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Abstract
Reference counting is a well-known technique for automatic mem-
ory management, offering unique advantages over other forms of
garbage collection. However, on account of the high costs associ-
ated with the maintenance of up-to-date tallies of references from
the stack, deferred variants are typically used in modern imple-
mentations. This partially sacrifices some of the benefits of non-
deferred reference-counting (RC) garbage collection, like the im-
mediate reclamation of garbage and short collector pause times.

This paper presents a series of optimizations that target the stack
and substantially enhance the throughput of nondeferred RC col-
lection. A key enabler is a new static analysis and optimization
called RC subsumption that significantly reduces the overhead of
maintaining the stack contribution to reference counts. We report
execution time improvements on a benchmark suite of ten C# pro-
grams, and show how RC subsumption, aided with other optimiza-
tions, improves the performance of nondeferred RC collection by
as much as a factor of 10, making possible running times that are
within 32% of that with an advanced traversal-based collector on
seven programs, and 19% of that with a deferred RC collector on
eight programs. This is in the context of a baseline RC implemen-
tation that is typically at least a factor of 6 slower than the tracing
collector and a factor of 5 slower than the deferred RC collector.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Memory Management (Garbage Collection),
Optimization, Compilers

General Terms Algorithms, Languages

Keywords Reference Counting, Static Analyses

1. Introduction
Reference-counting (RC) garbage collection is a technique for re-
claiming unreachable data using a count maintained against each
logically independent unit of data x. The count indicates whether
there are any references to x, and changes as references are added
and deleted. A value of zero means that there are no references to
x, at which point it is safe to reclaim x.

RC collection, in its original form, tallies all references to an
object, be it from the stack, the static data area or the heap [14, 8].
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The reference count is kept up to date by special operations, called
RC updates, that increment and decrement the reference count as
references are created and destroyed. This maintenance regimen
incurs high processing costs in programs where references are
heavily mutated. Consequently, classic RC collection has usually
suffered from poor throughput.

Past solutions to the throughput problem have essentially boiled
down to counting only a subset of references, postponing the pro-
cessing of the rest [13, 6]. Since the counts are therefore approxi-
mate, these schemes pause the mutator threads once in a while to
bring the counts up to date before reclaiming objects with zero ref-
erence counts. While the action of deferring RC updates improves
a program’s overall throughput, it however increases its heap foot-
print (i.e., the high watermark of the heap) since the reclamation of
garbage is also deferred. It also contributes to larger pause times,
unlike classic RC collection where collector actions are more uni-
formly “smeared” throughout the program.

Yet the costs of maintaining accurate tallies in classic RC col-
lection are so high, even for the single-threaded uniprocessor case,
that it has never been regarded as a practical garbage collection
method, always being supplanted by deferred versions wherever
used in modern systems [26, 11, 2, 18].

This paper presents a new static analysis and optimization called
RC subsumption, that together with other RC-specific compiler
optimizations, dramatically enhances not only the throughput of
classic RC collection, but that of any nondeferred RC collection
scheme as well. (By “nondeferred,” we mean the class of RC
collection techniques that immediately account for root references
as they come into and go out of existence.1) On a benchmark
suite of ten C# programs using one such nondeferred scheme, the
improvement is by as much as a factor of 10, making it possible to
achieve execution times that are often within 32% of that with an
advanced traversal-based generational collection scheme, and 19%
of that with a deferred RC collection scheme.

The other contribution of this paper is that it shows how other
optimizations that have either only been suggested (like the omis-
sion of RC updates on permanently live data [5]), used in run-time
systems for RC collection (like the special treatment of acyclic ob-
jects in the trial deletion technique [2]) or are straightforward (like
the inlining of RC updates), fare on object-oriented programs.

Moreover, we aren’t aware of a stand-alone nondeferred cycle-
reclaiming RC garbage collector for a modern object-oriented lan-
guage. In that sense, this paper reports the first reference measure-
ments on an important memory management design space.

Although our implementation of the collector is single threaded,
the optimizations are also applicable to multithreaded code. While
the reported measurements demonstrate that nondeferred RC col-

1 The invariant is that a zero reference count means garbage and a positive
reference count means at least one incident reference.
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lection can come close to tracing or deferred RC collection meth-
ods, the point of the paper isn’t to show that it can displace them.
Rather, the main contribution is that single-threaded nondeferred
RC collection can be made much faster than what has been previ-
ously believed. We see the value of this work as shedding new light
on nondeferred RC collection and positioning it better for applica-
tions such as real-time garbage collection.

The rest of this paper is organized as follows. Sections 2 to 7
describe a series of optimizations for improving the throughput of
nondeferred RC collection.2 Section 8 reports the results of these
optimizations on a nongenerational implementation of nondeferred
RC collection, and compares the optimized binaries with a gener-
ational adaptive tracing collector and a deferred RC collector. Sec-
tion 9 discusses related work and Section 10 concludes the paper.

2. Reference-Counting Subsumption
Consider the intermediate representation (IR) in Figure 1, in which
RC update operations3 are inserted according to a classic RC col-
lection discipline [17]. We assume that the object creation instruc-
tion newobj() initializes a newly allocated object’s reference count
to 1. Since y points to the same object as x in its live range from
Line 4 to Line 5, and since this live range is contained in the live
range of x from Line 1 to Line 7, the RC updates on Lines 2 and
5 are superfluous.4 Observe that this redundancy holds true even
in a multithreaded, multiprocessor setting. We say that “y is RC
subsumed by x ” to describe this state of affairs.

1 x := newobj()
...

