
The Efficient Computation of
Ownership Sets in HPF

Pramod G. Joisha, Student Member, IEEE, and Prithviraj Banerjee, Fellow, IEEE

AbstractÐOwnership sets are fundamental to the partitioning of program computations across processors by the owner-computes

rule. These sets arise due to the mapping of arrays onto processors. In this paper, we focus on how ownership sets can be efficiently

determined in the context of the HPF language and show how the structure of these sets can be symbolically characterized in the

presence of arbitrary array alignment and array distribution directives. Our starting point is a system of equalities and inequalities due

to Ancourt et al. [1] that captures the array mapping problem in HPF. We arrive at a refined system that enables us to efficiently solve

for the ownership set using the Fourier-Motzkin Elimination technique and that requires the course vector as the only auxiliary vector.

The formulation makes it possible to enumerate the elements of the ownership set exactly once, a feature that is very beneficial when

such sets are applied to handle DO loops qualified by HPF's INDEPENDENT directive. We develop important and general properties

pertaining to HPF alignments and distributions and show how they can be used to eliminate redundant communication due to array

replication. Polynomial-time schemes that determine whether the ownership set of a particular processor, with respect to some array,

is the empty set or whether the ownership set of every processor, with respect to some array, is the empty set, are presented. We show

how distribution directives with unspecified processor meshes can be efficiently handled at compile time. We also show how to avoid

the generation of communication code when pairs of array references are ultimately mapped onto the same processors. Experimental

data demonstrating the improved code performance that the latter optimization enables is presented and discussed.

Index TermsÐHPF, array alignment, array distribution, ownership set, Fourier-Motzkin Elimination technique, parallelizing compiler.

æ

1 INTRODUCTION

IN languages such as High Performance Fortran (HPF) [10],
array mappings guide the partitioning of program

computations across processors. They are specified by
the programmer in terms of annotations called directives.
The actual mapping process typically involves two steps:
Arrays are first aligned with a template and templates are
then distributed over a virtual mesh of processors. The
alignment operation, performed via the ALIGN directive,
assigns every array element to at least a single template cell.
The distribution operation, done using the DISTRIBUTE

directive, associates every template cell with exactly one
processor. In this way, array elements are eventually
mapped onto processors.

In an automated code generation scenario, the compiler
decides the processors on which to execute the various
compute operations occurring in a program. In allocating
program computations to processors, the compiler uses the
mapping information associated with the data. A possible
scheme, known as the owner-computes rule [15], is to allow
only the owner of the left-hand side reference in an
assignment statement to execute the statement. By the
owner-computes rule, expressions that use data located on
the same processor can be evaluated locally on that
processor, without the need for interprocessor communica-
tion. When the need to transfer remotely located data arises,

the compiler produces the relevant communication code.

Hence, the owner-computes rule leads to the notion of an

array's ownership set, which is the set of all its elements

mapped onto a processor by virtue of the alignment and

distribution directives.
Since the assignment of computations to processors is

determined by the allocation of data to processors, one of

the aims of the HPF compilation problem is to find a

suitable way of representing the mapping information.

Given such a representation, the next issue that must be

addressed is how can it be used to realize the owner-

computes rule. Does the proposed framework provide

insights into the nature of the array mapping problem?

Does the representation reveal general properties that can

be leveraged to generate efficient code? In this paper, we

investigate these questions in the context of a recent

representation proposed by Ancourt et al. [1].

1.1 An Example

Fig. 1 shows a four-point stencil computation that occurs

over a two-dimensional grid of 1022� 1022 points. The

value at every grid point is updated with the average of its

four neighbors. Once the entire grid is updated this way,

the process is repeated with the new values.
The example introduces an abstract two-dimensional

array T of size 1024� 1024, called the template, against

which the arrays A and B are aligned. The alignment

directives align the array elements A�i; j� and B�i; j� with

the template cell T�i; j�. The DISTRIBUTE directive maps

blocks of template cells in T onto a two-dimensional virtual

processor mesh P. The extent of a block along a dimension

is determined by the extents of T and P along that
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dimension. Since the extents along each dimension in this
case are 1024 and 2, respectively, a block size of

�1024=2� � �1024=2� � 512� 512

is used. Thus, the cells of the template T in the region
T�512p1 � l1, 512p2 � l2� get mapped onto the processor
P�p1; p2�, where 0 � l1; l2 < 512 and 0 � p1; p2 < 2. We could
have also chosen a CYCLIC�B� distribution along a particular
processor dimension instead of a BLOCK distribution; in this
case, the distribution is allowed to ªwrap aroundº the
processor dimension. Because A�i; j� and B�i; j� are aligned
with T�i; j�, the (BLOCK, BLOCK) distribution results in
each of the four quadrants in A and B being mapped onto
the corresponding ªquadrant processorº in P. Hence, a
specific processor would execute only those statement
instances in Fig. 1 whose left-hand sides lie in the quadrant
of A or B owned by it.

1.2 Related Work

The problem of array alignment and array distribution has
been extensively studied and numerous structures that
describe the mapping of arrays to processors have been
suggested and examined [7], [4], [2], [13], [14], [3]. Early
representations focused on BLOCK distributions alone and
were incapable of conveniently describing the general
CYCLIC�B� distribution. This deficiency was addressed in
subsequent work by using techniques ranging from finite
state machines, virtual processor meshes to set-theoretic
methods [6], [8], [12]. However, these schemes primarily
concentrated on enumerating local memory access
sequences and handling array expressions. A generalized
view of the HPF mapping problem was subsequently
presented by Ancourt et al. [1] who showed how a
system of equalities and inequalities could be used to

mathematically express the regular alignment and dis-
tribution of arrays to processors. These systems were then
used to formulate ownership sets and compute sets for
loops qualified by the INDEPENDENT directive and para-
metric solutions for the latter were provided based on the
Hermite Normal Form [1].

1.3 Contributions

In this paper, we investigate the ownership set formulation
in the Ancourt et al. framework and show how it can be
refined to a form that requires a course vector as the only
auxiliary vector and that also enables the efficient enumera-
tion of its constituent elements. This property is desirable
when ownership sets are applied to handle DO loops
qualified by HPF's INDEPENDENT directive. Our approach
to solving for the ownership set is based on the Fourier-
Motzkin Elimination (FME) technique and, in that respect,
we deviate from [1]. We also formulate an efficient
polynomial-time test using which redundant communica-
tion due to array replication can be avoided. We present a
sufficient condition called the mapping test that eliminates
the need for generating communication code for certain
right-hand side array references in an assignment state-
ment. These two optimizations in turn depend upon
whether the ownership set of a particular processor with
respect to some array is the empty set or whether the
ownership set of every processor with respect to some array
is the empty set. We discuss how these decisions can be
arrived at in polynomial time, once the symbolic represen-
tation of the ownership set is known. The mapping test
often results in marked performance improvements and we
substantiate this by presenting experimental data. Finally,
we discuss how our schemes permit the efficient handling
at compile time of distributions in which the processor
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meshes are unspecified. The techniques mentioned in this

paper have been incorporated into a new version of the

PARADIGM compiler [9] using Mathematica1 as the

symbolic manipulation engine.

1.4 Outline

The rest of this paper is organized as follows: In Section 2,

we describe previous research that forms the foundations of

our work. We discuss in this section how information

pertaining to alignments and distributions can be compactly

expressed as systems of equalities and inequalities. The

ownership set is formally defined in this section. We refine

the ownership set formulation in Section 3 and prove an

important equivalence relation. In Section 4, we present the

replication test and explain how it can be used to avoid

redundant communication due to array replication. We also

show in Section 4 how to ascertain in polynomial time

whether the ownership set is empty or nonempty, given its

symbolic FME solution. In Section 5, we describe the

handling of distributions that lack an explicitly specified

processor mesh. The mapping test is derived in Section 6

and we illustrate its workings using three examples. Finally,

in Section 7, we report and analyze experimental data that

demonstrates the performance benefits of the mapping test

optimization.

2 PRELIMINARIES

Fig. 2 shows an artificial code fragment comprising a

declaration and a set of HPF directives. Since the first

dimension of A and the single subscript-triplet expres-

sion conform, this fragment is equivalent to that shown

in Fig. 3. The dummy variables i, j, k, and l in Fig. 3

satisfy the constraints ÿ1 � i � 20, 3 � j � 40, 0 � k � 20,

and 0 � l � 99, respectively.
The alignment directives in Fig. 3 can be compactly

expressed through the following collection of equalities and

inequalities [1]:

R̂tt � Âaa� ss0 ÿ R̂llTT ; �1�

aall � aa � aauu; �2�

0 � tt � uuTT ÿ llTT : �3�
Similarly, the distribution directives in Fig. 3 can be

represented by the following system [1]:

�̂tt � ĈP̂ cc� Ĉpp� ll; �4�

�̂cc � 0; �5�

0 � pp < P̂1; �6�

0 � ll < Ĉ1; �7�
where the column vector tt in (4) satisfies (3). For the given
example, the various matrices and vectors are

R̂ � 1 0 0

0 1 0

� �
; Â � 0 0 2

2 0 0

� �
; ss00 �

1

4

� �
;

aall �
ÿ1

3

0

0B@
1CA; aauu � 20

40

20

0B@
1CA; llTT � 0

0

0

0B@
1CA; uuTT � 99

99

99

0B@
1CA;

and

�̂ � 0 1 0

0 0 1

� �
; Ĉ � 4 0

0 13

� �
; P̂ � 9 0

0 9

� �
; �̂ � 0 0

0 1

� �
:

While (1) is a consequence of the ALIGN directive, (4)
and (5) are a result of the DISTRIBUTE directive. While (4)
dictates the mapping of template cells onto processors, (5)
indicates whether a particular processor dimension has a
BLOCK or a CYCLIC distribution associated with it.
Constraints on the array bounds vector aa and the template
cell vector tt are given by (2) and (3), respectively. Finally, (6)
and (7) describe the constraints that the processor identity
vector pp and the offsets vector ll must satisfy. We shall use x,
y, and z to represent the number of dimensions of the
alignee [10], template, and processor mesh, respectively.
Using this notation, the column vectors aa and tt consist of x
and y elements respectively, while the column vectors pp, ll,
and ccÐcalled the course vectorÐhave z elements each.

