the corresponding interior pointers. In the case of interianfers used

injection

phase operates on a high-level IR. The steps are organitcetha in a non-call instruction, this is done by creating fake usfetheir
preprocessing, analysis and injection stages. shadows after the instruction:
L= Lp ... g R I
fakeuse(p)

wherec is the exception variable.

22 TheThree Stages of the RC Update I nsertion Phase In the case of intt_arior poi_nters passed into a-function,mhueﬁon’s
signature is rewritten to include the shadow:

Figure 2 displays the three stages of the insertion phasefifigt B

preprocesses the IR to a normal form so as to simplify sulesgqu ri=F(p,..) o r=Fp,p,...)

stages. A traditional live-range analysis, modified to mdte The fakeuse operator is later lowered into a no-8p.

pinned semantics, is performed in the second stage. The third

stage introduces RC updates for local and heap referertugis; t 222 Ljve-Range Analysis Stage

lacement is guided by the previously derived livenesgimédion.
P g yihep y Let defs,,s{S) andusesay(s) be the sets of local references that

2.2.1 Preprocessing Stage must be defined and that may be used in a statemértten the
This stage has two steps. The first replaces statements fafithe following relates local references live before and astg2]:
FXY,...), livein () = (liveout(s) — defgy s((S)) U usesnay(s). 1)

whereF returns a reference, with statements of the form We say a local referenaiies across # it belongs to the set

f=F(xY,...), dieacrosss) = (livejn(s) U defsy,s((S)) — liveout(s)- 2)
wheret is a compiler-generated temporary. This ensures that sub- These are references that can be decremented jussaftéhout
sequent stages do not have to worry about memory leakingodue t turning their uses further down the control-flow path intagling

function-returned references that are not captured. references. Supplementary decrements may be needed, drowev

The second step pairs every interior pointer with a compiler 0 prevent memory leaks. Specifically, additional decremene
generated local reference calleglradow The objective is to ig- ~ needed if (1) references are both defined amd live on entry to
nore the definitions and deaths of interior pointers in sgbeet it, or (2) references other than thosedafs,,s(s) are defined in
stages. (Later stages would still have to handle writesfefeaces S (say, through interior pointers). Section 2.2.3 shows aeteent
into the stack and heap through interior pointers.) Thiscisom- sequence that covers all these cases.

plished by introducing definitions and uses of an interianf@’s

shadow so as to tightly contain the interior pointer's lifes. Modeling thepinned Semantics A decrement cannot be inserted

after the last use of ginned referencer because the object that

Shadowing Interior-Pointer Definitions For instance, i is the it targets must be held until its redefinition, or until thedeof its

shadow of an interior pointer, then the following is the transfor- lexical scope. Simply treating as live throughout a scope is not

mation for a definition op that points it into an array object: a solution, because a decrement is needed just before eaish of
p=&rle 0 Fi=r redefinitions. Our solution is to extends live ranges so that they

span the definition points of and reach the end of their lexical

) p=&rle scopes. This can be done by introducing a fake use of two
From Figure 1, note that must be a local reference. # were places: (1) into each statemenwhosedefs,, s Set containg-:
defined to point into the stack (say, by assigning the addess .
to it), then the following would be the code produced: USEHay(S) = USeSnay(s) U {r} if r € defspus(s), (3)
p =& O # :=null and (2) at the ends of basic blocks that mark the ends of scopes
p =& A fine point, which will become clear in Section 2.2.3, is that

the correctness of thginned treatment does not depend on the

To handle definitions involving offset calculations on e precision of thedefs, . set.

pointers, the compiler inserts basic blocks with the follmywode:

p=gq=*e U w:=(¢gte)—g 2Under an optimization for the accessing of two arrays at #maesindex,
ifw>0Aw<sz g and g e can fall on two different objects [13]. In MSIL, this would
pi=q require thepinned attribute on bothp and ¢, which is equivalent to using
else the fixed construct on both the arrays at the C# source level.
P := findstart(q +-€) 3To preventfakeuse from being reordered by other phases, it should model
end an anti-dependence relation. A way to do this is to introdfigeuse(r)

pi=qg=*e only after thelastuses ofr, and to have it kill the argumentafter use.

Liveness of Thrown ReferencesBesides returned references, ref-
erences that are expressly thrown (usingttirew statement) from
basic blocks lacking a handler for the exception are consitlive

on exit from the function. If a basic block could implicitharow
an exception and no handler already exists for it, a defaétie
created that simply re-throws the exception vidsow.

2.2.3 Injection Stage

RC updates are inserted by this stage in three steps usangbs
information. The first step injects increments for refeeedefini-
tions, and decrements for reference deaths or redefinit{dme
statements processed are those that exist before this)sTdge
second step injects increments against explicitly throsfarences
having exception handlers in the function. (This can bebdistzed
by comparing the static type of the thrown reference withstia¢ic
type of the exception variable.) The increment is injectet pe-
fore thethrow. The third step introduces decrements for local ref-
erences that die in a basic block into that block’s exceptieader
(if it has one). It is important that the last two steps ocdterahe
first; doing so guarantees that in an adjoining pair of RC tgxlan
the same reference, the increment always precedes therdatre

Injection Step 1: Inserting RC Updates against Definitionsi@
Deaths This step is best explained by describing its net effect on
statements. Depending on whether the statement is a catirer n
call instruction, the net effect is one of the code pattehm in
Figures 3 and 4. In these figures, and all oth/e\r code in thisrpap
anRC, indicates an increment, and &C_ andRC_ a decrement.