2 RC+(x )
3 RC−(y )
4 y := x
5 RC−(y )
6 y := null

...
7 RC−(x )
8 x := null

Figure 1. An RC Subsumption Opportunity

It turns out that of the RC updates introduced into real programs
by a nondeferred RC collection approach, a significant portion
is on local references that are RC subsumed by local references
that already have RC updates against them. For instance, the RC
updates on formal references are often redundant because formal
references are usually RC subsumed by actual references.5

Formally, a local reference variable y is defined to be always
RC subsumed by a local reference variable x if

1. all live ranges of y are contained in live ranges of x ;

2. y is never live through a redefinition of either x or y ; and

3. the set of objects reachable from y is always a subset of the set
of objects reachable from x , i.e., R(y ) ⊆ R(x ).

2 Some of these optimizations may also reduce the running time of deferred
RC collection but that is beyond the scope of this paper.
3 An RC increment or decrement on an object targeted by a reference r is
denoted as RC+(r) or RC−(r). These are no-ops when r is null.
4 The RC−(y ) on Line 3 remains; this is to decrement the reference count
of the object that y is about to be swung away from on Line 4.
5 This may not be true when actual references are overwritten in the callee
via pointers and when formal references are redefined in the callee.

Recall that the set of local references live before a statement s
is related to those live after s by the equation

live in(s) = (liveout (s) − defsmust(s)) ∪ usesmay(s), (1)

where defsmust(s) and usesmay(s) are the sets of local references
that must be defined and that may be used in the statement [20].

The reason for Provision 2 is that liveness is a “may” informa-
tion. In other words, if a more relaxed usesmay or a more con-
strained defsmust is used in Equation (1), then a variable could end
up being live at a program point even though it may never be used
from that point onward prior to a redefinition. This has a subtle con-
sequence on RC subsumption. For example, in Figure 2, x and y
will be considered live through Line 7 when no information about
the locations pointed to by p is available. However, if the RC up-
dates on Lines 2 and 8 weren’t present (on the presumption that y
is RC subsumed by x ) and the store operation on Line 7 overwrites
y , then the reference count of the object targeted by x could pre-
maturely fall to zero after Line 6. This is even though Provision 3
might continue to be true after Line 7. (A similar example can be
worked out in which x is overwritten in Line 7.)

1 x := newobj()
...

2 RC+(x )
3 RC−(y )
4 y := x
5 RC+(z )
6 RC−(∗p )
7 ∗p := z
8 RC−(y )
9 y := null
10 RC−(x )
11 x := null

Figure 2. A Contingent RC Subsumption Opportunity

Ascertaining the three provisions of RC subsumption at compile
time is complicated by two factors. Firstly, live ranges may not be
the nice linear stretches shown in Figure 1. They can in general be
“webs” [20] spanning multiple definitions and multiple last uses.
Secondly, object reachability as stated in Provision 3 is a dynamic,
run-time trait and may not always be statically determinable. Nev-
ertheless, we shall demonstrate how Provision 3 can be conserva-
tively decided at compile time and how Provision 1 can be exactly
calculated using interference graph construction notions [20].

Our solution is in three parts. First, we build a live-range sub-
sumption graph GL = (V, EL) for a given function f . Nodes in
GL denote local references and directed edges represent live-range
containment. That is, (u , v ) ∈ EL, iff the live ranges of u in f
are contained in the live ranges of v . Next, an algorithm that deter-
mines a subgraph GU of GL called the uncut live-range subsump-
tion graph is presented. GU = (V, EU ) has the additional property
that if (u , v ) ∈ EU , then u is never live through a redefinition of
either itself or v . Finally, we obtain a subgraph GR = (V, ER) of
GU such that if (u , v ) ∈ ER, then u is always RC subsumed by
v . GR will be referred to as the RC subsumption graph.

2.1 The Live-Range Subsumption Graph

The live range of a program variable u is a collection of du-chains
connecting one or more definitions of u with one or more of its
last uses [20]. A live range of u could therefore be nonempty, if it
includes at least one program point, or empty, if u is never used.
When no live range of u contains the program point P , u is said to
be dead at P . Thus, if u is live and v is dead at some P , then not
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1. Initialize V to the set of local references R, and E to ∅.
2. At every statement s, define

livewtn(s) = liveout(s) − defsmust(s), (2)

deadwtn(s) = R − livewtn(s), (3)

dead in(s) = R − livein (s), (4)

deadout(s) = R − liveout(s), (5)

and add (u , v ) to E if

(u ∈ livein (s) ∧ v ∈ dead in(s))
∨

(u ∈ livewtn(s) ∧ v ∈ deadwtn(s))
∨

(u ∈ liveout(s) ∧ v ∈ deadout(s)).

(6)

3. Find (V, E), the complement graph [10] of (V, E). Then (V, E)
is the live-range subsumption graph (V, EL).

Figure 3. Computing GL = (V, EL)

every live range of u can be contained in a live range of v . Figure 3
uses this fact to build the live-range subsumption graph.

In Equation (2), livewtn(s) is the live set within s, just before
variables in defsmust(s) are assigned to, but just after the variables
in usesmay(s) have been used. livewtn(s) is therefore the smallest
live set encountered when traversing through s, from its front to
its back. We postulate that at any program point P within or on
the boundaries of s, live(P ) is either livein (s), livewtn(s) or
liveout(s). This can be utilized to prove Lemmas 1 and 2 below.
The two lemmas taken together imply that (u , v ) ∈ E (which is
EL), iff the live ranges of u are contained in the live ranges of v .

LEMMA 1. If (u, v) ∈ E, then for every live range of u, there exists
a live range of v that contains it.

PROOF. Suppose there exists a live range λ of u that isn’t
contained in any live range of v , and yet (u , v ) ∈ E. Then λ must
contain at least one program point, say P , that isn’t contained in any
live range of v . Let P be within or on the boundaries of a statement
s′, and let live(P ) be the set of references live at P . Then live(P )
must be one of livein (s′), livewtn(s′) or liveout(s

′). Suppose

live(P ) = livewtn(s′).

Since v �∈ live(P ), we have v ∈ deadwtn(s′). Hence (u , v ) ∈
E after Step 2 of the algorithm. This implies (u , v ) �∈ E, a
contradiction. The other two cases (when live(P ) = livein (s′),
and when live(P ) = liveout (s

′)) lead to the same conclusion.