The ownership set of a processor pp, which is defined
with respect to an array X, denotes those elements of X that
are finally mapped onto pp by virtue of the alignment and
distribution directives. In set-theoretic notation, this set is:

�p�X� �
�
aaj9cc; ll; tt such that

R̂tt � Âaa� ss0 ÿ R̂llTT ;
�̂tt � ĈP̂ cc� Ĉpp� ll;
�̂cc � 0;

alal � aa � auau;
0 � tt � uTuT ÿ lTlT ;
0 � ll < Ĉ1g;

�8�

where 00 � pp < P̂11. For instance, we could evaluate (8) to
obtain �p�B� for the example in Fig. 1. If we assume a
�CYCLIC�256�; CYCLIC�256�� distribution (instead of the
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�BLOCK; BLOCK� distribution shown in Fig. 1), this turns out

to be:

�p�B� �
n a1

a2

� �
j9 c1

c2

� �
;

l1

l2

� �
;

t1

t2

� �
such that

ÿ 255

512
ÿ p1

2

� �
� c1 � 1023

512
ÿ p1

2

� �
;

ÿ 255

512
ÿ p2

2

� �
� c2 � 1023

512
ÿ p2

2

� �
;

max
ÿ
0;ÿ256�2c1 � p1�

�
� l1 � min�255; 1023ÿ 512c1 ÿ 256p1�;

max
ÿ
0;ÿ256�2c2 � p2�

�
� l2 � min�255; 1023ÿ 512c2 ÿ 256p2�;

max�0; 512c1 � l1 � 256p1�
� t1 � min�1023; 512c1 � l1 � 256p1�;

max�0; 512c2 � l2 � 256p2�
� t2 � min�1023; 512c2 � l2 � 256p2�;

max�1; 1� t1� � a1 � min�1024; 1� t1�;
max�1; 1� t2� � a2 � min�1024; 1� t2�g;

where

0
0

� �
� p1

p2

� �
<

2
2

� �
:

3 OWNERSHIP SETS REVISITED

To solve (8) symbolically, we apply the Fourier-Motzkin

Elimination (FME) technique [5], eliminating the variables

corresponding to the unknown vectors cc, ll, tt, and aa. During

the elimination process, the vector pp, which denotes the

processor's identity in a Cartesian processor mesh, is

treated like any other constant; it therefore manifests in

the bound expressions of the solution system. When
resolved at runtime to a particular processor's identity,
the solution system will represent that processor's owner-
ship set. Fig. 4 shows the outcome when the FME technique
is applied on the system corresponding to �p�A� for the
example in Fig. 3. We represent the chosen elimination
order by the elimination vector ��. The elimination vector �� is a
column vector whose last element denotes the first
unknown to be eliminated and whose first element
denotes the last unknown to be eliminated. In Fig. 4,
��T � �ccT ; llT ; aaT ; ttT �.

Note that the actual region of interest is the set of points
corresponding to the solution vector aa. We can scan the
elements of �p�A� by constructing a loop nest in which the
outermost loop corresponds to $c�1� (i.e., c1) having
max

ÿ�ÿ4$p�1� ÿ 3�=36; �ÿ4$p�1� ÿ 1�=36
�� �

as its lower
bound and min

ÿ�11ÿ $p�1��=9; �11=4� ÿ �$p�1�=9��� �
as its

upper bound. Nested within $c�1� are the loops corre-
sponding to $c�2�, $l�1�, $l�2�, $a�1�, $a�2�, $a�3�, $t�1�,
$t�2�, $t�3� and in that order. Thus, the innermost loop that
corresponds to $t�3� (i.e., t3) would have

max�0; 117$c�2� � $l�2� � 13$p�2��
as its lower bound and

min�99; 117$c�2� � $l�2� � 13$p�2��
as its upper bound. Within the body of such a loop nest,
$a�1� and $a�2� (i.e., a1 and a2) will be the subscripts of the
elements of the array A owned by processor pp.

3.1 Refinement

Since the elements of cc, ll, and tt serve only as auxiliary
variables in (8), an important question that crops up at this
juncture is whether formulations for �p�X� exist that
require fewer auxiliary variables. A lesser number of
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unknowns translates to a smaller loop nest depth and,
hence, a more efficient scan of �p�X�. This is especially
important when compute sets derived from ownership sets
are used to partition loops [9]. Reducing the number of
unknowns also improves the overall timing of the FME
solver.

The first improvement that can be done is removing the
offsets vector ll. This can be accomplished in a straightfor-
ward manner and Lemma 3.1 shows how. The system in
Lemma 3.1, shown in Fig. 5, is an improvement over that in
(8) because there is a reduction in the number of unknowns
(by kllk) and in the number of inequalities (by 2kllk).2

3.1.1 Removing tt

A key observation to make in (9) is that the replicated
dimensions of a template do not affect the elements of aa.
This is because, by premultiplying tt with R̂, rows that
correspond to replicated dimensions in tt get elided. What is
a ªreplicated dimension?º We refer to those dimensions of a
template that contain a � or an unmatched dummy variable
in the alignment specification as the template's replicated
dimensions (see [10]). The remaining dimensions are called
its aligned dimensions.

The dimensions of a template that are not mapped onto
any processor dimension are said to be collapsed; the
remaining dimensions of the template are referred to as
its distributed dimensions. If a template dimension is
collapsed and not replicated, that template dimension can
only affect the values of aa through the equality

R̂tt � Âaa� ss0 ÿ R̂lTlT

and the constraint 0 � tt � uuTT ÿ llTT . To then find the corre-
sponding elements of aa, we need only consider the pair:

0 � Âaa� ss0 ÿ R̂llTT � uuTT ÿ llTT ;
aall � aa � aauu:

Similarly, by considering

R̂tt � Âaa� ss0 ÿ R̂llTT ;
ĈP̂ cc� Ĉpp � �̂tt < ĈP̂ cc� Ĉpp� Ĉ11;

template dimensions that are both aligned and distributed
can be eliminated. Therefore, it is worth investigating
whether a new system can be constructed for the ownership
set that has a lesser number of unknowns than that required
by (9). As Lemma 3.2 in Fig. 6 will show, such a formulation
indeed does exist.

The new system defined in (10) has exactly the same
number of inequalities as the system in (9); however, the
gain is a reduction of kttk in the number of unknowns.

3.1.2 Further Refinements

From the standpoint of efficiently scanning the ownership
set, the system in (10) has further scope for improvement. If
we were to consider those processor dimensions j along
which replicated template dimensions are distributed, the
corresponding cjs are only constrained by

0 � ĈP̂ cc� Ĉpp � �̂�uuTT ÿ llTT �:
This means that for a given aa, there could exist more than
one cc for which the system in (10) holds. Hence, if the
solution system for (10) were used to scan the ownership
set, members could get enumerated more than once. To
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remedy this problem, we extend the system in (10) by the
equation �Î ÿ �̂R̂T R̂�̂T �cc � 00. Lemma 3.3 in Fig. 7 ensures
the validity of such a transformation.

An important implication of Lemma 3.3 is that if the FME
technique is now applied to the system in (11), then,
whatever be the order of elimination of the unknown
variables (corresponding to the elements of cc and aa), the
associated loop nest will scan every member of the
ownership set (i.e., aa) exactly once. To see why this is so,
let �� represent one such elimination order. Suppose

� � k��k � x� z;
where x and z denote the number of dimensions of the
alignee and processor mesh, respectively. The integer
bound expressions returned by the FME solver can be used
to construct a loop nest that scans �00p�X�. The outermost
loop in this nest matches �1, while the innermost loop
matches ��. Consider an iteration point �� of such a loop nest
and let %% be any other iteration point of the same loop nest.
Thus, �� and %% also represent solutions to the system in (11).
Since every iteration point of a loop nest is distinct, let �� and
%% differ in the ith position. If �i � an, then the aa that
corresponds to �� obviously differs from the aa that
corresponds to %%. If instead �i � cj, then the cc that
corresponds to �� differs from the cc that corresponds to %%.
But from Lemma 3.3, only one cc can satisfy the system for a
given aa. Thus, the corresponding values for aa in �� and %%
must also be different. That is, the aa associated with the
iteration point �� must be different from the aa associated
with any other iteration point %% of the same loop nest. In
other words, every member of the ownership set gets
enumerated exactly once.

