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Abstract
Numerous optimizations exist for improving the perfor-
mance of nondeferred reference-counting (RC) garbage col-
lection. Their designs are ad hoc, intended to exploit dif-
ferent count removal opportunities. This paper shows that
many of these optimizations can be unified using a notion
called overlooking roots. The paper also shows how the no-
tion enables more powerful versions of past optimizations
and makes new optimizations possible.

While recent static analyses have dramatically improved
nondeferred RC performance, margins relative to the de-
ferred variant were still significant in the worst case. With
the optimizations made possible by overlooking roots, we
show that these margins can be reduced to within 4% on
nearly all programs in a test suite, at even large heap sizes,
and to within 23% in the worst case.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors—Memory Management (Garbage
Collection), Optimization, Compilers

General Terms Algorithms, Languages, Performance

Keywords Reference Counting, Static Analysis

1. Introduction
This paper demonstrates how a concept called overlooking
roots unifies numerous past optimizations for the nonde-
ferred reference-counting (RC) method. Nondeferred refer-
ence counting is the body of RC techniques that have three
invariants: (1) all live data have positive reference counts;
(2) the reference count is zero when the last reference dis-
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appears; and (3) a zero reference count implies dead data. 1

Classic reference counting [6, 4] belongs to this class. De-
ferred reference counting [5] does not, because a live object
can have a zero reference count between collections.

Collectors in the nondeferred RC class offer unique ad-
vantages, such as immediate finalization and low memory
footprint. They can present simpler designs—for example,
at least for single-thread applications, components crucial to
other collectors, like stack scanners and garbage collection
(GC) maps, need not be present. But because implementa-
tions typically preserve the three invariants by counting all
references to data, their throughputs can suffer.

It has long been believed that to get reference counting
operating at an acceptable level of performance, one needs
to use the deferred variant. Deferred reference counting pro-
vides the throughput boost by giving up on some of the
ideal features of the nondeferred version (e.g., immediacy
of reclamation). This work shows that such a compromise is
not necessary in important cases.

Past efforts have addressed the throughput problem by
a medley of optimizations, such as identifying permanently
live data [1, 10], removing RC updates on lifetime-subsumed
references [18, 20, 10], and statically coalescing RC up-
dates [1, 10]. These optimizations eliminate RC updates,
leaving the reclamation characteristics of the collection
scheme intact. This paper’s main contribution is the insight
that these optimizations can be expressed as applications of
the overlooking root information. This systematizes what
was previously done in an ad hoc fashion.

The article also shows how overlooking roots enable
more powerful versions of past optimizations, and how new
optimizations can be devised using them. In particular, it
shows a new and aggressive form of lifetime subsumption
called ORCS. Relative to a recent form of lifetime subsump-
tion proposed by us [10], it demonstrates that ORCS can
improve throughput by up to a factor of 4.

Informally, a root x overlooks a root y if whatever is
reachable from y is also reachable from x . The paper
presents an analysis for computing this information. The

1 Note that the count can drop to zero even before the last reference disap-
pears, for example, immediately after the last use of the last reference.



analysis is intraprocedural, and relies on simple mutation
summaries to handle interprocedural calls. This makes it
suitable to optimizing large programs in a piecemeal fash-
ion. What makes the analysis novel is that it combines a
standard data-flow approach with the weak updating of a
central structure called a “tie function” to obtain reason-
ably good overlooking root information. If it were not for
the tie function, the intraprocedural analysis would have
been stymied by procedure invocations and other potentially
heap-mutating statements.

While the analysis and optimizations account for mul-
tithread influences, our implementation is for single-thread
programs. The design of an efficient nondeferred RC collec-
tor for multithread applications is a separate, open problem.
As is, our results have utility beyond single-thread applica-
tion domains. They could be useful in areas where reference
counting is hand-implemented, such as in COM [19], device
drivers, and microcontroller programs.

Our previous work reduced the throughput gap between
the two forms of RC collection in the single-thread case. But
the worst-case difference was still significant, and occurred
on the cmp benchmark [10]. At the same heap size, opti-
mized nondeferred RC collection can be up to four times
slower on cmp. This paper shows that with ORCS, it can
come within 4% of the deferred version. Furthermore, by uti-
lizing just three of the five overlooking-root-based optimiza-
tions in this article (referred to as “OR optimizations”), we
show that the nondeferred throughput is at worst within 23%
of the deferred, even on large, cycle-intensive programs.

The 23% is on a compiler compiling itself, at heap sizes
that are over 75% of the minimum required by the nonde-
ferred collector to operate. At smaller sizes, the nondeferred
collector can outperform the deferred on the same bench-
mark, by as much as 26%. On all other benchmarks, OR-
optimized nondeferred RC collection is at worst within 4%
of the deferred, even at large heap sizes.

The rest of this paper is organized as follows. Limitations
of a recent form of lifetime subsumption are explained in
Section 2. Section 3 presents the overlooking roots binary
relation. It shows how the relation enables ORCS, and four
other optimizations: (1) a coalescing of RC updates more
general than done in the past; (2) the superseding of analyses
for permanently live data; (3) omitting the buffering of roots
in the trial deletion algorithm; and (4) the specialization of
RC updates on non-null references. Section 4 describes an
overlooking roots analysis. Measurements on OR-optimized
nondeferred RC collection, and performance comparisons
with deferred RC collection, are reported in Section 5. Sec-
tion 6 discusses related work, and Section 7 concludes.

2. Lifetime Subsumption in the Past
We recently defined a local reference y as being always RC
subsumed by a local reference x , if

A1. every live range of y is contained in a live range of x ;

A2. neither x nor y can be redefined when y is live; and

A3. the set R(y ) of objects reachable from y is always a
subset of the set R(x ) of objects reachable from x [10].

The definition’s aim was the efficient identification of life-
time-subsumed references, beyond those detected by past
work [18, 20]. These references are valuable to nondeferred
RC collectors, because they do not have to be counted.

This definition, which will be referred to as envelop-
ing RC subsumption (ERCS) in this paper, led to an op-
timization that was shown to be effective on many pro-
grams [10]. Nonetheless, it covered only a limited set of
scenarios. Moreover, the algorithm for finding ERCS refer-
ences (roots that fulfill the ERCS definition) was a conserva-
tive one [10]. A conservative algorithm for an already con-
servative definition resulted in missed opportunities in the
cmp outlier reported in our previous work [10]. Sections 2.1
and 2.2 elaborate on these matters further.

2.1 Conservatism in the ERCS Definition

A shortcoming of ERCS is that for a variable to be non-
trivially subsumed, it must always be reachable from a par-
ticular variable different from itself. For example, consider
the code fragment on the left in Figure 1. This consists of
mutator code, and the RC updates that a classic RC collec-
tion scheme would require. (RC updates are the increment
and decrement operations RC+(r) and RC−(r), where r is
a reference.) If x , y and z are defined for the first time on
Lines 2, 4 and 6, and used last on Lines 14, 13 and 12 re-
spectively (ignoring the RC update usages), then even if we
assume that the fields f1 and f2 reside in thread-local objects,
the object targeted by z will not always be reachable from x

or y alone. Thus, despite z satisfying Provision A1, it is not
an ERCS reference since Provision A3 does not hold relative
to x or y alone. And yet, intuitively, z should be subsumed
since it will always be reachable from either x or y .

Another example is the code fragment on the right in
Figure 1. Neither Provisions A3 nor A1 hold for any of the
variables in it. Hence, there would be no subsumption by
ERCS, even though the RC updates for w can be avoided if
the coverage jointly provided by u and v were considered.

Another drawback is that of the two clauses in Provi-
sion A2, the second is constraining. The first is that y should
never be live through a redefinition of itself. It is needed to
prevent a dangling reference problem (see Figure 2 in [10]).
The second is that y should never be live through a redefi-
nition of x . It exists to eliminate the possibility of y ’s target
becoming unreachable from x due to indirect writes of x
through pointers. It is unnecessary if Provision A3 can be
computed more precisely.