The difference betweeRC_ andRC_ is that the former is inserted
on the basis of reachability changes in the object graph,tiaad
latter on the basis of liveness information. We therefoferréo
RC_ as astandard decremenaind toRC_ as aneager decrement
(We use the term “standard” because decrements done irestand
versions of reference counting are of this type [20].)

Non-Call Instructions Let Idefys) be the set of-value expres-
sions [22] of all references (stack and heap) thaybe defined in
a statemens. Let.#(Q) be the set of I-values for variables in a set
Q. Then, whersis not a call, the code after injection corresponds to
one of the two templates in Figure 3. The two templates aresiec
sary because the compiler’'s knowledge of wihidit be defined may
not be the same as wheduld be defined. When its information on
the two match, more efficient code can be generated, in aacoed
with the template on the left. Otherwise, the compiler wélk to
generate code according to the template on the right.

In the two templates, as well as elsewhere in this paper,dot a
cents are used to represent temporaries. The other variadieng
to the following sets of references:

g € defg,s(9),

bi € defg,ys((S) Nlivein(s),

d; € dieacros$s),

w; € defg,s((S) — usesnay(s),
pi € ldefys).

The compiler produces code according to the left templaie, i
can determine tha¥’ (defs,s(S)) andldefs’s) are equaf. The first
set of RC updates it generates are increments againghich are
references that must be definedsinThe next set of RC updates

are decrements againsegueing live reference§hese are live
references that can transition to a redefined state by ghioggh

(4)

41t may appear thatdefys) could be written as?(defspay(s)), where
defsnay(s) is the “may” analogue oflefs,s(s). This, however, is not the
case becausdefs,,s(S) traditionally contains only local variables.

Z(defsnust(S)) = ldefqs) | Z(defs,us((S)) # ldefys)
fl = bl Wy = null
fg = b2 Wo ;= null
ti = by Wn.2= null

s Up := Py
RC.(a1) Uz i= %P2
RC+(a2)

Uy = * Py
RC, (&) S
RC_ (t]_) RC, (xp1)
RC_(t2) RC. (xp2)
//?\C; (tk) RC+ (* Py)
RC_(dy) RC_(un)
RC_ (dp) RC_(up)
o~ RC (u)
RC_(dm) RC (d)

RC_(d2)
RC_ (dm)

Figure3. Templates of code produced by the insertion phase, after
processing a non-call instructien Code matches either template,
depending on whethe?’ (defs,,s(S)) equalddefys).

an inaccessible death point. Their values beforare therefore
captured iri, for doing decrements afterSegueing live references
are discussed further in Section 3. The last set of RC updates
decrements against references that die agoss

Code corresponding to the second column of Figure 3 is pro-
duced when¥Z (defs, s(S)) andldefqs) cannot be determined to
be equal. The assignmentsujccapture values of references poten-
tially to be overwritten ins, by applying the dereference operator
(*x") on l-value expressions illefys). Decrements are applied on
them, after increments are applied on references that malebe
fined ins.® Decrements against the would exist earlier, because
they die before their redefinition & They are hence assigned||
to preclude double decrements due toR@ (). If an alias anal-
ysis can prove that @ will point to awg, then the statements,
:=null, G ;= *xp; andRC_(;) can be omitted.

The decrements against the are standard decrements, since
they come from references being overwritten. Those agties;
are eager decrements because they arise from referenogs dyi

It should be mentioned that to insert the eager decremeats, n
basic blocks may have to be created. This will be the case wisen
the last statement in a basic block with two or more outgoig,a
and references die along one arc but not the others.

Call Instructions The treatment is different whesis a call in-
struction, and corresponds to one of the two templates iargig.
The templates have different goals: the one on the left avoid
necessary storage retention across a function call, wiglene on
the right inserts fewer RC updates. In particular, if thedR&bn
Avoidance (RA) template is used and an actual referencergara

5|f a reference does not actually get stored into a locatidntpd to byp;
(1< j <£K), then theRC, (+p;j) andRC_(u;) cancel out.

Retention Avoidance] Code Reuse
Vi ri=F(z,y,...)
Vp = .

2y RC_(dh)

s RC_(dp)

RC+(\(1) .

RC,(V2)

RC_(dh)

RC_(dy)

r = F(V, Vo, ...)
RC_(df)
RC_(d)

There are other issues that concern these templates; treese a
discussed in the technical report version of this paper.[18]

Injection Step 2: Inserting Increments againsthrow Excep-
tions that are explicitly thrown from basic blocks withowteption
handlers are treated the same way as returned referencsisTh
no decrement against the thrown reference exists afteastslefi-
nition, because it is considered live on exit from the fumctiThis
is why exception assignments are regarded as call instns;tbe-
cause this avoids an increment against the exception \aridien
the exception is caught further up the call stack.

On the other hand, when explicitly thrown references arglawu
in the same function, the absence of an increment againgixthe
ception variable at the exception assignment point mustobe-c
tered by an increment at the point of ttteow statement, or earlier.
Hence the second step in this stage.

