
An Algebraic Array Shape Inference System
for MATLAB®

PRAMOD G. JOISHA and PRITHVIRAJ BANERJEE

Northwestern University

The problem of inferring array shapes ahead of time in languages that exhibit both implicit and

dynamic typing is a critical one because the ramifications of its solution are the better organiza-

tion of array storage through compaction and reuse, and the generation of high-performance code

through specialization by shape. This article addresses the problem in a prototypical implicitly and

dynamically typed array language called MATLAB. The approach involves modeling the language’s

shape semantics using an algebraic system, and applying term rewriting techniques to evaluate

expressions under this algebra. Unlike prior efforts at array shape determination, this enables

the deduction of valuable shape information even when array extents are compile-time unknowns.

Furthermore, unlike some previous methods, our approach doesn’t impose monotonicity require-

ments on an operator’s shape semantics. The work also describes an inference methodology and

reports measurements from a type inference engine called . In a benchmark suite of 17

programs, the shape inference subsystem in detected the equivalence of over 61% of the

symbolic shapes in six programs, and over 57% and 37% of the symbolic shapes in two others. In

the remaining nine programs, all array shapes were inferred to be compile-time constants.

Categories and Subject Descriptors: D.3.2 [Programming Languages]: Language Classifica-

tions—Very high-level languages; D.3.4 [Programming Languages]: Processors—Interpreters;

compilers; optimization; F.3.3 [Logics and Meanings of Programs]: Studies of Program Con-

structs—Type structure; I.1.1 [Symbolic and Algebraic Manipulation]: Expressions and Their

Representation—Simplification of expressions; I.1.2 [Symbolic and Algebraic Manipulation]:

Algorithms

General Terms: Algorithms, Design, Languages, Theory

Additional Key Words and Phrases: Typeless array languages, shape algebras, term rewriting

1. INTRODUCTION

Array-centric models of computation in the APL mold have witnessed a re-
naissance of sorts in the last two decades through the widespread success of

This research was supported by DARPA under Contract F30602-98-2-0144, and by NASA under

Contract 276685/NAS5-00212. The MATHEMATICA fonts in this paper are due to Wolfram Re-

search, Inc.

Authors’ addresses: P. G. Joisha, Microsoft Research, One Microsoft Way, Redmond, WA 98052-

6399; email: pjoisha@microsoft.com; P. Banerjee, University of Illinois at Chicago, Chicago, IL

60607-7043; email: prith@uic.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515

Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2006 ACM 0164-0925/06/0900-0848 $5.00

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 5, September 2006, Pages 848–907.

An Algebraic Array Shape Inference System for MATLAB • 849

Fig. 1. Implicit and dynamic assignment of array types.

very high-level proprietary languages like MATLAB and IDL. By melding a lu-
cid syntax with features such as implicit typing, multidimensional data struc-
tures, real and complex arithmetic, a rich polymorphic function set, and an
interpretive execution model, these languages have proven to be ideal tools for
an “exploratory” style of program development in which the processes of data
examination, manipulation, visualization, and incremental code development
are combined to form a tight feedback-driven loop. Although such features—
particularly implicit and dynamic array rank and array shape typing, as well
as array polymorphism—may have greatly promoted the level of abstraction
possible with these languages and their ease of use, they have also severely
burdened their execution supports, forcing implementations to usually cope
through interpretation. (The term rank in this article has the FORTRAN 90
and APL connotation; it means the dimensionality of an array. The term shape
means the collection of extents of an array along each of its dimensions.) Prior
knowledge of an array’s type attributes, such as rank, shape, and intrinsic type,1

is thus desirable because of its potential to improve execution performance and
efficiency. For instance, knowing an array’s shape in advance could eliminate
redundant shape conformance checks, permit compile-time verification of shape
correctness, and allow for the preallocation of array storage.

1.1 Tacit Array Typing

To understand how array typing works in MATLAB, consider the synthetic
code fragment in Figure 1. The statement c ← a*b on Line 5 assigns to pro-
gram variable c the result of a*b, where * is MATLAB’s matrix-multiplication
operation.2 If either a or b is scalar, the other variable can be an arbitrary ar-
ray and the result is produced by multiplying the scalar with the elements of
the array. On the other hand, if both a and b are nonscalar, they have to be
conforming matrices for the operation to be valid, that is, their shapes have to

1Intrinsic type determination is also an issue in MATLAB because its arrays have an orthogonal

intrinsic type attribute that dictates the arithmetic possible on the contents.
2The symbol ← will be used to denote the assignment operation in MATLAB. The infix notations +,

.^, ./, and - in Figure 1 stand for the plus, array power, right array division, and minus operations,

respectively [The MathWorks, Inc. 1997]. These, along with the calls max and atan2, which com-

pute an elemental maximum and the four-quadrant inverse tangent, are examples of elementwise
operations in MATLAB. Elementwise operators expect at least one operand to be scalar or both

operands to be of the same shape. The unary operations fix (rounding towards zero) and abs (abso-

lute zero) are similar in that they are applied elementwise on their operands to produce identically

shaped results. The only two operations that aren’t elementwise in Figure 1 are complex-conjugate

transposition (’) and matrix multiplication (*).

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 5, September 2006.

850 • P. G. Joisha and P. Banerjee

be p × q and q × r, respectively [The MathWorks, Inc. 1997]. Current static
inference systems for MATLAB [Quinn et al. 1998; Chauveau and Bodin 1998;
De Rose and Padua 1999] can infer the shape of c, at least on the first iteration, if
the initial shapes of a and b are known at compile-time. However, if either of
these initial shapes are unknown, even partially (some array extents known,
others unknown), the shape of c will also be considered unknown and conser-
vative code to perform runtime resolution will be generated. Unknown shapes
have a propagative effect in that one unknown shape could lead to a whole set of
shapes becoming unknown. This would be the case for the fragment in Figure 1
if it were part of a function in which a, b, and e are the formal parameters, and
if the function was being analyzed in isolation.

The thesis of this work is that even when shapes aren’t explicitly known, we
can do better if the algebraic properties associated with the language’s shape
semantics are leveraged. For example, in the case of Figure 1, we shall see in
Section 7 that:

Inference 1. The shapes of d on Lines 1 and 3 are identical for any initial
a and b. This means that a translator can replace shape conformance checks
against Lines 1 and 3 by a single check against Line 1.

Inference 2. The shapes of a and b on Lines 6 and 7 will be identical in each
iteration.

Inference 3. There can only be two possibilities for the shape of c, one for
both a and b, and three for e during the entire execution lifetime of the loops.
We can also arrive at symbolic expressions for these possibilities, which a code
generator could use for such tasks as preallocating storage for the arrays.

1.2 “Lossless” Polyrank Routines

A unique feature that distinguishes MATLAB from most other languages is
the ability to write polyrank routines (routines that can be invoked on arrays of
various ranks) such that the formal parameter’s rank always reflects the actual
parameter’s rank. While languages such as C, FORTRAN 90, and FORTRAN 77
allow the writing of polyrank procedures, their facility is inherently lossy in
that information pertaining to the actual argument’s rank isn’t retained by
the formal argument within the procedure. In these languages, the rank of an
array formal parameter is either set statically by the number of dimensions
specified in its declaration, or left unspecified, as may happen in C if pointer
parameters are used. The only way to communicate an actual’s rank into a
user-defined routine, then, is either by passing an additional parameter or by
involving globally visible memory locations.

To exemplify this distinction, consider the problem of adding to an array of
rank n a generalization of the Hilbert matrix [Weisstein 2005] to n dimensions.
Specifically, we define a Hilbert array of n dimensions as having the elements

Hi1i2...in = 1

i1 + i2 + · · · + in − n + 1
.

Figure 2 shows a FORTRAN 90 routine that adds to an argument a Hilbert
array of the same shape. The routine is polyrank by virtue of the assumed-size

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 5, September 2006.

An Algebraic Array Shape Inference System for MATLAB • 851

Fig. 2. Lossy polyrank Hilbert array accumulation in FORTRAN 90.

Fig. 3. Lossless polyrank Hilbert array accumulation in MATLAB.

array dummy parameter [Adams et al. 1992]. However, this polyrank trait is
lossy because the dummy is a statically fixed one-dimensional array. In Figure 3
we illustrate a lossless polyrank MATLAB version that relies on a reflective call
to size to access the actual parameter’s rank.

Although the ability to write lossless polyrank code permits a more natural
expression of multidimensional array logic, it also adds another wrinkle that
any array shape inference system for MATLAB has to contend with. In this

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 5, September 2006.

852 • P. G. Joisha and P. Banerjee

regard, our shape inference system diverges from all previous efforts at infer-
ring array shapes in MATLAB because these efforts practically considered a
monorank MATLAB by restricting the array dimensionalities to two [Quinn
et al. 1998; Chauveau and Bodin 1998; De Rose and Padua 1999; Almási and
Padua 2002]. This article will later show (in Section 8) how automated inference
techniques could be used to deduce that:

Inference 4. Irrespective of their ranks, the shapes of a and b in Figure 3 are
always identical under every successful execution of the function.

1.3 Contributions

The primary contribution of this work is a uniform approach to the problem
of shape inference in implicitly and dynamically typed array languages that
is grounded in an algebraic view of array shape. In contradistinction to all
past efforts, our approach enables gathering valuable information, even when
array ranks and extents are compile-time unknowns. This work systematically
categorizes the problem domain and shows how the approach addresses two
important classes of language operators. Also, unlike past efforts, our approach
imposes no restrictions on an array’s rank, and the quality of the inferences
produced don’t suffer from a lack thereof.

Secondary contributions include symbolic evaluation methods that automate
a shape calculus based on algebras, and two applications of the presented frame-
work for obtaining different kinds of shape-related facts: (1) detecting whether
the shape of one array expression, even when unknown, tracks the shape of
another and (2) determining the set of all possible shapes that an array ex-
pression may assume at runtime. The article also presents experimental data
that shows how an implementation of the approach fares on real MATLAB
programs.

2. RELATED WORK

Early research on array shape determination was in the context of the more
general problem of automatic type inference. Widely employed methodolo-
gies for the latter have been to model the problem using a system of “type
equations,” and to then solve that system either by a process called unifica-
tion [Hindley 1969; Milner 1978] or by using lattice-theoretic fixed-point tech-
niques [Tenenbaum 1974; Kaplan and Ullman 1978]. All previous efforts at
inferring the shape attribute of type in APL and MATLAB, to the best of our
knowledge, have been fixed-point solutions to lattice-theoretic formulations of
the problem [Ching 1986; Budd 1988; De Rose and Padua 1999; Almási and
Padua 2002]. Though type estimation techniques founded on iterative dataflow
analyses—their conceptual underpinning is a bounded lattice—look at types in
a broad sense, they are most suited to situations in which a language’s types
can be naturally arranged into a partial order. In particular, these approaches
rely on the existence of lattice-forming partial orders that are also subtyping
relations, and an assignment operation on which the sense of the subtyping is
reversed (i.e., contravariant). A subtyping is a binary relation between types
that captures the principle of safe substitution [Mitchell 1996]: If s and t are

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 5, September 2006.

An Algebraic Array Shape Inference System for MATLAB • 853

two types such that s � t (read as “s is a subtype of t”), then any value of type s
can be safely used wherever any value of type t can be safely used. If � is also
given to be contravariant on the assignment operation, then

(t ← u) � (s ← u) if s � t. (1)

In other words, if s is a subtype of t, then an assignment to a variable of type s
can always be safely substituted by an assignment to a variable of type t. When
� is additionally a bounded lattice, the contravariant property implies that the
greatest element is always a safe type inference for any program variable.3 If
the greatest element also has a reasonably efficient compile-time implemen-
tation, then such lattices are very effective for problems such as intrinsic type
determination (i.e., finding whether a program variable is an integer, a real, a
complex number, and so on), and they have been successfully used for this in
both MATLAB [De Rose and Padua 1999; Joisha and Banerjee 2001b; Almási
and Padua 2002] and APL [Ching 1986; Budd 1988].

2.1 Limitations of Lattice-Based Approaches

Suppose for the moment that we are only to consider shape-correct MATLAB
programs. A variable in such a program might take on one of many shapes in
the course of execution. Each assumed shape could be described by a shape tu-
ple 〈p1, p2, . . . , pk〉 that denotes a k-dimensional array with extent pi along the
ith dimension, where each pi is an element in the set of nonnegative integers
W.4 If LS is the collection of all such shape tuples, then a lattice could be de-
fined on the power set 2LS in which the subset relation is the partial order and
the greatest element is LS. Then, the partial order would also be a subtyping
that is contravariant on the assignment operation. Thus, LS would always be
a safe shape inference for any program variable. However, as will be discussed
in Section 2.1.1, such a lattice becomes ineffectual when analyzing functions
in isolation because there exists the likelihood of the greatest element being
returned as the shape of every variable local to the function. Since the great-
est element represents any shape, a translator would then be forced to emit
the most general code for the function’s body, even though opportunities for
specialization may exist due to inter-shape relationships.

This poses the following interesting question: Could a bounded lattice be
defined for MATLAB so that its greatest element is some finite subset of the
set of all possible legal shape tuples, and such that its partial order is still a
subtyping contravariant on the assignment operation? If such a lattice could
be defined, then its greatest element would also be a safe fallback inference for
which code with some degree of specialization (because it isn’t the universal set
of shapes) might be generated. Unfortunately, as Theorem 1 to follow will show,
it is impossible to define such a lattice for MATLAB because of the nature
of shape in the language. Theorem 1 is significant because there have been
attempts to the contrary at using lattices in which the greatest element is some
specific shape (see Section 2.1.2).

3Some runtime type checking in the form of checked casts may still be needed.
4We choose W so as to include the empty array construct.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 5, September 2006.

854 • P. G. Joisha and P. Banerjee

Fig. 4. Numerical computation of
∫ b

a 13(x − x2)e
−3x

2 dx by Simpson’s rule.

THEOREM 1. It is impossible to define a bounded lattice on 2LS for shape
inference in MATLAB that meets all of the following conditions: (1) the lattice
elements span LS, (2) the greatest element is a finite subset of LS, and (3) the
partial order is a subtyping that is contravariant on the assignment operation.

PROOF. Consider a bounded lattice on some subset {l1, l2, . . . } of 2LS such
that ⋃

j≥1

l j = LS (2)

and let 1 be its greatest element. If 1 is a finite subset of LS, then there exists
a shape tuple 〈z1, z2, . . . , zk〉, where zk �= 1, such that all shape tuples of the
form

〈z1, z2, . . . , zk ,

0 or more︷ ︸︸ ︷
1, . . . , 1〉

don’t belong to 1 (if this weren’t true, then 1 would have been an infinite set).
Now from Equation (2), there exists a lattice point l such that

〈z1, z2, . . . , zk〉 ∈ l , where l < 1. Consider an assignment to a variable X whose
shape is described by l . If the lattice’s partial order is a subtyping that is indeed
contravariant on the assignment operation, then it should be possible to replace
the assignment to X by an assignment to a variable Y whose shape is described
by 1. However, because

〈z1, z2, . . . , zk ,

0 or more︷ ︸︸ ︷
1, . . . , 1〉 �∈ 1,

such a substitution could change the meaning of the program. As an example,

X ← . . .;

disp(size(X));
may produce a different output if X were to be replaced by Y.

2.1.1 The Problem of Separate Compilation. From Theorem 1, the great-
est element in any bounded lattice used for inferring array shapes in MATLAB
must be some abstraction that represents an infinite collection of shapes. This
means that if the greatest element is returned as an inference, no useful spe-
cialization may be possible. For example, if the lattice in De Rose [1996], and
De Rose and Padua [1999] were used to infer the shapes in the code of Figure 4,

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 5, September 2006.

An Algebraic Array Shape Inference System for MATLAB • 855

Fig. 5. Eliciting an unsafe shape solution from MaJIC.

excerpted from the adaptive quadrature program in the FALCON benchmark
suite [De Rose 1996], its greatest element 〈UNKNOWN, UNKNOWN〉 would
be returned as the shape of every variable defined in the procedure.5 However,
due to the shape semantics of the various operators used in the quadrature
function, we shall later see that:

Inference 5. The shapes of h, mid, Fa, Fmid, and Fb in Figure 4 are always
identical.

Inference 6. For quadrature to be well-defined, a and b must be square matri-
ces, through not necessarily of the same shape (this includes the case in which
they are scalars). Then, the shapes of all the lefthand side variables will be
identical.

A translator could use Inference 6 both to collapse the shape conformance
checks for the function to a single check situated at its entry, and to do a Chaitin-
style coalescing of the storages assigned to Fa, Fmid, Fb, and S [Joisha and
Banerjee 2003a].

2.1.2 Unsafe Shape Solutions in MaJIC. Nearly every previous lattice
used for deducing shapes in both MATLAB and APL has inadvertently adhered
to the requirements of Theorem 1.6 An exception has been the lattice

Ls = {W × W, ⊥s, �s, �s}
of two-dimensional shapes used in Almási [2001], and Almási and Padua [2002],
where ⊥s = 〈0, 0〉 and �s = 〈∞, ∞〉 were the least and greatest elements in Ls,
respectively, and the lattice’s partial order �s was defined as

〈a, b〉 �s 〈c, d 〉 iff a ≤ c and b ≤ d for all a, b, c, d ∈ W. (3)

It can be easily verified that �s isn’t a subtyping and that �s isn’t always a safe
solution. A contrived example that exposes its unsafeness is shown in Figure 5.
The function unsafe incrementally grows awithin a while loop into a row vector
whose size is statically indeterminate. Because the shape lattice Ls in MaJIC is
of infinite height, any initially chosen solution for the shape of a won’t converge.
MaJIC accommodates such “runaway” situations by setting the shape of a to �s
after a fixed number of iterations so as to force convergence [Almási 2001, 33].
However, �s won’t always be a safe solution for a because it may not conform

5The lattice defined in De Rose [1996] and De Rose and Padua [1999] is at the granularity of array

extents; the Cartesian product of this lattice with itself gives the shape lattice effectively used.
6Theorem 1 can also be similarly argued for APL.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 5, September 2006.

856 • P. G. Joisha and P. Banerjee

to the rules of the matrix-multiplication operation on the last line, even though
the while loop test p may be such that at runtime, the loop either doesn’t
iterate or iterates exactly thrice, thereby ensuring that the program is always
well-defined.7

From another perspective, it can be shown that not all of the shape transfer
functions comprising Ls’s function space are monotonic with respect to �s.

THEOREM 2. The shape transfer function for MATLAB’s matrix-
multiplication operation isn’t monotonic on the lattice Ls.

PROOF. Let ∗̈ be the shape transfer function for the matrix-multiplication
operation considering only two-dimensional shapes. According to MATLAB’s
definition of this operation in the two-dimensional case [Almási 2001, 83],

〈1, x〉∗̈〈1, 1〉 = 〈1, x〉, (4)

〈1, x〉∗̈〈x, 1〉 = 〈1, 1〉 (5)

for any x in W. From Equation (3),

〈1, 1〉 �s 〈 y , 1〉
for any y ≥ 1. From the assumed monotonicity of ∗̈, this gives us

〈1, y〉∗̈〈1, 1〉 �s 〈1, y〉∗̈〈 y , 1〉.
But from Equations (4) and (5), the preceding becomes

〈1, y〉 �s 〈1, 1〉,
which contradicts the definition of the partial order in Equation (3) when
y > 1.

2.2 Alternate Approaches

Just as our work seeks to identify redundant array shape checks, there has
also been research in the area of array bounds checking that has aimed to de-
duce redundant runtime array index checks. These approaches range from flow
analysis techniques that propagate and eliminate bounds checks [Gupta 1993]
to type-based, annotation-aided, constraint-solving methods [Xi and Pfenning
1998].