LEMMA 2. If for every live range of u there exists a live range of v
that contains it, then (u, v) ∈ E.

PROOF. Suppose for every live range of u there exists a live
range of v that contains it and yet (u , v ) �∈ E. Then (u , v ) ∈ E.
This means that there exists a statement s′ such that at least one
of the three conditions in Equation (6) apply. Hence, there is a
program point P within or on the boundaries of s′ that is contained
in a live range of u but not in a live range of v , a contradiction.

If N is the number of statements in a function, then the worst-
case complexity of the algorithm is O(|V |2N). This on a par with
that of constructing interference graphs [20].

2.2 The Uncut Live-Range Subsumption Graph

Consider livethru(s) in Equation (8), which is the set of refer-
ences that are live through a statement s. Let defsmay(s) be the

1. Initialize V to the set of local references R, and E′ to EL.
2. At every statement s, define

liveio(s) = livein (s) ∩ liveout(s), (7)

livethru(s) = (R − defsmust(s)) ∩ live io(s), (8)

liverdef (s) = defsmay(s) ∩ livethru(s), (9)

and delete (u , x ) ∈ E′, if u ∈ liverdef (s). In addition, delete
(y , u ) ∈ E′, if y ∈ live thru(s) and u ∈ liverdef (s). Then
(V, E′) is the uncut live-range subsumption graph (V, EU ).

Figure 4. Computing GU = (V, EU )

set of local references that may be defined at s. Then the set
liverdef (s) given by Equation (9) consists of references that may
be live through their own redefinition. The algorithm in Figure 4
uses this set to arrive at GU by first initializing E′ to EL and then
eliminating all outgoing edges from nodes in liverdef (s), and those
among its incoming edges that are from nodes whose references
are live through s. The edges that remain, after all s have been ac-
counted for, will therefore satisfy Provisions 1 and 2.

A modest estimate of defsmay(s), obtainable with an alias anal-
ysis [20], is pivotal to the algorithm’s efficacy as GU could other-
wise become bereft of edges. A tighter defsmay(s) also improves
its running time, which in the worst case is O(|V |2N) as before.

2.3 The Reference-Counting Subsumption Graph

We use the notation y
P→ ω to mean that the local reference y

targets the object ω at the program point P . Let α(s) and β(s) be
program points just before and after a statement s. Consider the set

R(s, y ) = {x |x ∈ R ∧ y ∈ liveout(s) ∧ y
β(s)→ ω ∧

ω ∈ R(x ) on all paths from α(s) until

x dies or could be redefined},
(10)

which is the set of local references that “overlook” the object
targeted by a live y just after s. These references overlook the
object from just before s, at which they are implicitly live by the
equation, until their death or possible redefinition.

As an example, suppose s were the IR statement

y := x

and let y ∈ liveout(s). Then clearly, x ∈ R(s, y ).
The overlooking roots’ set R(s, y ) plays a key role in the

construction of the RC subsumption graph. The strategy, outlined
in Figure 5, starts with a copy E′′ of EU and then eliminates edges
that may possibly violate Provision 3. It uses any approximation
R̀(s, u ) of R(s, u ); i.e., R̀(s, u ) ⊆ R(s, u ) for all s and u ∈ R.

Using succ(u ) to denote the successor nodes of u in (V, E′′),
Equations (11) and (12) specify the set of edges removed at each
statement in each iteration of the algorithm. In essence, an edge
(u , v ), where u �= v , is deleted from E′′ under two circumstances:

• there exists an s that may define u , but at the end of which there
is no known reference that overlooks u ; or

• there exists an s that may define u , and at the end of which u is
overlooked by a w ( �= v ) that may not be RC subsumed by v .

Theorem 1 below proves that the edges in E′′ after Step 4 of the
algorithm indeed belong to the RC subsumption binary relation.

THEOREM 1. If (u, v) ∈ ER, then u is RC subsumed by v.

PROOF. If u = v , the claim is obvious. So let u1, u2 and so on
until uk be the other nodes from which edges are incident on v in
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1. Initialize V to the set of local references R, and E′′ to EU .
2. For every u ∈ defsmay(s) such that R̀(s,u ) = ∅, define

δ(s,u ) = succ(u ) − {u } (11)

and delete (u , v ) ∈ E′′ if v ∈ δ(s, u ).

3. For every u ∈ defsmay(s) such that R̀(s,u ) �= ∅, define

δ(s, u ) =
⋃

w ∈R̀(s,u )

(
succ(u ) − (succ(w ) ∪ {u , w })) (12)

and delete (u , v ) ∈ E′′ if v ∈ δ(s, u ).
4. Repeat Steps 2 and 3 on every statement s until a fixed point is

reached. Then (V, E′′) is the RC subsumption graph (V, ER).

Figure 5. Computing GR = (V, ER)

GR. Now because of Step 2 of the algorithm, we must have

R̀(s, ui) �= ∅
at every s, where ui ∈ defsmay(s); otherwise (ui, v ), where
1 ≤ i ≤ k, would have been deleted. In fact, we must also have

R̀(s, ui) ⊆ {u1, u2, . . . , uk} ∪ {v } (13)

from Step 3 of the algorithm since otherwise, (ui, v ) would have
been deleted. But this implies that after every possible definition
of ui, it would have to be overlooked by at least one other uj or
by v . Because the same argument holds true for any of the ui, and
because (ui, v ) ∈ EU in each case, the three provisions of RC
subsumption will be satisfied by all the (ui, v ). Hence, the ui must
be RC subsumed by v for all 1 ≤ i ≤ k.

2.3.1 Approximating the Overlooking Roots’ Set

The algorithm requires R̀(s, u ) only at those s at which u ∈
defsmay(s). We have already seen how R̀(s, u ) can be determined
when s is of the form u := v . A few more situations exist in which
we can do better than an empty set value for R̀(s,u ).