2.2 Limitations of Previous Algorithm for ERCS

ERCS references were computed by finding local references
that “overlook” the object targeted by a live local reference
y , from just before a statement s until their death or possible



1 RC+(e1)
2 x := e1

3 RC+(e2)
4 y := e2

5 RC+(x .f1)
6 z := x .f1

...
7 RC+(z )
8 RC−(y .f2)
9 y .f2 := z

10 RC−(x .f1)
11 x .f1 := null
12 · · ·z · · ·
13 · · ·y · · ·
14 · · ·x · · ·
15 RC−(z )
16 RC−(y )
17 RC−(x )

1 RC+(e1)
2 u := e1

3 RC+(u .f1)
4 w := u .f1

5 RC+(e2)
6 v := e2

...
7 RC+(u )
8 RC−(v .f2)
9 v .f2 := u

10 RC−(u )
11 u := null
12 · · ·w · · ·
13 RC−(w )
14 w := null
15 · · ·v · · ·
16 RC−(v )

Figure 1. Two examples illustrating the deficiencies of
ERCS. Both indicate a shortcoming in Provision A3. The ex-
ample on the right also shows a deficiency in Provision A1.

redefinition. This overlooking root set was defined as

R(s,y ) = {u |u ∈ R ∧y ∈ liveout(s) ∧y sout→ ω
∧ω ∈R(u ) on all paths from sin until

u dies or could be redefined},
(1)

where R is the set of local references, liveout(s) is the set of

local references that are live just after s, y
P→ ω means y

points to the object ω at program point P, and s in and sout

are program points just before and just after s [10].
Because a straight calculation of R(s,y ) by Equation (1)

is computationally expensive, the solution was to approxi-
mate it by a peephole examination of a small context around
s. For example, the article showed that an approximate
R(s,y ) for the statement

y := x .f

is {x }, if x is known to only target thread-local objects, and
if x .f is not written into before x dies.

Although a peephole examination is sufficient for a num-
ber of important s, opportunities can be missed. For y :=
x .f, since ascertaining whether x .f is written into before x
dies might require an inspection of all basic blocks reachable
from the basic block B in which s occurs, the opportunity
was conservatively identified by restricting the inspection to
B. The approach was to not consider y for subsumption, if
x did not die before the end of B.

Thus, subsumption previously was limited both in the
opportunities it recognized and the flow-insensitive manner
in which it was calculated. While this article gives a more
aggressive definition of subsumption called ORCS, ERCS

x

y

Figure 2. The root x overlooks the root y . Boxes depict
roots, and circles objects in the heap. Arcs represent points-
to relations from roots to heap objects, as well as heap paths.

might still be an apposite choice in more than a few sit-
uations. For instance, the data structure complexity of the
ERCS analysis in [10] is O(|V |2), where |V | is the total num-
ber of root references. On the other hand, the data structure
complexity of the ORCS analysis in this paper is O(|V |2|B|),
where |B| is the number of basic blocks in a procedure.

3. Overlooking Roots, and Their
Applications

This section shows that a generalization of the formulation
in Equation (1) leads to a concept that enables the conflation
of numerous root-based RC optimizations. (The term “root”
in this paper means a local or static reference.)

The generalized definition is as follows: A root x over-
looks a root y at a program point P if whatever is the ob-
ject reachable from y at P is also reachable from x at P
without going through y . This overlooking roots binary re-
lation is irreflexive and transitive at any P. Any set of ordered
pairs that fulfills the relation is denoted as olook(P). When
(x ,y ) ∈ olook(P), we call x the overlooker or the overlook-
ing root, and y the overlookee or the overlooked root. (x ,y )
is an overlooking pair. Figure 2 displays the relation.

The new notion is related to Equation (1), because if
x ∈ R(s,y ) and if x is not defined in s, then there exists
an olook(sout) such that (x ,y ) ∈ olook(sout).

The following sections show how five different RC opti-
mizations are expressible using the new notion.

3.1 Overlooking RC Subsumption

Overlooking RC subsumption (ORCS) is a kind of subsump-
tion more general than ERCS. A live range l of a local refer-
ence y is considered subsumed according to ORCS, if

B1. y is overlooked by live roots at every point in l; 2 and

B2. y cannot be redefined in l.

l is then referred to as an ORCS live range. Hence, the live
ranges of y need not be wholly contained in the live ranges
of other variables for subsumption to occur. In addition, the
object targeted by y need not always be reachable from
the same root. Thus, ORCS accommodates a more dynamic

2 Because the overlooking roots relation is irreflexive, the object targeted by
y must always be reachable in l from another live root.



view of reachability than ERCS. In fact, it is straightforward
to show that ERCS is just a special case of ORCS.

Provision B2 exists for the same reason as the first clause
in Provision A2—to prevent dangling references.

Although there is no subsumption in Figure 1 according
to ERCS, z and w will be subsumed according to ORCS.

The olook sets contain path-insensitive information. If
(u ,v ) ∈ olook(P), then u overlooks v at P, irrespective
of the path taken to reach P. This is stronger information
than needed for the ORCS optimization. What is required
is a set of live roots at each point, of which at least one
is guaranteed to be an overlooker of the root in question.
Section B explains an analysis for deriving this information
using the overlooking roots analysis as a client service.

3.2 Superseding Custom Immortal Analyses

An object is immortal if it lasts, once created, until program
termination. RC updates on these objects—examples of
which include string literals and GC tables—are not needed
as they live forever. Unlike for subsumption, the RC updates
do not have to be “matched” for elimination; even remov-
ing an isolated RC update on an immortal object will not
compromise program correctness, or risk a memory leak.

Past work presented a tailored data-flow analysis for find-
ing sets of immortal target variables (local references to im-
mortal objects) [10]. With overlooking roots, such a custom
analysis becomes unnecessary.

3.2.1 Directly Overlooking Immortal Roots

Observe that a special virtual root can be thought to always
target an immortal object. This immortal root is immutable,
and “materializes” when the target immortal object is allo-
cated (which might be at the very beginning of program ex-
ecution, as is the case for statically allocated data).

Now consider the directly overlooking roots binary rela-
tion: A root x directly overlooks a root y at a point P if what-
ever is the object targeted by y at P is also targeted by x at
P, and x and y are distinct. In most situations, this is sim-
ply an aliasing relation. The exception is when virtual roots
target multiple objects at the same time (see Figure 11).

Let dolook(P) be any set of ordered pairs that honor
the directly overlooking roots relation. Then there is always
an olook(P) for a given dolook(P) such that dolook(P) ⊆
olook(P). Hence, if the direct overlookers among the over-
lookers of a root r include an immortal root, then r must be
an immortal target variable. In this way, immortal analyses
can be superseded by an analysis for overlooking roots.

3.2.2 Directly Overlooking Pristine Roots

Overlooking roots make it possible to go further—they per-
mit the detection of immortal overlookers when roots are
loaded off pristine fields. A field f is in the pristine state
from the moment its containing object is allocated, up to
the moment it is assigned a nonzero value. According to the
allocation semantics of virtual execution environments like

1 r := allocobj(T )
2 RC+(x )
3 RC−(r .f1)
4 r .f1 := x

5 RC+(y )
6 RC−(r .f2)
7 r .f2 := y

r

(r ,f1) (r ,f2)

Figure 3. Code fragment illustrating pristine roots. After
Line 1, r is directly overlooked by the pristine roots (r ,f 1)
and (r ,f2); this is shown by the object graph on the right.

Java [14] and .NET [2], the value of f in the pristine state
is assured to be an appropriately casted zero. Therefore, if
a reference field in the pristine state is loaded into a root y ,
y will be directly overlooked by an immortal root. An RC
update against y can then be omitted.

This definition can be slightly generalized. Rather than
up to the moment at which it is assigned a nonzero value, a
reference field can be considered pristine up to the moment
at which it points to an object that is not immortal.

The pristine field mechanics can be captured in the frame-
work of overlooking roots by introducing another set of vir-
tual roots called the pristine roots. Consider the fragment in
Figure 3, which corresponds to an initialization sequence.
allocobj(T ) returns a reference to a newly allocated, uncon-
structed object of type T .3 If T has, say two fields f1 and
f2, then after Line 1, r can be regarded as being directly
overlooked by two pristine roots, denoted by the pairs (r,f 1)
and (r,f2). This is shown on the right in Figure 3. (In our
display convention, hatched boxes designate virtual roots.)
Thus, Line 3 can be optimized out because the temporary
that r .f1 is loaded into will be directly overlooked by an
immortal root. When r .f1 is overwritten on Line 4, (r,f1)
should be removed from the set of r ’s overlookers, as part
of the “kill” calculation for that statement. Because (r,f2)
will remain a pristine overlooker of r , this allows Line 6 to
also be optimized out.

3.3 RC Chaining

Figure 4 displays two live ranges, one of x and another of y .
x is defined at Points 1 and 2, and dies at Points 5, 6 and 7.
y is defined at Points 3 and 4, and dies at Points 8 and 9.
The live ranges overlap in the shaded area of the figure.
In unoptimized nondeferred reference counting, there would
be increments against x at Points 1 and 2, and decrements
against it after Points 5, 6 and 7. Likewise, there would
be increments against y at Points 3 and 4, and decrements
against it after Points 8 and 9. Now, if x and y target the
same object in the overlapping portion of their live ranges,
then the increment against y at Point 3 can be coalesced with
the decrement against x at Point 7.

3 Only the vtable and RC fields are set up in such an object.



x := e1 x := e2

y := e3 y := e4

t1 := e1 t1 := e2

t1 := e4
1 2

3 4

5 6
7

8 9

Figure 4. The live ranges of x and y overlap in the shaded
area, in which they directly overlook each other. The RC
chaining transformation creates the dashed live range for t 1.