Injection Step 3: Inserting Decrements into Exception Heas

If the statemens in Figures 3 or 4 was to throw an exception,
none of the ensuing RC updates will get executed. The inaresme
among them should not happen anyway, because an exception-
throwing non-call instructiors does not side-effect a program’s

Figure 4. Templates of alternative code sequences for the call yariables. However, among the decrements, those agaifest re

instruction » := F(z, y, ...). The choice of template depends
on decisions regarding issues such as storage retentgrnydtion
cache performance, and implementation complexity.

ter z is used last irs, then the storage targeted bywill be freed
before the call returns, assuming no other references alid$e
Code Reuse (CR) template, on the other hand, replaces lali-cal
side increments with a single set of increments on the caitee

The RA template realizes its goal by splitting the decrement
into two groups, one that occurs before the call and one #feer
call. The first group consists of decrementsdbnwhere

d/ € (dieacrosgs) Nusesay(s)) — addrtakerfs). (5)

The setaddrtakeris) consists of references whose addresses are

passed inta”; an example of such a reference is the local variable
z, if & z is passed inta=. These references are considered live
for the entire duration of the call. The second group cossit
decrements against the remaining references that diesaros

(6)

Increments against thg in Figure 4 account for the actual-
to-formal copying of reference parameters at functioregation
time. Because there will be decrements insidegainst the for-
mal counterparts (unless the formal counterparts are thimwe-
turned), no decrements should be applied onviladtér F returns.

d/’ € dieacrosss) — (Usesay(s) — addrtakers)).

In the RA template, the original reference arguments are re-

placed by they;'in the transformed call instruction. This is because
thed/ are these arguments, and tR€_ operations occurring be-
fore the call kill them. (The reason for this is explainedhe dis-
cussion for the third step in this stage.)

In the CR template, all of the inserted decrements come sifter
against the references that die across it (Equation (4)etefived;).
No other RC updates or assignments are inserted on the siaker
For the transformed sequence to work, increments must betéus
on the callee side, against the formal reference parameters

In both the templates, interior pointers passed into thienegld
no special consideration because they are indirectly takes of
through their shadows (see Section 2.2.1). No incrememtpibeal
against the returned reference because an increment wauil h
already occurred when it is definedan (As stated in Section 2.2.2,
returned references are considered live on exit from a imct
Therefore, they will not have a decrement after their lahd#n.)

ences that die acrossshould be performed. Since any statement
in a basic blockB could throw an exception, the third step inserts
decrements against references in the set

D' = (livein(B) U (| defsnys(s))) — livein(B') 7
seB

into B's exception headeB'. (The setdivej, (B) andlivej, (B') in

Equation (7) are references that are live on entr &mdB'.)

When an exception is thrown at execution time, decrements on
a subset oD’ would have already occurred By due to references
that die inB. This means that the decrements inserted Biteould
operate on dangling references. To forestall thisRfie operation
is given the following semantics: It sets its operand refeeeto
null after doing the decrement. We call this tbecrement-and-
assignnaull (DAN) semantics. Suppose that the operandihen
the solution does not conflict with later useswobecause th&C
operation is introduced just after the death poinkof

An outcome of this solution is that theull assignments against
thew; in Figure 3 become unnecessary.

Because th&kC_ operation is based on reachability (i.e., refer-
ences being overwritten), it does not need to have the DANaeem
tics. It is enough for it to just do a decrement. Since an etaep
header cannot itself throw an exception, this means thadebee-
ments inserted int8' can be of the standard kind.

2.3 Examples

To demonstrate how the insertion phase transforms spetafie-s
ments, we consider its effect on Javgstfield instruction, and
an atomic compare-and-exchange instruction cailegxchg.

A possible IR forgetfieldis o.f, whereo is alocal reference
and £ a field. The phase considers it a non-call instruction. The
compiler computeslefs, s(S) andldefys) to be{o} and{&o };
it thus determines tha¥’(defs, s{S)) equalsldefys). Hence, the
transformed code matches the left template in Figure 3:

o:=o.f O t1:=o
o:=o.f
RC. (o)
RC_(ta)
RC_(d)
RC_(d2)

RC (d)

Thed; in the above are references that die aceo3$ey will form a
nonempty set, if the statement could throw an exceptionfdivei,
at the beginning of the exceptional control-flow path is appro
superset ofivegyt(s).

The cmpxchg instruction is similar to th&€ompareExchange
method in .NET'SSystem.Threading. Interlocked class [8].
It takes an interior pointep to a reference, a pair of references
z andy, and compareg with the reference ap for equality. If
equal, the reference gtis replaced by and the original reference
at p is returned. If unequal, only the referencepais returned.
The insertion phase regards the statement as a non-calldtish.
The compiler determinedefs, s(s) and Idefgs) as being{r}
and {p,&r}. Now, depending on whether an alias analysis can
prove thatp always equals &, the transformed code could match
either of the two patterns in Figure 3. The code below is when
2 (defsusi(S)) andldefgs) cannot be ascertained as being equal:

r = cmpxchg(p,z,y) O Uy :=x%p

Up = x(&7)

r = cmpxchg(p, z, y)
RC+(*P)

RC, (x(&r))

RC_(u)

RC_(u2)

RC_(d1)

RC_(d)

RC_(dm)
Two trivial optimizations are possible on the above codestFi

*(&r) is replaceable by-. Second,RC, (x(&r)) and RC_(uy)
cancel out because equalsu; after thecmpxchg statement.

3. TheCapturing of Segueing Live References
We sayr is a “segueing live reference” at a program pdif it is
live at P, if there is a subsequent poi@tat which it is redefined,
and if all points betweei® and Q are inaccessible in the IR. For
instance, they; in Figure 3 are references overwritten $nbut
that are live when control reachas They are all segueing live
references because thegngo from being live to being redefined
by passing through a death point inside the stateffient.
Segueing live references are determined using the predicat

®)
and not by using what would appear as the more obvious choice:
bi € defs,ys((S) NuSesmay(S). 9)

This is because when an exceptional control-flow path ereanat
from s, livein (s) can be a proper supersetusiesay(s).