For example, suppose s is the IR statement

u := v.g,

where g is a read-only field [15]. A field is read-only if it isn’t mod-
ified after its initialization in any thread. The initialization point is
just after object construction for instance fields and just after static
construction for static fields. Hence, if the above statement occurs
after the initialization point for g, and if u ∈ liveout(s), then a
possible value for R̀(s, u ) is {v }. A corner situation is

u := u.g

in which case u would belong to R̀(s, u ) if u ∈ liveout(s).
Another situation is the IR statement

u := v [e],

where u ∈ liveout(s), v points to a thread-local object and v [e]
isn’t written into before v dies or is possibly redefined in the
current thread’s code. Then v could be added to R̀(s, u ). Note that
it doesn’t matter whether the references in v point to objects visible
across threads; the thread localness requirement is only on v and is
an immediate, nontransitive one. An escape analysis similar to [27]
could be utilized to infer this in a number of useful situations.

A fourth situation is the IR statement

u := v.f,

where u ∈ liveout(s) as before, but where f isn’t a read-only field.
If v , however, is known to only target thread-local objects and v.f

isn’t written into before v dies, then v could be added to R̀(s, u ).
The last situation is specific to a formal reference z of a function

f . Now z can be imagined as being initialized by the statement

z := ẑ

on entry to f , where ẑ is the actual parameter that corresponds to
z . If ẑ ∈ R and z ∈ liveout(s), where s is the imaginary initial-
ization, then ẑ could be added to R̀(s, z ). Now ẑ can be considered
live throughout f .6 Therefore, if ẑ were included in V , then (z , ẑ)
would exist in EU only if z is never live through a redefinition
of either itself or ẑ. This extension, combined with ẑ ∈ R̀(s, z ),
enables the algorithm in Figure 5 to automatically handle the RC
subsumption of formal references by actual references. The exten-
sion could be viewed as a cheap alternative to a more elaborate
interprocedural approach for deriving the same information.

An important point to address here is the validity of the consid-
eration that ẑ is live throughout f . At a call site of f , it is ques-
tionable as to where the actual argument ẑ dies, assuming it isn’t
used after the call site. Does it die just after the invocation of f , or
within the invocation? If within, where exactly? The consideration
follows from our view that it dies after the call site. The implication
is that an object could be held across the entire duration of a call,
even though it might be used only at the beginning of the call.

1 function map(F , z )

2 F := F̂
3 z := ẑ
4 x := z.buckets
5 i := 0
6 while (i < x.length),
7 y := x [i]
8 while (y �= null),
9 w := y.value
10 y := y.next
11 F (w )
12 end while
13 i := i + 1
14 end while

Figure 6. Applying a Function on the Values of a Hash Table

2.3.2 An Example: Traversing a Hash Table

Figure 6 is the IR of a function map that takes as arguments a
reference z to a hash table and a reference F to a delegate [7].
Delegates are “function objects” that enable method invocation
through references, as seen on Line 11. Thus map simply traverses
through the linked lists of a hash table, which are organized as an
array of buckets, and applies F on the stored values along the way.

Lines 2 and 3 are the imaginary assignments that model the call-
by-value parameter passing mechanism. (For clarity, no RC updates
have been shown.) F̂ and ẑ are the actual parameters in the caller
that correspond to F and z . The other local references are x , y
and w . Figure 7 displays the uncut live-range subsumption graph
for map. Observe that GU reflects the assumption that F̂ and ẑ are
live throughout map. Also, the live range of z doesn’t subsume the
live ranges of x , y and w ; this is because z dies after Line 4.

Next, to compute the RC subsumption graph, we need to arrive
at approximations of the overlooking roots’ set. These are shown

6 In the absence of more information, no mutual subsumption among the
live ranges of the actual parameters should be considered.
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Figure 7. Subsumption Graphs for the map Function

below for the relevant references and statements:

R̀(s2, F ) = {F̂}, R̀(s7, y ) = {x },
R̀(s3, z ) = {ẑ}, R̀(s9, w ) = {y },
R̀(s4, x ) = {z }, R̀(s10, y ) = {y }.

The determination of the above values for R̀(s2, F ) and R̀(s3, z ) is
straightforward. The values for R̀(s4, x ), R̀(s7, y ), R̀(s9, w ) and
R̀(s10, y ) rely on the immediate targets of z , x and y being thread-
local objects.7 This will be the case if the hash tables passed into
map at the various program call sites don’t escape threads.

Figure 7 shows the RC subsumption graph obtained using these
overlooking roots’ sets. Since F , z , x , y and w are all RC sub-
sumed by a reference other than themselves, the RC updates against
them can be eliminated, permitting an RC update-free map.

3. Specializing RC Updates on Acyclic Objects
Our nondeferred RC collector doesn’t depend on any backup col-
lector for completeness. It reclaims cycles using a local scan tech-
nique called trial deletion [19], as extended in [3, 2].

The basic idea behind trial deletion is that when a reference
disappears from an object o whose reference count is greater than 1,
o could potentially be lost as a leaked cycle. Consequently, the RC−
operation conservatively puts o onto a “potentially leaked cycles”
(PLC) list for later processing, possibly when a memory pressure
situation arises. If a reference to o is subsequently created, the
associated RC+ operation pulls o out of the PLC list as o then can’t
lie on a lost cycle. Hence, statically knowing types whose instances
never lie on cycles allows the compiler to generate specialized RC
updates that avoid the cycle bookkeeping steps needed in a more
general RC update operation under trial deletion.