In Ancourt and Nguyen [2001], the problem of calculating the exact size of
FORTRAN arrays that have the REAL(1) or REAL(*) declarations is considered.
The article discusses a method based on array region analysis to determine the
set of array elements referenced during program execution. The quality of the
results produced, however, hinges on the accuracy of the array region analysis.
While the article outlines a scheme for the analysis, it isn’t clear how effective
this would be in an APL or MATLAB setting. The primary motivation for the
work was to clean up and tighten the large number of imprecise array dec-
larations in legacy FORTRAN code, declarations that would otherwise hinder

7Under finite precision arithmetic, �s would presumably map to 〈J , J 〉, where J is some large

(perhaps the largest) machine-representable positive integer.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 5, September 2006.

An Algebraic Array Shape Inference System for MATLAB • 857

program analysis, parallelization, verification, and code readability [Ancourt
and Nguyen 2001].

Another approach to shape inference is to use propositional logic [McCosh
2003]. This approach represents the shape constraints of a statement as a se-
quence of clauses, where each clause is a valid assignment of types to program
variables. A graph is then used to combine the constraints over the entire func-
tion and the solution process is reduced to that of finding n-cliques over the
graph. Loops are handled by casting the CFG into the SSA form and modeling
the φ-function introduced at join points. The work in McCosh [2003] differs from
ours in its main objective: to generate type-based specializations of libraries for
specific client contexts.

2.3 Shape-Aware Array Language Designs

There has also been work on the bottom-up design of tacitly typed array lan-
guages that permit a complete static analysis of shape. An example is the FISh
language [Jay and Steckler 1998], which achieves this by the imposition of
shape constraints, such as not allowing an array’s shape to change during ex-
ecution. Restrictions of this kind don’t exist in MATLAB. Also, it isn’t clear
whether the facilities in FISh are sufficient for the language to be used in a
production setting; the only nontrivial FISh programs on which timings have
been reported appear to be the fast Fourier transform, quicksort, and matrix
multiplication [Jay and Steckler 1998].

3. OVERVIEW OF OUR APPROACH

Let S℘ be the set of array shapes, C the set of complex numbers, and � = ⋃
k≥0 C

k

the set of all tuples consisting of complex numbers (including the empty tuple).
Then, every n-element array e in a language such as MATLAB could be thought
of as corresponding to an element (χ (e), κ(e)) in � × S℘ , where χ (e) is the tuple
of the array elements in e taken in some particular order, and κ(e) is a (unique)
denotation of the array structure on these elements. An operation f in MATLAB
can thus be considered a mapping from (� × S℘)n to � × S℘ .8 Our basic idea to
shape determination is to decouple f into a pair of mappings, fd : (�×S℘)n �→ �

and ḟ : (� × S℘)n �→ S℘ , that separately describes its elemental and shape
effects, and to symbolically evaluate the computations associated with ḟ at
translation-time.

There are two gains from this approach:

(1) For a large class of operations that we call Type I, the shape operator ḟ
of f is independent of �, that is, ḟ is simply a mapping from S

n
℘ to S℘ .

Consequently, their shape computations could be evaluated independently
of the main program.

(2) For the Type I class, the collection of shape operators defines a rich algebraic
structure on S℘ . Properties in this algebra could permit the simplification
of shape computations, even though they may not be reducible to an explicit

8The arity n includes all operands that may influence f , including implicit influences such as global

variables. The inputs to f are assumed to be such that it doesn’t go into an infinite loop. Also, we

presently ignore ill-conforming inputs, that is, those that may cause f to abnormally exit.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 5, September 2006.

858 • P. G. Joisha and P. Banerjee

Fig. 6. Pruned SSA form of Figure 1, with decoupled shape semantics.

shape at translation-time. This means that the runtime overhead associ-
ated with their execution can be either mitigated or eliminated.

Figure 6 shows the shape computations for a pruned static single assignment
(SSA) form [Cytron et al. 1991] of Figure 1.9 Each shape computation immedi-
ately precedes its corresponding MATLAB statement, and is shown using a �
prefix (to keep the exposition simple, the figure ignores the explicit representa-
tion of the fd part of a statement’s f). For instance, in Line 2, only the shape
of a1 is affected. Its new shape can be described by the computation

κ(a1) ← κ(b0)+̇(¬̇κ(b0)),

where ¬̇ and +̇ are, respectively, the shape operators corresponding to the com-
plex conjugate transpose and array addition operations in MATLAB. In this
case, the shape of a1 is fully describable, given the shape of b0. In fact, the
shapes of all the expressions in Figure 6 are fully describable, given the gate
variables P and Q and the shapes of a0, b0, and e0. The shape computations
can thus be regarded as forming a “shape program” that can be reasoned over
and partially evaluated.

The rest of this article is organized as follows. We begin by formalizing the
notion of an array shape in Section 4. The section addresses the issue of array
ranks and describes a key property exhibited by MATLAB that we call selec-
tive rank demotion, which allows all shape computations for the language to be
viewed in a rank-neutral manner. The modeling of these shape computations
and the algebraic structure that they induce is discussed in Section 5. Section 6
then presents a method to mechanically evaluate shape computations. At the
heart of the method is a rewriting process that represents algebraic identities
using rules and that handles the properties of commutativity and associativity
by special structural transformations. Two important and illustrative applica-
tions of the method to shape analysis are discussed in Section 7. In the first,
we perform a kind of peephole analysis on stretches of code paths to determine

9A pruned SSA form forgoes φ-function assignments to variables that aren’t subsequently used.

The injected φ-function assignments that achieve the SSA property are shown in gated curried

form (see Section 6.6), with P and Q serving as the gate variables.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 5, September 2006.

An Algebraic Array Shape Inference System for MATLAB • 859

identical shapes. In the second, we use the symbolic evaluation method in an
abstract interpretation of the control-flow graph so as to approximately calcu-
late the set of shapes assumed by a MATLAB expression. The applicability of
the symbolic evaluation scheme to other classes of language operators is then
discussed in Section 8. Finally, Section 9 reports measurements of an imple-
mentation on a benchmark suite that is composed mainly of publicly available
MATLAB programs.

4. THE SEMANTICS OF SELECTIVE RANK DEMOTION—BASIS FOR A
FIXED-RANK SHAPE CALCULUS FOR MATLAB

Logically, all arrays in MATLAB have at least two dimensions. For example, a
scalar is a 1×1 matrix and a column vector is an x×1 matrix. A pivotal decision
that went into MATLAB’s design, intentional or not, was to completely ignore
trailing extents of unity from the third dimension onwards in its operational
semantics. For instance, an array of shape 〈2, 3, 1, 2, 1〉 is always treated as if
it is of shape 〈2, 3, 1, 2〉. This selective demotion of an array’s rank implies that
any array shape analysis for MATLAB can assume all shapes as being padded
by an indefinite run of unit extents; that is, all arrays as having a very large,
common fixed rank.

Assuming that the set LS of shape tuples is

LS = {〈w1, w2, . . . , wm〉 | m ≥ 2 ∧ wi ∈ W for all 1 ≤ i ≤ m}, (6)

selective rank demotion in MATLAB is, in essence, a subtyping ℘ on LS such
that the two shape tuples s = 〈p1, p2, . . . , pk〉 and t = 〈q1, q2, . . . , ql 〉 are related
by ℘ if and only if they differ at most by trailing extents of unity beyond the
second dimension:

s℘t ⇔ (s = t)∨(s = 〈q1, q2, . . . , ql , 1, . . . , 1〉)∨(t = 〈p1, p2, . . . , pk , 1, . . . , 1〉). (7)

4.1 Canonical Shape Tuples and Ranks

Clearly, ℘ is also an equivalence relation on LS. If s is the equivalence class
under ℘ of the shape tuple s of a MATLAB expression e, then any element in
s would be an equally valid denotation of e’s shape. Therefore, the term shape
in this article will formally mean an equivalence class, or shape tuple class,
under ℘. The concept of equivalent shape tuples leads to the idea of an array’s
canonical shape tuple and rank: an array’s canonical shape tuple is obtained
from any of its equivalent shape tuples by discarding all trailing extents of
unity from the third component onwards, and its canonical rank is the smallest
rank that can be ascribed to it.10

4.1.1 Shape Errors. To accommodate shape errors, we include “illegal”
shape tuples by considering a set IS whose members don’t belong to LS. There
could be a number of suitable choices for IS; one such choice that doesn’t clash
with any subset of LS and also forms an equivalence class under ℘ is:

IS = {〈π1, π2〉, 〈π1, π2, 1〉, 〈π1, π2, 1, 1〉, . . . }. (8)

10The canonical rank is hence the number of components in the array’s canonical shape tuple.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 5, September 2006.

860 • P. G. Joisha and P. Banerjee

The aforementioned symbols π1 and π2 could be integers such that π1 < 0 or
π2 < 0, or both. We will represent the canonical illegal shape tuple 〈π1, π2〉 as
π. The augmented set S = LS ∪ IS will be the universe of shape tuples in this
article. The quotient set of S by ℘ [Tremblay and Manohar 1975], which is the
set of all shape tuple classes under ℘, will be denoted by S℘ .

4.1.2 Terminology. When describing MATLAB array structure in this ar-
ticle, the following terms will be used:

Illegal Array. An array whose canonical shape tuple is π. Illegal arrays
abstract MATLAB expressions that are ill-formed according to the shape
rules.

Matrix. A legal array whose canonical rank is two.

Scalar. A matrix with unit extents along the first and second dimensions.

Row Vector. A matrix with unit extent along the first dimension.

Column Vector. A matrix with unit extent along the second dimension.

Observe the overlap in some of these definitions—for example, that which
is a scalar is also a matrix and a vector. We shall use the phrase “higher-
dimensional array” when referring to legal arrays whose canonical ranks are
at least three. The term “array” by itself (without any qualification) could
mean an illegal array, a scalar, a row vector, a column vector, a matrix, or a
higher-dimensional array.

4.2 What Does Selective Rank Demotion Buy?

An important issue that must be addressed in the design of a shape analyzer for
any array language is how a program’s meaning will be affected by an array’s
rank. The key benefit of selective rank demotion is that it enables a simpler
shape analysis (since all arrays can be assumed to be of the same rank ω,
where ω is an ordinal number larger than any finite integer11) without altering
a program’s meaning.

While selective rank demotion and its incorporation into an array language’s
operational semantics may seem obvious, it doesn’t exist in languages such
as FORTRAN 90 and APL. An example of this in APL is a matrix with one
element. This has a different meaning than a column vector with one element,
and both have meanings different from a scalar. By contrast, the three are in-
distinguishable in MATLAB. An example of this in FORTRAN 90 are the arrays

REAL, DIMENSION (3, 2, 1) :: A
REAL, DIMENSION (3, 2) :: B

The shapes of A and B in the preceding, as far as FORTRAN 90 is concerned,
are distinct. An easy way to substantiate this difference is to invoke the array
inquiry intrinsic function SHAPE on A and B and compare the results.

11ω can be considered to be the first transfinite number, which is the “smallest” infinity with this

property.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 5, September 2006.

An Algebraic Array Shape Inference System for MATLAB • 861

4.3 Empty Arrays

The framework of this article automatically encompasses the empty array con-
struct, which both MATLAB and APL support. Empty arrays are legal arrays
that contain no data, but still have a shape. To quote from The MathWorks, Inc.
[1997]:

The basic paradigm for empty matrices is that any operation that
is defined for m-by-n matrices, and that produces a result whose
dimension is some function of m and n, should still be allowed when
m and n are 0. The size of the result should be that same function,
evaluated at 0.

An interesting consequence of this paradigm is the ability to conjure up
arrays out of nothing. For example, if we were to multiply a 〈2, 0〉 matrix by a
〈0, 3〉 matrix, the product would be a 〈2, 3〉 matrix with all of its elements set
to 0.

5. A SHAPE ALGEBRAIC SYSTEM

This section lays out a shape calculus for MATLAB that capitalizes on the prop-
erty of selective rank demotion. The approach is to represent array shapes via
shape tuples and to model the language’s shape semantics using shape tuple
equations. A shape tuple equation describes how the shape of a language op-
erator’s output is related to the shapes of its inputs when the latter are fixed
at certain ranks. This mathematical couching is done by capturing the various
possibilities admitted by the operator’s shape semantics using a combination
of matrix arithmetic and predicates. By virtue of the property of selective rank
demotion, shape tuple equations can be regarded as defining a one-to-one corre-
spondence among shape tuple classes. In this manner, they unmask an algebraic
structure on the set of shape tuple classes. Algebraic structures are attractive
because general properties about them can be characterized. These properties
can then be exploited by a code translator, even when explicit information on
array shapes is lacking at translation-time.

5.1 Shape Tuple Notation Duality

We first need a methodology to manipulate shape tuples. One systematic way
of doing this is to overload the notation 〈p1, p2, . . . , pn〉 to mean an n×n square
diagonal matrix in which each pi (1 ≤ i ≤ n) is a principal diagonal element:

〈p1, p2, . . . , pn〉 =

⎛⎜⎜⎜⎜⎝
p1 0 . . . 0

0 p2 . . . 0

...
...

. . .
...

0 0 . . . pn

⎞⎟⎟⎟⎟⎠. (9)

This allows the machinery of matrix arithmetic to be used when working with
shape tuples, avoiding to a large extent the need to invent new notation. An
example is the determinant |s| that expresses the size of an array whose shape
tuple is s.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 5, September 2006.

862 • P. G. Joisha and P. Banerjee

The notation 〈p1, p2, . . . , pn〉� will be used to mean the shape tuple with
ω components that is equivalent to 〈p1, p2, . . . , pn〉 by the subtyping ℘ in
Equation (7):

〈p1, p2, . . . , pn〉� =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p1 0 . . . 0 0 . . .

0 p2 . . . 0 0 . . .

...
...

. . .
...

...

0 0 . . . pn 0 . . .

0 0 . . . 0 1 . . .

...
...

...
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (10)

From Equation (10), it is clear that s�� = s� for any shape tuple s.

5.2 Set-of-Shapes Predicates

The shape semantics of expressions in MATLAB are often conditioned on the
operands being of certain shapes. For instance, in the MATLAB statement

c ← a’

the operand a to the complex-conjugate transpose operation has to be a matrix
(see Section 4.1.2 for terminology) for the operation to be legal [The MathWorks,
Inc. 1997]. We say that the shape semantics in this case is conditioned on a being
a matrix.

A set-of-shapes (SS) predicate is a formalism that captures such conditions.
In general, an SS predicate flags the membership of a shape in a set of shapes.
If S ⊆ S℘ , an SS predicate PS is a mapping from S to the set B = {0, 1} such that

PS(s) =
{

1 if s ∈ S,

0 if s �∈ S.
(11)

5.2.1 An Extended Discrete Delta Function. All SS predicates can be uni-
formly expressed by using an extension of the discrete delta function δ (which
is usually defined on scalar reals) to square matrices. If s is an n × n matrix,
then δ(s) is either the n × n identity matrix I or the n × n zero matrix 0, as
follows:12

δ(s) =
{

I if s = 0,

0 if s �= 0.
(12)

Hence, any SS predicate PS can be formulated as

PS(s) = |ι� −
∏

l

(ι� − δ(s� − tl�))|, (13)

where ι = 〈1, 1〉 is the scalar shape tuple, and S = ⋃
l {tl}.

5.2.2 Some Special Set-of-Shapes Predicates. Certain SS predicates occur
so often that we use short forms to denote them. These are the scalar SS

12This extension differs slightly from that in Joisha et al. [2000] and Joisha and Banerjee [2001a].

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 5, September 2006.

An Algebraic Array Shape Inference System for MATLAB • 863

predicate α that flags a scalar shape, the legal SS predicate13 θ that indicates
a legal shape, and the matrix SS predicate β that flags a matrix shape:

α(s) = P{ι}(s) = |δ(s� − ι�)|, (14)

θ (s) = P{t | t �= π}(s) = |ι� − δ(s� − π�)|, (15)

β(s) = P{t | t �= π ∧ t�ε� = ε�}(s) = θ (s)|δ(s�ε� − ε�)|. (16)

In Equation (16), ε = 〈0, 0〉 is the shape tuple of a particular kind of empty
matrix.

5.3 Shape Tuple Equations

For certain functions in MATLAB we refer to as Type I, knowing the shapes of
the operands suffice to determine the shapes of all their results (some MATLAB
functions return more than one result). Consider the MATLAB statement

c ← f (a, b, . . .),

where f is a Type I language operator of arity m (m ≥ 0). Then, if u denotes
the shape tuple of c, and si the shape tuple of the ith operand (1 ≤ i ≤ m) to f ,
the following shape tuple equation can be shown to always hold among them:

u� =
illegal shape tuple combo︷ ︸︸ ︷

(1 − θ f (s1, s2, . . . , sm))π� + θ f (s1, s2, . . . , sm)H f (s1
�, s2

�, . . . , sm
�)︸ ︷︷ ︸

legal shape tuple combo

. (17)

To understand Equation (17), we begin by observing that u is always either a
legal or illegal shape tuple. Moreover, by the definition of a Type I language
operator it should be possible to distinguish these two conditions, given the
shape tuples si of the operands to f . This suggests the existence of a function
θ f : S

m �→ B that could be used to perform such a discrimination. Clearly,
when all the si are legal shape tuples and comply with the shape semantics
of f , u must also be a legal shape tuple; we signal these situations by setting
θ f (s1, s2, . . . , sm) to 1. When combinations of legal shape tuples don’t adhere to
the shape requirements of f , u must be an illegal shape tuple; we mark these
cases by setting θ f (s1, s2, . . . , sm) to 0. What about the abstract situation in which
one or more of the si are illegal shape tuples? In this case, we postulate that u is
also an illegal shape tuple. Doing so ensures that in the denotational semantics,
the information pertaining to a shape error, once engendered, is propagated
through the rest of the program from the point of origination. Hence, θ f can be
formally defined as follows:

θ f (s1, s2, . . . , sm) =

⎧⎪⎨⎪⎩
1 if si �= π for all 1 ≤ i ≤ m, and

the sis conform to the shape rules of f ,

0 otherwise.

(18)

The function H f : S
m
ω �→ Sω describes how combinations of legal shapes that

accord with the shape semantics of f map to a legal shape. In particular, Sω

13This is referred to as the correctness shape predicate in Joisha et al. [2000] and Joisha and

Banerjee [2001a].

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 5, September 2006.

864 • P. G. Joisha and P. Banerjee

is the subset of all shape tuples in S having ω components. By limiting the
codomain of H f to Sω, the matrix arithmetic in Equation (17) is guaranteed to
be well-defined. By limiting the domain of H f to S

m
ω , we are assured that related

shape tuples are mapped the same way by H f , that is,

H f (s1
�, s2

�, . . . , sm
�) = H f (t1�, t2�, . . . , tm�) (19)

whenever si ℘ ti for all 1 ≤ i ≤ m, because si
� then equals ti� for all i.

Since the effect of H f (s1
�, s2

�, . . . , sm
�) in Equation (17) comes through to the

lefthand side only when θ f (s1, s2, . . . , sm) = 1, H f has free reign on how to map
combinations that involve illegal shapes, or combinations of legal shapes, that
don’t conform to the shape rules of f . This is because its contribution in these
cases is suppressed by a zero-valued θ f (s1, s2, . . . , sm). While this implies that a
family of H f exists for a given f , we try to formulate an H f that is as simple
as possible.

5.4 Sample Shape Tuple Equations

Thus, to form Equation (17) for a given f , only θ f and an H f need to be ascer-
tained. This can be done by couching the English descriptions of f in the lan-
guage of matrix arithmetic. For instance, MATLAB’s complex-conjugate trans-
pose operation requires the operand to be a matrix; it is illegal to apply it on a
higher-dimensional array. When applied on matrices, it resembles the standard
transpose operation in linear algebra. This yields the following θ f and H f :

θ′ (s) = β(s), (20)

H′ (s�) = Ψs�Ψ, (21)

where Ψ stands for a particular ω × ω elementary matrix [Banerjee 1993]:

Ψ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0 0 . . .