3.1.3 Comparisons

From a mathematical perspective, the systems in (8), (9),
(10), and (11) are all identicalÐthey refer to the same
ownership set in all cases. However, they differ in such
metrics as the number of inequalities to be solved, the
number of variables to be eliminated (consequently, the
number of auxiliary parameters required to scan the set),
and, finally, in the way the members of the set get
enumerated. Table 1 summarizes these metrics. As can be
seen from the table, the original system in (8) requires the
elimination of the largest number of variables and handles
the largest number of inequalities. If a loop nest were
generated from its FME solution system to scan �p�X�, it is
not guaranteed that every member will get enumerated
exactly once. This inability to ensure the ªuniquenessº of
each enumerated member has serious repercussions if the
ownership set is used to generate other sets. For instance,
we could use the compute sets defined in [1] to handle
loops qualified by the INDEPENDENT directive. In [1], these
sets were defined using a formulation of the ownership set
similar to that in (8). If the FME solution system to such a
compute set formulation were scanned, certain iterations in
the set could get enumerated more than once for certain
alignment/distribution combinations. However, if the
formulation in (11) is used, this problem can be avoided.
The FME approach that we adopt to solve for these sets is
quite different from the approach in [1] where a parametric
solution based on the Hermite Normal Form was exploited
for the same purpose.

In Fig. 8, we show the result of applying the
FME technique to the formulation in (11). Though the
system has the same number of inequalities as the
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TABLE 1
Comparisons of the Ownership Set Formulations

d. When the FME technique is applied, equalities of the form f�cc; ll; tt; aa� � g�cc; ll; tt; aa� get replaced by a pair of inequalities of the form
f�cc; ll; tt; aa� � g�cc; ll; tt; aa� and f�cc; ll; tt; aa� � g�cc; ll; tt; aa�.
e. To recapitulate, x is the number of dimensions of the alignee, y is the number of dimensions of the template, z is the number of dimensions of the
processor mesh, and m is the number of aligned dimensions of the template.



formulation in (8), the number of unknowns to be
eliminated is lesser by 5 variables, and this results in a
significant reduction in the time required to solve the
system from 0.58 seconds to 0.25 seconds.

3.2 An Equivalence Relation

It is interesting to enquire into the nature of ownership sets
across processors. That is, for an arbitrary alignment/
distribution combination, can these sets partially overlap?
Or, are they equal or disjoint? The answers to these
questions can be used to devise an efficient runtime test
that avoids redundant communication due to array replica-
tion (see Section 4).

The expression �̂R̂T R̂�̂T is a square diagonal matrix of
size z� z. It is easy to see that the principal diagonal
elements of this matrix are either 0 or 1. It is also easy to see
that the jth principal diagonal element is 0 if and only if the
template dimension distributed on the jth processor
dimension is a replicated one. To review, replicated
dimensions are those dimensions of a template that contain
either a � or an unmatched dummy variable in the
alignment specification. Thus, if an array X is aligned to a
template T that is then distributed onto a processor mesh P,
Lemma 3.4 states, in Fig. 9, that the ownership sets with
respect to X of two processors pp and qq in P will be the same
if (1) pp and qq own at least one element of the alignee array X,
and (2) pp and qq match in at least those dimensions on which
the aligned dimensions of the template T are distributed.

The reverse is also true; if the ownership sets of two

processors with respect to an array overlap, then their
coordinates along those dimensions on which the aligned

dimensions of the template are distributed must match.

This is what Lemma 3.5 states in Fig. 10. The above two
lemmas can be used to prove Theorem 1 in Fig. 11:

Proof. Suppose �00p�X� and �00q �X� are not disjoint. Then
�00p�X� \�00q �X� 6� ;. Hence, from Lemma 3.5, we get

�̂R̂T R̂�̂T �ppÿ qq� � 00: �I:1�
Since we have assumed that �00p�X� \�00q �X� 6� ;, then
�00p�X� 6� ; and �00q �X� 6� ;. By Lemma 3.4, this fact and

(I.1) therefore imply that

�00p�X� � �00q �X�:
Thus, either �00p�X� \�00q �X� � ; or �00p�X� � �00q �X�must
be true. tu
Let us define a binary relation � on a mapped array

such that given two array elements �� and , �� �  if and

only if �� and  are mapped onto the same processors. The

rules of HPF ensure that for any legal ALIGN/DISTRIBUTE
combination, every element of the mapped array will reside

on at least one processor [10]. Hence, � must be reflexive.

Also, if �� � ,  � �� is obviously true. Therefore, � is
symmetric. Finally, if �� �  and  � �� are true, then from

Theorem 1, �� � ��. That is, � is transitive. Hence, the ALIGN
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and DISTRIBUTE directives for a mapped array define an
equivalence relation on that array.

4 THE REPLICATION TEST

Let rp

ÿ
S0; Y �Ŝy��� aa0yy�

�
indicate those elements of a right-

hand side array reference Y �Ŝy��� aa0yy� in an assignment
statement S0 that pp views on account of its compute work in
S0. Thus, pp would have to potentially fetch these elements
from a remote processor qq and the set of elements to be
received would be �q�Y � \ rp

ÿ
S0; Y �Ŝy��� aa0yy�

�
. Likewise,

pp would have to potentially send the elements in
�p�Y � \ rq

ÿ
S0; Y �Ŝy��� aa0yy�

�
to a remote processor qq

because qq may in turn view the elements owned by pp.
Pseudocode fragments in Fig. 12 illustrate how such data
exchange operations can be realized.

In Section 3.2, we saw that if �p�Y � 6� ; and
�q�Y � 6� ;, then �p�Y � and �q�Y � are equal if and only
if �̂R̂T R̂�̂T �ppÿ qq� � 00. This property can be used to avoid
redundant communication due to array replication; the
modified pseudocode fragments in Fig. 13 show this
optimization.

Once the integer FME solution for the system of
equalities and inequalities that describe the ownership set
is obtained, computing whether �p�Y � is the empty set for a
given pp incurs only an additional polynomial-time over-
head. The key idea that enables this decision is that in the
FME solution system for (11), a particular pj will occur in
the bound expressions for cj.

3 That is, there will be an
inequality pair of the form

fj�pj� � cj � gj�pj�
in the solution system. In addition, there can at most be one
more inequality pair in the solution system that also
contains pj in its bound expressions. This inequality pair
will have the form Fj�pj; cj� � anj � Gj�pj; cj�. Hence, if (11)
has a solution aa for a given pp, each of the z disjoint
inequality groups

fj�pj� � cj � gj�pj�;
Fj�pj; cj� � anj � Gj�pj; cj�;

in the solution system must independently admit a solution.
The task of checking whether each of these groups has a

solution for a particular pj is clearly of quadratic
complexity. Hence, the complexity of ascertaining whether
�p�Y � is nonempty for a given pp is polynomial. Since the
complexity of evaluating the condition �̂R̂T R̂�̂T �ppÿ qq� 6� 00
is O�z�, the overall runtime complexity of evaluating the
Boolean predicates in Fig. 13, given the integer FME
solution system for the ownership set (known at compile
time), becomes polynomial.

Observe that in the absence of replication, R̂T R̂ is the
identity matrix; in this situation, �̂R̂T R̂�̂T �ppÿ qq� 6� 00 if and
only if pp 6� qq. Hence, in the absence of replication, the test
degenerates to the usual pp 6� qq condition.

5 UNSPECIFIED PROCESSOR MESHES

When a variable is eliminated from a system of inequalities
by the FME technique, the method partitions the system
into three sets: a set Sÿ in which the coefficients of the
variable are negative, a set S0 in which the coefficients of
the variable are zero and a set S� in which the coefficients
of the variable are positive [5]. Therefore, for those variables
that are to be eliminated by the technique, knowledge
regarding the signs of their coefficients must be available. In
the context of the system in (11), this implies that the
principal diagonal entries of the square diagonal matrices Ĉ
and P̂ can be symbolic. This is because these elements are
known to be positive a priori and their actual values are of
no concern until runtime. A useful consequence of this fact
is that a processor mesh need not be provided in a
DISTRIBUTE directive. Hence, the determination of the
actual processor mesh can be postponed until runtime.

For instance, suppose that the distribution directive in
Fig. 3 lacked a processor meshÐassume that it was

!HPF$ DISTRIBUTE T��; CYCLIC�4�; BLOCK�13��:
Then, all that can be said about P̂ is that it should have the
form

P̂ � P11 0
0 P22

� �
;

where P11 and P22 are positive. If we apply the FME method
on the system in (11) with this knowledge of P̂ , we obtain
the solution shown in Fig. 14. Notice that on replacing P11

and P22 in this solution system by 9, we obtain the solution
system shown in Fig. 8.
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Fig. 12. Send and receive actions at a processor p.

Fig. 13. Send and receive actions with the replication test optimization.