Although the aforementioned compile-time optimization hasn’t
been implemented in the past, knowledge about acyclic objects
has been used to optimize the run-time actions of the general RC
update operation [2]. That is, the cycle bookkeeping steps could be
performed conditionally depending on whether the object’s exact
type has only acyclic instantiations. The steps are skipped if the test
returns true. This is a collector-side optimization and also exists in
our implementation. Rather than accessing an object’s exact type
on every RC update, it could be accessed once at object creation
time through the vtable data structure and then used to set a bit in
the object’s RC field indicating the acyclic nature of the type [2].

We say that a type t is acyclic if an instance of t doesn’t tran-
sitively point to itself through a chain of references. The state of
being acyclic could be spoken of at different levels of granularity
and in senses involving a timeline. Thus, t could be acyclic in cer-

7 Whether the value field targets a thread-local object is immaterial.

1. Initialize VT to the set of reference types, and ET to ∅.
2. If s ∈ VT has an instance field of static reference type t, or if

s is an array type whose element has the static reference type t,
then add (s, t′) to ET for every t′ that is a subtype of t.

3. If s ∈ VT is an array type whose element is a value type that
directly or indirectly contains an instance field of reference type
t, then add (s, t′) to ET for every t′ that is a subtype of t.

4. Add (s′, t) to ET if (s, t) was added due to some field in Step 2
or Step 3, and s′ is a strict subtype of s.

5. If the analysis is being done under a separate mode of compila-
tion, then add (s, s) to ET for all extendable types s.

6. Delete t and all its edges if t is an immortal type.
7. Decompose GT = (VT , ET ) into SCCs.
8. Define

rcyclic(GT ) = {t|t lies on a nontrivial SCC of GT }. (14)

Then VT − rcyclic(GT ) is a set of acyclic run-time types.
9. Define

scyclic(GT ) = {t|∃t′ ∈ rcyclic(GT ) such that

t′ is a subtype of t ∈ VT }.
(15)

Then VT − scyclic(GT ) is a set of acyclic static types.

Figure 8. Acyclic Type Analysis

tain areas of the object graph, at certain program points, or always
in all runs of a given program. For example, the System.String
class in .NET is an acyclic type in any program. Given a type hier-
archy, information on the fields in the types and a mode of compi-
lation (whole program or separate), Figure 8 presents a procedure
that determines the set of types that are acyclic in all programs.

3.1 The Type Connectivity Graph

A type connectivity graph GT = (VT , ET ) has nodes representing
types and directed edges summarizing the connections between
type instances. If (u, v) exists in ET , then an instance of exact or
run-time type u could have an edge to an instance of run-time type
v in some object graph. It isn’t necessary to represent all types in
GT ; only those whose instances can reside on the heap (like classes
and array types [7] in .NET) need to be considered.8 We call them
reference types in accordance with .NET terminology.

The construction of GT begins with the empty set for ET . A
directed edge (s, t′) is added to ET if s has a field with the static
reference type t or if s is an array type whose elements have the
static reference type t, and if t′ is a subtype of t (t′ could be t
itself). The static type is the textually declared type. Hence in .NET,
a field with the declared type System.Object would have the
static type System.Object; its run-time type could be any class
or array type since all of them derive from System.Object. A
similar explanation is the reason for Step 3.

Edges also need to be added because of the subtyping relations
that may exist on a field’s containing type. In other words, if
(s, t) ∈ ET because of some field f in s and if s′ is a strict subtype
of s (i.e., s′ is a subtype of s such that s′ �= s), then the edge (s′, t)
would have to be added to ET since f would also exist in s′.

3.2 Covariant or Invariant Subtyping of Arrays

Note that Step 4 bases its action on edges added in the previous
steps due to fields. Specifically, if (s, t) ∈ ET where s is an array

8 As an example, .NET value types can be excluded because their instances
reside only on the stack. On the other hand, boxed value types and array
value types should be included because their instances exist on the heap.
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Figure 9. Array Subtyping Effects on a Type Connectivity Graph

type whose element is the reference type t, then it doesn’t add edges
of the form (s′, t) where s′ is a strict subtype of s. This is because
we assume arrays to have a covariant subtyping [24] as in Java and
C#; if arrays had an invariant subtyping instead, then Step 4 would
have to be expanded to include all edges added in Step 2.

The aforementioned array subtyping effect on type connectiv-
ity graphs is illustrated in Figure 9. The nodes u, u′, u[ ] and u′[ ]
represent four types. The dashed arcs represent the subtyping rela-
tions among them. The solid arcs depict the possible connections
between their corresponding instances in the object graph. Under
covariant subtyping, the array type u′[ ] is a subtype of the array
type u[ ] if u′ is a subtype of u. Under invariant subtyping, u′[ ] is
a subtype of u[ ] if u′ and u are subtypes of each other.

3.3 Separate Compilation

If the analysis is done under separate compilation, then nodes in
GT representing extendable types have self loops added to them; in
.NET, extendable types would be nonsealed classes and interfaces.

3.4 Omitting Immortal Object Types

If all instances of a reference type t are known to be immortal, then
cycles involving instances of t can be ignored. Thus GT can be
made simpler by deleting t and all its edges.

3.5 Decomposition into Strongly Connected Components

Once GT is built, it is decomposed into strongly connected com-
ponents (SCCs) [10]. We call an SCC nontrivial if it contains two
nodes u and v such that (u, v) ∈ ET (u and v could be the same).
Consider rcyclic(GT ) defined by Equation (14) as being the set of
types that belong to a nontrivial SCC of GT . Then since instances
of these types may form cycles in some object graph, elements in
VT − rcyclic(GT ) must be acyclic run-time types by definition.

Now consider the set scyclic(GT ) defined by Equation (15) as
consisting of those types w such that a subtype of w belongs to
rcyclic(GT ). Then a reference of type w could point to a cyclic
data structure in some object graph. Therefore, VT − scyclic(GT )
is the set of all acyclic static reference types in VT .

From Equations (14) and (15), it is clear that the set of acyclic
run-time types is a superset of the set of acyclic static types. The
former are used in the collector-side optimization of RC updates
and the latter in the compile-time specialization of RC updates.