1 0 0 . . . 0 0 . . .

0 0 1 . . . 0 0 . . .

...
...

...
. . .

...
...

0 0 0 . . . 1 0 . . .

0 0 0 . . . 0 1 . . .

...
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (22)

Elementary matrices arise in connection with the elementary row and col-
umn operations in linear algebra [Banerjee 1993]. A multiplication with these
matrices results in a reversal (multiplication of a row or column by −1), an in-
terchange (exchange of two rows or columns), or a skew (addition of an integer
multiple of a row or column to another row or column, respectively). In the case
of Ψ, a premultiplication causes the first two rows to be interchanged, while a
postmultiplication results in the first two columns being interchanged. Thus,
the net effect in Equation (21) is to exchange the first two principal diagonal
elements in s�.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 5, September 2006.

An Algebraic Array Shape Inference System for MATLAB • 865

As another illustration of how θ f and H f may be determined, consider

c ← a+b,

where f is the array addition operation in MATLAB. The shape semantics of
this operation entails at least one operand with the scalar shape or operands
with identical shapes. Hence, if s and t are the shape tuples of a and b, respec-
tively, then

θ+(s, t) = θ (s)θ (t)(α(s) + α(t) + |δ(s� − t�)| − 2α(s)α(t)), (23)

H+(s�, t�) = α(s�)t� + (1 − α(s�))s�. (24)

Notice that Equation (23) complies with Equation (18) and that Equation (24)
indeed defines a function from S

2
ω to Sω that portrays how legal shapes map to a

legal shape under the shape semantics of MATLAB’s array addition operation.
Table I displays the θ f and H f for a few Type I built-in functions f . For

both a discussion on how these were obtained and a longer list, see Joisha et al.
[2000]. The symbols ε1 and ε2 in the table stand for 〈0, 1〉 and 〈1, 0〉, respectively.

5.4.1 An Example with All Array Extents Known. Consider the statement

c ← a*b

and suppose that the shape tuples of a and b are s1 = 〈7, 5〉 and s2 = 〈5, 6〉,
respectively. Then from Equations (12), (14), (15), and (16):

|δ(s1
�ε�

1 − Ψs2
�Ψε�

1)| = |δ(〈0, 5〉� − 〈0, 5〉�)| = |δ(0)| = |I| = 1,

α(s1) = α(s1
�) = α(s2) = α(s2

�) = 0,

θ (s1) = θ (s2) = 1,

β(s1) = β(s2) = 1.

Consulting Table I, we thus have

θ∗(s1, s2) = 1,

H∗(s1
�, s2

�) = 〈7, 6〉�.
Hence, from Equation (17) the shape tuple of c can be any u such that

u� = 〈7, 6〉�.
5.4.2 An Example with Some Array Extents Unknown. Consider the

statement

c ← a+b

and suppose that the shape tuples of a and b are s1 = 〈p1, 3〉 and s2 = 〈2, q2, q3〉,
respectively, where p1, q2, and q3 are all unknown. Then from Equation (12)

|δ(s1
� − s2

�)| = δ(p1 − 2)δ(q2 − 3)δ(q3 − 1),

where the righthand side δ is the discrete delta function as applied to integers:

δ(x) =
{

1 if x = 0,

0 if x �= 0.
(25)

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 5, September 2006.

866 • P. G. Joisha and P. Banerjee

T
a

b
le

I.
θ

f
a

n
d
H

f
fo

r
S

o
m

e
T

y
p

e
I

L
a

n
g
u

a
g
e

O
p

e
ra

to
rs

in
M

A
T

L
A

B

f
θ

f
H

f

a
∗b

θ
(s

)θ
(t

)(1
−

(1
−

α
(s

))
(1

−
α

(t
))

(1
−

β
(s

)β
(t

)|δ
(s

� ε
� 1

−
Ψ

t�
Ψ
ε� 1

)|)
)

α
(t

�)
s�

+
(1

−
α

(t
�)

)(α
(s

�)
t�

+
(1

−
α

(s
�)

)(
s�
ε� 2

+
t�
ε� 1

−
ι�
ε�

))
a
+
b

a
.
*
b

a
.
^
b

a
.
/
b

a
.\b a
<
b

a
|
b

θ
(s

)θ
(t

)(
α

(s
)
+

α
(t

)
+

|δ(
s�

−
t�

)|−
2
α

(s
)α

(t
))

α
(s

�)
t�

+
(1

−
α

(s
�)

)s
�

a
^
b

β
(s

)β
(t

)(1
−

(1
−

α
(s

)|δ
(Ψ

t�
Ψ

−
t�

)|)
(1

−
α

(t
)|δ

(Ψ
s�
Ψ

−
s�

)|)
)

α
(s

�)
t�

+
(1

−
α

(s
�)

)s
�

a
’

a
.
’

β
(s

)
Ψ

s�
Ψ

a
/
b

θ
(s

)θ
(t

)(1
−

(1
−

α
(s

))
(1

−
α

(t
))

(1
−

β
(s

)β
(t

)|δ
(s

� ε
� 1

−
t�
ε� 1

)|)
α

(s
�)

t�
+

(1
−

β
(s

�)
)t

� +
(1

−
α

(s
�)

)β
(s

�)
(s

� ε
� 2

+
Ψ

t�
Ψ
ε� 1

−
ι�
ε�

)

a
\b

θ
(s

)θ
(t

)(1
−

(1
−

α
(s

))
(1

−
α

(t
))

(1
−

β
(s

)β
(t

)|δ
(s

� ε
� 2

−
t�
ε� 2

)|)
α

(t
�)

s�
+

(1
−

β
(t

�)
)s

� +
(1

−
α

(s
�)

)β
(s

�)
(Ψ

s�
Ψ
ε� 2

+
t�
ε� 1

−
ι�
ε�

)

[
a
;

b
]

θ
(s

)θ
(t

)|δ
(s

� ε
� 1

−
t�
ε� 1

)|
s�

+
t�

(ι
� −

ε� 1
)

[
a
,

b
]

θ
(s

)θ
(t

)|δ
(s

� ε
� 2

−
t�
ε� 2

)|
s�

+
t�

(ι
� −

ε� 2
)

~
a

t
a
n
(
a
)

e
x
p
(
a
)

f
i
x
(
a
)

f
f
t
(
a
)

θ
(s

)
s�

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 5, September 2006.

An Algebraic Array Shape Inference System for MATLAB • 867

From Equations (14) and (15), and the fact that π1 �= 2 and π2 �= 3, we also have

α(s1) = α(s1
�) = α(s2) = α(s2

�) = 0,

θ (s1) = θ (s2) = 1.

Therefore from Table I,

θ+(s1, s2) = δ(p1 − 2)δ(q2 − 3)δ(q3 − 1),

H+(s1
�, s2

�) = 〈2, q2, q3〉�.
Hence, from Equation (17), the shape tuple of c can be any u such that

u� = 〈Dπ1 + (1 − D)2, Dπ2 + (1 − D)q2, D + (1 − D)q3〉�, (26)

where D = 1 − θ+(s1, s2) = 1 − δ(p1 − 2)δ(q2 − 3)δ(q3 − 1).

5.5 Towards a Congruent Subtyping

An equivalence relation E on some set S is said to have the substitution property
with respect to a binary operation • that is closed on S if and only if

(x E x ′) ∧ (y E y ′) =⇒ (x • y) E (x ′ • y ′)

for all x, y , x ′, y ′ ∈ S [Tremblay and Manohar 1975]. If the righthand side of
Equation (17) is viewed as the function f̈ : S

m �→ S, it can be shown that the
subtyping ℘ has the substitution property with respect to f̈ .

THEOREM 3. Consider two systems of solutions for Equation (17):

u� = (
1 − θ f (s1, s2, . . . , sm)

)
π� + θ f (s1, s2, . . . , sm)H f (s1

�, s2
�, . . . , sm

�), (27)

v� = (
1 − θ f (t1, t2, . . . , tm)

)
π� + θ f (t1, t2, . . . , tm)H f (t1�, t2�, . . . , tm�). (28)

In addition, suppose si ℘ ti holds for all 1 ≤ i ≤ m. Then u℘ v must also be true.

PROOF. Because si ℘ ti holds for all 1 ≤ i ≤ m, we have

θ f (s1, s2, . . . , sm) = θ f (t1, t2, . . . , tm)

from Equation (18) and the fact that ℘ is a subtyping. That si ℘ ti for all 1 ≤
i ≤ m also gives us H f (s1

�, s2
�, . . . , sm

�) = H f (t1�, t2�, . . . , tm�) by Equation (19).
Hence, Equations (27) and (28) yield u� = v�, thus implying u ℘ v.

Equivalence relations such as ℘ that satisfy the substitution property with
respect to some operation are called congruences [Tremblay and Manohar 1975].
Congruences are useful because they expose an algebraic structure among
equivalence classes.

To elucidate, let us revisit the MATLAB statement c ← a+b examined in
Section 5.4.2, but suppose that the shape tuples of a and b are t1 = 〈p1, 3, 1, 1〉
and t2 = 〈2, q2, q3, 1, 1〉 instead of s1 = 〈p1, 3〉 and s2 = 〈2, q2, q3〉, respectively.
Then reworking the steps of the example, we obtain

θ+(t1, t2) = δ(p1 − 2)δ(q2 − 3)δ(q3 − 1),

H+(t1�, t2�) = 〈2, q2, q3〉�,
ACM Transactions on Programming Languages and Systems, Vol. 28, No. 5, September 2006.

868 • P. G. Joisha and P. Banerjee

and that the shape tuple of c can be any v such that

v� = 〈D′π1 + (1 − D′)2, D′π2 + (1 − D′)q2, D′ + (1 − D′)q3〉�, (29)

where D′ = 1 − δ(p1 − 2)δ(q2 − 3)δ(q3 − 1). Comparing this with Equation (26),
we can therefore conclude that v must be related to the shape tuple u by ℘, a
conclusion that Theorem 3 presages, since s1 ℘ t1 and s2 ℘ t2.

5.6 An Algebraic Structure on the Set of Shapes

Let ḟ be a binary relation from S
m
℘ to S℘ such that

(s1, s2, . . . , sm) ḟ u if ∃y ∈ u, and for all 1 ≤ i ≤ m, ∃xi ∈ si
such that y� = f̈ (x1, x2, . . . , xm),

(30)

where the function f̈ : S
m �→ S stands for the righthand side of Equation (17).

Since there always exists a uthat honors Equation (17) for any given collection
of sis, ḟ is total, meaning that for every z in S

m
℘ , there exists a w in S℘ such that

(z, w) belongs to ḟ . In addition, from Theorem 3, ḟ must be single-valued, since

((z, u) ∈ ḟ) ∧ ((z, v) ∈ ḟ) =⇒ u= v

for all z ∈ S
m
℘ . Hence, ḟ defines an m-ary operation on S℘ .14 Recall that an alge-

braic structure, also referred to as an algebraic system or simply an algebra, is
a set with one or more finitary operations defined on it [Tremblay and Manohar
1975]. Therefore, if Ḟ is the set of all shape operators corresponding to Type I
MATLAB functions, then Ḟ and the set-of-shapes S℘ form the algebraic system
[S℘ , Ḟ]. Examples of shape operators are +̇ and ∗̇, which respectively denote
the shape semantics of the + and * operations in MATLAB.

5.7 Characterizing the Shape Algebra

The various shape operators in Ḟ have a number of interesting properties that
can be derived by consulting their θ f and H f functions. Lemma 1 shows an
example (for the proofs of all lemmas in this article, the reader is referred
to Joisha [2003]).

LEMMA 1. The shape operator +̇ is associative.

A number of other similar identities can be characterized. Some of these
are listed in Table II (for derivations, see Joisha et al. [2000] and Joisha
and Banerjee [2002]). As Table II shows, even though ∗̇ isn’t a fully associa-
tive operator,15 it still exhibits certain restrictive forms of association. More
importantly, the number of applications of ∗̇ in each of these forms of asso-
ciation matters! For instance, while both 〈1, 2〉∗̇(〈1, 2〉∗̇(〈1, 2〉∗̇(〈1, 2〉∗̇〈2, 1〉)))
and 〈1, 2〉∗̇(〈1, 2〉∗̇(〈1, 2〉∗̇〈2, 1〉)) equal π, 〈1, 2〉∗̇(〈1, 2〉∗̇(〈1, 2〉∗̇〈2, 1〉)) and
〈1, 2〉∗̇(〈1, 2〉∗̇〈2, 1〉) aren’t the same.

Characterizations involving a combination of shape operators can also be
derived [Joisha and Banerjee 2002] and are shown in Table II. We adopt the

14Any binary relation that is total and single-valued is a function. And any function from Sm to S
constitutes an m-ary operation on S [Tremblay and Manohar 1975].
15As an example, (〈1, 2〉∗̇〈2, 1〉)∗̇〈3, 2〉 = 〈3, 2〉, whereas 〈1, 2〉∗̇(〈2, 1〉∗̇〈3, 2〉) = π.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 5, September 2006.

An Algebraic Array Shape Inference System for MATLAB • 869

Table II. Sample Shape Identities for Type I MATLAB Functions

Homogenous Identities Heterogenous Identities

π+̇s = s+̇π = π (Annihilation) s+̇(s∗̇s) = s∗̇s
ι+̇s = s+̇ι = s (Identity) (s+̇t)∗̇(s+̇t) = s∗̇s+̇t∗̇t

s+̇s = s (Idempotency) (s∗̇t+̇s+̇t)∗̇(s∗̇t+̇s+̇t) = s∗̇s+̇t∗̇t
s+̇t = t+̇s (Commutativity) (s+̇t)∗̇t = s+̇t∗̇t

(s+̇t)+̇u= s+̇(t+̇u) (Associativity) s∗̇(s+̇t) = s∗̇s+̇t
π∗̇s = s∗̇π = π (Annihilation) s∗̇s+̇s∗̇t = s∗̇s+̇t
ι∗̇s = s∗̇ι = s (Identity) s∗̇t+̇t∗̇t = s+̇t∗̇t

(s∗̇s)∗̇(s∗̇s) = s∗̇s ⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (Restrictive Forms of Association)

(s∗̇s+̇t)∗̇(t∗̇t+̇s) = s∗̇s+̇t∗̇t
s∗̇(s∗̇s) = s∗̇s (s+̇t∗̇t)∗̇t = s+̇t∗̇t
(s∗̇s)∗̇s = s∗̇s s∗̇(s∗̇s+̇t) = s∗̇s+̇t

s∗̇(
s∗̇(s∗̇(s∗̇t))

) = s∗̇(s∗̇(s∗̇t)) ¬̇(s∗̇t) = ¬̇t∗̇¬̇s(
((s∗̇t)∗̇t)∗̇t

)∗̇t = ((s∗̇t)∗̇t)∗̇t s+̇¬̇s = s∗̇s

convention that +̇, ∗̇, and ¬̇ have increasing precedence; this will make the
use of parentheses unnecessary whenever operators can be bound according to
precedence.

6. SYMBOLIC SHAPE EXPRESSIONS AND THEIR AUTOMATIC EVALUATION

This section presents a symbolic evaluator called MULTIPASS-EVAL that automates
the shape calculus described in Section 5. MULTIPASS-EVAL takes in a tree repre-
sentation of a shape expression and returns its symbolically evaluated version.
The kernel in MULTIPASS-EVAL is a “single-step” evaluator called ONE-PASS-EVAL

that simplifies shape expressions using previously characterized properties of
the shape algebra [S℘ , Ḟ]. With the exception of the commutativity and asso-
ciativity properties, which are handled by special structural transformations,
these characterizations are encoded as rewriting rules and are brought to bear
by a rewriting process.

6.1 Shape Terms

Given the set Λ∗ of syntactic representations of elements in S℘ and a set S of
“shape variable” symbols, we define the set Λ of well-formed rooted ordered trees
over S and Λ∗ as the smallest set containing S and Λ∗ such that ḟ n(t1, t2, . . . , tn)
is in Λ whenever ḟ n is an n-ary shape operator in Ḟ , and ti is in Λ for all 1 ≤
i ≤ n. Using grammar productions, this set of shape terms could be inductively
defined as

Λ ::= S | Λ∗ | Ḟ1(Λ) | Ḟ2(Λ, Λ) | Ḟ3(Λ, Λ, Λ) | . . . ,

where Ḟ = ⋃
n≥1 Ḟn, and Ḟn is the set of all n-ary operators in Ḟ . We also

categorize the set of shape variables S into two sorts, namely, the set Ŝ of shape
variables that are used to denote explicit shape terms (elements in Λ∗), and the
set S̃ of shape variables that are used to denote symbolic shape terms (elements
in Λ − Λ∗):

S ::= Ŝ | S̃.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 5, September 2006.

870 • P. G. Joisha and P. Banerjee

The goal of this section is to symbolically evaluate elements in Λ by rewriting
one shape term into another, using whatever may be the known properties of
[S℘ , Ḟ]. A shape property for our purposes is an equation of the form l = r
between two shape terms l and r that is an identity in [S℘ , Ḟ]. This is modeled
as either (or both) of the ordered pairs (l , r) and (r, l) in Λ × Λ. The ordered
pair (l , r) will be referred to as a rewrite rule and specifically depicted as l →
r [Dershowitz and Plaisted 2001]. As we shall see later, it isn’t necessary that
all the properties of [S℘ , Ḟ] be known, although the more we know, the greater
the potential for a “better” inference, that is, an inference that conveys more
specialized information. And the greater the specialized nature of an inference,
the greater is the degree of tailoring possible in a compiler’s or interpreter’s
generated code.

6.2 Rewriting with Rules

We say that a rule l → r rewrites a shape term s if there exists a substitu-
tion [Robinson 1965] of shape variables to shape terms that causes l to match
s. Though a substitution is defined as a mapping ξ from S to Λ, it is used after
being homomorphically extended to a mapping from Λ to Λ. That is,

ξ (ḟ n(t1, t2, . . . , tn)) = ḟ n(ξ (t1), ξ (t2), . . . , ξ (tn)) (31)

holds for every shape operator ḟ n, where each ti is a shape term. The matching
of l to s is a type of unification [Knight 1989]: If l matches s, then there exists
a substitution ξ such that ξ (l) = s.16 In the event that l → r does rewrite s,
the rewritten shape term is ξ (r), where ξ is the matching substitution used.
The particular variant of unification considered in this article is a many-sorted
one [Walther 1988] by which different sorts of variables in S unify only with
terms in Λ that are of the same sort or a subsort. For instance, an explicit shape
variable x̂ in Ŝ unifies only with terms in Λ∗, while a symbolic shape variable
ỹ in S̃ unifies only with terms in Λ − Λ∗. An unqualified shape variable z can
unify with any term in Λ.

As a concrete example, the shape term

〈5, 5〉+̇(〈5, 5〉∗̇〈5, 5〉)
can be rewritten into 〈5, 5〉∗̇〈5, 5〉 by the rule

x+̇(x∗̇x) → x∗̇x

because there exists the substitution ξ = {x ↪→ 〈5, 5〉} that allows x+̇(x∗̇x) to
match 〈5, 5〉+̇(〈5, 5〉∗̇〈5, 5〉) (conventionally, substitutions are expressly written
as a set of bindings of only those variables that aren’t mapped to themselves).
The result of the rewrite is 〈5, 5〉∗̇〈5, 5〉 because ξ (x∗̇x) = 〈5, 5〉∗̇〈5, 5〉. Observe
that this result conveys the fact that adding the product of any pair of 5 × 5
matrices with another 5 × 5 matrix has the same shape as the product.

16We are only concerned with unification over first-order terms, since our shape variables are

permitted to range only over shape terms and not over function symbols.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 5, September 2006.