In the past, compile-time RC update coalescing was re-
stricted to within contiguous RC update sequences occur-
ring within basic blocks [10]. This section shows that after
a transformation called RC chaining, a more general coa-
lescing effect can be achieved, simply by applying an ORCS
optimization on the transformed code. Notice that, as is, the
RC updates for Figure 4 cannot be optimized using ORCS.

Let lu be a live range of the root u , and lv a live range
of the root v . We say that lu and lv are RC chained, if

C1. there are points at which lu and lv interfere (i.e., a
definition point of lu lies within lv , or vice versa [16]);

C2. u and v are not redefined in lu and lv respectively; and

C3. u and v directly overlook each other at the intersection
points of lu and lv .

An RC chaining graph GC = (V,EC) is an undirected
graph in which nodes stand for live ranges and edges for
the RC chaining relationship. The graph can be set up by
first computing the interference graph GI = (V,EI) for the
procedure [16]. If a variable could be redefined in its live
range l, then edges in GI incident on l are pruned out.
The remaining edges represent live range pairs that satisfy
Provisions C1 and C2. Let the resulting graph be G ′I .

Next, at each point P in the program, the set

∆(P) = {(lu , lv ) | u ∈ live(P)∧v ∈ live(P)

∧ ((u ,v ) �∈ dolook(P)

∨ (v ,u ) �∈ dolook(P))}
(2)

is calculated, where live(P) is the set of live roots at P, and
where lu and lv are the live ranges corresponding to u and
v at P. If (lm , ln ) occurs in ∆(P), then that edge is deleted
from G′I . After all the program points are processed in this
manner, it can be shown that the resulting graph is GC.

Every connected component in the RC chaining graph
represents a set of live ranges across which RC updates can
be coalesced. To realize coalescence, the RC chaining trans-
formation generates a temporary tc against each connected
component c in GC. Assignments are made against tc, and
fake uses of it introduced, so that its live range tightly spans

1. Create a temporary tc for a connected component c in GC.
2. For every live range lu in c, find D(lu ), the set of its

definition points at which no other lv in c is also active.
3. Precede every definition u := e that corresponds to a

definition point in D(lu ) by the definition tc := e.
4. Introduce a fake use of tc after every last use of u in lu .

Figure 5. The RC chaining transformation. It is based on
GC, the RC chaining graph for the procedure.

all the live ranges in c. The assignments are such that tc

aliases at every point the variables corresponding to the live
ranges in c that are also active at that point.

If an ORCS optimization is applied on the transformed
code, all the live ranges in c will be subsumed by t c. Only
RC updates against tc will be retained. The net effect equals
a coalescing of the RC updates at the overlap points in c.

Figure 5 gives an algorithmic description of the RC chain-
ing transformation. When applied to the example in Figure 4,
it generates the single temporary t1, since its RC chaining
graph has a single connected component. The assignments
t1 := e1, t1 := e2 and t1 := e4 will be introduced before the
existing definitions at Points 1, 2 and 4. Uses of t1 will be
introduced after Points 5 to 9. A definition of t1 will not be
introduced before Point 3 because x is live there. The trans-
formed result is a live range for t1 that spans the two live
ranges in the figure, and in which t1 directly overlooks x or
y or both. If an ORCS optimization is now applied, the RC
updates against x and y will be eliminated. The optimized
result is as if the increment at Point 3 was cancelled with the
decrement at Point 7 in the pre-transformed code.

If the general overlooking roots relation is used instead
in Provision C3, either the reclamation characteristics of the
original collection scheme could be affected or dangling
references could be created. For instance, suppose that x
overlooks y but does not alias it in the overlap region of
Figure 4. Then from Point 7 to Point 8, t1 would hold on to
the object targeted by a (dead) x .4 If it was the converse,
i.e., y overlooks x but does not alias it in the overlap region,
then y could become a dangling reference after Point 3.

The creation of a new spanning live range can sometimes
be obviated by copy propagation. As an example, suppose
that the live range of y in Figure 4 only stretched from
Point 3 to Point 8, and did not include the portion between
Points 4, 8 and 9. Then a copy propagator might be able to
extend the live range of x from Point 7 to Point 8, hence
rendering the creation of t1 unnecessary. This may be bene-
ficial since spanning live ranges like that of t1 can increase
the maximum number of mutually interferring live ranges,
and therefore, can increase a procedure’s register pressure.

4 This poses an interesting question beyond the paper’s scope: How to use
overlooking roots to trade garbage drag with the degree of coalescing?
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Figure 6. There may be a cycle-forming heap path from b to
a, or from b to c. Regardless, if v is overlooked by u when
it dies, it does not have to be put on the PLC list.

3.4 Optimizing the Buffering of Roots in Trial Deletion

Reference counting, by itself, cannot detect when a cyclic
structure becomes unreachable. To get around this, a tech-
nique called trial deletion has been used, which avoids a full
heap traversal to capture garbage cycles [15]. Trial deletion
is based on the following observation: When a reference is
swung away from an object whose reference count is at least
2, that object may become unreachable. If such references
are stashed away in a “potentially leaked cycles” (PLC) list,
they can be processed later for reclaiming leaked cycles.

Overlooking roots make the following optimization pos-
sible: If a root v is overlooked by some other live root, say
u , at the time v is swung away from an object b, then v

does not have to be put on the PLC list. This is because b
will still be reachable from u at that time. Thus, the decre-
ment against v can be as if it pointed to an acyclic object.
Figure 6 illustrates this optimization.

3.5 Tracking Root States with Virtual Overlookers

Overlooking relations involving virtual roots are a way to
track interesting states of a concrete root. As an example,
consider the state of a concrete root that is non-null. This
is useful information because an RC update on a non-null
reference can be substituted by a specialized version that
elides the initial null check [10].

If a concrete root x is directly overlooked by a non-
immortal root, then x is naturally non-null. 5 But there may
be cases where x is non-null, even though it may not be over-
looked by any of the roots discussed so far. An example is in
the code fragment on the left in Figure 7. At the beginning
of Line 2, x will be non-null, due to the exception semantics
of the statement on Line 1; this is independent of whether x
has a non-immortal overlooker before Line 1. Another ex-
ample is in the code fragment on the right in Figure 7. x will
be non-null before Line 3, regardless of whether any non-
immortal root directly overlooks it at that point.

It may therefore be profitable to track a concrete root’s
non-null state with a separate non-null root. A statement’s
“gen” calculation would have to suitably include it in the
computed olook set. In both the examples of Figure 7, the
calculation would add it to the overlookers of x after Line 1.

5 If it is overlooked by an immortal root instead, it could be null.

1 y := x .f
2 RC+(x )
3 RC−(z )
4 z := x

1 x := allocobj(T )
2 · · ·x · · ·
3 RC−(x )
4 x := null

Figure 7. Two code fragments with specializable RC up-
dates. In both, the non-null root overlooks x after Line 1.

Virtual roots could also be used to track the aliasing of lo-
cal and actual references. The rest of this paper assumes only
four kinds of virtual roots—undefined, immortal, pristine,
and actual parameter roots—to keep the exposition simple.

For the most part, virtual roots are not distinguished from
concrete roots when producing and consuming overlooking
root information. The calculation in Equation (11) is an ex-
ample. But distinctions are sometimes needed. For instance,
in ORCS and the trial deletion buffering optimizations, the
live overlooker should either be immortal, actual or concrete.

4. Overlooking Roots Analysis
The analysis obtains olook(P) at any point P in a procedure.
This is “must” information. For efficiency reasons, the anal-
ysis maintains the information per basic block, and computes
it on demand per statement. At the cost of a constant amount
of extra storage, the analysis also provides dolook(P), the set
of direct overlookers at P.

The analysis is intraprocedural. It handles invoked pro-
cedures using reference mutation summaries. A reference
mutation summary for a procedure F is the set of reference
fields and reference array types that could be mutated by F .

The analysis’s approach is to calculate olookout(s) at
each statement s, using the gen, kill and olookin sets for
s. olookin(s) and olookout(s) are the olook sets just before
and just after s. There are three possibilities for olookin(s).
If s is preceded by a statement s′ in its basic block B, then
olookin(s) equals olookout(s′). Otherwise, olookin(s) equals
the meet of the olookout sets for the last statements in the pre-
decessor basic blocks of B. If B has no predecessors, such
as the entry basic block of the control-flow graph (CFG),
olookin(s) equals a special initializing set called olook�.

The elements in olook� are the overlooking root pairs
on entry to a procedure. For every local reference r that is
not a formal reference, it contains the pair (�,r ), where �
denotes the “undefined” virtual root. This is because these
references have initially undefined values. For every formal
reference z , olook� contains the pair (ẑ,z ), where ẑ is a vir-
tual root that models the actual parameter corresponding to
z . There are no other pairs in olook� because all the remain-
ing roots, such as the static and virtual roots (including �),
do not have initially known overlookers. 6

6 There is no gain in including pairs of the form (z , ẑ). But there should not
be pairs of the form (r ,�) since � could target multiple objects.