4. Eliding RC Updates on Immortal Objects
Certain data structures, such as vtables, string literals and garbage
collection (GC) tables, live permanently in the static data area or
the bootstrap memory and therefore needn’t be subjected to the
RC regime. This section outlines the design of an analysis that
identifies references to such objects. We say that a local reference
is an immortal target variable if it points to an immortal object. It

is easy to extend this definition to cover value-type variables that
embed references to immortal objects; we therefore consider only
reference variables for the rest of the section’s discussion.

4.1 Static Optimization

The analysis finds the immortal target variables’ sets Iin (s) and
Iout(s) before and after every statement s. The desired information
is obtained by combining a simple type and field inspection with an
iterative forward and backward data-flow analysis.

4.1.1 Forward Data Flow

For instance, suppose s is the IR instruction

y := checkcast<v>(x )

that checks whether the reference x (of type u) points to an object
of type v and if so, assigns it to the reference y whose type is a
supertype of v.9 Hence, the data-flow equation for s is

Iout (s) = Iout (s)
⋃

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Iin (s) ∪ {y } if u is immortal,
Iin (s) ∪ {y } if v is immortal,
Iin (s) ∪ {y } if x ∈ Iin(s),

Iin (s) − {y } otherwise.

(16)

In the above, u (or v) being immortal means that instances of u
(or v) are always immortal. The equation assumes that references
declared with an immortal type point only to immortal objects.

Another example is the ldfld instruction in MSIL (Microsoft
Intermediate Language) [7], which in IR form can be written as

y := x.f

where f is the loaded field. Now if y is a reference and f a field
that is ensured to always point to immortal data—not because of its
type but by virtue of its containing class—then y will also point to
immortal data.10 The relevant data-flow equation here is

Iout(s) = Iout(s)
⋃ {

Iin(s) ∪ {y } if f is immortal,
Iin(s) − {y } otherwise,

(17)

where a field is immortal if it always targets immortal objects.
Note that Equation (17) doesn’t have a case that tests whether

the type w of the reference y is immortal. Such a test would be
redundant. This is because if f isn’t an immortal field, then its type
w′ can’t be immortal. Since w must be a supertype of w′ by the
semantics of the ldfld instruction, then w also can’t be immortal.

For the purposes of the analysis, a null reference is considered
to target a special immortal object. Thus, for the IR instruction

y := null,

the data-flow equation is simply

Iout(s) = Iout(s) ∪ Iin (s) ∪ {y }. (18)

4.1.2 Backward Data Flow

Consider the stfld MSIL instruction, whose IR is

y.f := x

and suppose x is a reference and f an immortal field. Then x
should point to an immortal object just before the statement. This

9 The instruction throws an exception if the check fails.
10 For instance, classes implementing a garbage collector may have fields
pointing to permanently live data structures that are maintained in the
bootstrap memory. In this situation, it may not be possible to identify the
immortal nature of the fields’ targets by a mere inspection of their types.
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gives the following data-flow equation in the backward direction:

Iin (s) = Iin (s)
⋃ {

Iout(s) ∪ {x } if f is immortal,
Iout(s) otherwise.

(19)

Similar equations can be worked out for different cases of other
IR instructions. The only requirement is that they form transfer
functions that are monotonic on the underlying finite-height lattice.
For example, it is easy to see that the transfer functions represented
by Equations (16) to (18) are monotonic in the following way:

To(Iin (s)) ⊆ To(I′
in(s)) if Iin (s) ⊆ I′

in(s), (20)

where To is the transfer function for the instruction with opcode o.

4.1.3 Confluence Points

The immortal target variables’ set at the entry of a basic block is

Iin (B) = Iin (B) ∪ ( ⋂
B′∈preds(B)

Iout(B
′)

)
, (21)

where preds(B) are the predecessors of the basic block B, Iin (B)
corresponds to the Iin set for the first statement in B, and Iout (B

′)
corresponds to the Iout set for the last statement in B′.

Equation (21) represents a forward transfer function between
entire basic blocks. While a similar transfer function can be set
up in the backward direction, our design presently doesn’t propa-
gate information backwards between basic blocks. Setting up such
backward functions requires care because they apply in only lim-
ited scenarios—for example, immortal information from the begin-
ning of a basic block B can’t be simply propagated to the end of its
predecessor basic blocks when B has more than one predecessor.

By starting with empty sets for Iin (s) (which are the Iout sets
for previous statements) and then repeatedly applying the forward
and backward transfer functions, we can arrive at a fixed point for
the immortal target variables at all statements in the program’s IR.
RC updates on such variables can then be removed.

4.2 Run-Time Optimization

Obviously, the previous analysis won’t detect all references to
immortal objects. And yet, it would be wasteful to perform the
general RC update operation on references that end up targeting
immortal objects since the operations are moderately heavyweight
(see Section 7). Consequently, our prototype reserves a bit in the
RC field, set at object creation time, to flag objects whose exact type
is immortal. This bit is tested on entry into an RC update operation
and a quick exit is done if the test succeeds.

5. Specializing Non-Null Operand RC Updates
An RC update operation must first check whether its operand ref-
erence is non-null before attempting to increment or decrement the
target object’s reference count. If the operand reference is known
to be non-null however, then a specialized version of the RC up-
date can be generated that doesn’t perform the null check. Observe
that this optimization is complementary to the elimination of RC
updates on null references described in Section 4.

Opportunities for this optimization arise from the null check
semantics of many object-oriented instructions. For instance, given

1 y := x.f
2 RC+(x )
3 RC−(z )
4 z := x

where x is a reference and the instruction on Line 1 has the ldfld
semantics of MSIL for reference operands [7], then x would have
to be non-null at the beginning of Line 2. This is because Line 1
would have otherwise thrown an exception.

1 y := newobj()
2 x := newobj()

...
3 RC+(x )
4 RC−(y )
5 y := x

...
6 RC−(y )
7 y := null

...
8 . . . := . . . x . . .