An Algebraic Array Shape Inference System for MATLAB • 871

6.2.1 Uniqueness of Matching Substitutions. Let V(s) stand for the set of
all variables in a shape term s and let � be the set of all possible valid17 substi-
tutions ξ : S �→ Λ. Then, as Theorem 4 to follow will show, if ξ ′ and ξ ′′ are two
mappings in � that match s to a target shape term, the restrictions of ξ ′ and ξ ′′

to V(s) have to be identical. Recall that the restriction of a function g : X �→ Y
to some subset X ′ of X is the mapping h : X ′ �→ Y such that h(x ′) = g (x ′) for
all x ′ in X ′ [Tremblay and Manohar 1975]; this is usually designated as g/X ′.

THEOREM 4. If ξ ′ and ξ ′′ are substitutions in � such that ξ ′(s) = ξ ′′(s), then

ξ ′/V(s) = ξ ′′/V(s).

PROOF. We shall use structural induction to prove this claim. The base case
coincides with s belonging to Λ∗ ∪ S, for which the theorem trivially holds.
For the inductive step, we shall prove that if the claim holds for a group of si
(1 ≤ i ≤ n) in Λ, then it will also hold for ḟ n(s1, s2, . . . , sn), where ḟ n is an
operator in Ḟ .

Suppose ξ ′(ḟ n(s1, s2, . . . , sn)) = ξ ′′(ḟ n(s1, s2, . . . , sn)). Then from Equation (31),

ḟ n(ξ ′(s1), ξ ′(s2), . . . , ξ ′(sn)) = ḟ n(ξ ′′(s1), ξ ′′(s2), . . . , ξ ′′(sn)).

Hence for all 1 ≤ i ≤ n, we have by the definition of a match,

ξ ′(si) = ξ ′′(si).

However, from the induction hypothesis, ξ ′/V(si) = ξ ′′/V(si). Now, by viewing
restrictions as binary relations, we can take their union. This gives us

n⋃
i=1

ξ ′/V(si) =
n⋃

i=1

ξ ′′/V(si). (32)

Since any restriction of g : X �→ Y to some subset X 1 ∪ X 2 of X is expressible
as g/X 1 ∪ g/X 2, Equation (32) can be rewritten as

ξ ′/
n⋃

i=1

V(si) = ξ ′′/
n⋃

i=1

V(si). (33)

However, ∪n
i=1V(si) = V(ḟ n(s1, s2, . . . , sn)). Therefore, Equation (33) gives us

ξ ′/V(ḟ n(s1, s2, . . . , sn)) = ξ ′′/V(ḟ n(s1, s2, . . . , sn)), (34)

which completes the inductive step. Thus ξ ′/V(s) = ξ ′′/V(s) for all s ∈ Λ.

6.2.2 Connecting the Syntactic and Semantic Domains. Every element in
S℘ has at least one syntactic representation in Λ, namely, a representation in

Λ∗. For example, 〈4, 5〉, 〈4, 5, 1〉, and 〈4, 5, 1, 1〉 are all representations of the
same shape tuple class. An injective mapping Ψ from S℘ to Λ∗ can therefore
be defined such that Ψ (s) is some unique syntactic denotation of s. We set
this to 〈q1, q2, . . . , qk〉, where 〈q1, q2, . . . , qk〉 is the unique canonical shape tuple
corresponding to s.

17A valid substitution is only allowed to map variables to their corresponding sorts.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 5, September 2006.

872 • P. G. Joisha and P. Banerjee

Similarly, a surjective function ψ could be defined that maps every ground
shape term to its unique meaning in S℘ . Ground shape terms, which form a
subset Λg of Λ, are either explicit shape terms or operations on other ground
shape terms:

Λg ::= Λ∗ | Ḟ1(Λg) | Ḟ2(Λg , Λg) | Ḟ3(Λg , Λg , Λg) | . . .

The rewrite rule in Equation (35) to follow illustrates the usage of these func-
tions. Observe that the shape term ḟ n(x̂1, x̂2, . . . , x̂n) will only match those shape
terms whose root is the symbol ḟ n and whose children are elements in Λ∗.
Hence, what the rule in Equation (35) indicates is how a shape term depicting
an operation on explicit shape terms can be rewritten to an explicit shape term
(note that ḟ n is used syntactically on the lefthand side and semantically on the
righthand side).

ḟ n(x̂1, x̂2, . . . , x̂n) → Ψ (ḟ n(ψ(x̂1), ψ(x̂2), . . . , ψ(x̂n))). (35)

6.3 Rewrite Tuples and an Ordered Rewriter

A rewrite tuple is an element in (Λ × Λ)k and thus an ordered collection of
rewrite rules. Given the set of all rewrite tuples R = ⋃

k≥1(Λ×Λ)k and a shape
term s, a transformation called a rules applicator could be defined to wholly
rewrite s:

A(s, (l1 → r1, l2 → r2, . . . , lk → rk)) =⎧⎪⎪⎨⎪⎪⎩
ξ (r1) if ∃ξ ∈ � such that ξ (l1) = s,

s else if k = 1,

A(s, (l2 → r2, . . . , lk → rk)) otherwise.

(36)

The aforementioned rewriting diverges from traditional rewriting processes,
such as that in Dershowitz and Plaisted [2001], in two respects: (1) The rules
applicator disregards the rewriting of subterms, limiting itself to whole terms,
and (2) the choice of rule for rewriting is deterministic. These two provisions
enable the realization of a terminating symbolic evaluator that also satisfies,
after one additional stipulation, the Church-Rosser property (see Section 6.5.2).
Notice that while the choice of rewrite rule in Equation (36) is deterministic,
the outcome of the rewrite is still nondeterministic because the particular sub-
stitution ξ used is unspecified. This is why A, though a total relation from Λ×R
to Λ, isn’t a single-valued function.

Applications of A with some specimen rewrite tuples from R are given next,
where w, x, y , and z are shape variables in S, and û and v̂ are shape variables
in Ŝ:

A((x+̇x)+̇(x+̇x), (z+̇z → z, z+̇ι → z, ι+̇w → w)) = x+̇x,

A
(〈2, 3〉∗̇〈3, 4〉, (̂

u∗̇̂v → Ψ (ψ (̂u)∗̇ψ (̂v))
)) = 〈2, 4〉,

A(x+̇(y+̇ y), (z+̇z → z, z+̇ι → z, ι+̇z → z)) = x+̇(y+̇ y).

In the first case, the rule z+̇z → z is used with the matching substitution {z ↪→
x+̇x}. In the second case, the single rule applies with the matching substitution

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 5, September 2006.

An Algebraic Array Shape Inference System for MATLAB • 873

Fig. 7. Structural flattening of a shape term’s rooted ordered tree.

{̂u ↪→ 〈2, 3〉, v̂ ↪→ 〈3, 4〉}. In the third case, no rule matches x+̇(y+̇ y). Observe
that in the first two cases, the images are unique.

6.4 Commutativity and Associativity

The properties of commutativity and associativity are treated specially in our
approach and aren’t modeled as rules in a rewrite tuple. They are dealt with
external to the rules applicator as part of a symbolic evaluator of shape terms
(see Section 6.5). This is done so as to achieve a terminating evaluator, which
might not have been possible if a rule such as x+̇ y → y+̇x had been included
in the rules applicator’s rewrite tuple (in that situation, rewrites may oscil-
late back and forth between shape terms, resulting in an endlessly applicable
rules applicator18). In our approach, commutativity is handled by sorting shape
terms according to a total order � on the elements in Λ, and associativity is
managed by a pair of transformations, called SQUASH and UNSQUASH, that essen-
tially “flatten” and “unflatten” shape terms.

6.4.1 Squashing Shape Terms. The motivation for SQUASH is that the
parentheses in an associative operation are irrelevant. Its workings on
ḟ n(s1, s2, . . . , sn) is a two-step process: (1) Immediately nested occurrences of
ḟ n in the rooted ordered tree representation of ḟ n(s1, s2, . . . , sn) are flattened,
and (2) the ordered children of the root in the flattened structure are returned
as a tuple. An occurrence of ḟ n is considered to be “immediately nested” if its
parent is ḟ n and is the root of s, or if its parent is itself an immediately nested
occurrence of ḟ n in s. For instance,

SQUASH(x+̇(y+̇z)) = (x, y , z),

SQUASH(x∗̇(y+̇z)) = (x, y+̇z),

SQUASH((x∗̇ y)+̇(〈2, 5〉+̇ι)) = (x∗̇ y , 〈2, 5〉, ι).
Why does SQUASH return a tuple of the subterms in the flattened structure,
rather than the flattened structure itself? This is because, as shown in Figure 7,

18In traditional rewriting, ad hoc extensions are usually used to cope with the associativity

and commutativity axioms; the result is often termed AC rewriting [Dershowitz and Plaisted

2001].

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 5, September 2006.

874 • P. G. Joisha and P. Banerjee

Fig. 8. The SQUASH and UNSQUASH procedures.

such a structure may not be well-formed under the syntactical rules of Λ (the
flattened structure isn’t well-formed because +̇ isn’t a ternary operator).

Pseudocode given in Figure 8 provides the algorithmic definition of SQUASH.
Lines prefixed by the character are comments, and procedures such as root
denote primitives that are documented in Table III. The SQUASH procedure be-
gins by testing whether its argument s is “atomic.” If so, the one-component
tuple (s) is returned. If the test fails, then s will have to be of the form
ḟ n(s1, s2, . . . , sn). Its root ḟ n and arity n are then determined in Lines 3 and
4. Line 5 assigns the root’s children to tuple. As indicated in Table III, the
children primitive returns the ordered children of the root as a tuple, or ⊥ if the
root has no children. Lines 6 to 10 then iteratively extract each child si in tuple,
either recursively squashing it and assigning the result to tuplei if its root is
ḟ n, or assigning (si) to tuplei if not. The n tuples thus obtained are concatenated
and returned on Line 11.

Because the recursion on Line 9 is always on a smaller shape term, it is
easy to see that SQUASH always terminates when invoked on any shape term s.
Moreover, if T = ⋃

k≥1 Λk is the set of all shape term tuples, it is easy to verify
that SQUASH constitutes a function from Λ to T . Lemma 2 to follow shows the
connection between the arity of a shape term’s root and the length of its tuple
image under SQUASH.

LEMMA 2. If s = ḟ n(s1, s2, . . . , sn), then

length(SQUASH(s)) = n + m(n − 1), (37)

where m is the number of immediately nested occurrences of ḟ n in s.

6.4.2 “Unsquashing” Shape Terms. UNSQUASH does the opposite of SQUASH.
It rematerializes a shape term from ḟ n and tuple by recursively left-associating

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 5, September 2006.

An Algebraic Array Shape Inference System for MATLAB • 875

Table III. Primitive Procedures

Invocation Syntax Description Complexity

arity(f) arity of f O(1)

root(t) f if t = f (t1, t2, . . . , tn); t otherwise O(1)

iscommutative(f) true if f is commutative; false otherwise O(1)

isassociative(f) true if f is associative; false otherwise O(1)

children(t) (t1, t2, . . . , tn) if t = f (t1, t2, . . . , tn); ⊥ otherwise O(1)

build(f , (t1, t2, . . . , tn)) f (t1, t2, . . . , tn) if f is of arity n; ⊥ otherwise O(1)

length(T) k, where T = (t1, t2, . . . , tk) O(k)

component(T, k)
kth component in T if 1 ≤ k ≤ length(T); ⊥
otherwise

O(k)

take(T, k)
subtuple of first k components in T if 1 ≤ k ≤
length(T); ⊥ otherwise

O(k)

drop(T, k)
subtuple after dropping first k components in T if

0 ≤ k < length(T); ⊥ otherwise
O(k)

concat(T1, T2, . . . , Tk)
concatenate T1, T2, and so on until Tk (k ≥ 1) into

a single tuple
O(k)

sort(�, (t1, t2, . . . , tk))
a sorted version of (t1, t2, . . . , tk), sorted according

to the total order � O(ϑk log k)

lookup(s, subs)
lookup the binding s ↪→ t in subs and return t if it

exists; ⊥ otherwise
O(B)

update(s ↪→ t, subs)
update the current binding of s in subs to s ↪→ t if

it exists or insert s ↪→ t if it doesn’t
O(B)

substitute(t, subs)
the result of substituting symbols in t using well-

defined bindings available in subs
O(B‖t‖)

t, ti (i ≥ 1) stand for rooted ordered trees.

T, Ti (i ≥ 1) stand for ordered tuples.

Ordered tuples are stored as linked lists.

Tree nodes store their children as linked lists.

The value of ϑ in the asymptotic upper bound for sort depends on the time taken to compare a pair of shape

terms according to the � notation.

subs is a substitution represented as a linked list of B bindings of variables to terms.

‖t‖ stands for the number of nodes in t.

the shape terms in tuple with the n-ary shape operator ḟ n, or returning ⊥ if
such an association isn’t possible. Some examples of UNSQUASH at work are:

UNSQUASH(+̇, (x, y , z)) = (x+̇ y)+̇z,

UNSQUASH(∗̇, (x)) =⊥,

UNSQUASH(+̇, (x∗̇ y , 〈2, 5〉, ι)) = ((x∗̇ y)+̇〈2, 5〉)+̇ι.

Figure 8 also presents the pseudocode for UNSQUASH. Four possibilities can arise
during its execution, depending on the number of shape terms k in tuple and
the arity n of ḟ n: (1) If k < n, then ḟ n can’t be directly applied on the shape
terms in tuple, so ⊥ is returned; (2) if k = n, the only possible left-association
ḟ n(s1, s2, . . . , sn) is returned, where tuple = (s1, s2, . . . , sn); (3) if k > n, and n > 1,

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 5, September 2006.

876 • P. G. Joisha and P. Banerjee

UNSQUASH(ḟ n, (ḟ n(s1, s2, . . . , sn), sn+1, sn+2, . . . , sk)) is returned after associating
ḟ n with the first n shape terms; and finally, (4) if k > n, but n = 1, ⊥ is
returned because an association isn’t possible. The third case corresponds to
the recursive invocation of UNSQUASH on Line 11. Because the length of tuple′ is
k − n + 1, where n is strictly larger than 1, tuple′ is strictly smaller than tuple.
Thus, the recursive call is guaranteed to terminate, though it may still return
⊥. Lemma 3 next presents a necessary and sufficient condition for the third
case to always yield a shape term.

LEMMA 3. UNSQUASH(ḟ n, tuple) returns a shape term iff

length(tuple) = n + m(n − 1), (38)

where ḟ n is an n-ary shape operator and m is some nonnegative integer.

6.4.3 An Invariant under Squashing and Unsquashing. From Lemmas 2
and 3, UNSQUASH(ḟ n, SQUASH(s)) is always a shape term if s = ḟ n(s1, s2, . . . , sn).
Obviously, UNSQUASH(ḟ n, SQUASH(s)) may not be the same as s, for instance,

UNSQUASH
(+̇, SQUASH

(
x+̇(y+̇z)

)) = (x+̇ y)+̇z,

UNSQUASH
(+̇, SQUASH

(
(x∗̇ y)+̇(z+̇〈3, 1, 7〉))) = ((x∗̇ y)+̇z)+̇〈3, 1, 7〉,

UNSQUASH
(+̇, SQUASH

(
(x∗̇(x+̇x))+̇(x+̇x)

)) = ((x∗̇(x+̇x))+̇x)+̇x.

In fact, it follows from Lemma 4 that when n > 1, UNSQUASH(ḟ n, SQUASH(s))
and s will have the same number of immediately nested ḟ n tree nodes. Since
SQUASH(s) only knocks off immediately nested occurrences of ḟ n, this also means
that both s and UNSQUASH(ḟ n, SQUASH(s)) will then have exactly the same nodes,
although not necessarily in the same positions, as the previous examples have
shown.

LEMMA 4. If UNSQUASH(ḟ n, tuple) returns a shape term s, then

(n − 1)d = length(tuple) − n, (39)

where d is the number of nested occurrences of ḟ n in s that is added by
UNSQUASH.

6.5 A Symbolic Evaluator

Figure 9 shows the algorithm called ONE-PASS-EVAL, inspired by the standard
evaluation sequence in the Mathematica programming language [Wolfram
1999, 1034], that performs a single-step symbolic evaluation of a shape term.
It does this bottom-up, rewriting recursively evaluated subterms using a com-
bination of SQUASH, sort, UNSQUASH, and the rules applicator A. It consists of four
parts:

(1) Lines 1 and 2 that take care of atomic shape terms. Beyond Line 2, the
argument s will be of the form ḟ n(s1, s2, . . . , sn).

(2) Lines 3 to 9 that recursively apply ONE-PASS-EVAL to each of the subterms si
and concatenate their single-step evaluated versions s′

i into a single tuple.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 5, September 2006.

An Algebraic Array Shape Inference System for MATLAB • 877

Fig. 9. A one-pass depth-first evaluator.

Fig. 10. A multipass evaluator.

(3) Lines 10 to 16 that perform a kind of rewriting on ḟ n(s′
1, s′

2, . . . , s′
n) using

the commutativity and associativity axioms. The outcome t after Line 16
can be thought of as a canonicalized version of ḟ n(s′

1, s′
2, . . . , s′

n).

(4) Line 17 that rewrites the preceding result by using A with a fixed rewrite
tuple �.

The t computed on Lines 15 and 16 is always a shape term. This is because
build(ḟ n, tuple′) on Line 11 returns the shape term ḟ n(s′

1, s′
2, . . . , s′

n). Therefore,
from Lemma 2, the output of SQUASH on Line 11 will always be a tuple of length
n+m(n−1) for some nonnegative integer m. Since sort, if invoked, will return a
tuple having the same length as its argument, t on Line 15 is guaranteed to be
a shape term by Lemma 3. Similarly, t on Line 16 is guaranteed to be a shape
term because the length of tuple′ on that line will always be n.

Figure 10 shows MULTIPASS-EVAL, a general-purpose evaluator of shape terms
that uses the services of ONE-PASS-EVAL. MULTIPASS-EVAL works by repeatedly
applying ONE-PASS-EVAL until two successive applications produce the same
result.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 5, September 2006.

878 • P. G. Joisha and P. Banerjee

Examples of ONE-PASS-EVAL and MULTIPASS-EVAL in action, assuming � to be
(x+̇x → x, x∗̇ι → x, ι∗̇x → x), are:

ONE-PASS-EVAL((〈3, 2〉∗̇〈1, 1〉)+̇〈3, 2〉) = 〈3, 2〉+̇〈3, 2〉,
ONE-PASS-EVAL(〈3, 2〉+̇〈3, 2〉) = 〈3, 2〉,
ONE-PASS-EVAL(〈3, 2〉) = 〈3, 2〉,
MULTIPASS-EVAL((〈3, 2〉∗̇〈1, 1〉)+̇〈3, 2〉) = 〈3, 2〉,
MULTIPASS-EVAL(z+̇(ι∗̇z)) = z,

MULTIPASS-EVAL(u∗̇v) = u∗̇v.

6.5.1 Strong Normalization: A Termination Condition. A standard method
for proving termination of a rewriting process is to show that every rewrite
step decreases a term in some sense and that such a decrease can’t be in-
definite. Formally, this translates to showing the existence of a well-founded
relation � on the set of terms such that s � t whenever a rewrite step pro-
duces a term t from a term s [Dershowitz and Plaisted 2001]. A binary rela-
tion � is defined to be well-founded if there are no infinitely decreasing chains
of the form w0 � w1 � w2 � . . . [Mitchell 1996]. Termination follows from the
fact that a term can’t be rewritten into a different term beyond the end of a
chain.