3. The symbols pj and cj indicate elements in pp and cc, respectively.



Apart from being positive, since the third dimension of T

is BLOCK distributed on the second dimension of P, the

choice for P22 would have to be additionally constrained by

the inequality 13P22 � 100 (i.e., CjjPjj � ukj ÿ lkj � 1 where

kj is the template dimension distributed in a BLOCK fashion

on the jth processor dimension). More generally, the

principal diagonal elements of P̂ would have to be chosen

so as to satisfy the following inequalities:

P̂11 � 11; �12�

�̂ĈP̂11 � �̂�̂�uTuT ÿ lTlT � 11�: �15�
A possible strategy for determining the principal diag-

onal elements of P̂ at runtime is presented in Fig. 15. In

general, more than one distributee may be associated with a

processor mesh and the handling of such a case is

highlighted in the figure. The displayed pseudocode

fragment assumes that two templates T and S are

distributed on the processor mesh P. The procedure

number_of_processors() is a generic system inquiry

function that returns the number of physical processors

available in the lower-level processor arrangement. The

quantity !Ðdetermined at compile timeÐequals the

number of processor dimensions on which template
dimensions are distributed in a CYCLIC�B� fashion
considering both T and S. That is, ! equals the rank of
�Î ÿ �̂T ��Î ÿ �̂S�. Note that, by this strategy, some of the
physical processors may remain unused. More sophisti-
cated schemes that utilize all of the physical processors and
that also optimize with respect to some other criteria could
be devised.

6 THE MAPPING TEST

Consider an assignment statement S0 bearing affine sub-
script expressions and contained in a loop nest character-
ized by the loop iteration vector ��:

X�Ŝx��� aa0xx� � � � � � Y �Ŝy��� aa0yy� � � � � :
The communication sets �p�Y � \ rq

ÿ
S0; Y �Ŝy��� aa0yy�� and

�q�Y � \ rp

ÿ
S0; Y �Ŝy��� aa0yy�� (shown in Fig. 12 and Fig. 13)

that would be generated for the above assignment
statement take into account the relative alignments and
distributions of the left-hand side and right-hand side array
references. If these communication sets are empty, no
communication will occur at runtime. However, the over-
head of checking at runtime whether a particular processor
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should dispatch a section of its array to some other
processor that views it exists, irrespective of whether data
is actually communicated or not. This could result in the
expensive runtime cost of communication checks, even in
cases where it could be avoided such as when the elements
of X�Ŝx��� aa0xx� and Y �Ŝy��� aa0yy� are ultimately mapped
onto the same processor. If the compiler could detect such
situations, it could refrain from generating communication
code for such array reference pairs. This is what the
mapping test attempts to do.

6.1 A Sufficient Condition

Thereom 2, shown in Fig. 16, states a sufficient condition for

the mapping test that is proven below.

Proof. Suppose X�Ŝx��� aa0xx� 2 �00p�X�; as discussed earlier,

a legal ALIGN/DISTRIBUTE combination will admit at

least one such pp. Thus, there exists a cc such that from the

system in (11), we have

�̂T R̂T
x

ÿÂx�Ŝx��� aa0xx� � ss0xx ÿ R̂xxllTT
�

� �̂T R̂T
x R̂x�̂

T
T �ĈT P̂ cc� ĈT pp� � ll;

�II:1�

where

0 � ll � �̂T R̂T
x R̂x�̂

T
T �ĈT1ÿ 1�: �II:2�

By virtue of (11), �̂cc � cc. Therefore, after some

rearranging, (II.1) becomes ĈT �P̂ cc� �̂pp� � ll � ��. From

(II.2), 00 � Ĉÿ1
T ll � �̂�11ÿ Ĉÿ1

T 11�. Therefore,

P̂ cc� �̂pp � P̂ cc� �̂pp� Ĉÿ1
T ll � P̂ cc� �̂pp� �̂�11ÿ Ĉÿ1

T 11�:
�II:3�

Since 11 � ĈT11, we have 00 < Ĉÿ1
T 11 � 11. Thus,

00 � 11ÿ Ĉÿ1
T 11 < 11: �II:4�

Since 0̂ � �̂ � Î is always true, we get

0̂ � �̂�11ÿ Ĉÿ1
T 11� � 11ÿ Ĉÿ1

T 11

from the above. Using (II.4) again, we also get

00 � �̂�11ÿ Ĉÿ1
T 11� < 11. Consequently, (II.3) becomes

bP̂ cc� �̂ppc � bP̂ cc� �̂pp� Ĉÿ1
T llc < bP̂ cc� �̂pp� 11c;

or P̂ cc� �̂pp � bĈÿ1
T ��c. Since 00 � �̂pp � pp < P̂11, we there-

fore have

�̂pp � bĈÿ1
T ��cmod P̂11: �II:5�

That is, if X�Ŝx��� aa0xx� 2 �00p�X�, then pp must fulfill
(II.5). Similarly, if Y �Ŝy��� aa0yy� 2 �00q �Y �, then qq must
satisfy (II.6):

�̂qq � bĈÿ1
S ��cmod P̂11: �II:6�

It is also given that �00r �Y � 6� ; for all 00 � rr < P̂11. Thus,
from Lemma 3.4, every rr that fulfills (II.6) also owns
Y �Ŝy��� aa0yy�. We now need to verify whether a pp that is
a solution for (II.5) is also a solution for (II.6). Since we
are given that �̂�bĈÿ1

T ��cmod P̂11� � bĈÿ1
S ��cmod P̂11, using

(II.5) and (II.6) we get

�̂�̂pp � �̂qq: �II:7�
But we are also given that �̂ � �̂. Therefore, multiplying
by �̂ and noting that �̂2 � �̂, we get

�̂ � �̂�̂: �II:8�
Again, since �̂ � Î, we get on multiplying by �̂,

�̂�̂ � �̂: �II:9�
Hence, (II.8) and (II.9) imply that �̂�̂ � �̂. Therefore, (II.7)
becomes �̂pp � �̂qq. Thus, pp also fulfills (II.6). In other
words, Y �Ŝy��� aa0yy� 2 �00p�Y � is also true. tu
The sufficient condition can be established at compile

time. Predicate (14) constitutes the actual mapping test.
Verifying whether �̂ � �̂ and

�̂�bĈÿ1
T ��cmod P̂11� � bĈÿ1

S ��cmod P̂11

is an O�z� operation. Establishing whether �r�Y � 6� ; for all
00 � rr < P̂11 is a polynomial-time operation, given the
symbolic representation of the ownership set (see Section
4). Thus, the overall time complexity for verifying the
requirements of Theorem 2 is polynomial once the FME
solution system for the ownership set is known.

The impact of the mapping test on runtimes can often be
dramatic. To illustrate the savings, the runtimes for the
ADI benchmark, for arrays of sizes 4� 1024� 2 on a
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1� 4 mesh of processors with and without this
optimization were 0:51 and 64:79 seconds, respectively!
The large value of 64:79 seconds arose due to three
assignment statements that were the sinks of loop-
independent flow dependencies that were enclosed with-
in a triply nested loop spanning an iteration space of
2048� 2� 1022 points. Each of these three assignment
statements included right-hand side array references that
were finally distributed onto the same processor as the
corresponding left-hand side array reference. Hence, in all,
18 communication checks (nine for MPI_SEND and another
nine for MPI_RECV) per iteration were eliminated.

6.2 The Matrix Multiplication Benchmark

To demonstrate how the mapping test works, we begin with
the Matrix Multiplication benchmark (from the Livermore
Kernel 21 [11]), in which each of the templates T and S are
simultaneously collapsed and replicated. The mapping test
correctly determines that none of the right-hand side array
references in the benchmark's single assignment statement
require any communication code to be generated.

Consider the pair of references C(i, j) and A(i, k) in
Fig. 17. By inspection, we have

Âc �
1 0

0 1

� �
; s0cs0c �

0

0

� �
;

�̂T �
1 0

0 1

� �
; ĈT �

512 0

0 512

� �
;

Âa �
1 0

0 0

� �
; s0as0a �

0

0

� �
;

�̂S �
1 0

0 1

� �
; ĈS �

512 0

0 512

� �
;

R̂c �
1 0

0 1

� �
; alcalc �

1

1

� �
; aucauc �

1024

1024

� �
;

�̂T �
1 0

0 1

� �
; lTlT �

1

1

� �
; uTuT �

1024

1024

� �
;

R̂a �
1 0

0 0

� �
; alaala �

1

1

� �
; auaaua �

1024

1024

� �
;

�̂S �
1 0

0 1

� �
; lSSlSS �

1

1

� �
; uSSuSS �

1024

1024

� �
;

P̂ � 2 0

0 2

� �
:

Thus,

�� � �̂T R̂T
c

ÿÂc�Ŝc��� aa0cc� � s0cs0c ÿ R̂clTlT
� � iÿ 1

jÿ 1

� �
;

�� � �̂SR̂T
a

ÿÂa�Ŝa��� aa0aa� � s0as0a ÿ R̂alSlS
� � iÿ 1

0

� �
;

�̂ � �̂T R̂T
c R̂c�̂

T
T �

1 0

0 1

� �
;

�̂ � �̂SR̂T
a R̂a�̂

T
S �

1 0

0 0

� �
:

To verify the first requirement, we need to determine the
integer FME solution system for �p�A�. By applying the

FME solver with �c1; c2; a1; a2� as the elimination order, we
find this to be

�p�A� �
� a1

a2

� �
j9 c1

c2

� �
such that

dmax 0;ÿ 511

1024
ÿ p1

2
;
ÿp1

2

� �
e � c1 � bmin 0;

1023

1024
ÿ p1

2

� �
c;

dmax 0;
ÿp2

2

� �
e � c2 � bmin 0;

1023

1024
ÿ p2

2

� �
c;

max�1; 1� 1024c1 � 512p1� � a1

� min
ÿ
1024; 512�1� 2c1 � p1�

�
;

1 � a2 � 1024
	
:

�15�
There are two constraints in (15) that contain p1 in their
bound expressions and another constraint that contains p2

in its bound expressions. Hence, by separately considering
two disjoint inequality groups, we can determine in
polynomial time that �r�A� 6� ; for all 00 � rr < P̂11. Further,
since �̂ � �̂, the second requirement of the mapping test is
also satisfied. In addition,

bĈÿ1
T ��c � biÿ1

512c
bjÿ1

512c
� �

; bĈÿ1
S ��c � biÿ1

512c
0

� �
:

Therefore, the third requirement is also satisfied since,

�̂�bĈÿ1
T ��cmod P̂11� � biÿ1

512cmod 2

0

� �
;

bĈÿ1
S ��cmod P̂11 � biÿ1

512cmod 2

0

� �
:

We can thus conclude that A(i, k) is identically mapped
onto the same processor that owns C(i, j), for all values
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of the loop iteration vector ��. We can similarly show that
B(k, j) is also identically mapped onto the same processor
that owns C(i, j), for all iterations of the loop nest. Since
the third right-hand side array reference C(i, j) is trivially
mapped onto the same processor as the left-hand side array
reference, no communication code needs to be generated for
this benchmark.