...
9 RC−(x )
10 x := null

Figure 10. An Aggressive but Erroneous Coalescing Opportunity

Another opportunity is in references returned by object creation
instructions. As an example, given the code sequence

1 y := newobj()
2 RC−(y )

the RC− operation can omit the null check on the reference y .
These opportunities can be formalized by forward data-flow

equations as in Section 4. They can then be used to obtain the sets
of non-null references at all statements by a fixed-point calculation.

6. Coalescing RC Updates
This optimization replaces a pair of RC increment and decrement
operations on the same reference with a no-op. The current imple-
mentation is conservative in two ways: (1) an RC+(x ) is canceled
with a following RC−(x ) only within a contiguous sequence of RC
updates; and (2) coalescing opportunities are restricted to within
basic blocks. While the reason for the latter was to keep the analy-
sis simple, the reason for the former is that coalescing across longer
stretches of code could lead to premature reclamation.

For instance, consider the IR shown in Figure 10 in which
the inserted RC update operations realize a classic style of RC
collection. The RC+ and RC− operations on Lines 3 and 4 are for
the assignment on Line 5, and the RC− operations on Lines 6 and
9 are for the assignments on Lines 7 and 10 respectively. Now, if
the RC+(x ) on Line 3 were coalesced with the RC−(x ) on Line 9,
the x on Line 8 would become a dangling reference.11

7. Inlining RC Updates
Besides the increment and decrement actions, the general RC up-
dates perform other tasks like testing whether their operand ref-
erence is non-null, quick exiting on immortal objects (see Sec-
tion 4.2), determining whether an object should be put into a PLC
list or pulled out from it (this is done by examining a bit in the RC
field as described in Section 3), establishing whether the reference
count drops to zero and if so reclaiming the object, and checking
whether the reclaimed object has associated data structures that also
need to be reclaimed.12 If the general RC update were therefore in-
lined into a mutator’s code, it could cause considerable code bloat.

11 As an aside, notice that neither x nor y is RC subsumed by the other.
12 In .NET, sync blocks are created against objects on which a lock is held;
these need to be recycled when the object is reclaimed [7].
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Benchmark Description Execution Time (seconds)

wc line and word count Unix tool run on two files 3.81
go Game of Life, playing on a 40 × 19 board 16.04

ijpeg conversions of an in-memory PPM bitmap image 0.38
grep regular expression search on a 31,195-line file 24.63
satsol Boolean formula satisfiability solver 15.39
mandel graphical rendering of a Mandelbrot set fractal 1.89
comp95 file compression utility 29.10
sort merge sort of a 1,048,576-integer array 4.10
cmp file comparison tool run on two 1006KB files 3.07

xlisp
Xlisp interpreter executing au, boyer, browse,
etc., as part of a workload of 21 Lisp programs

57.85

Table 1. C# Benchmarks

On account of the specializations in Sections 3 and 5, three
other kinds of RC update operations are possible: those on static
acyclic reference types, those on non-null references, and those on
references that are both non-null and have a static acyclic type. The
only extra tasks performed in the last of these is quick exiting on
immortal objects (this happens in both the increment and decrement
operations) and checking whether data structures held against a
reclaimed object also need to be reclaimed (this happens only in
the decrement operation). Because of their relatively lightweight
nature, only they are inlined in our current implementation.

8. Results
Experiments were performed on a nongenerational nondeferred RC
collection implementation for .NET, with and without the six op-
timizations described in this paper. The prototype was built un-
der Bartok, an optimizing compiler and run-time system from Mi-
crosoft Research that translates MSIL into x86 binaries. The de-
sign is single threaded and handles various aspects of .NET like
exceptions, object pinning, interior pointers and sync blocks [7].
As stated in Section 3, garbage cycles are reclaimed using trial
deletion. To keep pause times bounded, the collected garbage is
recycled using a delayed deallocation policy [32].

8.1 Platform Specifications

Table 1 lists the benchmarks considered, which are all single-
threaded C# programs. The go, ijpeg, comp95 and xlisp bench-
marks are ports of SPEC CINT95 programs. The benchmarks are
translated into MSIL by a front end and then into x86 code by
Bartok. Their execution times were normalized against their exe-
cution times when Bartok’s default collector was used, which are
displayed in the last column of the table. This is a two-generation
adaptive tracing collector that uses semispace collection in a 16MB
nursery and semispace or sliding collection in the second genera-
tion depending on the available memory. The reported execution
time numbers are an average of three runs of a total of four runs
from which the first was discarded. (The runs were on a lightly
loaded machine disconnected from the network.)

Comparisons were also made against a nongenerational de-
ferred RC collection scheme. This collector shares much of the
tuned run-time code base of the nondeferred RC collector, includ-
ing the allocator and the code that realizes the trial deletion tech-
nique. A number of parameters are common to both. For exam-
ple, both trigger a garbage collection when the delayed dealloca-
tion (DD) list exceeds 215 objects. It means recycling a constant
number of objects from the DD list in the nondeferred case, and ad-
ditionally processing the zero-count table [13] in the deferred case.
Both cases could also trigger the processing of the PLC list, which
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Figure 11. Impact of RC Optimizations on Execution Times

happens when the PLC list size exceeds 8MB. Optimizations on the
compiler side are currently ongoing for the deferred RC collector.13

When compiling for any of the collectors, all other optimiza-
tions offered by Bartok, like common subexpression elimination,
dead-code elimination and copy propagation, were turned on.

The platform was an HP XW8000 workstation with an Intel
Xeon 2.8GHz CPU, running Windows XP Version 2002 (Service
Pack 2) in hyperthreaded mode, and having 2GB of main memory,
512KB of secondary cache and 8KB of primary cache. Version 7.10
of csc, the .NET C# compiler, was used as the front end.