As an example, consider Figure 7, and supddsés) is such
that 2 (defs,ys{(S)) andldefys) are equal. Then RC updates ®or
will be injected in accordance with the first column in FigGré.et
z be alocal reference such that

z € defs,s(S),
T ¢ US€$ay(S),
z € livein (B).

bi € defs,s((s) Nlivein(s),

Then from Figure 3, no decrement would be applied aftem the
old value ofz, if segueing live references were calculated using
Equation (9). This will lead to a memory leak if the old valgdhe
last reference to an objeahd control normally flows through.

6We say “can” because control can also flow along an exceptjih.

1 z:=u U z:=u 1 z:=u

2 RC,(z) 2 RC (=) 2" RC%E(z)
3 y;=:n 3 y;=:n 3’ yEZm

4 RC.(y) 4 RC (=) 4 RCY(z)
5 y g m 5 :I:
6 RC_(y) 6 RC(z) 6 RC(a)
7 g 7z 7 g
8 RC_() g RC () 8 RC’(z)

Figure 5. An illustration of the problem of representing tR& _
operation. In the middle is the result after the copy propmga
processes code on the left, wrongly replacingn Line 8 by z.
On the right is the result if a two-operand representatiorewsed.

4. Representing Eager Decrementsin the IR

The DAN (decrement-and-assigmdl) semantics of theRC_ op-
eration has consequences on the way it is modeled in thedR. It
decrement action utilizes a referenadue while its kill action af-
fects a referencéfetime Although value and lifetime may relate
to the same variable, they need to be separately represerttesl
IR so that downstream phases correctly treat the RC updates.

To motivate the issue, consider the left code fragrment in Fig

ure 5, which shows an IR after the insertion phase. Ride (y)

and RC_(z) on Lines 6 and 8 are due to the last useg aindz
on Lines 5 and 7. Assume a copy propagator is run on this IR, and
that it propagates into the occurrences af on Lines 4, 5 and 6.
The result is the middle fragment in Figure 5. The transfdioma
however, is wrong because the reaching definitior @ Line 7
is changed tawll. The problem arises from propagating a value
into an operation that has both use and kill roles associaitidt.

Of course, copy propagation can be taught to recognize the sp
cial semantics oRC_. But a better approach is to repres&a_
in such a way so that existing phases continue to work un@tang

Our solution is to use two operands for tRE_ operation, one for

each role. We represent it Kf(b), where the superscript is
the killed reference, and where the parenthetical argumeasithe
used reference. To a compiler phase that only manipulatessja
such as copy propagation, the superscript will be opaquendiu
the parenthetical argument. If this two-operand represiemt were
used, the copy propagator will correctly transform thefiefgment
into the right fragment in Figure 5.

The superscript is essentially the label of a live rangecé&the
RC, operation is inserted at definition points, it is useful tecal
give the operation a superscript that denotes the live rafgee
corresponding definition. This is shown in the right fragmen
Figure 5. These superscripts are valuable for RC optintratihat
are based on lifetime information [17, 19].

The compiler eventually IowerE?Cf(b) into a pair of state-
ments. The first statement calls thelease method onb to do
the decrement, and the second assigrsto a. Why not just use
such a statement pair in the high-level IR instead of the taoisard

RCf(b) representation? The reason is that a general code motion
phase, which does not specially recognize theease(b) state-
ment, may move a use of from before the statement to after. This
can cause the creation of a dangling reference, as showgune6.

1 b r b 1" release(d)
R’\Ca'(b) 2 release(b) | 2/ ---b---
B 3 a:=null 3" a :=null

Figure 6. An example of the problem with representiﬁ@f(b)

as arelease-null statement pair. A code motion phase could move
the use ofb on Line 7 to after Line 2, producing the fragment on
the right. This could turb on Line 2’ into a dangling reference.

\ iy
S release(y)
release(y) B’
y = null .
TV °

Figure 7. An obstructed dead-code elimination opportunityBin

andB’ are the lowered representationsf/t\lfg (y) andRC_(y). If
sdoes not throw an exception, k&litdoes, thenull assignment iiB
precludes a repeat decremenBiron the same object.

The root of the issue is that the parenthetical argument reay b
an object’s last reference. So transformational phaseseittand
live ranges can frustrate thelease-null representation by intro-
ducing a use between the statement pair. Itis for this regmsdthe
lowering should happen after all such phases have executed.

The lowering phase also converRC (b) into a call to the
addref method onb, which does the increment. The superscript
is ignored here, since it has no role in the operation’s s¢iggn

oy

release(y)
s/ B’
release(y) :
y = null :

v s

Figure 8. By relaxing the placement di’ACg (y) to the end ofB,
an opportunity for dead-code elimination will be created.

can be broken, by moving theull assignment to aftes. Hence,

by relaxing the placement o () to a point further away from
the death point of/, the dead-code elimination obstruction can be
lifted. Figure 8 displays the lowered form of one such plagem
The null assignment can now be removed, thereby improving the
code path througB, at the expense of holding onto garbage longer.

6. MethodsOutside the Insertion Phase’'s Scope

In our implementation, run-time services for the RC cobbectre
packaged as part of the larger Bartok run-time system. The ru
time system is written in C#, and is compiled into the exelgta
code produced. Thus, the insertion phase also transfordes ico
the run-time system to use nondeferred RC collection.