How does the replication test fare on this benchmark?
Note that the Boolean predicate �̂SR̂T

a R̂a�̂
T
S �ppÿ qq� 6� 00

simplifies to p1 6� q1. Thus, though the replication test
avoids some of the communication check overhead in the
send and receive actions shown in Fig. 13, the send and
receive sets would still be computed and checked whenever
p1 and q1 are not equal. However, because of the nature of
the affine subscript expressions of the array references
involved (i.e., C(i, j) and A(i, k)), the send and receive
sets evaluate to empty sets even when p1 and q1 are not
equal. Thus, in the case of this benchmark, the entire
overhead of performing communication checks at runtime
can be avoided which is exactly what the mapping test
detects.

6.3 A Synthetic Example

Consider the synthetic code shown in Fig. 18. For this
fragment, the various matrices and vectors required by the
mapping test are

�� � 1408

2i� 2j� 6

� �
; �� � 512

2i� 2j� 6

� �
;

�̂ � 1 0

0 1

� �
; �̂ � 1 0

0 1

� �
;

�̂�bĈÿ1
T ��cmod P̂11� � 4

b2i�2j�6
16 cmod 9

 !
;

bĈÿ1
S ��cmod P̂11 � 4

b2i�2j�6
16 cmod 9

 !
:

Since �̂ � �̂ and �̂�bĈÿ1
T ��cmod P̂11� � bĈÿ1

S ��cmod P̂11,
the second and third requirements of the mapping test
are satisfied. By applying the FME solver with

�c1; c2; a1; a2; a3; a4� as the elimination order, we find
the integer FME solution system for �p�Y � to be

�p�Y � �
� a1

a2

a3

a4

0BBB@
1CCCAj9 c1

c2

� �
such that

dmax�0;ÿ 127

1024
ÿ p1

8
;ÿ 123

1024
ÿ p1

8
;
ÿp1

8
�e � c1

� bmin�0; 511

512
ÿ p1

8
;
1023

1024
ÿ p1

8
�c;

dmax�ÿ 5

48
ÿ p2

9
;ÿ 11

144
ÿ p2

9
;
ÿp2

9
�e � c2

� bmin�511ÿ 16p2

144
;
32ÿ p2

9
�c;

max�1;ÿ3� 1024c1 � 128p1� � a1

� min
ÿ
1019; 4�31� 256c1 � 32p1�

�
; 2 � a2 � 120;

max�1;ÿ3� 144c2 � 16p2� � a3

� min
ÿ
508; 4�3� 36c2 � 4p2�

�
; 1 � a4 � 32

	
:

�16�
Equation (16) consists of two disjoint inequality groups; we
can therefore determine in polynomial time that �r�Y � 6� ;
for all 0 � rr < P̂11. Therefore, from Theorem 2, the right-
hand side array reference is identically mapped onto the
same processor that owns the left-hand side array reference.
This is indeed the case as can be verified by visualizing the
alignments and distributions. Notice that terms unknown at
compile time are only manipulated symbolically by the
mapping test. For instance, if instead of

Y�509; i� 7k; 2j� 2i� 3; 7k�;
we had

Y�509; i� 7k; 3j� 2i� 3; 7k�;
then

bĈÿ1
S ��cmod P̂11 � 4

b3i�2j�6
16 cmod 9

� �
;
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and the test would have failed since nothing can be said at
compile time about the equality of �b�2i� 2j� 6�=16cmod 9�
and �b�3i� 2j� 6�=16cmod 9�. For some values of i and j
this may be true (say, i � 3; j � 2) while not for others (say,
i � 2; j � 2). Thus, in such a situation, the test fails and,
conservatively, communication code is generated.

6.4 The ADI Benchmark

The last example shows how the mapping test makes it
possible for the compiler to avoid generating any commu-
nication code for the Automatic Differentiation and
Integration (ADI) benchmark (from the Livermore
Kernel 8 [11]), when the alignments and distributions
are suitably chosen.

In essence, the ADI benchmark comprises six arrays of
type REAL, of which three are one-dimensional and consist
of 1,024 elements each, while the remaining three are three-
dimensional arrays consisting of 4� 1024� 2 elements
each. The only flow dependencies that this benchmark
exhibits are three loop-independent ones and all of the
source-sink statement pairs are contained in the innermost
loop. The right-hand side array references on which these
dependencies terminate can be aligned and distributed onto
the same processors that own the corresponding left-hand
side array references and it is this particular case that the
mapping test optimizes.

In the code excerpt shown in Fig. 19, only one source-
sink statement pair among the three is indicated. The other
two are similar with the array DU1 replaced, respectively,

by DU2 and DU3 in the source statements and with the array

AU1 replaced, respectively, by AU2 and AU3 in the source

and sink statements. We now consider the pair of array

references AU1(kx, ky, 2) and DU1(ky) occurring in the

second assignment statement of Fig. 19. Thus,

�� � kxÿ 1
kyÿ 1

� �
; �� � 0

kyÿ 1

� �
; �̂ � 1 0

0 1

� �
; �̂ � 0 0

0 1

� �
:

Since

�00p�DU1� � f�a1�j9
c1

c2

� �
such that

max�0;ÿp1� � c1 � bmin�0; 3
4
ÿ p1�c;

dmax�ÿ 61

992
ÿ p2

16
;
ÿp2

16
�e � c2 � b33ÿ 2p2

32
c;

max�1; 1� 992c2 � 62p2� � a1

� min
ÿ
1024; 62�1� 16c2 � p2�

�	
;

we see that the first requirement is fulfilled. In addition,

since �̂ � �̂, the second requirement is also satisfied. Finally,

bĈÿ1
T ��c � bkxÿ1

4 c
bkyÿ1

62 c
� �

; bĈÿ1
S ��c � 0

bkyÿ1
62 c

� �
:

Hence,

JOISHA AND BANERJEE: THE EFFICIENT COMPUTATION OF OWNERSHIP SETS IN HPF 781

Fig. 19. ADI.



�̂�bĈÿ1
T ��cmod P̂11� � 0

bkyÿ1
62 cmod 16

 !
;

bĈÿ1
S ��cmod P̂11 � 0

bkyÿ1
62 cmod 16

 !
:

Thus, the third requirement is also satisfied. We can

therefore conclude that DU1(ky) gets identically mapped

onto the same processor that owns AU1(kx, ky, 2) for all

values of the loop iteration vector ��. It can be similarly

shown that for the same alignment and distribution

directives, the right-hand side array references in the other

assignment statements on which flow dependencies termi-

nate in this benchmark are also identically mapped onto the

same processor as the respective left-hand side array

references. Thus, no communication code needs to be

generated for the benchmark.

7 MAPPING TEST MEASUREMENTS

Execution times and compilation times were measured for

the PARADIGM (version 2.0) system with and without the

mapping test optimization. For the sake of comparison,

execution times and compilation times for the original

sequential sources and the parallelized codes generated by

pghpf (version 2.4) and xlhpf (version 1.03) were also

recorded. pghpf and xlhpf are commercial HPF compilers

from the Portland Group Inc., (PGI) and the International

Business Machines (IBM), respectively. In the input codes to

the pghpf compiler, DO loops were recast into FORALL

equivalents where possible and were qualified with the

INDEPENDENT directive when appropriate. The FORALL

construct and the INDEPENDENT directive were not mixed

in the inputs to pghpf and the tabulated execution times

correspond to the best of the two cases. All of the

PARADIGM measurements were done in the presence of

the replication test.

7.1 System Specifications

The IBM compilers xlf and mpxlf were used to handle

Fortran 77 and Fortran 77+MPI sources, respectively. The

HPF sources were compiled using xlhpf and pghpf.

The -O option, which results in the generation of

optimized code, was always used during compilations

done with xlf, xlhpf, mpxlf, and pghpf. Compilation

times were obtained by considering the source-to-source

transformation effected by PARADIGM, as well as the

source-to-executable compilation done using mpxlf (ver-

sion 5.01). The source-to-source compilation times for

PARADIGM were measured on an HP Visualize C180 with

a 180MHz HP PA-8000 CPU running HP-UX 10.20 and

having 128MB of RAM. Compilation times for pghpf,

xlhpf as well as mpxlf were measured on an IBM E30

running AIX 4.3 and having a 133MHz PowerPC 604

processor and 96MB of main memory. In those tables that

tabulate the execution times, the RS6000 column refers to

the sequential execution times obtained on the IBM E30. The

parallel codes were executed on a 16-node IBM SP2

multicomputer running AIX 4.3 and in which each

processor was a 62.5MHz POWER node having 128MB of

RAM. Interprocessor communication on the IBM SP2 was

across a high performance adapter switch.