Using x � y to mean either x � y or x = y , Theorem 5 to follow shows that
MULTIPASS-EVAL will always terminate if a well-founded � could be fabricated on
Λ such that s � ONE-PASS-EVAL(s) for every s in Λ.19 By considering the steps
in the code for ONE-PASS-EVAL in Figure 9, Lemma 5 presents a set of conditions
that if honored by �, ensures s � ONE-PASS-EVAL(s) for every s in Λ.

THEOREM 5. If � is a well-founded relation such that s � ONE-PASS-EVAL(s)
for any shape term s, then MULTIPASS-EVAL will always terminate.

PROOF. Since � is well-founded, there can’t be an infinitely decreasing chain
of the form s � ONE-PASS-EVAL(s) � ONE-PASS-EVAL

2(s) � . . . , where the meaning of
ONE-PASS-EVAL

i(s) for nonnegative integers i is

ONE-PASS-EVAL
i(s) =

{
ONE-PASS-EVAL(ONE-PASS-EVAL

i−1(s)) if i > 0,

s if i = 0.
(40)

Therefore, ONE-PASS-EVAL
i(s) would have to equal ONE-PASS-EVAL

i−1(s) at some
point i > 0, causing the do loop test on Line 5 of MULTIPASS-EVAL to
succeed.

19A technicality is that since ONE-PASS-EVAL is based on the rules applicator A, it could be a many-

valued function due to the many possible results in Λ for a given argument. Therefore, strictly

speaking, s � ONE-PASS-EVAL(s) means that s � t for any image t of ONE-PASS-EVAL(s). Despite the

many-valued nature of ONE-PASS-EVAL(s), the termination arguments remain the same.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 5, September 2006.

An Algebraic Array Shape Inference System for MATLAB • 879

LEMMA 5. If � is a transitive binary relation on Λ defined such that

ḟ n(s1, s2, . . . , sn) � ḟ n(s′
1, s′

2, . . . , s′
n)

(41)
if si � s′

i for all 1 ≤ i ≤ n,
ḟ n(s1, s2, . . . , sn) � build

(
ḟ n, sort(�, (s1, s2, . . . , sn))

)
(42)

if isassociative(ḟ n) = false ∧ iscommutative(ḟ n) = true,
ḟ n(s1, s2, . . . , sn) � UNSQUASH

(
ḟ n, SQUASH(ḟ n(s1, s2, . . . , sn))

)
(43)

if isassociative(ḟ n) = true ∧ iscommutative(ḟ n) = false,
ḟ n(s1, s2, . . . , sn) � UNSQUASH

(
ḟ n, sort(�, SQUASH(ḟ n(s1, s2, . . . , sn)))

)
(44)

if isassociative(ḟ n) = true ∧ iscommutative(ḟ n) = true,
ξ (l) � ξ (r) for all ξ ∈ � and all l → r in �, (45)

then s � ONE-PASS-EVAL(s) for any shape term s.

6.5.1.1 Fulfilling the Termination Condition. Does there exist an actual
relation � on Λ that satisfies the conditions in Lemma 5 and is well-founded at
the same time? Clearly, the existence of such a � would also be dependent on
which rules are included in �. We shall now show that even if every rule l → r
in � models an identity l = r (and not r = l) in Table II, excluding of course the
commutativity and associativity identities, there exists a well-founded � that
complies with the requirements of Lemma 5. Our technique for constructing
such a � will be to assign “weights” to shape terms according to a function
� : Λ �→ N, where N is the set of positive integers. We will use the particular
weight function

� (s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c if s ∈ Λ∗ ∪ S,

� (s1)� (s2) if s = s1∗̇s2,

c� (s1) if s = ¬̇s1,

1 + c
∑n

i=1 � (si) if s = build
(

ḟ n, sort(�, SQUASH(s))
)

∧ isassociative(ḟ n) = false

∧ iscommutative(ḟ n) = true,

1 + c
∑n

i=1 � (si) if s = UNSQUASH(ḟ n, SQUASH(s))

∧ isassociative(ḟ n) = true

∧ iscommutative(ḟ n) = false,

1 + c
∑n

i=1 � (si) if s = UNSQUASH
(

ḟ n, sort(�, SQUASH(s))
)

∧ isassociative(ḟ n) = true

∧ iscommutative(ḟ n) = true,

c + c
∑n

i=1 � (si) else if s = ḟ n(s1, s2, . . . , sn),

(46)

where c is some constant integer greater than 1, to construct � as follows:

s � t ⇔ � (s) > � (t). (47)

Transitivity and Proof of Satisfaction of Equation (41). To prove that the pre-
ceding relation honors Lemma 5, we first need to show that it is transitive.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 5, September 2006.

880 • P. G. Joisha and P. Banerjee

This is obvious from Equation (47). We next need to show that it satisfies
Equation (41). Suppose s = ḟ n(s1, s2, . . . , sn) and s′ = ḟ n(s′

1, s′
2, . . . , s′

n) and let
si � s′

i for all 1 ≤ i ≤ n. Since Equation (41) is obvious if si = s′
i for all 1 ≤ i ≤ n,

let there be at least one i, say j , such that sj � s′
j . If ḟ n �= ∗̇, ¬̇, then

� (s) =
{

1 + c
∑n

i=1 � (si),

c + c
∑n

i=1 � (si),

� (s′) =
{

1 + c
∑n

i=1 � (s′
i),

c + c
∑n

i=1 � (s′
i).

The difference � (s) − � (s′) can then only be one of the following three
possibilities:

� (s) − � (s′) =

⎧⎪⎪⎨⎪⎪⎩
c
∑n

i=1(� (si) − � (s′
i)),

(c − 1) + c
∑n

i=1(� (si) − � (s′
i)),

−(c − 1) + c
∑n

i=1(� (si) − � (s′
i)).

(48)

Since sj � s′
j , we have � (sj) > � (s′

j) from Equation (47). This implies

c(� (sj) − � (s′
j)) ≥ c.

Since we also know that si � s′
i for all 1 ≤ i ≤ n, we can therefore conclude that

c
n∑

i=1

(� (si) − � (s′
i)) ≥ c.

This means � (s)−� (s′) in Equation (48) is always positive. The remaining case
is when ḟ n is either ∗̇ or ¬̇. From Equation (46), we then have

� (s) = � (s1)� (s2) > � (s′
1)� (s′

2) = � (s′),

� (s) = c� (s1) > c� (s′
1) = � (s′),

whenever � (si) ≥ � (s′
i) for all 1 ≤ i ≤ n and � (sj) > � (s′

j).
Proof of Satisfaction of Equations (42) to (44). It is straightforward to show

that � fulfills each of the Equations (42) to (44). For example, let ḟ n be a
nonassociative and commutative shape operator and let

ḟ n(s1, s2, . . . , sn) �= build
(

ḟ n, sort(�, (s1, s2, . . . , sn))
)
.

This gives us the following weights from Equation (46):

� (ḟ n(s1, s2, . . . , sn)) = c + c
∑n

i=1
� (si),

� (build(ḟ n, sort(�, (s1, s2, . . . , sn)))) = 1 + c
∑n

i=1
� (si).

Thus from the previous equations, � (ḟ n(s1, s2, . . . , sn)) > � (build(ḟ n, sort(�,
(s1, s2, . . . , sn)))).

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 5, September 2006.

An Algebraic Array Shape Inference System for MATLAB • 881

Table IV. Rules from Table II with Differences

l → r Lower Bound on � (ξ (l)) − � (ξ (r))

π+̇s → π c(X + c − 1) + 1

s+̇π → π c(X + c − 1) + 1

ι+̇s → s (c − 1)X + c2 + 1

s+̇ι → s (c − 1)X + c2 + 1

s+̇s → s (2c − 1)X + 1

π∗̇s → π c(X − 1)

s∗̇π → π c(X − 1)

ι∗̇s → s (c − 1)X

s∗̇ι → s (c − 1)X

(s∗̇s)∗̇(s∗̇s) → s∗̇s X 2(X 2 − 1)

s∗̇(s∗̇s) → s∗̇s X 2(X − 1)

(s∗̇s)∗̇s → s∗̇s X 2(X − 1)

s∗̇(s∗̇(s∗̇(s∗̇t))) → s∗̇(s∗̇(s∗̇t)) X 3Y (X − 1)

(((s∗̇t)∗̇t)∗̇t)∗̇t → ((s∗̇t)∗̇t)∗̇t X Y 3(Y − 1)

s+̇s∗̇s → s∗̇s (c − 1)X 2 + cX + 1

(s+̇t)∗̇(s+̇t) → s∗̇s+̇t∗̇t (c − 1)(cX 2 + cY 2 + 1) + 2c(X + Y + cX Y)

(s+̇t)∗̇t → s+̇t∗̇t cX (Y − 1) + Y − c

s∗̇(s+̇t) → s∗̇s+̇t cY (X − 1) + X − c

s∗̇s+̇s∗̇t → s∗̇s+̇t c(Y (X − 1) − 1) + 1

s∗̇t+̇t∗̇t → s+̇t∗̇t c(X (Y − 1) − 1) + 1

(s∗̇s+̇t)∗̇(t∗̇t+̇s) → s∗̇s+̇t∗̇t 1 + c(X + Y + cX Y + cX 2Y 2 + cX 3 + cY 3 − 1)

(s+̇t∗̇t)∗̇t → s+̇t∗̇t c(X + Y 2)(Y − 1) + Y − c

s∗̇(s∗̇s+̇t) → s∗̇s+̇t c(X 2 + Y)(X − 1) + X − c

¬̇(s∗̇t) → ¬̇t∗̇¬̇s cX Y − cX +Y

s+̇¬̇s → s∗̇s 1 + cX + cX +1 − X 2

û∗̇̂v → Ψ (ψ (̂u)∗̇ψ (̂v)) c2 − c

û+̇v̂ → Ψ (ψ (̂u)+̇ψ (̂v)) 1 + 2c2 − c

¬̇û∗̇̂v → Ψ (¬̇ψ (̂u)) cc − c

X and Y stand for � (ξ (s)) and � (ξ (t)) in the tabulated differences.

Proof of Satisfaction of Equation (45). Consider the rules l → r in Table IV
that model every identity l = r from Table II, as well as some more. The ad-
ditional rules, shown as a bottom section in the table, describe how operations
on explicit shape terms map to explicit shape terms. To validate that � hon-
ors Equation (45) even when all of these rules are included in the � used by
ONE-PASS-EVAL, we shall compute the weights of l and r and show that their
difference � (ξ (l)) − � (ξ (r)) is positive under any substitution ξ ∈ �. The sec-
ond column in Table IV gives lower bounds on these computed differences. For
instance, for the heterogenous identity (s+̇t)∗̇(s+̇t) = s∗̇s+̇t∗̇t in Table II,

� (ξ (l)) = � ((ξ (s)+̇ξ (t))∗̇(ξ (s)+̇ξ (t))) = � ((x+̇ y)∗̇(x+̇ y)),

� (ξ (r)) = � (ξ (s)∗̇ξ (s)+̇ξ (t)∗̇ξ (t)) = � (x∗̇x+̇ y ∗̇ y),

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 5, September 2006.

882 • P. G. Joisha and P. Banerjee

where x and y are shorthands for ξ (s) and ξ (t). But from Equation (46),

� ((x+̇ y)∗̇(x+̇ y)) =
{

(1 + c� (x) + c� (y))2,

(c + c� (x) + c� (y))2,

� (x∗̇x+̇x∗̇x) =
{

1 + c� (x)2 + c� (y)2,

c + c� (x)2 + c� (y)2.

From this, and using X and Y as shorthands for � (x) and � (y), we obtain

� (ξ (l)) − � (ξ (r)) = � ((x+̇ y)∗̇(x+̇ y)) − � (x∗̇x+̇x∗̇x)

≥ (1 + cX + cY)2 − (c + cX 2 + cY 2)

= (c − 1)(cX 2 + cY 2 − 1) + 2c(X + Y + cX Y).

However, both X and Y are at least c by Equation (46). Therefore, since c is
greater than 1, the last aforementioned expression is clearly positive. It can
be similarly verified that all of the other weight-difference lower bounds in
Table IV are positive.20 For the last three rules, the lower bounds are obtained
by noting that ξ (̂u), ξ (̂v), and the rules’ righthand sides, are shape terms in Λ∗

for any substitution ξ ∈ �.
Proof of Satisfaction of the Termination Condition. For the fulfillment of

Theorem 5, all that remains is to show that � is well-founded. This is obvious,
since from Equation (46), � (s) ≥ c for any shape term s and because on positive
integers, the arithmetic ordering < is known to be well-founded.

6.5.1.2 Offline Verification of Termination. Coming up with a binary rela-
tion � that is both well-founded and in agreement with the requirements in
Lemma 5 is a nontrivial task, as exemplified by the exercise in Section 6.5.1.1.
It is easy to arrive at a well-founded � that meets some of the requirements in
Lemma 5, but from our experience (which involved a couple of iterations on the
weight function’s design), attempting to meet all of them simultaneously is a
challenge.

20As an example, how can we show that 1 + cX + cX +1 − X 2 (the lower bound on � (ξ (s+̇¬̇s)) −
� (ξ (s∗̇s)), where X = � (ξ (s))) is positive when c is an integer greater than 1? This can be done by

first finding the derivative of Z = 1 + cX + cX +1 − X 2 with respect to X :

d Z
dX

= c + cX +1 ln c − 2X . (49)

By differentiating the preceding equation once more with respect to X , we have

d2 Z
dX

= cX +1(ln c)2 − 2. (50)

Because X ≥ c, we get cX +1(ln c)2 ≥ cc+1(ln c)2 ≥ 3.84362. Therefore, d2 Z
dX in Equation (50) is

always positive. This means that d Z
dX is an increasing function of X . Also, d Z

dX at X = c is

c + cc+1 ln c − 2c ≥ 3.54518. (51)

Hence, d Z
dX is always positive. Thus Z is also an increasing function of X . Because Z at X = c is

1 + c2 + cc+1 − c2 = 1 + cc+1, (52)

we can therefore conclude that 1 + cX + cX +1 − X 2 is always positive.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 5, September 2006.

An Algebraic Array Shape Inference System for MATLAB • 883

Luckily, the weight function in Equation (46) is proactive in the sense that
it is defined for all shape operators in Ḟ . Thus, as more rules characterizing
other shape properties are added to �, the only condition that we risk breaking
is Equation (45). This breakage can be tackled in two ways: (1) Come up with
a new weight function or perhaps even better, a new formulation for �; or (2)
accept only those characterizations l → r that pass Equation (45) and reject
others. Either way, observe that the testing of all these requirements can be
done once, and offline, before the evaluator is actually used in any interpretation
or compilation run.

Another point is that it isn’t necessary to know the particular total order
� used in sort, or the way UNSQUASH associates shape terms, for us to come up
with a � that ensures MULTIPASS-EVAL’s termination. Thus, rather than returning
a left-associated tree, UNSQUASH can choose any other association order as its
canonical form and Equation (47) will still define a well-founded relation that
honors Theorem 5. This affords some flexibility to an implementation.

6.5.2 Unique Normalization: The Church-Rosser Property. The next ques-
tion is whether MULTIPASS-EVAL(s) always produces the same result for a given
shape term s upon termination. The answer is “no” because while all the prim-
itives used in ONE-PASS-EVAL are functions in the mathematical sense (as are the
SQUASH and UNSQUASH transformations), the rules applicator used in Line 17 of
Figure 9 isn’t, as discussed in Section 6.3. How can A be made a function? One
way of achieving this, shown by Lemma 6 to follow, is to restrict A to a certain
subset of R.

LEMMA 6. Let Ŕ be a subset of R such that

Ŕ = {(l1 → r1, l2 → r2, . . . , lk → rk) | (l1 → r1, l2 → r2, . . . , lk → rk) ∈ R
∧ V(li) ⊇ V(ri) for all 1 ≤ i ≤ k}. (53)

Then the restriction of A to Ŕ, denoted as Á, is a function.

Since V(l) ⊇ V(r) for every rule l → r in Table IV, it follows that even if all
the rules in Table IV are included in the fixed rewrite tuple �, the outcome of
MULTIPASS-EVAL(s) is still unique upon termination.

6.5.3 Soundness. A transformational system is sound if it is always
meaning-preserving under conversions. In other words, if such a system con-
verts a representation A with meaning M to a representation B, then B will
also have the same meaning M . Hence, to prove that MULTIPASS-EVAL is sound,
we have to demonstrate that MULTIPASS-EVAL(s) and s are algebraically equiva-
lent with respect to the rules in �. This can be shown by considering the subset
�g of substitutions that are valid mappings from S to the set Λg of ground
shape terms, and then proving that the meanings of ξg (ONE-PASS-EVAL(s)) and
ξg (s), where ξg is any substitution in �g , are always the same for any shape
term s [Joisha 2003].

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 5, September 2006.

884 • P. G. Joisha and P. Banerjee

6.5.4 Complexity Analysis. If the termination condition in Section 6.5.1 is
satisfied, then for a certain total order �, MULTIPASS-EVAL(s) can be shown to
run in O(R‖s‖3 log ‖s‖) time, where ‖s‖ is the number of nodes in the rooted
ordered tree representing the shape term s, and R is an upper bound on an
array’s canonical rank [Joisha 2003].21 This figure can be derived by choosing
linked lists as the data structure for ordered tuples, tree-node children, and
substitutions, although as shown in Joisha [2003], it isn’t determined so much
by this choice of data structure than by the fact that a comparison sort of k
elements takes O(ϑk log k) time, where ϑ is an upper bound on the time taken
to compare a pair of elements.

6.6 Mapping MATLAB Expressions to Their Shapes

Let ϕ be a shape map that associates MATLAB variables with their shape terms
in Λ at a given point in a program. Like substitutions (see Section 6.2), ϕ can be
homomorphically extended to a function from M to Λ, where M is the syntactic
set of MATLAB expressions. That is, if fn is an n-ary Type I MATLAB function,
then

ϕ(fn(e1, e2, . . . , en)) = ḟ n(ϕ(e1), ϕ(e2), . . . , ϕ(en)), (54)

where ḟ n is the shape operator in Ḟ corresponding to fn. For instance, ϕ(a + b)
would be ϕ(a)+̇ϕ(b), and ϕ(a + b ∗ c) would be ϕ(a)+̇ϕ(b)∗̇ϕ(c).

What should ϕ(e) be when e is a φ-function instance of the form
φ(e1, e2, . . . , em)? To answer this, we observe that when c ← φ(e1, e2, . . . , em)
is executed, the variable c will be set to one of the ei expressions. Here, m is the
number of immediate predecessor nodes to the join node housing the φ-function
assignment [Cytron et al. 1991]. Exactly which ei is assigned to c depends on
the edge chosen to reach the join node at runtime. Thus, while a φ-function
of the form φ(e1, e2, . . . , em) isn’t a mathematical function because different in-
stances may not yield the same ei, it can be made into one by gating it with an
integer-valued runtime selector P :

c ← φ(P, e1, e2, . . . , em). (55)

Every join node in a CFG can be considered to have its own selector. If it has m
predecessors, the selector assumes a value from 1 to m signifying the particular
predecessor from which control flows into it at runtime. This value may change
in the course of execution as join nodes get revisited from different predecessors.
Therefore, while a gated φ-function can be viewed as an imaginary MATLAB
operation, it isn’t of the Type I category because merely knowing the shapes of
P and all the ei in φ(P, e1, e2, . . . , em) isn’t sufficient for establishing the shape
of the outcome. The value assumed by P would also have to be known in order
to make that determination. However, if we were to curry [Mitchell 1996] the
φ-function on P , we would then obtain a pseudo language operator that has
Type I characteristics:

�(P)(e1, e2, . . . , em) = φ(P, e1, e2, . . . , em). (56)

21From the discussions in Section 6.5.1 and Section 6.5.2, we know that a � can be chosen without

affecting either the termination or the Church-Rosser traits of MULTIPASS-EVAL.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 5, September 2006.