However, not all methods should have RC updates automati-
cally inserted into them. For instance, those invoked leetioe run-
time system’s data structures are initialized should netete RC
updates. A way to flag a method outside the insertion phasefses
is by affixing annotations, calleaktributes to it. This section dis-
cusses four such attributes, which encapsulate diffeeastans for
suppressing automatic insertion. Rules governing théixadion

The IR after the RC updates have been lowered can be safelyare explained. These rules can be mechanized, so as to @istoma

operated upon by other phases, if those phases satisfydbinele
tions: (1) they do not introduce new objects, in the form eftest
ments such as := allocobj(T) (these will lead to leaks); (2) they
do not extend existing reference lifetimes; and (3) newresfees
introduced by them have lifetimes subsumed by the lifetiofex-
isting aliasing references. These conditions are suffictaurt not
necessary.

5. Trading Code Quality with Eager ness

Because of exceptional control-flow Bgths, not all of thdl as-
signments that come from lowering tiR€_ operations can be re-
moved. For instance, consider a basic blB¢ckn whichsands' are
two adjacent statements. Suppose both could throw an ésnept
that is serviced by a common handler. Assume thalies across
s, is not redefined after that iB, and is not live on entry to the
handler's header block’. Then the insertion phase will insert an

RAC?f (y) afters, as well as arRC_(y) into B'. Figure 7 shows the

result after theRC_ andRC_ operations are lowered.

The key point in Figure 7 is that theull assignment cannot
be removed. This is because the exception throwB logight be
due tos, and nots. Thus, there is a reaching useBhof this null
assignment. Obviously, the assignment could have beenveghib
there was another definition gf after it but befores'.

The obstruction comes from a combination of two factors: (1)
the null assignment reaches a useBnand (2) it is notpostdomi-

cally deduce the methods that might need them.
A method isauto RC-suppressétlany of the four attributes is
attached to it. It is otherwise said to hato RC-enabled

6.1 Attributesfor Suppressing Automatic Insertion

[PreInitRefCounts] This attribute is attached to methods in-
voked before run-time initialization. They constitute aadinset,
belonging to a trusted computing base. Their typical taskst@
allocate bootstrap memory for data structures in the atwcand
collector, and to run the allocator’s and collector’s statitializers.

[RecursiveRefCounts] Because the compiler eventually low-
ers RC updates into calls to th@ldref andrelease methods,
any method transitively reachable fromdref andrelease, in-
cluding addref andrelease, should not be in the scope of the
insertion phase. This is because an inserted RC update caube
an endless recursion at execution time. Suppressing imisdar
this reason is indicated by tH&ecursiveRefCounts] attribute.

[ManualRefCounts] Certain methods may need to directly ma-
nipulate an object’s reference count. As an example, olgjkat
cation routines initialize an object’s reference count tdfIRC
updates were automatically inserted into them, the progrem
inserted reference-count manipulations could interatt e RC
updates to produce undefined results. Such methods aréotieere
marked with the[ManualRefCounts] attribute.

natedby that use [22]. This lack of postdominance is a consequence [ZombieRefCounts] The insertion phase should also ignore

of the FCFG representation—it cannot be changed by moviag th
null assignment to another possible poinBnBut the first factor

methods that have referencesztimbieobjects. These are objects
that have become garbage (i.e., reference counts haveedtapp

[ManualRefCounts] 1 sz:=sizeof(T)
function allocobj(T) 2 2z :=allocmem(S2
1 sz:=sizeof(T) 3 yi=z
)/ . —
2/ @ = allocmem(S2) 4 Rcz (v)
3, y. =z 5 z.RC:=1
4/ z.RC:=1 6 y.vtable := T.vtable
5 y.vtable :=T.vtable 5-Y
6 returny 7 RC(y)
8 eiz..-
—~2z
9 RC_(z)

Figure 9. The fragment on the right is the result of applying the
insertion phase on auto RC-enabled code. The code contdiaed
statementz := allocobj(T). The method shown on the left was
inlined at this statement, just before running the insartibase.

zero), but that are yet to be returned to the allocator. Betweg-
istration by the collector and return to the allocator, z@slcan
be operated upon in a variety of ways—for instance, decrésnen
could be applied on their descendents, and they could bectelj

to assertion checks. If RC updates were automatically iedento
zombie-referring methods, they could cause the resuorecif a
zombie at run time. This may lead to erroneous behavioreeith
the form of a memory leak, or a double registration by theewl|
tor (if the resurrected zombie falls back to the zombie $tatke
[ZombieRefCounts] attribute is attached to prevent this.

6.2

If the insertion phase processes an auto RC-enabled metfterd
an auto RC-suppressed method is inlined into it, the resultdde
an erroneous sequence of RC updates. We demonstrate tienprob
by considering auto RC-enabled code that contains thenstate:
= allocobj(T). This statement assigns a newly allocated, uncon-
structed object of typ& to z.” The compiler can choose to lower
the statement into an invocation of a run-time method thasdbe
job of allocobj. Such a method is shown in the first column of Fig-
ure 9. It allocates an appropriately aligned, zero-iriged memory
for the object, and sets up its reference count and vtabisfiblote
that the reference count of the vtable object is not adjuskeslis
because vtable structures are assumed to live forever.

Now suppose := allocobj(T) is lowered to a call tallocobj,
and the call is inlined, before the insertion phase procesise
auto RC-enabled code. Then the code obtained at the end of th
processing is shown on the right in Figure 9. Line 2 involveslh
to the run-time allocation routingllocmen. Hence, because it is
a call instruction, no increment is inserted againstatdefined on
Line 2. Thez on Line 8 is a last-use occurrence in the original and
transformed codes. But because of the last usg o Line 6, the

R’\C?f (y) on Line 7 turnsz on Line 8 into a dangling reference.