7.2 Alignments and Distributions

Measurements for the mapping test were taken across three

benchmarks: ADI, Euler Fluxes (from FLO52 in the Perfect

Club Suite) and Matrix Multiplication. For all the input

samples, fixed templates and alignments were chosen; these

are shown in Fig. 20. Note that the most suitable alignments

were chosen for the benchmark input samples. For the

Matrix Multiplication and ADI benchmarks, these align-

ments resulted in communication-free programs indepen-

dent of the distributions. For the Euler Fluxes

benchmark, the distributions resulted in varying amounts

of communication.

The PROCESSORS and the DISTRIBUTE directives were

changed in every benchmark's input sample. The various

distributions were chosen arbitrarily, the idea being to

demonstrate the ability of the mapping test to handle any

given alignment/distribution combination.
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Fig. 20. Alignment directives for the ADI, Euler Fluxes, and Matrix Multiplication benchmarks.



7.3 Analysis

As Table 2 reveals, the benefits of the mapping test were

most pronounced for the ADI benchmark, followed by the

Matrix Multiplication benchmark. In the case of the Euler

Fluxes benchmark, the mapping test eliminated six

communication checks per iteration for the first input

sample and eight communication checks per iteration for

the second and third input samples. In the absence of the

mapping test, 10 communication checks per iteration were

generated. On account of loop-carried flow dependencies,

the associated communication codes were hoisted immedi-

ately within the outermost loop. However, since the

number of iterations of the outermost loop was a mere

100, the optimized compiled codes did not exhibit any

significant improvement in runtimes. For all of the ADI

benchmark input samples, the iteration space comprised of

2048� 2� 1022 points, and the communication codes

generated in the absence of the mapping test were hoisted

immediately within the innermost loop. For the three

Matrix Multiplication benchmark samples, the number of

iteration points were 512� 512� 512, 1; 024� 1; 024� 1; 024,

and 1; 024� 1; 024� 1; 024, respectively, and the single

communication check that was generated in the absence

of the mapping test was hoisted within the second inner-

most loop.
Given a sequential input source written using Fortran 77

and having HPF directives, PARADIGM produces an
SPMD output consisting of Fortran 77 statements and
procedure calls to the MPI library. The compilation of this
SPMD code into the final executable is then performed
using mpxlf. Since the mapping test eliminates the
generation of communication code, where possible, it also
exerts an influence on the overall compilation times. That is,
the application of the mapping test often results in the
generation of a smaller intermediate SPMD code, and this
improves on the back-end source-to-executable compilation
time. In our setup, this was done using mpxlf. Note that
applying the mapping test does not necessarily mean an
increased time for the source-to-source compilation phase

performed by PARADIGM. This is because, though
compilation in the presence of the mapping test involves
the additional effort of identifying the candidate array
reference pairs that are identically mapped, it, however,
saves on the communication code generation part that
would otherwise have to be done for the same array
reference pairs. Hence, compilation times for the source-to-
source compilation phase may in fact be more in the
absence of the mapping test and this was found to be true
for nearly all of the benchmark samples tested. However, as
Table 3 also reveals, the back-end compilation times were
nearly always more in the absence of the mapping test and
this was because of the larger intermediate SPMD code
sizes handled.

8 SUMMARY

The preceding sections have shown certain basic and
interesting properties that ownership sets exhibit, even in
the presence of arbitrary alignments and distributions. Our
approach to solving for the ownership set (and other sets
derived from it) is based on integer FME solutions to the
systems characterizing these sets. We also showed how the
system of equalities and inequalities originally proposed in
[1] can be refined to a form requiring the course vector as
the only auxiliary vector. This refinement is beneficial to the
FME approach. The fundamental property of ownership set
equivalence is derived and we demonstrated how it can be
used to eliminate redundant communication due to array
replication. We also briefly described how to efficiently
make decisions regarding the ªemptinessº of an ownership
set. Finally, we derived a sufficient condition that, when
true, ensures that a right-hand side array reference of an
assignment statement is available on the same processor
that owns the left-hand side array reference, thus, making it
possible to avoid generating communication code for the
pair.

The mapping test is a very useful optimization. Its
positive effect was observable in the case of other
benchmarks such as Jacobi, TOMCATV, and 2D Explicit
Hydrodynamics (from the Livermore Kernel 18), and
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was significant in most situations. This was on account

of the fact that, typically, suitably chosen ALIGN and

DISTRIBUTE directives perfectly align and distribute at

least one pair of left-hand side and right-hand side

array references in at least one assignment statement in

the Lprogram and such alignments and distributions are

often valid independent of the values through which

the loop iteration vector ranges. Thus, by efficiently

exploiting the ownership set, efficient SPMD code can

be generated efficiently at compile time.

APPENDIX

LEMMA PROOFS

Proof for Lemma 3.1. Suppose aa0 2 �0p�X�. Then, there

exists a cc0, tt0 such that

ĈP̂ cc0 � Ĉpp � �̂tt0 < ĈP̂cc0 � Ĉpp� Ĉ1:

Hence, 0 � �̂tt0 ÿ �ĈP̂ cc0 � Ĉpp� < Ĉ1. Setting

ll0 � �̂tt0 ÿ �ĈP̂ cc0 � Ĉpp�;
we get �̂tt0 � ĈP̂ cc0 � Ĉpp� ll0. Consequently, aa0 2 �p�X�
because cc0,ll0, tt0, together with aa0, satisfy the system in (8).

Hence,

�0p�X� � �p�X�: �3:1:1�
Similarly, if aa 2 �p�X�, then there exists a cc, ll, and tt

that, together with aa, satisfy the system in (8). Since

�̂tt � ĈP̂ cc� Ĉpp� ll;
0 � ll < Ĉ1;

we get ĈP̂ cc� Ĉpp � �̂tt < ĈP̂ cc� Ĉpp� Ĉ1. Thus,

aa 2 �0p�X�
because cc, aa, and tt satisfy the system in (9). Therefore,

�p�X� � �0p�X�: �3:1:2�
Relations (3.1.1) and (3.1.2), therefore, imply that

�0p�X� � �p�X�:
tu

Proof for Lemma 3.2. Suppose aa�� 2 ��p�X�; assume cc�� to be

the corresponding course vector for which (10) holds for

aa��. Consider

tt�� � R̂T �Âaa�� � ss0 ÿ R̂llTT � � �Î ÿ R̂T R̂��̂T �ĈP̂ cc�� � Ĉpp�:
Then,4

R̂tt�� � Âaa�� � ss0 ÿ R̂llTT : �3:2:1�
Next, from (10), we have, after premultiplying through-

out by �̂,

�̂R̂T R̂�̂T �ĈP̂ cc�� � Ĉpp� � �̂ÿtt�� ÿ �Î ÿ R̂T R̂��̂T �ĈP̂ cc�� � Ĉpp��
� �̂R̂T R̂�̂T �ĈP̂ cc�� � Ĉpp� Ĉ1ÿ 1�:

This gives us

ĈP̂ cc�� � Ĉpp � �̂tt�� � ĈP̂ cc�� � Ĉpp� �̂R̂T R̂�̂T �Ĉ1ÿ 1�:
Now, �̂R̂T R̂�̂T � Î. Since 0 � Ĉ1ÿ 1, we get

�̂R̂T R̂�̂T �Ĉ1ÿ 1� � Ĉ1ÿ 1:

Hence,

ĈP̂ cc�� � Ĉpp � �̂tt�� < ĈP̂cc�� � Ĉpp� Ĉ1: �3:2:2�
From (10), we also have

0 � Âaa�� � ss0 ÿ R̂llTT � R̂�uuTT ÿ llTT �:
Thus, 0 � R̂T �Âaa�� � ss0 ÿ R̂llTT � � R̂T R̂�uuTT ÿ llTT �. That is,
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TABLE 3
Compilation Times in Seconds

k. xlhpf does not permit a CYCLIC blocking factor greater than 1.
l. Arrays were of type REAL; array sizes were 512� 512.
m. Arrays were of type REAL; array sizes were 1024� 1024.

4. Note that R̂R̂T � Î, where Î is the m�m identity matrix. However,
R̂T R̂ is a y� y matrix in which the only nonzero elements are the principal
diagonal elements; the ith principal diagonal element is 1 if and only if the
ith template dimension is an aligned dimension. Similarly, �̂�̂T is the z� z
identity matrix whereas �̂T �̂ is a y� y matrix in which the only nonzero
elements are the principal diagonal elements; the ith princial diagonal
element is 1 if and only if the ith template dimension is a distributed
dimension. Square matrices in which the only nonzero elements are those
that reside on the principal diagonal are usually termed square diagonal.