4.1 The Problem of Mutations in the Heap

olookout(s) is given by a standard data-flow equation [16]:

olookout(s) = (olookin(s)− kill(s))∪gen(s). (3)

The equation by itself is inadequate because olookout be-
comes vacuous in the face of called procedures that may
mutate the heap. For example, consider the call statement

y := F (),

where F is known to mutate a reference field f. Because
f may lie on the heap path by which one root overlooks
another, the kill set for the statement, in the absence of more
knowledge, would have to be at least olookin(s). But then,
all incoming information for the statement would be lost.

The problem outlined here is not specific to callees that
may mutate the heap. It exists for any instruction that may
mutate the heap. Its ramifications in the procedure invocation
case, however, are extreme. In the case of a statement like

y .f := x ,

not all of the incoming information has to be killed, because
at the very least, y will overlook x after the statement
(assuming that f is a thread-safe or read-only field [7]). 7

4.1.1 Tie Fields, Tie Array Types, and the Tie Function

The heap mutation problem can be solved using the concept
of tie fields and tie array types. A reference field f ties a root
u to a root v if there exists a point P in the procedure at
which f occurs on every heap path by which u overlooks v
at P. Similarly, a reference array type A is said to tie u to
v if an instance of A occurs on every heap path by which u

overlooks v somewhere in the procedure. A tie function T
can then be constructed such that given u and v , T (u ,v )
is the set of all fields and array types that may tie u to v .

Intuitively, tie fields and tie array types are links in the
heap that when severed cause the overlooking relation be-
tween a pair of roots to be broken. Hence, if a field or an
instance of an array type in T (u ,v ) is updated, then the
overlooking relation between u and v could be broken.

There is an analogy between ties, which exist in the heap,
and dominator nodes [16], which exist in a CFG. Just as a
field or array type that ties the root u to the root v occurs
on every heap path by which u overlooks v , a node x that
dominates a node y in the CFG occurs on every control-flow
path from the entry node to y.

The overlooking roots analysis keeps one tie function per
procedure. T is initialized to map every pair of roots to the
empty set /0. As new overlooking pairs are generated with
every application of Equation (3), the tie function is updated
to include new fields and array types. Once added to an
image of T , these fields and array types are never removed;
this conforms to a weak update policy [3].

7 Section A.4 shows other pairs that do not have to be killed in this case.

A disadvantage of weak updating is that it can rapidly
dilute the usefulness of the gathered information [3]. The
tie function could be updated for each pair in gen(s), but
that may needlessly dilute the tie information. In particular,
if (u ,v ) ∈ olookin(s) and (u ,v ) �∈ kill(s), then there is no
need to update T (u ,v ), because whatever ties u to v after
s already exists in T (u ,v ) before s. Hence, T is updated
at (u ,v ) ∈ gen∗(s) as

T (u ,v )← T (u ,v )∪
{
{f} if f may tie u to v ,

{A} if A may tie u to v ,
(4)

where

gen∗(s) = gen(s)−olook∗in(s), (5)

olook∗in(s) = olookin(s)− kill(s). (6)

4.1.2 Utilizing the Tie Function

The main benefit of the tie function is that it enables the kill
set to be more specialized. For instance, Section 4.2.1 shows
that for procedure calls, the kill set need only be a subset of

{(u ,v ) | T (u ,v ) �= /0}.
Another use is in determining the dolook set at any point

in a procedure. This is shown in Equation (7), which gives
the dolook set just before a statement s, after a fixedpoint is
reached in the computation of the olook sets:

dolookin(s) = {(u ,v ) | (u ,v ) ∈ olookin(s)

∧T (u ,v ) = /0}. (7)

As an implementation aside, it helps to keep two maps for
T , to speed up tie function lookups. The first is for querying
all the ties for a root pair, as in Equation (4). The second
is for determining all the pairs tied by a field or type, as
in Equation (22). Both must be updated with every logical
update of T .

4.2 Transfer Functions

The analysis iterates over all the statements in the CFG,
applying Equations (3) and (4) in succession on relevant
statements, and computing the meet of the olookout sets at
confluence points. This is repeatedly performed until the
olook sets reach a fixedpoint.

Statements are deemed “relevant” if they can alter the
olook sets. Irrelevant statements, such as those that only
side-effect arithmetic variables, propagate their olook in sets
to their olookout sets.

In the interests of clarity, the analysis is described assum-
ing all roots to be only references. This is in accordance with
the Java programming model. In .NET, roots can also be in-
terior pointers to objects [2]. It is straightforward to extend
the description in this paper to statements involving them. In
fact, our implementation for .NET does handle them.

Assuming x , y , u and v are local or static references,
relevant statements can be divided into five categories:



• simple assignments—these are y := x and y := c, where
c is a constant reference, like null or a string literal;

• allocations—this is y := allocobj(T ), where T is the type
of the allocated instance;

• heap loads—these are y := x .f and y := x [e];
• heap stores—these are y .f := x and y [e] := x ; and

• procedure invocations—this is y := F (· · · ).
In all cases, the basic steps of the analysis are: (1) the state-
ment’s kill set is established, consulting at most its olookin

set and T ; (2) its gen set is computed, at most utilizing
its olook∗in set; and (3) T might be updated, at only pairs
in gen∗(s). The following explains how statements in the
procedure-invocation category are analyzed. For the other
categories, the reader is referred to the appendix.

4.2.1 Procedure Invocations

y := F(· · · ) This statement’s analysis uses the reference
mutation summary µ(F ) for the callee F , if one is available.
The summary is transitive—the summaries of the callees are
included in the caller’s summary. If no summary is avail-
able, as may happen under separate compilation, all tied
pairs have to be killed. Otherwise, only those tied by the
fields or array types in µ(F ) have to be killed:

kill(s) =⎧⎪⎪⎨⎪⎪⎩
{(u ,v ) | u = y ∨v = y

∨T (u ,v ) �= /0} if unknown µ(F ),

{(u ,v ) | u = y ∨v = y

∨T (u ,v )∩µ(F ) �= /0} otherwise.

(8)

The gen set is normally /0. However, if the program call
graph is available, as may happen under whole-program
compilation, better gen information can be produced.

The x-projection on a root v of a set S of ordered pairs
is the set of first elements in pairs of the form (u ,v ) in S.
This is expressed as xproj(S,v ). Consider a return point Q
in the function F , at which a local reference r is returned.
We call xproj(olook(Q),r ) the return overlooker set of F at
Q. Then the intersection of the return overlooker sets across
all the return points of F gives the set of roots that always
overlook F ’s returned value. Let this be olookret(F ).

Now consider a call statement that invokes F :

y := F (z 1, z 2, . . . , z n).

On return, I overlooks y if I ∈ olookret(F ). y is also over-
looked by z i (1≤ i≤ n), if ẑ i ∈ olookret(F ), where ẑ i is the
actual parameter virtual root corresponding to z i. This gives

gen(s) = {(I,y ) | I ∈ olookret(F )}⋃
{(z i,y ) | ẑ i ∈ olookret(F )}. (9)

For Equation (9) to be efficacious, the analysis should be
first performed on the callees of a procedure, before being
performed on the procedure itself. This can be done by

processing the procedures in a postorder traversal of the call
graph. The olookret sets for leaf procedures, and procedures
at the ends of back edges in the call graph, can be set to /0.

The extension makes it possible to derive valuable over-
looking information across procedure boundaries, without
resorting to a full interprocedural analysis. For instance, we
can determine that the reference returned by the function

public IrType getType() { return this.type; }
is always overlooked by the actual parameter, without prop-
agating information into the function through its argument.

5. Performance Measurements
We implemented three of the five OR optimizations dis-
cussed in this paper. They were ORCS, the immortal OR
optimization (which elides RC updates on immortal objects)
and the trial deletion OR optimization (which avoids putting
roots on the PLC list). This section reports performance
improvements due to them, and where these improvements
stand in relation to our past work. The improvements were
determined by measuring execution times and count profiles
across the eight C# programs shown in Table 1. The test
bed was an HP XW8000 workstation running in hyperthread
mode on an Intel Xeon 2.8GHz CPU, with Windows XP Ver-
sion 2002 (Service Pack 2). Its memory was a 2GB RAM,
an 8KB primary cache, and a 512KB secondary cache.

The OR optimizations were coded into Bartok, an ahead-
of-time optimizing compiler that converts MSIL (the Mi-
crosoft Intermediate Language [2]) into x86 binaries. MSIL
equivalents of the C# benchmarks were obtained using ver-
sion 7.10 of csc, which is the .NET C# compiler. The
three OR optimizations were compared against ERCS. In
all cases, all other optimizations provided by Bartok were
turned on, including previously proposed optimizations for
nondeferred RC collectors [10]. The specific previous RC
optimizations were a custom optimization for immortal ob-
jects, a type-based optimization for trial deletion, a custom
specialization of RC updates with non-null operands, a sim-
ple intra-block coalescing optimization, and the inlining of
lightweight RC updates [10]. Thus, improvements due to
the immortal OR optimization are over that achieved with
the previous custom immortal optimization.