An Algebraic Array Shape Inference System for MATLAB • 885

Since each ei in Equation (56) is a syntactic MATLAB expression in M, �(P) con-
stitutes a Type I MATLAB operation from M

m to M, albeit a virtual one. The �

itself is a higher-order function [Mitchell 1996] from a subset of the set of all posi-
tive integers N to the set of all possible mappings from M

m to M. Therefore, there
exists an m-ary shape operator �̇(P) that corresponds to �(P), which gives us
the following characterization for the shape of c in c ← φ(P, e1, e2, . . . , em):

ϕ(c) = �̇(P)(ϕ(e1), ϕ(e2), . . . , ϕ(em)). (57)

7. APPLYING SYMBOLIC EVALUATION TO SHAPE ANALYSIS

This section presents two applications of MULTIPASS-EVAL to shape analysis. The
first, which we refer to as shape tracking, determines whether an expression’s
shape follows the shape of another expression. The second, called preallocation,
determines the set of all possible shapes that an expression might assume at
runtime.

7.1 Shape Tracking

Let p and q be variables defined in a MATLAB program at the assignment
statements X and Y . We say that the shape of q tracks the shape of p if:

(1) Y is dominated by X and ϕ(q) = ϕ(p); or

(2) Y lies on the dominance frontier of X , is of the form c ←
�(P)(v1, v2, . . . , vm), and all the variables vi (1 ≤ i ≤ m) have the same
shape ϕ(p).

A point x in a program is said to dominate a point y if every possible path
in the program’s control-flow graph (CFG) from the entry node to y passes
through x [Muchnick 1997]. Note that the aforementioned definition of shape
tracking doesn’t mandate the constancy of tracked shapes with time. Also, for
the definition to be applicable, it isn’t necessary for the CFG to be in the SSA
form because Condition 1 can hold in any CFG. However, when given a CFG
in the SSA form, Condition 2 encompasses additional cases not covered by the
first. This is because when Y lies on the dominance frontier22 of X , it won’t be
strictly dominated by X , even though the q defined at Y might always have the
same shape as the p defined at X .

7.1.1 Optimizations Empowered by Tracked Shapes. At the source-level,
the execution of an array expression could be thought of as a two-phase pro-
cess: a preprocessing phase in which it is examined and prepared for evaluation,
and an evaluation phase in which all the elements of its array result are com-
puted [Wiedmann 1979]. The main characteristic of the preprocessing phase
is that it is composed of subtasks that can be generally performed in a time
that is independent of the number of elements in the array arguments to the

22The dominance frontier of a CFG node x is the set of all CFG nodes y such that x dominates an

immediate predecessor of y , but doesn’t strictly dominate y [Muchnick 1997].

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 5, September 2006.

886 • P. G. Joisha and P. Banerjee

expression. It normally spans four subtasks:

(1) Verifiing the conformance of the expression’s operands (if any) to the re-
quirements of the expression’s operators.

(2) Determining the nature, that is, the type, of the result (if any).

(3) Allocating, or reallocating storage for the result.

(4) Dispatching control to one among various subroutines, each of which cal-
culates the result for some specific type configuration of the arguments.

Tracked shapes can render some or all of these subtasks unnecessary, even
when shapes aren’t explicitly known. Furthermore, knowledge that certain
operands have the same shapes may allow the use of specialized routines in
the operation’s evaluation phase. For instance, consider the subtask of verify-
ing whether the expression that computes q is shape-conforming. Since this
amounts to testing whether ϕ(q) is π, the verification step becomes redundant
if q tracks the shape of p and p has already been tested for shape conformance.
Similarly, the subtask of determining q’s shape may be skipped because it is
known once p’s shape is determined. Also, if p is dead by the time control reaches
Y , then storage allocation for q could be sidestepped, since p’s storage is avail-
able for reuse at Y [Joisha and Banerjee 2003a]. Finally, it may even be possible
to simplify or eliminate the dispatch logic in the preprocessing phase. As an ex-
ample, suppose that the assignment statement Y is

q ← a+b

and that the shapes tracked by a and b are identical. Then, the dispatch logic
doesn’t have to test whether a and b are scalars. Control can be directly trans-
ferred to a simple evaluation loop that computes elements in q by stepping
through each element in the array a and adding the corresponding elements in
array b.

7.1.2 The Shape-Tracking Algorithm. Because every use in the SSA trans-
lation of a program is either dominated by its definition or lies in a φ-function
whose ancestor is dominated by the definition, tracked shapes could be searched
for by first projecting assignments in the SSA form onto the shape domain using
ϕ, and then testing the obtained shape expressions for equality after canonical-
izing them with MULTIPASS-EVAL. SHAPE-TRACKING, shown in Figure 11, does this
by making use of seven new primitives, explained in the following, in addition
to those listed in Table III:

—SSA(G) returns an SSA form of the CFG G.

—assignments(G ′) is the set of all assignment statements in G ′.
— lhs(astmt) returns the lefthand side of the assignment astmt.
—DF(a1) is the set of statements that form the dominance frontier of a1.

—SDOM(a1) is the set of statements strictly dominated by a1.

—DFS(N , G, F) performs a depth-first traversal starting at node N in a graph
G, invoking F (v, G) on each node v encountered along the way.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 5, September 2006.

An Algebraic Array Shape Inference System for MATLAB • 887

Fig. 11. The SHAPE-TRACKING procedure.

Fig. 12. The FORM-SHAPE-MAP procedure.

— forward substitute(v, G ′) visits definitions in a basic block v in their lexical
order, and substitutes every forward use, both in v and in the rest of the
SSA-conforming CFG G ′, by the definition’s righthand side.

The algorithm consists of three stages: (1) An initial conversion of the in-
put CFG G into a new CFG G ′ that is in the SSA form; (2) an invocation of
FORM-SHAPE-MAP on G ′ to build the map ϕ of variables to shapes; and (3) the for-
mation of a map trackedby from variables to variables such that if trackedby(q)
is p, then the shape of q tracks the shape of p. The FORM-SHAPE-MAP procedure
begins by forward-substituting all assignments in G ′ to obtain a new CFG G ′′.
Forward substitution is performed with the hope of determining the “ultimate”
shape of a variable. Informally, this means determining the variable’s shape
after taking into consideration the shapes of all variables both directly and in-
directly used in its defining MATLAB expression, and evaluating the resulting
shape expression into some simplified canonical form.23 Figure 12 does the for-
ward substitution in depth-first order, even though a breadth-first order could
also have been used. FORM-SHAPE-MAP then loops through each assignment astmt
in G ′′, extracting its lefthand side c and righthand side e. The loop updates the
shape map ϕ at c by determining the shape expression of e (i.e., ϕ(e)), evaluating
it (i.e., MULTIPASS-EVAL(ϕ(e))), and assigning the result to ϕ(c).

23Clearly, how close FORM-SHAPE-MAP comes to achieving this ideal depends on two factors: (1) The

degree to which the shape propagation is carried out, that is, the length of the forward-substitution

chain; and (2) the evaluator’s ability to detect a more simple underlying canonical shape.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 5, September 2006.

888 • P. G. Joisha and P. Banerjee

Fig. 13. After forward substitution on the pruned SSA code in Figure 6.

Fig. 14. After applying ϕ to the left and righthand sides of the assignments in Figure 13.

7.1.3 Confirming Inferences 1 and 2 in Section 1. To demonstrate the
workings of the SHAPE-TRACKING algorithm, we revisit the example in Figure 6.
Figure 13 shows the assignments after running a forward-substitution pass,
that is, after Line 1 in FORM-SHAPE-MAP. Figure 14 displays the unevaluated
shape expressions after applying ϕ on both sides of the assignments in Fig-
ure 13, in accordance with Equation (54). Figure 15 shows the results of ap-
plying MULTIPASS-EVAL on these unevaluated shape expressions.24 We observe
that the results are mostly more simple than those of the shape expressions
in Figure 14, the exceptions being ϕ(b1), ϕ(e1), and ϕ(e2), which remain the
same. Moreover, the evaluated shape expressions for two pairs of variables—
ϕ(d1), ϕ(d2), and ϕ(a3), ϕ(b2)—are identical (in boldface in Figure 15). Because

24The evaluation was done with an implementation of MULTIPASS-EVAL that used Mathematica’s

canonical expression ordering [Wolfram 1999, 1031] as the total order �. Employing a simi-

lar MATLAB code fragment as the running example, Joisha and Banerjee [2002] discuss how

Mathematica can be programmed to perform this evaluation.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 5, September 2006.

An Algebraic Array Shape Inference System for MATLAB • 889

Fig. 15. After MULTIPASS-EVAL on the shape expressions in Figure 14.

d1 and a3 strictly dominate d2 and b2, respectively, Line 12 in SHAPE-TRACKING

(Figure 11) sets trackedby(d2) to d1, and trackedby(b2) to a3, thus substantiating
Inferences 1 and 2 in Section 1.

7.1.4 Confirming Inferences 5 and 6 in Section 2.1.1. The quadrature func-
tion in Figure 4 is already in the SSA form. Only a and b are live at its entry.
Thus, by following the same sequence of steps described in Section 7.1.3, we
can apply SHAPE-TRACKING on quadrature’s CFG to obtain the following shape
map:

ϕ(h) = ϕ(a)+̇ϕ(b),

ϕ(mid) = ϕ(a)+̇ϕ(b),

ϕ(Fa) = ϕ(a)+̇ϕ(b),

ϕ(Fmid) = ϕ(a)+̇ϕ(b),

ϕ(Fb) = ϕ(a)+̇ϕ(b),

ϕ(S) = (ϕ(a)+̇ϕ(b))∗̇(ϕ(a)+̇ϕ(b)).

Since the images ϕ(h), ϕ(mid), ϕ(Fa), ϕ(Fmid), and ϕ(Fb) are all equal and because
the body of quadrature is straight-line code, we get the claim in Inference 5.
In particular, if the computation in Line 2 of quadrature is well-defined, the
computations up to Line 6 will also be well-defined. However, because s∗̇s is π
only when s isn’t a square shape, S on Line 7 is well-defined only when a and b
are square matrices. Hence the claim in Inference 6.

7.2 Preallocation

By resorting to forward substitution, FORM-SHAPE-MAP effectively ignores the
propagation of shape information along CFG back edges. We now present a
method that accounts for shape information along CFG back edges so as to
give a fuller picture of how a variable’s shape evolves in the course of program
execution.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 5, September 2006.

890 • P. G. Joisha and P. Banerjee

Fig. 16. The SET-OF-SHAPES-EVAL procedure.

Consider the power set 2Λ of Λ. Our approach to preallocation (i.e., deter-
mining the set of all possible shapes assumed by an array expression) is based
on the definitions of a lattice L2Λ on 2Λ and a function space F̆ that consists
of operators which are monotonic on L2Λ . Members of F̆ are systematically
formulated by using a procedure called SET-OF-SHAPES-EVAL. SET-OF-SHAPES-EVAL

is an extension of MULTIPASS-EVAL to sets of shape terms. To phrase it an-
other way, SET-OF-SHAPES-EVAL({s1, s2, . . . , sm}) produces a “simplified” version of
{s1, s2, . . . , sm}, where each sj (1 ≤ j ≤ m) is a shape term in Λ. The extension
operates in two steps:

(1) It first simplifies each sj in {s1, s2, . . . , sm} by using MULTIPASS-EVAL to obtain
the new set {s′

1, s′
2, . . . , s′

m}; and

(2) it then tries to simplify {s′
1, s′

2, . . . , s′
m} in its entirety by using certain set-of-

shapes identities, that is, identities that exist between entire sets of shape
terms.

7.2.1 The Set-of-Shapes Evaluator. Like the identities in Section 5.7 that
describe properties in the semantic domain S℘ , properties in 2S℘ can also be
characterized and captured by identities. An example is

{s∗̇s+̇t∗̇t, s∗̇s+̇t, s+̇t∗̇t} = {s∗̇s+̇t, s+̇t∗̇t}, (58)

which follows from the fact that for a given pair of shape tuple class expressions,
s and t, in S℘ , s∗̇s+̇t∗̇t will always be either s∗̇s+̇t or s+̇t∗̇t [Joisha 2003]. Another
set-of-shapes identity, proved in Joisha [2003], is

{s∗̇t+̇s+̇t, s∗̇s+̇t, s+̇t∗̇t} = {s∗̇s+̇t, s+̇t∗̇t}. (59)

Figure 16 shows how the SET-OF-SHAPES-EVAL procedure uses these set-of-shapes
identities. The transformer A† on Line 7 is defined as

A†(S, (L1 → R1, L2 → R2, . . . , Lk → Rk)) =⎧⎪⎨⎪⎩
(S − ξ (L1)) ∪ ξ (R1) if ∃ξ ∈ � such that ξ (L1) ⊆ S,

S else if k = 1,

A†(S, (L2 → R2, . . . , Lk → Rk)) otherwise.

(60)

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 5, September 2006.

An Algebraic Array Shape Inference System for MATLAB • 891

Each rule Li → Ri in Equation (60) is an ordered pair in 2Λ × 2Λ representing
an identity on the 2S℘ semantic domain. Substitutions are used in Equation (60)
after being homomorphically extended to mappings from 2Λ to 2Λ:

ξ ({s1, s2, . . . , sm}) = {ξ (s1), ξ (s2), . . . , ξ (sm)}. (61)

Thus, the transformer A† is similar to the rules applicator in Equation (36),
except that subsets are matched in Equation (60) rather than individual
shape terms as in Equation (36). It is used with a fixed tuple of rules �† in
SET-OF-SHAPES-EVAL.

Since A† is a many-valued function like the rules applicator in
Equation (36), we shall write T ∈ A†(S, τ) if T is an image of A†(S, τ). Thus, if

B({S1, S2, . . . }, τ) =
⋃
i≥1

A†(Si, τ), (62)

where each Si is in 2Λ, then B is a single-valued function based on A†.

7.2.1.1 Strong Normalization. Consider a binary relation � on 2Λ defined
such that S � T if and only if T is distinct from S, but can be obtained from it
after one or more applications of A† with �†. That is,

S � T ⇔ (S �= T) ∧ (∃ j > 0 such that T ∈ B j ({S}, �†)), (63)

where the meaning of Bi(S, �†) for any S ∈ 2
2Λ

and nonnegative integer i is

Bi(S, �†) =
{
B(Bi−1(S, �†), �†) if i > 0,

S if i = 0.
(64)

If � is well-founded, then SET-OF-SHAPES-EVAL can also be shown to terminate by
arguments similar to the proof for Theorem 5. But under what conditions is �
well-founded? One such condition on �† is given next in Lemma 7.

LEMMA 7. If every rule L → R in �† is such that either L = R or |L| > |R|,
then � will be well-founded.25

As an example, if the rules that formed �† were

{s∗̇s+̇t∗̇t, s∗̇s+̇t, s+̇t∗̇t} → {s∗̇s+̇t, s+̇t∗̇t}, (65)

{(s∗̇t+̇s)+̇t, s∗̇s+̇t, s+̇t∗̇t} → {s∗̇s+̇t, s+̇t∗̇t}, (66)

{s∗̇t+̇(s+̇t), s∗̇s+̇t, s+̇t∗̇t} → {s∗̇s+̇t, s+̇t∗̇t}, (67)

which correspond to the identities in Equations (58) and (59),26 then
SET-OF-SHAPES-EVAL would have been strongly normalizing as a consequence of
Lemma 7. Note that it would have also been strongly normalizing if �† were
simply defined as

�† = ({s} → {s}). (68)

25Vertical bars are used to denote the cardinalities of sets. Recollect from Section 5.1 that they also

express determinants, for instance, |s|. The different usages will be clear from the context.
26Two rules are needed for the identity in Equation (59) due to the possible associations of +̇.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 5, September 2006.

892 • P. G. Joisha and P. Banerjee

7.2.1.2 Unique Normalization. Although SET-OF-SHAPES-EVAL(S) as defined
in Figure 16 isn’t guaranteed to produce the same result for a given argument S
(on account of the many-valued nature of A†), it can be made uniquely normal-
izing either by: (1) restricting �† to certain kinds of tuples so that the rewriting
with A† becomes a confluent process [Dershowitz and Plaisted 2001]; or by (2)
using techniques that are independent of the rewrite tuples used, but that give
the impression of uniqueness by doing away with the nondeterminism in Equa-
tion (60). An example of the latter is imposing a total order on � and always
choosing the “least” among candidate substitutions that achieve a subset match.
Of course, while such techniques are limited in that they could inadvertenty
result in useful solutions being overlooked, they won’t impact situations where
only one normal form exists for a solution.

For instance, suppose �† consists of the rules in Equations (65) to (67). Then
given S = {(u∗̇u)∗̇(u∗̇u)+̇v∗̇v, (u∗̇u)∗̇(u∗̇u)+̇v, u∗̇u+̇v∗̇v, u∗̇u+̇v, u+̇v∗̇v}, there
are two solutions to A†(S, �†) by Equation (60):

A†(S, �†) =
{{(u∗̇u)∗̇(u∗̇u)+̇v, u∗̇u+̇v∗̇v, u∗̇u+̇v, u+̇v∗̇v},

{(u∗̇u)∗̇(u∗̇u)+̇v∗̇v, (u∗̇u)∗̇(u∗̇u)+̇v, u∗̇u+̇v, u+̇v∗̇v}.
Both solutions use the rewrite rule {(s∗̇s)∗̇(s∗̇s)+̇t, s∗̇s+̇t, s+̇t∗̇t} →
{s∗̇s+̇t, s+̇t∗̇t}, but apply it with the substitutions {s ↪→ u∗̇u, t ↪→ v} and
{s ↪→ u, t ↪→ v}. Hence, SET-OF-SHAPES-EVAL(S) would ultimately produce either
of two solutions:

However, if the �† defined in Equation (68) is used, then SET-OF-SHAPES-EVAL

would be trivially uniquely normalizing because A† would then be single-
valued. Later, in Section 7.2.4, we shall see that this value for �† suffices to
arrive at Inference 3.

7.2.2 A Set-of-Shapes Algebra. If the SET-OF-SHAPES-EVAL procedure is
uniquely normalizing, then for any n-ary shape operator ḟ n of a Type I MAT-
LAB function fn, we can define a set-of-shapes operator f̆ n : (2Λ)n �→ 2Λ as
follows:

f̆ n(S1, S2, . . . , Sn) =⎧⎪⎨⎪⎩
SET-OF-SHAPES-EVAL

(⋃n
i=1 Si

)
if ḟ n = �̇(P),

SET-OF-SHAPES-EVAL({t | ∃si ∈ Si for all

1 ≤ i ≤ n such that t = ḟ n(s1, s2, . . . , sn)})
if ḟ n �= �̇(P). (69)

Let F̆ be the set of all f̆ n operators defined by Equation (69) for various n.
Then, F̆ forms a set-of-shapes algebraic structure [2Λ, F̆] on the power set of
shape terms. A set-of-shapes algebra is useful because it provides us with a way

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 5, September 2006.

An Algebraic Array Shape Inference System for MATLAB • 893

to determine the set of all possible shapes of a MATLAB expression. Therefore,
[2Λ, F̆] is the “broadest” of the shape-related algebras because it operates on
sets of shape terms rather than individual shape terms, as is the case for [Λ, Ḟ],
discussed in Section 6.

A few set-of-shapes operators are +̆, ∗̆, and �̆(P), which respectively corre-
spond to +̇, ∗̇, and �̇(P). Examples of their workings when �† = ({s} → {s})
follow:

{〈4, 2, 2〉, 〈5, 3〉}+̆{〈4, 2, 2〉, 〈10, 11〉} = {〈4, 2, 2〉, π},
{〈1, 2〉, 〈5, 3〉}∗̆{〈3, 2〉, 〈2, 4〉} = {π, 〈1, 4〉, 〈5, 2〉},
�̆(P)({s}, {s, t}) = {s, t}.