�Î ÿ R̂T R̂��̂T �ĈP̂ cc�� � Ĉpp� � R̂T �Âaa�� � ss0 ÿ R̂llTT �
� �Î ÿ R̂T R̂��̂T �ĈP̂ cc�� � Ĉpp�;
R̂T �Âaa�� � ss0 ÿ R̂llTT � � �Î ÿ R̂T R̂��̂T �ĈP̂ cc�� � Ĉpp�
� R̂T R̂�uuTT ÿ llTT � � �Î ÿ R̂T R̂��̂T �ĈP̂ cc�� � Ĉpp�:

Since 0 � ĈP̂ cc�� � Ĉpp and because 0̂ � Î ÿ R̂T R̂, we get

0 � �Î ÿ R̂T R̂��̂T �ĈP̂ cc�� � Ĉpp�. Taking this and (3.2.1)

into account, the previous inequalities become

0 � tt�� � R̂T R̂�uuTT ÿ llTT � � �Î ÿ R̂T R̂��̂T �ĈP̂ cc�� � Ĉpp�:
But, from (10),

�Î ÿ R̂T R̂��̂T �ĈP̂ cc�� � Ĉpp� � �Î ÿ R̂T R̂��̂T �̂�uuTT ÿ llTT �:
Thus, 0 � tt�� � �R̂T R̂ � �Î ÿ R̂T R̂��̂T �̂��uuTT ÿ llTT �. Again,

since

0̂ � R̂T R̂ � �Î ÿ R̂T R̂��̂T �̂ � Î
and because uuTT ÿ llTT � 0, the previous constraint

becomes:

0 � tt�� � uuTT ÿ llTT : �3:2:3�
Also, from (10), we have

�̂cc�� � 0; �3:2:4�

aall � aa�� � aauu: �3:2:5�
Thus, because (3.2.1), (3.2.4), (3.2.2), (3.2.3), and (3.2.5)

satisfy the system in (9), aa�� 2 �0p�X�. Hence,

��p�X� � �0p�X�: �3:2:6�
Similarly, if aa00 2 �0p�X�, then there exists a cc00, tt00 that

together with aa00 satisfy the system in (9). Therefore,
R̂tt00 � Âaa00 � ss0 ÿ R̂llTT . Hence,

�̂T �̂R̂T R̂tt00 � �̂T �̂R̂T �Âaa00 � ss0 ÿ R̂llTT �:
Since, from (9), ĈP̂ cc00 � Ĉpp � �̂tt00 < ĈP̂cc00 � Ĉpp� Ĉ1,

we get

R̂T R̂�̂T �ĈP̂ cc00 � Ĉpp� � R̂T R̂�̂T �̂tt00
� R̂T R̂�̂T �ĈP̂ cc00 � Ĉpp� Ĉ1ÿ 1�:

Now, R̂T R̂�̂T �̂ � �̂T �̂R̂T R̂.5 Therefore,

R̂T R̂�̂T �ĈP̂ cc00 � Ĉpp� � �̂T �̂R̂T �Âaa00 � ss0 ÿ R̂llTT �
� R̂T R̂�̂T �ĈP̂ cc00 � Ĉpp� Ĉ1ÿ 1�:

�3:2:7�
From (9), we also have the following:

�̂tt00 ÿ Ĉ1 < ĈP̂cc00 � Ĉpp � �̂tt00;
0 � �̂tt00 � �̂�uuTT ÿ llTT �:

From the above two inequalities, we get

ÿ Ĉ1� 1 � ĈP̂ cc00 � Ĉpp � �̂�uuTT ÿ llTT �:
Consider the inequality ÿĈ1� 1 � Ĉ�P̂ cc00 � pp�. Since Ĉ

always has a well-defined inverse Ĉÿ1 and because

Ĉÿ1 > 0̂ is always true, we can premultiply

ÿ Ĉ1� 1 � Ĉ�P̂ cc00 � pp�
throughout by Ĉÿ1 to obtain

Ĉÿ11ÿ 1ÿ pp � P̂ cc00:
Since pp < P̂1 and because P̂ also has a well-defined

inverse P̂ÿ1 that satisfies P̂ÿ1 > 0̂, we get

P̂ÿ1�Ĉÿ11ÿ 1ÿ P̂1� 1� � P̂ÿ1P̂ cc00:

The last inequality simplifies to

P̂ÿ1Ĉÿ11ÿ 1 � cc00:
This clearly implies that the elements of cc00 are restricted

to nonnegative integers only. Taken along with the fact

that pp � 0, we get ĈP̂ cc00 � Ĉpp � 0. Thus,

0 � ĈP̂ cc00 � Ĉpp � �̂�uuTT ÿ llTT �: �3:2:8�
Since, from (9), 0 � tt00 � uuTT ÿ llTT , we get

0 � R̂tt00 � R̂�uuTT ÿ llTT �:
Therefore,

0 � Âaa00 � ss0 ÿ R̂llTT � R̂�uuTT ÿ llTT �: �3:2:9�
Again, from (9), we have:

�̂cc00 � 0; �3:2:10�

aall � aa00 � aauu: �3:2:11�
Since (32.10), (3.2.7), (3.2.8), (3.2.9), and (3.2.11) fulfill the

system in (10), aa00 2 ��p�X�. Thus,

�0p�X� � ��p�X�: �3:2:12�
Relations (3.2.6) and (3.2.12), taken together, imply that

�0p�X� � ��p�X�:
tu

Proof for Lemma 3.3. Suppose aa0000 2 �00p�X�. Therefore, there

exists a cc0000 that, together with aa0000, fulfills the system in

(11). Since every equality and inequality in (10) occurs in

(11), cc0000 and aa0000 also satisfy the system in (10). Therefore,

aa0000 2 ��p�X�. Hence,

�00p�X� � ��p�X� �3:3:1�
Consider an aa�� 2 ��p�X�. Thus, there exists a cc��

such that

R̂T R̂�̂T �ĈP̂ cc�� � Ĉpp� � �̂T �̂R̂T �Âaa�� � ss0 ÿ R̂llTT �
� R̂T R̂�̂T �ĈP̂ cc�� � Ĉpp� Ĉ1ÿ 1�:

Premultiplying throughout by �̂ and after rearranging,

we get
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5. If Â and B̂ are two conforming square diagonal matrices, then the
commutative law for matrix multiplication holds (i.e., ÂB̂ � B̂Â).



ĈP̂ �̂R̂T R̂�̂T cc�� � �̂R̂T R̂�̂T Ĉpp � �̂R̂T �Âaa�� � ss0 ÿ R̂llTT �
� ĈP̂ �̂R̂T R̂�̂T cc�� � �̂R̂T R̂�̂T �Ĉpp� Ĉ1ÿ 1�:

Let

cc0000 � �̂R̂T R̂�̂T cc��: �3:3:2�
Therefore, after premultiplying by R̂T R̂�̂T , the previous

constraint becomes:

R̂T R̂�̂T ĈP̂ cc0000 � R̂T R̂�̂T �̂R̂T R̂�̂T Ĉpp
� R̂T R̂�̂T �̂R̂T �Âaa�� � ss0 ÿ R̂llTT �;

R̂T R̂�̂T �̂R̂T �Âaa�� � ss0 ÿ R̂llTT �
� R̂T R̂�̂T ĈP̂ cc0000 � R̂T R̂�̂T �̂R̂T R̂�̂T �Ĉpp� Ĉ1ÿ 1�:

Now,

R̂T R̂�̂T �̂R̂T R̂�̂T � R̂T R̂�̂T : �3:3:3�
Also,

R̂T R̂�̂T �̂R̂T � �̂T �̂R̂T : �3:3:4�
The last pair of inequalities therefore become:

R̂T R̂�̂T �ĈP̂ cc0000 � Ĉpp� � �̂T �̂R̂T �Âaa�� � ss0 ÿ R̂llTT �
� R̂T R̂�̂T �ĈP̂ cc0000 � Ĉpp� Ĉ1ÿ 1�:

�3:3:5�
From (10), we have 0 � ĈP̂ cc�� � Ĉpp. Premultiplying

throughout by �̂R̂T R̂�̂T and using (3.3.2), we get

0 � ĈP̂ cc0000 � �̂R̂T R̂�̂T Ĉpp:
But �̂R̂T R̂�̂T Ĉpp � Ĉpp. Hence,

0 � ĈP̂ cc0000 � Ĉpp: �3:3:6�
Again, from (10),

ĈP̂ cc�� � �̂�uuTT ÿ llTT � ÿ Ĉpp: �3:3:7�
Premultiplying throughout by �̂R̂T R̂�̂T and using

(3.3.2), we get

ĈP̂ cc0000 � �̂R̂T R̂�̂T ��̂�uuTT ÿ llTT � ÿ Ĉpp�: �3:3:8�
Since 0 � ĈP̂ cc�� � Ĉpp, we also obtain ÿP̂ÿ1pp � cc��. But

pp � P̂1ÿ 1. Therefore,

ÿ 1� P̂ÿ11 � cc��;
which means that

0 � cc��: �3:3:9�
Using (3.3.9) in (3.3.7), we get

0 � �̂�uuTT ÿ llTT � ÿ Ĉpp:
Because �̂R̂T R̂�̂T � Î, 0 � �̂�uuTT ÿ llTT � ÿ Ĉpp leads to