There were no RC optimizations for heap references,
except those pointing to immortal data and statically in-
ferred acyclic types. The results thus show the improvements
achievable by just looking at program roots. If the static
OR optimizations were combined with dynamic techniques,
such as the run-time coalescing of RC updates against heap
references [13], further improvements should be possible.

5.1 Run-time System Description

Both the RC collectors are presently nongenerational. They
support only single-thread execution, although the optimiza-
tions by design are applicable to multithread settings. They
share major parts of a run-time system. This includes the



Benchmark Description

Cyclic Garbage Objects Memory

Maximum Total Allocated Allocated

(KB) (KB) (×106) (MB)

cmp File comparison tool, run on two 1006KB files. 0 0 6.62×10−3 1.72

xlisp
Xlisp interpreter executing au, boyer, browse, etc., as part of a work-
load of 21 Lisp programs. SPEC CINT95 program port. 0 0 125.49 1965.56

othello Othello (aka Reversi) strategic board game, played on an 8×8 grid. 0 0 0.64 15.44

go Game of Life, played on a 40×19 board. SPEC CINT95 program port. 0 0 0.64 15.44

satsol Boolean formula satisfiability solver. Available from www.research.

microsoft.com/~zorn/benchmarks.
0 0 8.16 167.74

chess Chess-playing program. SPEC CINT2000 program port. 0.83 0.83 1.79 212.70

ahcbench The Adaptive Huffman Compression algorithm applied on files. Avail-
able from www.research.microsoft.com/~zorn/benchmarks.

7.73 7.73 33.20 642.39

bartok MSIL to x86 ahead-of-time optimizing compiler, compiling itself to use
generational copying collection.

55051.96 537937.69 434.40 11073.55

Table 1. Descriptions and characteristics of the C# programs on which RC collection performance was evaluated.

cycle reclaimer, the delayed deallocator, and the segregated
free-list allocator. The cycle reclaimer gathers lost cycles
using the trial deletion algorithm. The delayed deallocator
maintains a list of zombie objects, which are objects regis-
tered as garbage but that are yet to be reclaimed. When an
object’s reference count drops to zero, it is put on the zom-
bie list. In the nondeferred case, it happens as soon as the last
reference to the object dies or is overwritten. In the deferred
case, it happens as a result of processing the zero-count ta-
ble (ZCT) [5]. “Processing the zombie list” means traversing
it in a last-in-first-out fashion, decrementing the reference
counts of the immediate descendents of each of its entries.
(This, in turn, can cause the list to grow.) After a constant
number d of decrements are applied, fully processed zom-
bies are returned en masse to the allocator. (A zombie is fully
processed after decrements are applied on all its immediate
descendents.) The motivation for fixing d is to bound pause
times [22]. It was set to 220 in both the collectors.

The heap level at allocation times was the triggering fac-
tor for processing the zombie list. Processing kicks in if the
level exceeds 90% of the specified maximum. (The applica-
tion aborts if the specified maximum is exceeded.)

Since the nondeferred collector does not require the ser-
vices of the stack-scanning module, no GC maps are gen-
erated for it. They are needed by the deferred collector to
process the ZCT [5].

5.2 Running Times

Figure 8 shows the execution times of the benchmarks with
the two collectors. They are shown as a function of heap size,
and in the nondeferred case, with the OR optimizations. Fig-
ure 9 shows these times normalized to the deferred collec-
tor. It also shows normalized times for the ERCS optimiza-
tion; Figure 8 does not display them because they flatten the
curves of programs like cmp.

The heap size was varied from the smallest amount at
which the nondeferred collector could be executed, to an or-
der of magnitude larger. For all the benchmarks, the deferred
collector does not execute at the smallest sizes at which
the nondeferred collector operates. Its curves begin between
about 1.1 (in bartok) and 2.4 (in cmp) times the minimum
size needed by the nondeferred collector.

From the normalized times in Figure 9, we see that in all
except one case, the ERCS-optimized nondeferred collector
can match the performance of the deferred version, at least
at the lower end of the heap range in which both operate.
(Our past work has shown that the nondeferred collector can
be an order of magnitude slower in the absence of RC op-
timizations [10].) For xlisp, the two have equal execution
times at 1914KB, which is the minimum heap size required
for the deferred collector to run. But as the size increases,
the gap with the nondeferred collector widens. By the time
it reaches 12606KB, the deferred collector is 27% faster.
However, when the OR optimizations are applied, the per-
formance of the nondeferred collector matches the deferred
version even at the high end. At the low end, its performance
becomes 21% better.

Worst-case performance with past optimizations is shown
on the cmp program. Even at small heap sizes, the nonde-
ferred collector is four times slower. But with the OR opti-
mizations, it comes within 4% of the deferred collector.

The graphs show that in all cases except bartok, non-
deferred RC collection can reach parity with deferred RC
collection. On bartok, the nondeferred performance at the
low end is 26% better. It is 23% slower at worst, at 1.76
times the minimum heap size. There are two reasons for this.
The first is that many of the reference mutation summaries
for bartok are conservative. This is because the summaries
are built using a virtual call analysis, which produces con-
servative results on the many virtual and interface calls in
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Figure 8. Absolute execution times as a function of heap size. Measurements using the nondeferred collector are with ORCS
alone, with ORCS plus the immortal OR optimization, and with ORCS plus the immortal and trial deletion OR optimizations.



2 3 4 5 6 7 8 9 10
0.5

1.0278

1.5556

2.0833

2.6111

3.1389

3.6667

4.1944

4.7222

5.25

1.04
0.99

4.17

3.95

Heap Size Relative to Minimum

E
xe

cu
tio

n 
T

im
e 

R
el

at
iv

e 
to

 
D

ef
er

re
d 

R
C

 

 
392 784 1176 1568 1960

Heap Size (KB)

Nondeferred RC, with ORCS+Immortal OR+Trial Deletion OR
Nondeferred RC, with ORCS+Immortal OR
Nondeferred RC, with ORCS
Nondeferred RC, with ERCS

cmp

1 2 3 4 5 6 7 8 9 10
0.7

0.8063

0.9125

1.0188

1.125

1.2313

1.3375

1.4438

1.55

1.00

0.79

1.27

1.00

Heap Size Relative to Minimum

E
xe

cu
tio

n 
T

im
e 

R
el

at
iv

e 
to

 
D

ef
er

re
d 

R
C

 

 
1320 3696 6072 8448 10824 13200

Heap Size (KB)

Nondeferred RC, with ORCS+Immortal OR+Trial Deletion OR
Nondeferred RC, with ORCS+Immortal OR
Nondeferred RC, with ORCS
Nondeferred RC, with ERCS

xlisp

1 2 3 4 5 6 7 8 9 10
0.94

0.9506

0.9613

0.9719

0.9825

0.9931

1.0037

1.0144

1.025

1.00

0.95

1.00

0.96

Heap Size Relative to Minimum

E
xe

cu
tio

n 
T

im
e 

R
el

at
iv

e 
to

 
D

ef
er

re
d 

R
C

 

 
364 1019 1674 2330 2985 3640

Heap Size (KB)

Nondeferred RC, with ORCS+Immortal OR+Trial Deletion OR
Nondeferred RC, with ORCS+Immortal OR
Nondeferred RC, with ORCS
Nondeferred RC, with ERCS

othello

1 2 3 4 5 6 7 8 9 10
0.4

0.5071

0.6143

0.7214

0.8286

0.9357

1.0429

1.15

0.96

0.44

0.96

0.44

Heap Size Relative to Minimum

E
xe

cu
tio

n 
T

im
e 

R
el

at
iv

e 
to

 
D

ef
er

re
d 

R
C

 

 
856 2397 3938 5478 7019 8560

Heap Size (KB)

Nondeferred RC, with ORCS+Immortal OR+Trial Deletion OR
Nondeferred RC, with ORCS+Immortal OR
Nondeferred RC, with ORCS
Nondeferred RC, with ERCS

go

1 2 3 4 5 6 7 8 9 10
0.995

1.0003

1.0056

1.0108

1.0161

1.0214

1.0267

1.0319

1.0372

1.0425

1.02

1.00

1.03

1.01

Heap Size Relative to Minimum

E
xe

cu
tio

n 
T

im
e 

R
el

at
iv

e 
to

 
D

ef
er

re
d 

R
C

 

 
12 34 55 77 98 120

Heap Size (MB)