The problem in this case arises from the waylocobj was
written. If the definition ofy on Line 3 was removed, and it
was used instead on Liné, 5hen the inserted RC updates will not
conflict with the reference-count initialization on Line 5.

Our solution is to simply avoid such problems by not inlining
auto RC-suppressed methods into auto RC-enabled methiods pr
to the insertion phase. Among the three other scenarioshp®ss
when inlining happens before the insertion phase, thenedswore
problematic case, which is also solved by not inlining. Téiwhen
the caller is auto RC-suppressed and the callee is auto Rlezh

Issues with Inlining M ethods Before Automatic I nsertion

7Only the vtable and RC fields are set up in such an object; lairdtelds
contain zeros.

€

There can be four other scenarios, which come from inlirfireg t
calleeafter the insertion phase. They are not problematic, as long
as the caller and callee have correct RC update sequendes [18

7. Measurements

This section gives experimental data evaluating an impfeatien

of the RC insertion phase in Bartok. The data collected wathfo

C# applications displayed in Table 1. These are singleathpgo-
grams that were first converted into MSIL using version 7 flihe
.NET C# compiler. The MSIL files were then compiled by Bartok
into stand-alone x86 code. The platform for the experimergs

an HP XW8000 workstation with an Intel Xeon 2.8GHz processor
running Windows XP Version 2002 (Service Pack 2) in hypesdlar
mode. The capacities of its RAM, primary cache and secondary
cache were 2GB, 8KB and 512KB respectively. (Measurements
demonstrating the run-time performance of the generatédoi8
naries on the same platform are in a recent paper [19].)

Table 1 displays the number of methods, statements and ba-
sic blocks processed for each program. The counts are inelus
of .NET’s Base Class Library (BCL) and Bartok's C# run-time
system, which get compiled into the outputted native cbdée
method, statement and basic block counts consider all neahag
code methods, including the auto RC-suppressed ones. Atheng
auto RC-suppressed methods are a number of increment ared dec
ment methods synthesizedAby the compilersfaruct types. These
are used foRC,, RC_ andRC_ operations omstruct variables.

All of the reported counts are in the high-level IR, which gen
erally bears a one-to-one correspondence with MSIL. Thencol
labeled “Max.” in Table 1 is the maximum number of basic bkck
in a method before the insertion phase executes. This is 258 i
the majority of cases, which is the number of basic block$n t
FormatCustomized method belonging to thBateTimeFormat
class in the BCL. The last two columns indicate the numbeatf ¢
and non-call instructions, as classified by the injectiagstand as
seen at its beginning (refer Figure 2). On average, nonirtsthuc-
tions occur six times more often than call instructions. Test two
columns consider only auto RC-enabled methods; hencesheir
is less than the number shown in the “Statements” column.

The times, in seconds, taken by the insertion phase to trans-
form the high-level program IRs is shown in Table 2. Theseim
were measured when running Bartok in the CLR (Common Lan-
guage Run-time), which is .NET’s virtual machine for exéogt
MSIL [8]. The table also shows the total number of statemants
basic blocks immediately after the conversion. In genéhnal high-
level IR statements increase by about 48%; in the case obBart
compiling itself, the increase is a little over 80%. The gase
in the number of basic blocks is less pronounced, typicatiyndp
about 11%, and reaching up to 24% for Bartok. The new maximum
number of basic blocks is mostly 284, which is the number sfda
blocks in the transformeBormatCustomized BCL method.

The last three columns in Table 2 indicate the usage of the two
templates in Figure 3, both as absolute counts and as a pageen
(i.e., the left template’s usage as a percent of the total).aRy
benchmark, the sum of the absolute counts equals the number
underneath the “Non-Call” column in Table 1. We thus seetthat
more efficient template is used over 90% of the time in all sase

Finally, Table 3 shows the sizes in kilobytes of the generate
x86 binaries. For comparison, a conversion phase to redbze
ferred RC collection was also implemented in Bartok. Thetlae
columns in Table 3 show the sizes of the binaries produceld wit
this phase turned on. The “Base” columns give the sizes of the

8Not all of the run-time system or BCL gets compiled into arpotied bi-
nary. There is a phase called “tree shaking” that only pualthé referenced
portions of the class hierarchy, casting out the rest.

- Basic Blocks | Statement Types
Benchmark| Description Methods | Statement yp
Total Max. Call Non-Call
cmp File comparison tool, run on two 1006KB files. 1728 55242 14700 | 258 | 5458 30118
. Xlisp interpreter executingu, boyer, browse, etc., as part
xlisp of a workload of 21 Lisp programs. SPEC CINT95 port. 2167 71362 19188 693 7465 39722
othello Othello (aka Reversi) strategic board game, on aBgrid. 1472 44112 11345 | 258 3839 23784
go Game of Life, on a 4& 19 board. SPEC CINT95 port. 2108 127520 24429 258 7986 91322
satsol Boolean forr_nula satisfiability solver. Available frown . 1849 60529 15991 258 5997 33564
research.microsoft.com/research/downloads.
chess Chess-playing program. SPEC CINT2000 port. 1994 90004 21088 439 8221 54241
The Adaptive Huffman Compression algorithm applied pn
ahcbench files. Available fromwww.research.microsoft.com/ 1702 53235 13997 258 5067 29151
research/downloads.
bartok | MSILtox86ahead-of-time optimizing compiler, compiling 535, 457238 | 123000| 495 | 71541 | 263001
itself to use generational copying collection.