�̂R̂T R̂�̂T ��̂�uuTT ÿ llTT � ÿ Ĉpp� � �̂�uuTT ÿ llTT � ÿ Ĉpp:
Hence, from (3.3.8), ĈP̂ cc0000 � �̂�uuTT ÿ llTT � ÿ Ĉpp. Combining

this with (3.3.6), we therefore get

0 � ĈP̂ cc0000 � Ĉpp � �̂�uuTT ÿ llTT �: �3:3:10�
Using (3.3.2), we also get

�Î ÿ �̂R̂T R̂�̂T �cc0000 � �Î ÿ �̂R̂T R̂�̂T ��̂R̂T R̂�̂T cc��
� ��̂R̂T R̂�̂T ÿ �̂R̂T R̂�̂T �cc�� � 0:

�3:3:11�

From (10), we have �̂cc�� � 0. Premultiplying by �̂R̂T R̂�̂T
and by using (3.3.2), we get

�̂cc0000 � 0 �3:3:12�
From (10), we get the remaining constraints satisfied by

aa��:

aall � aa�� � aauu; �3:3:13�

0 � Âaa�� � ss0 ÿ R̂llTT � R̂�uuTT ÿ llTT �: �3:3:14�
Since (3.3.11), (3.3.12), (3.3.5), (3.3.10), (3.3.13), and

(3.3.14) fulfill the system in (11), aa�� 2 �00p�X�. Therefore,

��p�X� � �00p�X�: �3:3:15�
Relations (3.3.1) and (3.3.15), taken together, imply

that ��p�X� � �00p�X�.
We now need to prove the second part of the lemma:

For every aa 2 �00p�X�, there exists exactly one cc for which
(11) holds. Suppose that, for an aa 2 �00p�X�, cc satisfies the
system in (11). Hence,

R̂T R̂�̂T �ĈP̂ cc� Ĉpp� � �̂T �̂R̂T �Âaa� ss0 ÿ R̂llTT �
� R̂T R̂�̂T �ĈP̂ cc� Ĉpp� Ĉ1ÿ 1�:

Premultiplying throughout by �̂ and because

�Î ÿ �̂R̂T R̂�̂T �cc � 0;

by (11), we get

ĈP̂ cc � � � ĈP̂ cc� �̂R̂T R̂�̂T �Ĉ1ÿ 1�; �3:3:16�
where

� � �̂R̂T �Âaa� ss0 ÿ R̂llTT � ÿ �̂R̂T R̂�̂T Ĉpp:
If there exists another course vector cc�� that, together with

aa, also fulfills the system in (11), then cc�� would also

satisfy (3.3.16). That is,

ĈP̂ cc�� � � � ĈP̂ cc�� � �̂R̂T R̂�̂T �Ĉ1ÿ 1�: �3:3:17�
Using (3.3.16) and (3.3.17), we get

ÿ �̂R̂T R̂�̂T �Ĉ1ÿ 1� � ĈP̂ �cc�� ÿ cc� � �̂R̂T R̂�̂T �Ĉ1ÿ 1�
�3:3:18�

Now, �̂R̂T R̂�̂T is a square diagonal matrix in which the

principal diagonal elements are either 0 or 1. Hence,

from (3.3.18), we can conclude that cc � cc��. That is, for

every aa 2 �00p�X�, there exists exactly one cc for which

(11) holds. tu
Proof for Lemma 3.4. Since �00p�X� 6� ;, consider an element

aa0000 2 �00p�X�. Then, there exists a cc such that
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R̂T R̂�̂T �ĈP̂ cc� Ĉpp� � �T �̂R̂T �Âaa0000 � ss0 ÿ R̂llTT �
� R̂T R̂�̂T �ĈP̂ cc� Ĉpp� Ĉ1ÿ 1�:

Premultiplying the above with �̂ and, since

�̂R̂T R̂�̂T cc � cc;
�̂R̂T R̂�̂T pp � �̂R̂T R̂�̂T qq;

we get, after some rearrangement,

ĈP̂ cc� �̂R̂T R̂�̂T Ĉqq � �̂R̂T �Âaa0000 � ss0 ÿ R̂llTT �
� ĈP̂ cc� �̂R̂T R̂�̂T �Ĉqq � Ĉ1ÿ 1�:

Premultiplying by R̂T R̂�̂T and by using (3.3.3) and

(3.3.4), we can simplify the above to

R̂T R̂�̂T �ĈP̂ cc� Ĉqq� � �T �̂R̂T �Âaa0000 � ss0 ÿ R̂llTT �
� R̂T R̂�̂T �ĈP̂ cc� Ĉqq � Ĉ1ÿ 1�:

�3:4:1�
We also have 0 � ĈP̂ cc� Ĉqq � �̂�uuTT ÿ llTT �. Premultiply-

ing this by �̂R̂T R̂�̂T and by using �̂R̂T R̂�̂T �̂ � �̂R̂T R̂,

this becomes

0 � ĈP̂ �̂R̂T R̂�̂T cc� Ĉ�̂R̂T R̂�̂T pp � �̂R̂T R̂�uuTT ÿ llTT �:
Substituting �̂R̂T R̂�̂T cc by cc and �̂R̂T R̂�̂T pp by �̂R̂T R̂�̂T qq,
we get,

0 � ĈP̂ cc� �̂R̂T R̂�̂T Ĉqq � �̂R̂T R̂�uuTT ÿ llTT �: �3:4:2�
Now, since �00q �X� 6� ;, there exists at least one bb0000 in

�00q �X�. Let cc�� be the corresponding course vector that,
together with bb0000, satisfies the system in (11). We then
have

0 � ĈP̂ cc�� � Ĉqq � �̂�uuTT ÿ llTT �:
Premultiplying the above throughout by �Î ÿ �̂R̂T R̂�̂T �
and by using �Î ÿ �̂R̂T R̂�̂T �cc�� � 0, we get

0 � �Î ÿ �̂R̂T R̂�̂T �Ĉqq � �Î ÿ �̂R̂T R̂�̂T ��̂�uuTT ÿ llTT �: �3:4:3�
From (3.4.2), we also get

�Î ÿ �̂R̂T R̂�̂T �Ĉqq � ĈP̂ cc� �̂R̂T R̂�̂T Ĉqq � �Î ÿ �̂R̂T R̂�̂T �Ĉqq
� �̂R̂T R̂�uuTT ÿ llTT � � �Î ÿ �̂R̂T R̂�̂T �Ĉqq:

By using (3.4.3), the last constraint leads to the following:

0 � ĈP̂ cc� Ĉqq � �̂�uuTT ÿ llTT �: �3:4:4�
We also have

�Î ÿ �̂R̂T R̂�̂T �cc � 0; �3:4:5�

�̂cc � 0; �3:4:6�

aall � aa0000 � aauu; �3:4:7�

0 � Âaa0000 � ss0 ÿ R̂llTT � R̂�uuTT ÿ llTT �: �3:4:8�

Since (3.4.5), (3.4.6), (3.4.1), (3.4.4), (3.4.7), and (3.4.8)
fulfill the system in (11) for �00q �X�, we have aa0000 2 �00q �X�.
Therefore,

�00p�X� � �00q �X�: �3:4:9�
Beginning with �00q �X�, we can similarly show that

�00q �X� � �00p�X�: �3:4:10�
Relations (3.4.9) and (3.4.10) together imply that

�00p�X� � �00q �X�:
tu

Proof for Lemma 3.5. Let aa0000 2 �00p�X� \�00q �X�. Since
aa0000 2 �00p�X�, there exists a cc such that

R̂T R̂�̂T �ĈP̂ cc� Ĉpp� � �T �̂R̂T �Âaa0000 � ss0 ÿ R̂llTT �
� R̂T R̂�̂T �ĈP̂ cc� Ĉpp� Ĉ1ÿ 1�:

Also, since aa0000 2 �00q �X�, there exists a cc�� such that

R̂T R̂�̂T �ĈP̂ cc�� � Ĉqq� � �T �̂R̂T �Âaa0000 � ss0 ÿ R̂llTT �
� R̂T R̂�̂T �ĈP̂ cc�� � Ĉqq � Ĉ1ÿ 1�:

Thus,

ÿR̂T R̂�̂T �Ĉ1ÿ 1� � R̂T R̂�̂T ĈP̂ �cc�� ÿ cc� � Ĉ�qq ÿ pp�
� �

� R̂T R̂�̂T �Ĉ1ÿ 1�:
Premultiplying the above with �̂ and since

�̂R̂T R̂�̂T cc � cc;
�̂R̂T R̂�̂T cc�� � cc��;

we get

ÿ�̂R̂T R̂�̂T �Ĉ1ÿ 1� � ĈÿP̂ �cc�� ÿ cc� � ''�
� �̂R̂T R̂�̂T �Ĉ1ÿ 1�;

�3:5:1�

where '' � �̂R̂T R̂�̂T �qq ÿ pp�. From (3.5.1), we thus get

P̂ �cc�� ÿ cc� � '' � 0;

or

'' � P̂ �ccÿ cc���: �3:5:2�
Since 0̂ � �̂R̂T R̂�̂T � Î and 0 � pp, qq < P̂1, we also have
the following constraint for '':

ÿ �̂R̂T R̂�̂T �P̂1ÿ 1� � '' � �̂R̂T R̂�̂T �P̂1ÿ 1�:
Using the last constraint and (3.5.2), we therefore get

ÿ �̂R̂T R̂�̂T �P̂1ÿ 1� � P̂ �cc�� ÿ cc� � �̂R̂T R̂�̂T �P̂1ÿ 1�:
From the above, cc�� ÿ cc � 0; consequently, from
(3.5.2), '' � 0. tu
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