Nondeferred RC, with ORCS+Immortal OR+Trial Deletion OR
Nondeferred RC, with ORCS+Immortal OR
Nondeferred RC, with ORCS
Nondeferred RC, with ERCS

satsol

1 2 3 4 5 6 7 8 9 10
0.8

0.9083

1.0167

1.125

1.2333

1.3417

1.45

1.00

0.84

1.16

0.98

Heap Size Relative to Minimum

E
xe

cu
tio

n 
T

im
e 

R
el

at
iv

e 
to

 
D

ef
er

re
d 

R
C

 

 
2 7 11 16 20 24

Heap Size (MB)

Nondeferred RC, with ORCS+Immortal OR+Trial Deletion OR
Nondeferred RC, with ORCS+Immortal OR
Nondeferred RC, with ORCS
Nondeferred RC, with ERCS

chess

1 2 3 4 5 6 7 8 9 10
0.4

0.5062

0.6125

0.7188

0.825

0.9313

1.0375

1.1438

1.25

0.93

0.43

1.05

0.48

Heap Size Relative to Minimum

E
xe

cu
tio

n 
T

im
e 

R
el

at
iv

e 
to

 
D

ef
er

re
d 

R
C

 

 
364 1019 1674 2330 2985 3640

Heap Size (KB)

Nondeferred RC, with ORCS+Immortal OR+Trial Deletion OR
Nondeferred RC, with ORCS+Immortal OR
Nondeferred RC, with ORCS
Nondeferred RC, with ERCS

ahcbench

1 1.5 2 2.5
0.6

0.875

1.15

1.425

1.7

1.975

1.23

0.74

1.51

0.82

Heap Size Relative to Minimum

E
xe

cu
tio

n 
T

im
e 

R
el

at
iv

e 
to

 
D

ef
er

re
d 

R
C

 

 
335 503 670 838

Heap Size (MB)

Nondeferred RC, with ORCS+Immortal OR+Trial Deletion OR
Nondeferred RC, with ORCS+Immortal OR
Nondeferred RC, with ORCS
Nondeferred RC, with ERCS

bartok

Figure 9. Execution times relative to the deferred RC collector. The execution times considered are those in Figure 8, and
additionally, those with ERCS. The downward and upward triangular markers indicate the minimum and maximum of the first
and last curves in each graph.



bartok. The second reason is the high expense of using the
trial deletion algorithm in the nondeferred collector. Unlike
the deferred version, in which mainly heap references are put
on the PLC list, every reference can be potentially buffered
as a result of a decrement operation. Since the types of many
of the created data structures are not statically inferable as
acyclic, the overhead to using trial deletion is much larger in
the nondeferred collector.

Table 2 presents profiles of the number of RC updates
executed in the benchmarks. These were obtained by first
determining the five methods that executed the highest num-
ber of RC updates. Averages of the number of RC updates
executed in them were then measured. The averages were
for those on objects inferred to be acyclic (RCA) and the
rest (RCO). The table shows that ORCS can significantly re-
duce the total number of RC updates executed. Additional
improvements from the immortal and trial deletion OR opti-
mizations are less significant. Exceptions in the trial deletion
case are the reductions on xlisp and bartok.

For the immortal OR optimization, even though the av-
erages are the same in nearly all cases, this does not mean
the optimization had no effect. This is because the averages
consider only the top five RC hot methods. In the case of
bartok, for instance, the optimization affected the counts in
many of the remaining methods.

6. Related Work
An early effort at applying compiler optimizations to RC
collection was due to Barth [1]. The goal was to determine
RC updates superfluous under deferred reference counting.
A series of optimizations, such as the removal of RC up-
dates on immortal data, and the cancellation of pairs of in-
crement and decrement operations, were proposed. As this
paper shows, overlooking roots provide a framework for the
nondeferred counterparts of Barth’s proposals.

The problem of finding lifetime-subsumed references has
been investigated for functional languages. Schulte observed
that RC updates on a function’s formal parameters can be
optimized out, if its actual parameters are used after its re-
turn [20]. Park and Goldberg gave an analysis for establish-
ing escaping references, i.e., references returned from cre-
ation scopes [18]. No counting is needed on references that
do not escape. Their work is different from ours, in that
it is more conservative about reachability and it does not
consider intraprocedural lifetime information. Their analy-
sis also assumed a language devoid of loops.

Overlooking roots also have applications outside of ref-
erence counting—for instance, they could be used to elim-
inate write barriers that operate on null references. Nandi-
vada and Detlefs proposed two custom analyses, based on
abstract interpretation, to do this for object fields and array
elements [17]. The case of object fields can be easily handled
using the overlooking roots framework. Figure 10 shows the
example used by them to illustrate the object field case [17].

class Foo { public String s; }
Foo f1 = null; Foo f2 = null;
while (p1) {
f1 = new Foo(); // F1
f1.s = "hil"; // W1
if (p2) f2 = new Foo(); // F2
f2.s = "hi2"; } // W2

Figure 10. Example used by Nandivada and Detlefs to il-
lustrate write-barrier removal in the object field case [17].

Like their analysis, the application discussed in Section 3.2.2
of this paper will be able to determine that the write barrier
at W1 is unnecessary, but not the one at W2. If value-range
information on array indices is available, the array element
case can also be handled using overlooking roots.

Vechev and Bacon looked at the problem of identifying
write barriers inessential to concurrent collectors [21]. At
a high level, their goal is comparable to ours—both aim to
remove unnecessary write-barrier/RC update operations. But
an important difference is that while their work addresses the
issue of when to eliminate, ours considers the problem of
how to automatically eliminate. They presented conditions
that when satisfied allow for the safe removal of barriers.
Conditions similar to some of them are known in COM,
as programmer guidelines. As an example, COM advises
avoiding counting references with nested lifetimes [19].

6.1 Comparisons with Ghiya and Hendren’s Analysis

Ghiya and Hendren described an analysis for approximately
classifying the shapes of heap structures into tree, DAG or
cyclic graph [8]. The analysis was built on top of two ab-
stractions called the direction matrix D and the interference
matrix I. Information in D resembles the overlooking roots
relation; that in I is a superset of it. However, their analysis
differs from ours in three ways:

• May information. It computes “may” information in
D and I, since the objective is to only arrive at heap
shape approximations. For our work, must information is
needed instead.

• Field-oblivious approach. To get at useful may informa-
tion, their transfer functions for key statement categories
(in particular, heap loads and heap stores) had to accom-
modate the generation of spurious relationships. For ex-
ample, when faced with a statement like y .f := x , their
analysis retained all of the incoming information for D
and I. This was because knowledge about the fields or
types occurring on a heap path was lacking. Thus, simply
tightening their transfer functions will not be enough to
produce satisfactory must information.

• Interprocedural analysis. Procedures were handled using
a context-sensitive interprocedural approach. Abstrac-
tions were flowed into a callee at a call site, to compute



Benchmark

Counts (×106)

ERCS ORCS ORCS+Immortal ORCS+Immortal+Trial Deletion Deferred

RCA RCO RCA RCO RCA RCO RCA RCO RCA RCO

cmp 165.472 82.479 0.022 − 0.022 − 0.022 − 0.002 −
xlisp 616.568 607.764 392.148 468.975 392.148 468.975 510.496 350.627 225.724 299.869

othello 0.284 − 0.136 − 0.134 − 0.134 − 0.004 0.004

go 4.845 − 3.706 − 3.706 − 3.706 − 0.001 0.173

satsol 27.630 3.879 13.966 3.879 13.966 3.879 13.966 3.879 1.540 2.677

chess 17.005 3.390 3.328 0.394 3.328 0.394 3.328 0.394 1.229 0.487

ahcbench 48.139 43.278 23.396 21.618 23.396 21.618 23.396 21.618 6.442 6.625

bartok 307.910 302.757 146.605 154.942 146.605 154.942 149.680 151.867 72.951 72.951

Table 2. Effect of ERCS and the OR optimizations on RC update count distributions. Each entry is an average of the number
of RC updates executed in the top five RC “hot” methods. Averages less than 1000 are shown as ‘−’.

abstractions at the return points of the callee. These were
then flowed back to the caller at the call site. The over-
looking roots analysis avoids this by using reference mu-
tation summaries. In whole-program compilation mode,
it has the option of flowing context-insensitive informa-
tion back to the call site (see Section 4.2.1).

Other differences are the inclusion of virtual overlookers
and MT-safe considerations in the transfer functions.

6.2 Grammar-Based Approaches

Jones and Muchnick applied a grammar-based shape analy-
sis to reduce the counting and storage overheads in RC col-
lection [11]. Their analysis can detect objects with reference
counts at most one, and objects that can never appear on cy-
cles. Our analysis has goals complementary to theirs.