7.2.2.1 Mitigating Exponential Blowup. From Equation (69), the number
of shape terms in f̆ n(S1, S2, . . . , Sn) can, at most, be

∏n
i=1 |Si|. However, this

exponential upper bound may not be reached for two reasons: (1) Calls to
MULTIPASS-EVAL in Line 3 of SET-OF-SHAPES-EVAL may produce the same outcome
on distinct shape terms; and (2) the set-of-shapes identities exercised in Line 7
of the same may simplify the resulting sets in their entirety. An example of a
situation where a set-of-shapes identity causes a reduction is

{s, s∗̇s}+̆{t, t∗̇t} = {s+̇t, s+̇t∗̇t, s∗̇s+̇t}.
This will happen when the �† used contains a rule for the identity in Equa-
tion (58).

7.2.2.2 Monotone Set-of-Shapes Operators. On the set 2Λ, a lattice L2Λ can
be defined in which the subset relation ⊆ is the partial order, the empty set ∅
and Λ are the least and greatest elements, and set union ∪ and set intersection
∩ are the join and meet operations. From Equation (69), it is easy to see that the
set-of-shapes operator f̆ n is monotonic on L2Λ if SET-OF-SHAPES-EVAL is monotonic
on ⊆.

Let X and Y be the values of S′ after the for loop in Lines 2 to 4 of Figure 16
when SET-OF-SHAPES-EVAL is invoked on S and T , respectively. Then clearly,
X ⊆ Y if S ⊆ T . Thus, it is �† that really determines the monotonicity of
SET-OF-SHAPES-EVAL. An obvious choice that ensures this is given in Equation (68)
because U = A†(U, ({s} → {s})) for all U ∈ 2Λ. This will be the �† for the rest of
this article.

Since the function space F̆ on L2Λ will then comprise monotone members, a
fixed-point solution will always exist for a system of equations that is formed
on the 2Λ domain using the set-of-shapes operators in F̆ . While monotonicity
guarantees convergence to a solution, lattice-theoretic algorithms that seek
such a solution aren’t assured to terminate because L2Λ has an infinite height;
an indefinite number of iterations may therefore be necessary before quiescence
is reached.

7.2.3 An Iterative Forward Dataflow Algorithm. Consider a function ς

such that ς (c) is an element in 2Λ which denotes the set of all possible shapes
taken on by a MATLAB variable c across an entire program. Like ϕ, ς can be

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 5, September 2006.

894 • P. G. Joisha and P. Banerjee

Fig. 17. The FORM-SET-OF-SHAPES-MAP procedure.

homomorphically extended to a function from M to 2Λ so that

ς (fn(e1, e2, . . . , en)) = f̆ n(ς (e1), ς (e2), . . . , ς (en)), (70)

where f̆ n is the n-ary set-of-shapes operator in F̆ corresponding to fn. For ex-
ample, ς (a ∗ b. ∗ c) is ς (a)∗̆ς (b)+̆ς (c), and ς (�(P)(e1, e2)) is �̆(P)(ς (e1), ς (e2)).27

The FORM-SET-OF-SHAPES-MAP algorithm, shown in Figure 17, takes a CFG G ′

in SSA form and builds the ς map for the MATLAB variables in it. It effectively
constructs a set-of-shapes equation ς (c) = ς (e) for every assignment c ← e and
iteratively solves the system up to maxiters times, until a stationary solution is
achieved. It initially sets ς (c) of every variable c defined within G ′ to ∅ using the
used vars and defined vars primitives; used vars and defined vars, respectively,
return the variables used and defined in a CFG node. If, however, c is live on
entry, then ς (c) is set to {ϕ(c)}. The solution process then iteratively forward-
propagates the set-of-shapes information, capping the number of iterations at

27Our precedence convention for the set-of-shapes operators reflects our precedence convention for

the shape operators that underlie them. Hence ∗̆, which corresponds to ∗̇, has a higher precedence

than +̆, which corresponds to +̇.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 5, September 2006.

An Algebraic Array Shape Inference System for MATLAB • 895

Fig. 18. Set-of-Shapes map for the pruned SSA code in Figure 6.

the predefined constant maxiters to overcome the problem of the lattice’s infinite
height.

7.2.4 Confirming Inference 3 in Section 1. The pruned SSA form for the
code in Figure 1 was shown in Figure 6. Since a0, b0, and e0 are live on entry,
FORM-SET-OF-SHAPES-MAP initializes their images under ς to {ϕ(a0)}, {ϕ(b0)}, and
{ϕ(e0)}, respectively. For every other variable, the image under ς is initially set
to ∅. At the conclusion of FORM-SET-OF-SHAPES-MAP, executed with maxiters equal
to ∞ and �† set according to Equation (68), the set-of-shapes map shown in
Figure 18 is obtained as the fixedpoint.28 From this resulting map, we see that
there can only be, at most, two shapes for c, one for a3 and b2, and three for e3
during the entire execution lifetime of the loops. This corroborates Inference 3
in Section 1.

7.3 On the Issue of Approximations

Unlike the preallocation analysis, the shape-tracking analysis isn’t based on
a lattice, so there’s no approximation or loss of precision in a lattice-theoretic
sense. If the analysis can, at best, determine the shape of a MATLAB expression
e to be a symbolic shape term, then there’s no loss of precision because that
symbolic expression will evaluate to the exact shape of e when the shape term’s
symbols are substituted at runtime. A translator based on the framework will

28See Joisha and Banerjee [2002] for a discussion on how Mathematica can be used for this. Joisha

and Banerjee [2002] use a nonconfluent �† for rewriting the set-of-shapes terms.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 5, September 2006.

896 • P. G. Joisha and P. Banerjee

simply emit code against a symbolic shape term so as to resolve it at runtime.
This resolution code may use a data structure such as a vector of integers to
access shape tuples.

Approximations (but no inaccuracies) may happen in the preallocation
analysis due to its lattice-theoretic formulation. Two kinds of approxima-
tions can occur: (1) when the cap maxiters on the number of iterations in
FORM-SET-OF-SHAPES-MAP is reached, and (2) when a set consisting of one or more
shape terms is returned as the fixed-point solution. In the former case, the
symbol Λ is returned. Λ signifies the set of all possible shape terms, so all this
means is that in the course of program execution, e may assume any shape,
both legal and illegal. In the latter case, each shape term in the set-of-shapes
expression indicates a shape that e might take on during program execution.
In both cases, a translator based on the framework will still have to rely on
runtime resolution to allocate storage for e. However, the emitted code in the
second case will be able to allocate storage immediately after the component
shape terms in the set-of-shapes expression have been resolved. This resolu-
tion may occur much sooner than the definition of e, which is unlike the first
case, where it may have to wait until e is about to be defined. The difference
is that the preallocation code in the second case may manifest outside a loop,
thus avoiding repeated allocations, expansions, contractions, or deallocations.
Ultimately, there is a tension between how far ahead of time some information
is to be inferred (and the difficulty of obtaining such an inference) versus the
specificity of the inference and its potential for inference-based optimizations.

8. THE SHAPE INFERENCE FRAMEWORK

From a shape inference perspective, it suffices to focus on only those opera-
tors that are part of the MATLAB language definition. These built-in functions
are similar to the primitives in APL, and ultimately comprise all MATLAB pro-
grams. Once we know how to infer shapes for each of these functions, the shapes
of arbitrary MATLAB expressions can be determined by applying program-wide
techniques.

8.1 Taxonomy

Built-in functions that return a value can be classified into one of three cate-
gories on the basis of how the shape of the outputs depend on the shapes of the
inputs:

—Type I. These built-ins produce values whose shapes are completely known
once the shapes of the arguments, if any, are known. Examples are the matrix-
multiplication operator, and elementwise operators such as array addition.

—Type II. These are built-ins that don’t belong to the Type I category, and that
produce values whose shapes are completely known only when the elemental
values of one or more of their arguments is known. An example is the colon
operator [The MathWorks, Inc. 1997]. For instance, in the assignment c ←
a:b, the result c will be a row vector consisting of �b′ − a′� + 1 elements
when a′ ≤ b′, where a′ and b′ represent the runtime real values of a and b,

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 5, September 2006.

An Algebraic Array Shape Inference System for MATLAB • 897

Table V. Shape-Based Classification of MATLAB’s Built-In Functions

Type I

a*b
a+b
a-b
a.*b
a.^b
a./b
a.\b
a==b
a~=b
a<b
a&b
a|b
a/b
a\b

[a, b]
[a; b]

+a
-a
~a

c(:)← a

a^b
a(:)
a’
a.’
rand

length(a)

Type II

a:b

a(e)

permute(a, e)

cat(e, a, b)

a(e1, e2, . . . , en)
rand(e1, e2, . . . , en)
randn(e1, e2, . . . , en)
zeros(e1, e2, . . . , en)
ones(e1, e2, . . . , en)
eye(e1, e2, . . . , en)

c(e) ← a

c(e1, e2, . . . , en) ← a

Type III

dbstack

eval(a)
evalin(a, b)
feval(a, b)

respectively. When a′ > b′, c is the empty row vector. Thus, the shape of c
can be determined only when the elemental values of a and b are known.

—Type III. These are built-ins that are neither Type I nor Type II. For them,
even full knowledge of the arguments doesn’t suffice to determine the shapes
of the results. For example, there exists a built-in called dbstack that re-
turns the stack trace as a column vector [The MathWorks, Inc. 1997]. A
complete execution history may be necessary to determine the shape of the
result.

Table V shows some of MATLAB’s built-ins grouped by the aforementioned
classification system. Members of the Type I class appear to be the majority in
the language; in fact, so far we have been able to uncover nine quotient algebras
to which the shape semantics of over 50 Type I built-ins are isomorphic [Joisha
et al. 2000]. Notice that certain built-ins, like rand, can be considered as being
either Type I or Type II, depending on which overloaded version is invoked.
For instance, when invoked without arguments, rand always returns a scalar-
shaped result and therefore behaves as a Type I built-in. When invoked with
arguments, say 2, 3, and 4, rand produces an array of size 2 × 3 × 4 and thus
behaves as a Type II operator. The eval, evalin, and feval built-ins shown
in the third column execute arbitrary strings. However, merely knowing what
these argument strings are won’t always be sufficient for determining the shape

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 5, September 2006.

898 • P. G. Joisha and P. Banerjee

of the result. In the most general setting, a complete execution history may be
necessary to determine the outcome’s shape.

Note that this is a proactive taxonomy; if a new built-in were to be introduced
into the MATLAB language, it would have to fall into one of the preceding
categories.

8.2 Extensions to Type II Built-In Functions

Though the framework described in this article directly addresses only the
Type I function group, it can be extended to handle Type II operators by using
the same technique of function currying used in Section 6.6. By this method, a
shape operator of a Type II built-in is itself treated as a function of the nonshape
arguments.

Consider � = ⋃
k≥0 C

k , the set of all tuples composed of complex numbers. If
g is an n-ary Type II operation in MATLAB, then by definition of the Type II
category, there exists a mapping g̀ : (� × S℘)n �→ S℘ that describes g ’s shape
semantics. By currying g̀ on �n, we can obtain a shape operator with Type I
characteristics:

g̀ (ε1, s1, ε2, s2, . . . , εn, sn) = !g (ε1, ε2, . . . , εn)(s1, s2, . . . , sn). (71)

The codomain of !g in the previous equation is the set Ḟ of shape operators for
Type I built-ins.

For instance, consider the righthand side array indexing operation in

c ← a(i1, i2, ... , im).

A subscript ik (1 ≤ k ≤ m) can be any array of integers, as long as each integer
in ik lies within the bounds of a in the kth dimension, that is, 1 and the extent
of a in the kth dimension. Hence, the righthand side array indexing operation
can’t be a Type I built-in. However, it qualifies as a Type II built-in.

The indexing works conceptually in two steps: (1) Each subscript array is
viewed as a set of integers and a Cartesian product is formed across all the
subscripts; and (2) the array a is indexed using each tuple in the Cartesian
product. The shape of the indexing result is the “shape” of the Cartesian product.
Phrased differently, if jk is the number of elements in the subscript ik , then the
shape of the result (assuming there are no out-of-bounds errors) is j1 × j2 ×
· · · × jk [The MathWorks, Inc. 1997]. Note that the shape of the output is only
affected by the number of elements in a subscript; the subscript’s actual shape
doesn’t affect the result’s shape.

As an example, suppose a, x, and y are the following arrays:

a =
(−99 21 −0.99

10 15 101

)
x = (1 2), y =

(
2
3

)
.

Then, after the assignment c ← a(x, y, 1), we will have

c =
(

21 −0.99
15 101

)
.

In functional form, the array indexing operation could be written as c ← �m(a,
i1, i2, . . . , im), where �m represents the righthand side array indexing operation

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 5, September 2006.

An Algebraic Array Shape Inference System for MATLAB • 899

with m subscripts. If χ is a function that associates a MATLAB array with a
tuple in � by linearizing the array in some fixed order, then the Type I shape
operator �̇m corresponding to �m will be

�̇m = !�m(χ (a), χ (i1), χ (i2), . . . , χ (im)). (72)

If the fixed order is column major, then for the previous example,

χ (a) = (−99, 10, 21, 15, −0.99, 101),

χ (x) = (1, 2),

χ (y) = (2, 3),

χ (c) = (21, 15, −0.99, 101).

From Equations (71) and (72), the shape of a(x, y, 1) will then be

!�3((−99, 10, 21, 15, −0.99, 101), (1, 2), (2, 3), (1))(〈2, 3〉, 〈1, 2〉, 〈2, 1〉, ι) = 〈2, 2〉.
Of course, an illegal shape will be returned if an integer in an array’s sub-

script exceeds the bounds for that dimension. For instance,

!�2((−1, 7, 2.3, 0, 11), (2), (2))(〈1, 5〉, ι, ι) = π.

8.2.1 Value Ranges with Curried Shape Operators. Since keeping track of
the entire contents of an array by means of a tuple in � may be prohibitive, an
approximation may be to track only its value range. Consider the shape

!�m(χ (t0), χ (t1), χ (t2), . . . , χ (tm))(s0, s1, s2, . . . , sm),

where each si is a shape term, and each ti represents a MATLAB expression.
Thus, χ (ti) is a placeholder for an element in �. If we had no more information
about any χ (ti), the aforementioned may be the most simplified form of the
shape.29 However, if we were to know the value ranges of the ti, then it might
be possible to simplify the shape. For instance, let the value ranges of χ(t0), χ (t1),
and χ (t2) be [[−∞, ∞]], [[1.1, 4.78]], and [[2, 4]], respectively. Then, we would have
the following:

!�2(χ (t0), χ (t1), χ (t2))(〈10, 5〉, 〈2, 2〉, 〈3, 5〉) = 〈4, 15〉,
!�2(χ (t0), χ (t1), χ (t2))(〈1, 5〉, 〈2, 2〉, 〈3, 5〉) = π,

!�2(χ (t0), χ (t1), χ (t2))(〈5, 7〉, ι, ι) = ι,

!�2(χ (t0), χ (t1), χ (t2))(〈3, 7〉, ι, ι) = !�2(χ (t0), χ (t1), χ (t2))(〈3, 7〉, ι, ι).
In the last example, the shape remains unsimplified, since [[1.1, 4.78]]
straddles 4.30

8.2.2 Type I Compositions of Type II Built-In Functions. The composition
of certain Type II built-ins with Type I built-ins exhibits overall Type I charac-
teristics. For instance, an idiom seen in many MATLAB programs is

b ← F(size(a)),

29To ensure that shape errors propagate through the rest of the program from the point of origina-

tion, the preceding shape will always simplify to π if any of the si are π.
30Whether the indices are actually integers would be established by an intrinsic type analysis.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 5, September 2006.

900 • P. G. Joisha and P. Banerjee

where F could be zeros, ones, or rand, among others. This construction is used
to create an array with the same shape as an existing array, but initialized
to some other value (see Figure 3). The size built-in is Type I because know-
ing the shape of a is enough to establish the shape of size(a). As an exam-
ple, if the shape of a is 〈2, 4, 5〉, then the shape of size(a) is 〈1, 3〉. On the
other hand, zeros is a Type II built-in because the actual values of the argu-
ments need to be known to determine the shape of the result. For instance,
if x is a row vector with the elements 5, 3, and 7, zeros(x) would create an
array having the shape 〈5, 3, 7〉. Thus, the composition zeros(size(a)) will
always return an array with the same shape as a; it is therefore Type I in
character.

8.2.3 Confirming Inference 4 in Section 1. The invocation length(x) al-
ways returns a scalar for any MATLAB array x. If x is the empty array,
the value returned is 0; otherwise, it equals max(size(x)) [The MathWorks,
Inc. 1997]. Hence, the array rank in the hilarray acc user-defined function of
Figure 3 is always a scalar. From the discussion in Section 8.2.2, both indices
and sindices will always have the same shape as a. Now for any MATLAB ar-
ray x, the call cumsum(x, e) returns an array of the same shape as x, as long as
e is a positive scalar integer [The MathWorks, Inc. 1997]. However, if the loop
in Figure 3 gets executed, k is guaranteed to be a positive scalar integer. Thus,
the outcome of cumsum(indices, k) will have the same shape as indices, and
transitively, the same shape as a. Since we know that sindices initially also
has the shape of a, the shape of sindices remains unchanged in every iteration
of the accumulation loop. Because rank is a scalar, we can thus conclude that
the b computed in the last line of hilarray acc will always have the same shape
as a.

8.3 Limitations: Treatment of Type III Built-In Functions

Type III operators appear to be few in MATLAB and although the framework
presented in this article lacks in its ability to expressly model their shape
semantics, their presence doesn’t thwart its applicability or usefulness. The
framework can always resort to viewing the shape of an expression involving
such operators in an opaque manner by using a symbolic variable to represent
the expression’s shape. Thus, while an implementation based on the frame-
work may have to bank on runtime resolution to calculate the shape outcomes
of Type III built-ins, it may still benefit from the framework because of the way
these outcomes are subsequently used.

To demonstrate, consider code that has calls to the Type III built-in evalin:

a ← evalin(’ws’, s1);
b ← evalin(’ws’, s2);
c ← (a*b+a+b)*(a*b+a+b);

evalin allows the execution of a string containing any valid MATLAB expres-
sion in the context of a specified workspace of variables. In the given code
fragment, two strings are executed in the workspace ws and their results are
assigned to a and b. The framework would effectively view the code in the

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 5, September 2006.

An Algebraic Array Shape Inference System for MATLAB • 901

following way:

� ϕ(a) ← ϕ(evalin(′ws′, s1))
a ← evalin(’ws’, s1);
� ϕ(b) ← ϕ(evalin(′ws′, s2))
b ← evalin(’ws’, s2);
� ϕ(c) ← (ϕ(a)∗̇ϕ(b)+̇ϕ(a)+̇ϕ(b))∗̇(ϕ(a)∗̇ϕ(b)+̇ϕ(a)+̇ϕ(b))
c ← (a*b+a+b)*(a*b+a+b),

where ϕ(a), ϕ(b), and ϕ(c) denote the shapes of a, b, and c, respectively, and
ϕ(evalin(′ws′, s1)), ϕ(evalin(′ws′, s2)) stand for the shapes of evalin’s outcomes.
At compile-time, the framework would then be able to simplify the computation
of ϕ(c), using one of the heterogeneous identities in Table II, to:

� ϕ(a) ← ϕ(evalin(′ws′, s1))
a ← evalin(’ws’, s1);
� ϕ(b) ← ϕ(evalin(′ws′, s2))
b ← evalin(’ws’, s2);
� ϕ(c) ← ϕ(a)∗̇ϕ(a)+̇ϕ(b)∗̇ϕ(b)
c ← (a*b+a+b)*(a*b+a+b).