Table 1. Details on C# programs transformed by the conversion dlgarto use ARCS collection.

Benchmark| Time (secs) Statements Basic Blocks Z(defgysi(S)) = ldefys)?
Total % Increase| Max. | Total | % Increase| true | false | % true
cmp 1.063 82626 4957 284 16296 10.86 27809 2309 92.33
xlisp 1.485 112871 5817 866 21326 1114 35787 3935 90.09
othello 0.797 65399 4826 284 12479 10.00 21670 2114 9111
go 2.281 175081 37.30 284 27236 1149 88143 | 3179 96.52
satsol 1.186 90734 49.90 284 17757 1104 31211 2353 92.99
chess 1.750 130488 44.98 493 23636 12.08 51725 | 2516 95.36
ahcbench 0.969 79298 4896 284 15476 10.57 26877 2274 92.20
bartok 11718 833103 8220 622 | 153123 24.49 241426 | 21575 91.80

Table2. Times for the conversion algorithm (run as part of compmlia)j as well as characteristics of the transformed code.

ARCS and DRC (deferred RC) baseline versions. The DRC bina- hmark ARCS DRC
ries contain code components not present in the ARCS biparie ~ Bénchmar
such as GC maps and a stack-scanning module. Despite this, th

Base| Opts.| Opts.+Inlining Base| Inlining

sizes of the baseline ARCS versions are consistently lahger cmp 972 | 824 1056 852 | 1052
the baseline DRC versions. The “Opt.” column shows the sizes xlisp 1236 | 1028 1320 1068 1280
of the ARCS versions after the coalescing and immortal abjec

RC update elision optimizations described in [17], and tiree othello 840 | 136 928 752 940
overlooking-root-based optimizations discussed in [T8kse op- go 1600 | 1296 1548 1340 | 1568
timizations statically detect and eliminate redundant R@ates on satsol 1028 | 864 1100 892 1092
stack refe_rences. The “Opts.+Inlining” and f‘lnllnlng" cmhns dls-_ chess 1308 | 1076 1352 1108 | 1332
play the sizes of the ARCS and DRC binaries after the lighgtvei

RC updates in them are inlined [17]. These two columns shatv th ahcbench | 944 | 808 1032 836 | 1024
the sizes of the final binaries are comparable in many cases. bartok 6324 | 4240 5440 4176 | 4912

8. Related Work Table 3. File sizes, in kilobytes, of x86 ARCS and DRC versions.

In spite of RC collection’s long history, there has been noudo
mented work on a principled approach to realizing it with aneo

piler. Compile-time RC collection research has been mamthe In the ARCS collection scheme, reclamation can be initiated

areas of optimizations for deferred RC collection [5, 16,23] and any program instruction. In most previous efforts, it carnrigated

reference counting for achieving deterministic finaliaatj24]. at only a few places in a method, namely the GC-safe points. An
A study by Diwan et al. demonstrated that large improvements exception is the work by Stichnoth et al., which considersrgv

in an application’s heap usage is possible when accuraadas program point as being a GC-safe point. It addresses théingsu

information is available [15]. It showed that increasingdes of problem of coping with a large number of GC maps [25].

liveness knowledge can enable increasing reductions iogrgm’s Our work supports interior pointers. Past research hagreith

heap footprint. The study gathered liveness data by peifgra ignored them, or handled them using approaches differem fr

run-time analysis of a program’s trace. ours, e.g., the Diwan et al. derivation table technique.[13]

A topic related to this work is unsafe compiler optimizagon
that move references to earlier points in the code, causiega-
ture reclamation of their referents [6].

Inthe work by Sells and Tavares, RC operations were performe

on only references that live on the evaluation stack of thR (24].
(The evaluation stack is different from the call stack.) iflymal

was not to provide a complete GC—the CLR’s collector was used

for that—nbut to run finalizers as early as possible.
The C++ Standards Committee has proposethart pointer
classes for inclusion in a future C++ standard [3]. Smarhipoi

ers are a language aid for easing the management of dynémical

allocated resources. They resemble the standard C++ priete
cept for under-the-hood bookkeeping in the form of RC openat
This allows for the automatic deletion of a resource, ontemhrt
pointers to it are overwritten or go out of scope. Smart @wiim-
plementations are available as part of the Boost C++ Libesd].

9. Summary

This paper presented an algorithm for transforming an objec

oriented program into one that uses a nondeferred form of RC

collection. Rather than special-casing the treatmentsifuctions,

the algorithm handles them in a uniform way, by using abstrac

tions based on data-flow analysis notions. Modern objdetited
language features, such as object pinning, interior parged ex-
ceptions, are accounted for in the transformation. Therikgo
inserts two kinds of decrements to reclaim dead data, oredlas
reachability and the other on liveness. Some of the contjits
it copes with are the consideration of live references whiesgh
points are inaccessible, and exceptional control-flowgath

The algorithm has been implemented in an optimizing compile
It has been used to successfully compile numerous largegrsy
into nondeferred RC-collected versions. The paper alstudied
the compiler issues that were addressed for this. Thesadacl
representing the eager decrements so that subsequent aase
correctly operate on the IR, constraints on running phases |
method inlining before or after RC updates are inserted,thad
treatment of code in the run-time system.