A shape analysis based on path expressions was proposed
by Hendren and Nicolau [9]. The aim was to determine if one
computation could update a location read or written by an-
other. A path expression is a grammar-based representation
of a sequence of links in the object graph. As an example,
L2R+L is a path that begins with two links of the field L, is
followed by one or more links of the field R, and ends in
a link of the field L. The analysis computes a path matrix
PM of these expressions at every program point. An entry
PM(u ,v ) is a set of path expressions describing paths from
the object targeted by u to the object targeted by v . Paths
can be either definite, if they are assured to exist, or possi-
ble, if not. Transfer functions were provided to update the
definite and possible paths.

While grammar-based schemes permit more precise path
information, their practicality on large programs is not clear.

7. Conclusion
This paper showed how a number of previously proposed
optimizations for nondeferred RC collection can be unified

using the idea of overlooking roots. It demonstrated how
overlooking roots permit more powerful versions of many
past optimizations, and how new optimizations can be de-
vised using them. An analysis for computing the overlook-
ing root information in a flow-sensitive manner was given.
The analysis is intraprocedural; it handles procedures using
summaries of the fields and types mutated in them. The ar-
ticle described how tie functions play a key role in produc-
ing reasonably good overlooking root information. The ex-
ecution time improvements possible with optimizations de-
rived from overlooking roots was then shown on a number of
benchmarks. It was demonstrated that nondeferred RC col-
lection can reach parity with the deferred version, at even
large heap sizes, on nearly all the benchmarks.

None of the optimizations look at heap references. Ex-
tending this work to them would be a next step. Although the
optimizations incorporate MT-safe considerations, the col-
lector implementations are for single-thread programs. It re-
mains to be seen how effective they would be in multithread
programs. As is, they should be useful in single-thread set-
tings, such as embedded systems and microcontrollers.
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A. Transfer Functions for Other Statements
A.1 Simple Assignments

y := x This statement kills pairs in which the overlooker is
y , and the overlookee is not x or something overlooked by
x . It also kills pairs in which the overlookee is y , and the
overlooker is not x or something that overlooks x . Thus,

kill(s) = {(y ,v ) | v �= x ∧ (x ,v ) �∈ olookin(s)}⋃
{(u ,y ) | u �= x ∧ (u ,x ) �∈ olookin(s)}.

(10)

The statement generates two kinds of overlooking pairs:
(1) those in which the overlooker is y , and the overlookee is
x and whatever is overlooked by x ; and (2) those in which
the overlookee is y , and the overlooker is x and whatever
overlooks x . This gives

gen(s) =

{(y ,v ) | v �= y ∧ (v = x ∨ (x ,v ) ∈ olook∗in(s))}⋃
{(u ,y ) | u �= y ∧ (u = x ∨ (u ,x ) ∈ olook∗in(s))}.

(11)

Pairs of the form (u ,u ) should not exist in the gen sets
because of the irreflexivity of the olook sets. This is the
reason for the predicates v �= y and u �= y in Equation (11).

As discussed in Section 4.1.1, the tie function is updated
at only those pairs that are in gen∗(s). From Equations (11)
and (5), these are of the form (y ,v ) or (u ,y ). For the (y ,v )
pairs, T is updated to include the ties for (x ,v ). For the
(u ,y ) pairs, it is updated to include the ties for (u ,x ). This
leads to the update equation

T (u ,v ) ∪←
{

T (x ,v ) if u = y ,

T (u ,x ) if v = y ,
(12)

applied at all (u ,v ) ∈ gen∗(s). In the above, T (u ,v ) ∪← X
is a concise representation of T (u ,v )← T (u ,v )∪X .
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Figure 11. The single immortal root I directly overlooks y
and v at the same time. But neither y nor v directly overlook
I because there is no path from a to b, or from b to a.

y := c Since c is a constant reference, its target can be
viewed as the target of an immortal root. The analysis has
a range of options on how many immortal roots to model.
At one extreme, a unique immortal root is associated with
every different c. The statement can then be treated the same
way as y := x , by substituting x with the immortal root
corresponding to c. At the other extreme, a single immortal
root, say I, simultaneously targets all immortal objects, as
displayed in Figure 11. The latter offers simplicity over
precision, and was our implementation choice. All pairs in
which the overlookee is y and the overlooker is not I, or in
which the overlooker is y , would then have to be killed:

kill(s) = {(u ,v ) | (u �= I∧v = y )∨u = y }. (13)

The gen set calculation for this statement should produce
the pair (I,y ). With a single immortal root, this will be the
only pair generated; the pair (y ,I) is not generated because
I may target more than one object, of which some may not
be reachable from y (refer Figure 11). Thus

gen(s) = {(I,y )}. (14)

T is not updated, because I has no overlookers.

A.2 Allocations

y := allocobj(T ) Section 3.2.2 explained that the object re-
turned by allocobj(T ) can be thought to be the target of a
pristine root. Like in the immortal case, numerous options
are available on how many pristine roots to consider. There
could be one per allocated type, or one per field per allocated
type, or even one per allocation site. For the sake of simplic-
ity, our implementation assumes one pristine root, say P, for
all allocated objects. With a single pristine root, the same
issues that pertained to the calculations in Equations (13)
and (14) apply to the kill and gen set calculations here:

kill(s) = {(u ,v ) | (u �= P∧v = y )∨u = y }, (15)

gen(s) = {(P,y )}. (16)

T is also not updated here because P has no overlookers.

A.3 Heap Loads

y := x.f If x points to a thread-local object, or if f is a
thread-safe field (i.e., only accessed by a particular thread)

or a read-only field, we say that the statement is multithread
(MT) safe. For such statements, all pairs in which y is the
overlooker, and all pairs in which the overlookee is y and
the overlooker is not x or something that overlooks x , must
be killed. For other statements, all pairs in which y is either
the overlooker or overlookee are killed:

kill(s) =

⎧⎪⎪⎨⎪⎪⎩
{(u ,v ) | u = y ∨ (

v = y

∧ (u ,x ) �∈ olookin(s)
∧u �= x

)} if MT-safe s,

{(u ,v ) | u = y ∨v = y } otherwise.

(17)

There are a couple of cases in the gen set analysis for
this statement. The easiest are the ones where s is not known
to be MT safe. Then depending on whether f is an immortal
field, the gen set is either /0 or has the single pair (I,y ). Fields
are immortal if they always target immortal objects (i.e.,
even when simultaneously mutated by multiple threads). An
example is the vtable field that all objects possess in many
object-oriented language implementations.

If s is MT safe, then gen(s) will at least have pairs in
which the overlookee is y , and the overlooker is x and what-
ever overlooks x . These cases yield the following equation:

gen(s) =⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
{(u ,y ) | u �= y

∧ (
(u ,x ) ∈ olook∗in(s)

∨u = x
)}∪ψ

if MT-safe s,

{(I,y )} else if immortal f,

/0 otherwise.

(18)

In Equation (18), the second case occurs when f is an
immortal field and s is not MT safe. In the first case, ψ is
nonempty only when f is immortal, or when P directly over-
looks x . If P directly overlooks x , then y can be considered
to be overlooked by I, since that instance of f will then be in
a pristine state. We therefore obtain the following equation
for ψ :

ψ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{(I,y )} if immortal f,

/0 else if (P,x ) �∈ olook∗in(s),
/0 else if T (P,x ) �= /0,

{(I,y )} otherwise.

(19)

According to Equation (18), there may be two types of
pairs in gen∗(s). The first is (I,y ). The tie function will
have to be updated here only if s is MT safe and (I,x ) ∈
olook∗in(s). The second type is (u ,y ), where u �= I. For these
pairs, either (u ,x ) ∈ olook∗in(s) or u = x ; in both of these
cases, f may tie u to y . If u �= x , then whatever ties u to
x may also tie u to y . This leads to the following update of
the tie function, performed at all (u ,v ) ∈ gen∗(s):

T (u ,v ) ∪←

⎧⎪⎨⎪⎩
/0 if not MT-safe s,

{f} else if u = x ,

T (u ,x )∪{f} otherwise.

(20)
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Figure 12. Object graph before and after y .f := x . The
dashed arc represents the state of the specific instance f ′ of
f before the statement.

The treatment of y := x [e] is the same, except that instead
of a tie field, the discussion involves a tie array type.

A.4 Heap Stores

y.f := x We say that the statement is MT safe if y points
to a thread-local object, or if f is a read-only or thread-safe
field.8 Irrespective of whether it is MT safe, it will kill all
overlooking pairs involving the pristine root, if the number
of pristine roots is one, and if x is not directly overlooked
by the immortal root. This is because the update could then
destroy the pristine state of any newly allocated object.

Figure 12 graphically shows the effect on the heap of
the MT-safe version of this statement. The lightly-shaded
dashed and solid arcs represent the field’s state before and
after the statement. The heavily-shaded arcs display paths in
the heap by which m and n respectively overlook x and y .

At first glance, it would appear that all pairs in olookin(s)
that are tied by f would have to be killed. But the state-
ment has two important properties, from the standpoint of
the overlooking roots relation, which permit better kill in-
formation. Lemmas 1 and 2 state and prove these properties.