Thus, while ϕ(c) is still ultimately resolved at runtime using the values of ϕ(a)
and ϕ(b), the framework diminishes the overhead of its runtime computation.

9. MEASUREMENTS

This section reports measurements from [Joisha and Banerjee 2003b],
an implementation that realizes the shape inference techniques described in
this article. Numbers pertaining to inferred shape information were collected
over 17 programs obtained from a variety of sources, including the test suites
of recent research compilers for MATLAB. These programs are organized as
input files called M-files, and are hence directly executable by a MATLAB in-
terpreter. Each benchmark consists of a separate driver routine from which
is invoked an entry point to the benchmark. This organization was taken
from the FALCON research compiler [De Rose and Padua 1999]. Table VI lists
these benchmarks with brief descriptions, their sources and sizes in terms
of the number of program files, and the total number of lines of program
text.

The current version of supports built-in functions, such as disp and
fprintf, that enable writing output to an external file. However, no support
presently exists for reading data from an external file. The original versions of
some of the benchmarks did read in external data, though; these were modified
to include the loaded data in the driver routine. This wasn’t found to be a
problem because the externally loaded data was only a couple of scalars.

Our benchmark suite includes two programs that manipulate three-
dimensional arrays. This is unlike the test suites of previous research com-
pilers for MATLAB because existing MATLAB programs mainly confine them-
selves to manipulating scalars, vectors, and matrices—a state of affairs due to
early versions of MATLAB supporting only matrices. With the introduction of

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 5, September 2006.

902 • P. G. Joisha and P. Banerjee

Table VI. Benchmark Suite Description

Benchmark Synopsis Origin M-Files Lines

adpt Adaptive Quadrature by Simpson’s Rule 2 79

capr Transmission Line Capacitance 5 68

clos Transitive Closure 2 30

crni Crank-Nicholson Heat Equation Solver 3 48

diff Young’s Two-Slit Diffraction Experiment 2 40

dich Dirichlet Solution to Laplace’s Equation 2 49

edit Edit Distance 2 34

fdtd Finite Difference Time Domain (FDTD) 2 47

Technique

fiff Finite Difference Solution to the Wave 2 32

Equation

nb1d One-Dimensional N -Body Simulation 2 53

nb3d Three-Dimensional N -Body Simulation Modified nb1d 2 46

bari Elastic Bar Displacement 2 21

baye Probabilities by Bayes’ Rule 3 29

brt1 Mandelbrot 2 23

brt2 Mandelbrot Optimized Modified brt1 2 30

sunl Sunlight Illumination in Lux 2 60

vfin Vector Comparison with Loop 3 49

Legend

Benchmarks involve three-dimensional arrays.

FALCON MATLAB Compiler Test Suite [De Rose and Padua 1999].

OTTER Parallel MATLAB Compiler Test Suite [Malishevsky 1998].

Chalmers University of Technology, Sweden (www.elmagn.chalmers.se/courses/CEM/).

The MATLAB Central File Exchange (www.mathworks.com/matlabcentral/fileexchange).

“Accelerating MATLAB: The MATLAB JIT-Accelerator” (www.mathworks.com/mld accel).

“Picking up the Pace with the MATLAB Profiler”, MATLAB News & Notes, May 2003.

Tel Aviv University, Israel (http://wise-obs.tau.ac.il/~eran/matlab.html).

multidimensional array support in version series 5 (the current series is 7), this
is likely to change.

9.1 Platform Specifications

The measurements were taken on a Dell Latitude C840, equipped with a
1.60 GHz Intel Pentium 4 Mobile processor, having 512MB of RAM, and run-
ning Red Hat Linux 8.0 (kernel version 2.4.18–14). The version of used
was 1.1, which was executed on version 4.2 of the Mathematica kernel.31

9.2 Inferred Shapes’ Composition

Table VII presents results due to the shape-tracking analysis alone. The
“Shapes” column shows the total number of shapes that were inferred for each
benchmark. These include the shapes of the original program variables as well
as the shapes of temporaries that were introduced in the steps that led up to

31For measurements with slightly older versions of and Mathematica, see Joisha [2003].

The platform there was a 440 MHz UltraSPARC-IIi, with 128MB of RAM, and ran Solaris 7.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 5, September 2006.

An Algebraic Array Shape Inference System for MATLAB • 903

Table VII. Composition of Inferred Shapes

Symbolic Type Inference Timings

Explicit Shapes Copies (secs)

Benchmark Shapes % Scalar Nonscalar (%) Kernel MathLink

adpt 188 42.55 70 10 62.96 9.63 1.37 (12%)

capr 245 32.65 72 8 61.82 12.40 1.50 (11%)

clos 64 100 21 43 0.00 1.88 1.02 (35%)

crni 139 100 64 75 0.00 3.62 1.15 (24%)

diff 92 91.30 70 14 62.50 9.85 1.65 (14%)

dich 143 100 94 49 0.00 12.20 1.40 (10%)

edit 83 28.92 19 5 62.71 1.59 0.99 (38%)

fdtd 192 100 38 154 0.00 1.88 1.08 (36%)

fiff 88 100 58 30 0.00 1.92 1.10 (36%)

nb1d 163 10.43 12 5 64.38 3.56 1.12 (24%)

nb3d 118 16.10 14 5 37.37 2.03 1.02 (33%)

bari 73 100 32 41 0.00 0.20 1.09 (84%)

baye 60 100 35 25 0.00 1.97 0.92 (32%)

brt1 45 80.00 27 9 66.67 5.25 1.12 (18%)

brt2 61 100 37 24 0.00 39.30 3.30 (8%)

sunl 143 100 123 20 0.00 2.96 1.05 (26%)

vfin 94 70.21 46 20 57.14 0.93 0.93 (50%)

type determination.32 For instance, temporaries were introduced during the
SSA conversion step that preceded the type inference phase. It additionally in-
cludes variables that were introduced by the effective splitting of �̇(P)(s, t) into
copies during the SSA inversion phase. Array copy propagation and dead-code
elimination were performed prior to type determination, so trivial copies didn’t
contribute to these numbers.

The “Explicit Shapes” column indicates the percentage of inferred shapes
that were explicit. The column also shows the breakup of these explicit shapes
between scalar and nonscalar shapes. Explicit shapes allow translators to gen-
erate highly efficient code. For example, if a translator can infer that the vari-
ables a and b in the MATLAB expression a+b are scalars, it can generate a
simple machine instruction to perform the addition, rather than resort to a
general array addition routine.

All nonexplicit shapes are symbolic. The “Symbolic Copies” column displays
the percentage of symbolic shapes that were inferred to be identical. This
deduction happened as a result of the shape-tracking analysis described in
Section 7.1. This was a metric on which we significantly improved over all
past efforts simply because past efforts didn’t look at shapes at a symbolic
level. Establishing that one symbolic shape is exactly the same as another
allows a translator not only to avoid unnecessary shape checks, but to also
reduce the runtime shape computation overhead. Table VII shows that when
shapes were symbolic, a large percentage was usually determined to be iden-
tical, even in programs that only manipulated two-dimensional arrays. This
indicates the potential for such inferences to considerably lower shape-related

32 also infers intrinsic type and value range, in addition to shape [Joisha and Banerjee

2003b].

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 5, September 2006.

904 • P. G. Joisha and P. Banerjee

runtime overheads. As far as we know, no previous approach to shape deter-
mination for the MATLAB/APL class of languages can make this kind of an
inference.

9.3 Inference Timings

The total time to obtain all type attributes—that is, shape, intrinsic type, and
value range—for each benchmark is presented in the last column of Table VII.
This was the sum of two parts: a “kernel” time, which is the time taken by the
Mathematica kernel to infer the type attributes, and a “MathLink” time, which
is the time for transferring an intermediate representation of the input program
to the Mathematica kernel and to transfer the inferred types back. This data
movement occurs over a special interprocess communication interface called
MathLink [Wolfram 1999] and can be expensive. As Table VII shows, in 8 out
of 17 benchmarks, the MathLink timings accounted for over 30% of the total
type inference times. The MathLink channel has been improving with newer
releases of Mathematica and it is possible that the total type inference timings
will be closer to that shown in the “Kernel” subcolumn in future versions. Still,
considering the quality of the inferences made, we believe that the current
timings are acceptable, given that a typical deployment scenario would involve
the interpreter during prototyping and code development, and an inference-
capable compiler during production code generation.

9.4 Execution Timings and Memory Footprints of Compiled MATLAB Code

Ultimately, the information inferred by the techniques in this article has the
potential to impact the code produced by a translator. We have implemented
a source-to-source translator system called that uses the inferences pro-
duced by to efficiently compile MATLAB programs into stand-alone C
code [Joisha 2003].

The speedups on the generated C codes for the first 11 benchmarks in
Table VI, with respect to code produced by a commercial compiler for MATLAB
called mcc (mcc is from the makers of MATLAB and relies solely on runtime
resolution), ranged from 10% to over two orders of magnitude on a Solaris plat-
form [Joisha and Banerjee 2003a; Joisha 2003]. Since the work of Joisha and
Banerjee [2003a] and Joisha [2003], the benchmark suite has grown to 17 (the
new entries are the last six in Table VI) and the testbed has migrated to the
Linux platform mentioned in Section 9.1. Execution times on the current suite
under the new setup against a more recent version of mcc have ranged between
a slowdown of 0–30% in 4 programs to speedups in the remaining 13, of at
least an order of magnitude in 6 of them. Execution times have also been mea-
sured against a recent version of the MATLAB interpreter enhanced with a
dynamic JIT (just-in-time) compiler [The MathWorks, Inc. 2002a, 2002b]; the
performance in this case ranged between a slowdown of 40–90% in 3 programs
to speedups in the remaining benchmarks, speedups that were at least an order
of magnitude in 2 of them.

Substantial savings in memory footprints have also been achieved due to
storage optimizations permitted by the inferred shapes [Joisha and Banerjee

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 5, September 2006.

An Algebraic Array Shape Inference System for MATLAB • 905

2003a]. For instance, on the 11 benchmarks in Table VI that were profiled on
the Solaris testbed, average virtual memory size savings of between 0.7% and
139% were observed against code produced by the commercial MATLAB com-
piler; these savings ranged from 123KB to over 9MB in absolute terms [Joisha
and Banerjee 2003a; Joisha 2003]. Measurements on the entire benchmark
suite done on the Linux platform and against the more recent version of mcc
show average virtual memory savings that range from losses of 0.6–13.2% in 5
programs to gains in the remaining 12, with savings over 46% in 5 of the latter.

While this article shows how the framework could be used to realize a sys-
tematic preallocation analysis, the analysis isn’t reflected in the numbers re-
ported in Table VII. This is because despite ’s ability to perform the
analysis, our MATLAB-to-C compiler currently doesn’t handle its preallocation
inferences. Thus, all performance improvements have been due to information
gathered by the shape-tracking analysis alone. In fact, is yet to fulfill
the full potential of this framework, since it would entail more developmental
work. For instance, only a subset of the identities in Table II have been currently
coded into the system.

10. CONCLUSIONS

This article has presented an approach based on symbolic evaluation for infer-
ring array shapes in array-based languages such as MATLAB. Unlike past
approaches, our framework exploits the algebraic properties that underlie
MATLAB’s shape semantics. This gives our approach a unique advantage in
its ability to arrive at useful shape inferences even when array extents aren’t
compile-time determinable.

Of course, the quality of the inferences is crucially dependent on how fully the
various shape-related algebraic properties have been characterized. If none of
the coded algebraic identities apply for a certain input program, shape equiva-
lence may not be detected, and a useful fixed-point solution may not be achieved.
However, the shape semantics of most of the language operators have simple
algebraic properties that can be both easily identified and codified and from
which shape inference benefits immediately accrue. Moreover, since not coding
some algebraic identity doesn’t mean incorrectness, but only a missed opportu-
nity at simplification and a useful inference, systems based on these methods
can be built incrementally, eventually trading quality of inference for runtime
efficiency. We believe that our implementation in confirms this point
by demonstrating that a system capable of high-quality inferences can be both
practically built and used.

ACKNOWLEDGMENTS

The article has benefited from feedback on the manuscript by Christopher W.
Fraser, and from discussions with Erik Ruf and David R. Tarditi.

REFERENCES

ADAMS, J. C., BRAINERD, W. S., MARTIN, J. T., SMITH, B. T., AND WAGENER, J. L. 1992. FORTRAN 90
Handbook. McGraw-Hill, New York.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 5, September 2006.

906 • P. G. Joisha and P. Banerjee

ALMÁSI, G. 2001. MaJIC: A MATLAB Just-In-Time Compiler. Ph.D. thesis, University of Illinois

at Urbana-Champaign.

ALMÁSI, G. AND PADUA, D. A. 2002. MAJIC: Compiling MATLAB for speed and responsiveness.

In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation. ACM, New York, 294–303.

ANCOURT, C. AND NGUYEN, T. V. N. 2001. Array resizing for scientific code debugging, maintenance

and reuse. In Proceedings of the ACM SIGPLAN/SIGSOFT Workshop on Program Analysis for
Software Tools and Engineering. ACM, New York, 32–37.

BANERJEE, U. 1993. Loop Transformations for Restructuring Compilers: The Foundations. Kluwer

Academic, Norwell, MA.

BUDD, T. 1988. An APL Compiler. Springer Verlag, New York City.

CHAUVEAU, S. AND BODIN, F. 1998. Menhir: An Environment for high performance MATLAB. In

Proceedings of the 4th International Workshop on Languages, Compilers, and Runtime Systems.

LNCS, vol. 1511. Springer Verlag, 27–40.

CHING, W.-M. 1986. Program analysis and code generation in an APL/370 compiler. IBM J. Res.
Dev. 30, 6 (Nov.), 594–602.

CYTRON, R., FERRANTE, J., ROSEN, B. K., AND WEGMAN, M. N. 1991. Efficiently computing static single

assignment form and the control dependence graph. ACM Trans. Program. Lang. Syst. 13, 4 (Oct.),

451–490.

DE ROSE, L. A. 1996. Compiler techniques for MATLAB programs. Ph.D. thesis, University of

Illinois at Urbana-Champaign.

DE ROSE, L. A. AND PADUA, D. A. 1999. Techniques for the translation of MATLAB programs into

FORTRAN 90. ACM Trans. Program. Lang. Syst. 21, 2 (Mar.), 286–323.

DERSHOWITZ, N. AND PLAISTED, D. A. 2001. Rewriting. In Handbook of Automated Reasoning,

A. Robinson and A. Voronkov, eds. vol. 1. Elsevier, Amsterdam, The Netherlands.

GUPTA, R. 1993. Optimizing array bounds checks using flow analysis. ACM Lett. Program. Lang.
Syst. 2, 1–4, 135–150.

HINDLEY, J. R. 1969. The principal type-scheme of an object in combinatory logic. Trans. American
Math. Society 146, 29–60.

JAY, B. C. AND STECKLER, P. A. 1998. The functional imperative: Shape! In Proceedings of
the 7th European Symposium On Programming. LNCS, vol. 1381. Springer Verlag, 139–

153.

JOISHA, P. G. 2003. A type inference system for MATLAB with applications to code optimization.

Ph.D. thesis, Northwestern University.

JOISHA, P. G. AND BANERJEE, P. 2001a. Computing array shapes in MATLAB. In Proceedings of
the 14th International Workshop on Languages and Compilers for Parallel Computing. Lecture

Notes in Computer Science, vol. 2624. Springer Verlag.

JOISHA, P. G. AND BANERJEE, P. 2001b. Correctly detecting intrinsic type errors in typeless lan-

guages such as MATLAB. In Proceedings of the ACM SIGAPL Conference on Array Processing
Languages. ACM, New York, 6–21.

JOISHA, P. G. AND BANERJEE, P. 2002. Implementing an array shape inference system for MATLAB

using Mathematica. Tech. Rep. CPDC–TR–2002–10–003, Northwestern University.

JOISHA, P. G. AND BANERJEE, P. 2003a. Static array storage optimization in MATLAB. In Proceed-
ings of the ACM SIGPLAN Conference on Programming Language Design and Implementation.

ACM, New York, 294–303.

JOISHA, P. G. AND BANERJEE, P. 2003b. The type inference engine for MATLAB. In Proceed-
ings of the 12th International Conference on Compiler Construction. Lecture Notes in Computer

Science, vol. 2622. Springer Verlag, 121–125.

JOISHA, P. G., SHENOY, U. N., AND BANERJEE, P. 2000. An approach to array shape determination in

MATLAB. Tech. Rep. CPDC–TR–2000–10–010, Northwestern University.

KAPLAN, M. A. AND ULLMAN, J. D. 1978. A general scheme for the automatic inference of variable

types. In Proceedings of the 5th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages. ACM, New York, 60–75.

KNIGHT, K. 1989. Unification: A multidisciplinary survey. ACM Comput. Surv. 21, 1, 93–124.

MALISHEVSKY, A. 1998. Implementing a runtime library for a parallel MATLAB compiler. M.S.

thesis, Oregon State University.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 5, September 2006.

An Algebraic Array Shape Inference System for MATLAB • 907

MCCOSH, C. 2003. Type-Based specialization in a telescoping compiler for MATLAB. Tech. Rep.

TR03–412, Rice University.

MILNER, R. 1978. A theory of type polymorphism in programming. J. Comput. Syst. Sci. 17, 3

(Dec.), 348–375.

MITCHELL, J. C. 1996. Foundations for Programming Languages. The MIT Press, Cambridge,

MA.

MUCHNICK, S. S. 1997. Advanced Compiler Design and Implementation. Morgan Kaufmann, San

Francisco, CA.

QUINN, M. J., MALISHEVSKY, A., SEELAM, N., AND ZHAO, Y. 1998. Preliminary results from a parallel

MATLAB compiler. In Proceedings of the 12th International Parallel Processing Symposium and
9th Symposium on Parallel and Distributed Processing, S. Sahni, Ed. IEEE Computer Society

Press, 81–87.

ROBINSON, J. A. 1965. A machine-oriented logic based on the resolution principle. J. Association
Comput. Mach. 12, 1 (Jan.), 23–41.

TENENBAUM, A. M. 1974. Type determination in very high-level languages. Ph.D. thesis, Rep.

NSO-3, New York University.

THE MATHWORKS, INC. 1997. MATLAB: The Language of Technical Computing. The MathWorks,

Inc. Using MATLAB (Version 5).

THE MATHWORKS, INC. 2002a. Accelerating MATLAB: The MATLAB JIT-Accelerator. At http://

www.mathworks.com/company/newsletters/digest/sept02/accel matlab.pdf.

THE MATHWORKS, INC. 2002b. The MathWorks announces release 13 with major new

versions of MATLAB and Simulink. At http://www.mathworks.com/company/pressroom/

index.shtml/article/332.

TREMBLAY, J. P. AND MANOHAR, R. 1975. Discrete Mathematical Structures with Applications to
Computer Science. Computer Science Series. McGraw-Hill, New York.

WALTHER, C. 1988. Many-Sorted unification. J. Assoc. Comput. Mach. 35, 1, 1–17.

WEISSTEIN, E. W. 2005. Hilbert matrix; From MathWorld—A Wolfram web resource. At http://

mathworld.wolfram.com/HilbertMatrix.html.

WIEDMANN, C. 1979. Steps toward an APL compiler. In Proceedings of the ACM SIGAPL Confer-
ence on Array Processing Languages, A. Anger, Ed. ACM, New York, 321–328.

WOLFRAM, S. 1999. The Mathematica Book, 4th ed. Wolfram Media, Champaign, IL.

XI, H. AND PFENNING, F. 1998. Eliminating array bound checking through dependent types. In

Proceedings of the ACM SIGPLAN Conference on Programming Language, Design, and Imple-
mentation. ACM, New York, 249–257.

Received May 2004; revised January 2005; accepted May 2005

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 5, September 2006.