References

[1] Ole Agesen, David Detlefs, and J. Eliot Moss. Garbagéectibn and
Local Variable Type-Precision and Liveness in Java VirMathines.
In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementatigrages 269—-279, June 1998.

Bowen Alpern, C. R. Attanasio, John J. Barton, MichaelBarke,
Perry Cheng, Jong-Deok Choi, Anthony Cocchi, Stephen X, Fin
David Grove, Michael Hind, Susan Flynn-Hummel, Derek Ligbe
Vassily Litvinov, Mark F. Mergen, Ton Ngo, James R. Russéilek
Sarkar, Mauricio J. Serrano, Janice C. Shepherd, StephS8mih,
V. C. Sreedhar, Harini Srinivasan, and John Whaley. Thepédéia
Virtual Machine.|BM Systems JournaB9(1):211-238, 2000.

Matt Austern. Draft Technical Report on C++ Library Enggons.
ISO/IEC DTR 19768, The C++ Standards Committee, June 2005.

David F. Bacon, Perry Cheng, and V. T. Rajan. A Unified Tiyeo
of Garbage Collection. IRroceedings of the 2004 ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, ages,
and Applicationspages 50-68, October 2004.

[2

—

3

—

[4

[l

[5

—

Jeffrey M. Barth. Shifting Garbage Collection OverhéadCompile
Time. Communications of the ACN0(7):513-518, July 1977.

[6] Hans-Juergen Boehm. Simple GC-Safe CompilationAdidendum
to OOPSLA'91 Proceeding®ctober 1991.

[7] Boost C++ Libraries. Ahttp://www.boost.org.

[8] Don Box and Chris SellsEssential .NET: The Common Language
Runtime Addison-Wesley Publishing Company, Inc., USA, 2003.

[9] Jong-Deok Choi, David Grove, Michael Hind, and Vivek lgar
Efficient and Precise Modeling of Exceptions for the Analysf
Java Programs. IRroceedings of the ACM SIGPLAN/SIGSOFT
Workshop on Program Analysis for Software Tools and Enginge
pages 21-31, September 1999.

[10] George E. Collins. A Method for Overlapping and Erasofr&ists.
Communications of the ACN3(12):655-657, December 1960.

[11] Alain Deutsch. On Determining Lifetime and Aliasing Bfynami-
cally Allocated Data in Higher-Order Functional Specificas. In
Proceedings of the ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languaggsages 157-168, January 1990.

[12] L. Peter Deutsch and Daniel G. Bobrow. An Efficient, kmmental
Automatic Garbage Collector.Communications of the ACM
19(9):522-526, September 1976.

[13] Amer Diwan, Eliot Moss, and Richard Hudson. Compilepgart for
Garbage Collection in a Statically Typed LanguagePtaceedings
of the ACM SIGPLAN Conference on Programming Language Desig
and Implementationpages 273-282, June 1992.

[14] H. Gelernter, J. R. Hansen, and C. L. Gerberich. A FORNRA
Compiled List-Processing Languagéournal of the ACM7(2):87—
101, April 1960.

[15] Martin Hirzel, Amer Diwan, and Johannes Henkel. On ttsefulness
of Type and Liveness Accuracy for Garbage Collection andkLea
Detection. ACM Transactions on Programming Languages and
Systems24(6):593-624, November 2002.

[16] Paul Hudak. A Semantic Model of Reference Counting dad i
Abstraction (Detailed Summary). IRroceedings of the ACM
SIGPLAN Conference on LISP and Functional Programmpages
351-363, April 1986.

[17] Pramod G. Joisha. Compiler Optimizations for Nondefer
Reference-Counting Garbage Collection. Rroceedings of the
International Symposium on Memory Managemeages 150-161.
ACM Press, June 2006.

[18] Pramod G. Joisha. A Principled Approach to NondefeReterence-
Counting Garbage Collection. Technical Report MSR-TR72004,
Microsoft Research, August 2007.

[19] Pramod G. Joisha. Overlooking Roots: A Framework forkivig
Nondeferred Reference-Counting Garbage Collection Has®ro-
ceedings of the International Symposium on Memory Manageme
pages 141-158. ACM Press, October 2007.

[20] Richard Jones and Rafael Lin&arbage Collection: Algorithms for
Automatic Dynamic Memory Managemedbhn Wiley & Sons, Inc.,
USA, 1996.

[21] Tim Lindholm and Frank Yellin. The Java Virtual Machine
Specification, Second EditionThe Java Series. Addison-Wesley
Publishing Company, Inc., USA, 1999.

[22] Steven S. Muchnick Advanced Compiler Design and Implementa-
tion. Morgan Kaufmann Publishers, Inc., USA, 1997.

[23] Young Gil Park and Benjamin Goldberg. Reference Eséap#ysis:
Optimizing Reference Counting Based on the Lifetime of Rafees.
In Proceedings of the ACM SIGPLAN Symposium on Partial
Evaluation and Semantics-based Program Manipulatjzages 178—
189, June 1991.

[24] Chris Sells and Christopher Tavares. Adding Refereboanting
to the Shared Source Common Language Infrastructure. At
http://www.sellsbrothers.com/writing.

[25] James M. Stichnoth, Guei-Yuan Lueh, and Michat Cigtni@upport
for Garbage Collection at Every Instruction in a Java Coetpilln
Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementatigrages 118-127, May 1996.

[26] David R. Tarditi, Greg Morrisett, Perry Cheng, Christer Stone,
Robert Harper, and Peter Lee. TIL: A Type-Directed Optimggzi
Compiler for ML. InProceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementatages 181—
192, May 1996.