LEMMA 1. Let s be the statement y.f := x, which is given
to be MT safe. If m overlooks x just before s, and if m is not
the pristine root, then m will also overlook x just after s.

PROOF. The claim is obvious if m overlooks x by a path
p that is free of the specific f, say f ′, updated by this state-
ment; so suppose p does include f ′. Then from Figure 12, p
can be written as p1 f ′p2, where p1 is a path free of f ′ from
the object a to the object d. When s is MT safe, there will be
the path p1 f ′ just after s, from a to the object c.

LEMMA 2. Let s be the statement y.f := x, not necessarily
MT safe. If n overlooks y just before s, and if n is not the
pristine root, then n will also overlook y just after s.

PROOF. The claim is obvious if n directly overlooks y

just before s, so suppose it does not directly overlook y just

8 It is not contradictory for f to be read-only despite this being an update of
f; this will be the case if the update is in an object construction sequence.
Then, all accesses to f in the sequence will still be thread safe because the
object being constructed will only be accessible to the initializing thread.

before s. Then from Figure 12, n overlooks y by a nontrivial
path that is free of the specific f, say f ′, updated by s. Even
in the presence of multiple threads, at least one such path is
assured to exist during the execution of s, because if not, n
is not guaranteed to overlook y just before s.

Lemma 2 does not impose MT-safe requirements on s.
This is because if n overlooks y just before s, then during
the execution of s, there will be a path by which n overlooks
y and that is free of the specific instance of f updated by s.
Hence, from Lemmas 1 and 2, and the discussion on killing
pairs that involve the pristine root, we get

kill(s) = κ ∪{(P,v ) | (I,x ) �∈ olookin(s)

∨T (I,x ) �= /0}, (21)

where

κ =

⎧⎪⎪⎨⎪⎪⎩
{(u ,v ) | v �= x ∧v �= y

∧u �= P∧f ∈ T (u ,v )} if MT-safe s,

{(u ,v ) | v �= y ∧u �= P

∧f ∈T (u ,v )} otherwise.
(22)

In Equation (21), the predicate (I,x ) �∈ olook in(s) ∨
T (I,x ) �= /0 is true if I might not directly overlook x . The
equation then includes all pairs in which P is the overlooker.

If s is MT safe, then all of the overlookers of y , including
y , will end up overlooking x as well as whatever is over-
looked by x . If s is not MT safe, but if f is known to be an
immortal field, then x will be directly overlooked by I. This
is subtle, because even if another thread mutates f as s is ex-
ecuted, its target, by definition, remains immortal. Neither y
nor x , however, end up overlooking I because I could target
multiple objects. This gives

gen(s) =⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

{(u ,v ) | (u = y

∨ (u ,y ) ∈ olook∗in(s)
)

∧ (
(x ,v ) ∈ olook∗in(s)

∨v = x
)}∪ξ

if MT-safe s,

{(I,x )} else if immortal f,

/0 otherwise.

(23)

ξ in Equation (23) is similar to ψ in Equation (18). It is
usually /0, except when f is immortal:

ξ =

{
{(I,x )} if immortal f,

/0 otherwise.
(24)

From Equation (23), a pair in gen∗(s) can be of three
forms. If it is (y ,x ), then only f needs to be added to
T (y ,x ). If it is of the form (y ,v ), where v �= x , then {f}
and T (x ,v ) would have to be added to T (y ,v ). Pairs in
gen∗(s) that do not match (y ,v ) will be of the form (u ,v ),
where either (u ,y ) ∈ olook∗in(s) or u = I. In both cases, a
safe update of T (u ,v ) is to add T (u ,y ), {f} and T (x ,v )



to it. By observing that both T (x ,x ) and T (y ,y ) equal /0,
all of these cases can be combined into

T (u ,v ) ∪←{
/0 if not MT-safe s,

T (u ,y )∪{f}∪T (x ,v ) otherwise,

(25)

where (u ,v ) ∈ gen∗(s).
The statement y [e] := x is handled the same way.

A.5 The Meet Operator

The meet operation is set intersection, except that overlook-
ing pairs containing the � root are specially dealt with. �
can only occur in pairs of the form (�,u ). This is because
when there are no upward-exposed uses of a concrete root
x , x will not overlook any other root until defined. Its only
overlooker until its definition will be �, after which it will
no longer be overlooked by �. Thus, if olook 1 and olook2

are two olook sets that reach a confluence point, their meet
olook1 � olook2 at that point will be

olook1 � olook2 =

{(u ,v ) | ((�,v ) ∈ olook1∧ (u ,v ) ∈ olook2
)

∨ (
(u ,v ) ∈ olook1∧ (�,v ) ∈ olook2

)
∨ (

(u ,v ) ∈ olook1∧ (u ,v ) ∈ olook2
)}.

(26)

Let Ř be the set of all roots. Because � is an idempo-
tent, commutative and associative operator on the set of or-
dered pairs Ř× Ř, the pair (Ř× Ř,�) defines a semilattice.
The semilattice, the � operator, and the transfer functions
in Section 4.2, form a monotone data-flow analysis frame-
work [12].

B. Overlooking RC Subsumption Analysis
We define the live cover of a root r at a point P as the set
of live roots at least one of which overlooks r at P. Let
liver(P,r ) denote this set. If liver(P,r ) is nonempty at all
P in a live range l of r , and if Provision B2 is also satisfied,
then l is an ORCS live range by the definition in Section 3.1.

Live cover sets have some unusual properties. For one,
every subset of a live cover is not assured to be a live cover.
As an example, if liver(P,r ) is {x1,x2}, then {x1} may not
be a live cover of r at P. But every superset (comprising
live roots) of a nonempty live cover is a live cover. We call
the former the subset property, and the latter the superset
property. The empty set is a special case, and is considered
to be a trivial (and an uninteresting) live cover.

Because of the subset property, computing liver(P,r )
becomes tricky. Of course, a guaranteed live cover at P is

l̃iver(P,r ) = live(P)∩ xproj(olook(P),r ), (27)

where xproj is the x-projection operator described in Sec-
tion 4.2.1. But l̃iver(P,r ) could be /0, as in at confluence

points. Therefore, the goal of this section is to derive bet-
ter information. “Better” means ascertaining a nonempty
liver(P,r ) when l̃iver(P,r ) is /0.

B.1 Live Cover Transfer Functions

If liverin(s,r ) and liverout(s,r ) are the live covers of r , just
before and just after a statement s, then as usual

liverout(s,r ) =

(liverin(s,r )−KILL(s,r ))∪GEN(s,r ).
(28)

When figuring out the KILL(s,r ) and GEN(s,r ) sets, there
are a few cases to consider. Let sout be the program point
just after s. If l̃iver(sout,r ) is nonempty, then by the superset
property, a valid liverout(s,r ) is liverin(s,r )∪ l̃iver(sout,r ).
Otherwise, if s does not kill (with respect to the overlooking
roots relation) any of the roots in liver in(s,r ), and if none of
these roots die as control flows through s, then liverout(s,r )
can be set to liverin(s,r ). Thus,

GEN(s,r ) = l̃iver(sout,r ), (29)

KILL(s,r ) =⎧⎪⎪⎪⎨⎪⎪⎪⎩
/0 if l̃iver(sout,r ) �= /0,

Ř else if xproj(kill(s),r )∩ liverin(s,r ) �= /0,

Ř else if diethru(s)∩ liverin(s,r ) �= /0,

/0 otherwise.

(30)

The expression kill(s) in the above is the overlooking roots’
kill set, from Section 4. The set diethru(s) are the roots that
die as control flows through s. It is

diethru(s) =

(livein(s)− liveout(s))∪ (livein(s)∩defsmust(s)),
(31)

where livein(s) are the roots that are live on entry to s, and
where defsmust(s) are the roots that must be defined in s.

B.2 Live Cover Meet Operator

Let the program point Q lie at the confluence of P1 and P2,
and let liver1 and liver2 be the live covers of r at P1 and
P2 respectively. If nothing in both liver1 and liver2 dies as
control flows from P1 and P2 to Q, then liver1 ∪ liver2 is a
valid liver(Q,r ). So suppose something dies in either set.
Now, if there is an overlooker x of r at P1 that is live at Q,
and if there is an overlooker y of r at P2 that is also live at
Q, then either x or y will be a live overlooker of r at Q. A
possible meet operation is therefore

liver1−�liver2 =⎧⎪⎪⎪⎨⎪⎪⎪⎩
liver1∪ liver2 if liver1∪ liver2 ⊆ live(Q),
l̃iver(Q,r ) else if l̃iver1∩ live(Q) = /0,

l̃iver(Q,r ) else if l̃iver2∩ live(Q) = /0,

l̃iver1∪ l̃iver2 otherwise,

(32)

where l̃iver1 = l̃iver(P1,r ) and l̃iver2 = l̃iver(P2,r ).