8.2 Relative Execution Times

Figure 11 displays the effects of the six optimizations on the non-
deferred RC-collected execution times. The times are relative to
execution times when the generational adaptive tracing collector is
used. The first column for each benchmark is the time with none
of the six optimizations active; this is the time for the baseline im-
plementation. The eighth column is when all the optimizations are
turned on. The second to the eighth columns are the progression
in times as optimizations are successively switched on one after
another. With all activated, overall times come within 32% of the
tracing collector in seven out of the ten programs. This should be

13 Some of the optimizations would have to be reworked for the deferred RC
case. For example, RC subsumption as defined in Section 2 doesn’t consider
the subsumption of heap references. However, it could be adapted for
reducing the stack scanning pressure in deferred RC collection. Also, RC
update coalescing currently only combines RC updates on local references.
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Benchmark
Counts (×106)

Before Excluding RC Subsumption Including RC Subsumption
RCdeferred

RCG RCG RCN RCA RCNA RCG RCN RCA RCNA

wc 1242.2 414.1 0 207.0 621.1 0 0 0.8 0.4 4.8 × 10−3

go 306.3 0 0 153.2 153.2 0 0 3.7 3.7 0.9

ijpeg 6.7 0 0 3.4 3.3 0 0 2.4 2.4 8.0 × 10−2

grep 620.9 0 0 310.4 310.4 0 0 39.4 10.7 1.7 × 10−3

satsol 808.8 36.1 25.8 347.6 358.0 10.3 0 200.8 211.2 13.9

mandel 9.7 2.8 0 0 0.7 4.1 0 0 0.7 1.4

comp95 2090.7 0 0 1045.4 1045.4 0 0 1.4 × 10−3 4.0 × 10−4 5.2 × 10−4

sort 894.8 0 0 434.9 434.9 0 0 5.0 × 10−4 4.0 × 10−6 5.2 × 10−4

cmp 1235.8 411.9 0 206.0 617.9 206.0 206.0 1.9 × 10−3 2.0 × 10−4 2.7 × 10−3

xlisp > 4295.0 > 4295.0 1797.6 0 0 1075.8 664.3 0 0 1039.0

Table 2. Distribution of Counts Across Different Kinds of RC Updates in RC “Hot” Methods

viewed in the context of baseline times that are at least thrice that
of the tracing collector in eight programs. Hence, net improvements
range from 7.7% in mandel, at least a factor of 2 in ijpeg, grep
and xlisp, to at least a factor of 4 in the rest.

Each column from the second to the third, and from the sixth
to the eighth, corresponds to one optimization. The fourth and fifth
columns correspond to the acyclic object RC update specialization.
In particular, the fourth column is when only the collector side of
the optimization is in effect and the fifth column is when both the
and collector side and static versions are in effect (see Section 3).

Notice that two optimizations—acyclic object RC update spe-
cialization and RC subsumption—speed up running times signif-
icantly. The former improves running times from about 1.01 in
mandel to about 3.06 in sort. Improvements due to the latter range
from about 1.00 in mandel to about 4.33 in wc. If a performance
increase of at least 50% were considered, then the former achieves
it in seven programs whereas the latter in six programs. However,
bear in mind that the acyclic object RC update specialization op-
timization is a consequence of using trial deletion for cycle recla-
mation. If a tracing backup collector were used instead, then the
baseline execution times would be closer to the fourth columns and
RC subsumption would still continue to wield a dramatic effect.

It should be mentioned here that the execution time of 5.40
for xlisp (fully optimized nondeferred RC collection) is also an
outlier on a performance suite comprising over 45 programs, on
which the minimum, arithmetic mean, geometric mean and median
were 0.21, 1.39, 1.20 and 1.01 respectively.

Observe that the immortal object RC update elision optimiza-
tion produces a slight slowdown in cmp, from 45.23 seconds to
46.97 seconds. We suspect this to be due to data cache effects be-
cause the execution of an RC increment could cause an object to be
loaded into cache lines much before its contents are accessed. Also
observe that RC update inlining has a slightly negative effect on
xlisp. This is possibly because of the increased code size, which
influences the performance of the instruction cache.

The rightmost column for each benchmark indicates the run-
ning time under the deferred RC collection scheme. Without any
RC compiler optimizations, the execution time of nondeferred RC
collection is at least twice as much as deferred RC collection in nine
programs. With all the optimizations switched on, this turns around
to being within 19% of deferred RC collection in eight programs.

8.3 RC Update Profiles

An infrastructure that permits RC instrumentation code to be com-
piled into a binary has also been implemented. The instrumented
code outputs the number of RC updates executed during a program
run. The output gives the break up across different kinds of RC up-
dates, and is sorted from the “hottest” to the coldest method from
the point of view of the total number of RC updates performed.
Table 2 shows the distributions of these counts, expressed in mil-
lions, for instrumented versions of the benchmarks. On each line,
the RCG (general), RCN (non-null operand but not of acyclic static
type), RCA (operand of acyclic static type but not detected to be
non-null) and RCNA (non-null operand of acyclic static type) up-
date counts are in the hottest method of a benchmark under nonde-
ferred RC collection. The RCdeferred column shows the number of
RC updates in the hottest method of a benchmark under deferred
RC collection. The third to the sixth columns show the distribution
with all but the RC subsumption optimization active. The seventh
to the tenth columns are with all optimizations switched on.

The numbers were obtained using 32-bit counters in the instru-
mented code. This sufficed for all cases except xlisp, where the
RCG count overflowed when RC subsumption wasn’t active.

Notice that the sum of the RC updates in the third to the sixth
columns is less than the second column in satsol, mandel and
sort. This is due to the immortal object RC update elision and
the RC update coalescing optimizations. In the other cases except
xlisp, the sum equals the second column. (This is up to a round-
off error, which shows up on go, grep and comp95.) The fact that
these sums are drastically more than the corresponding sums of
the seventh to the tenth columns in all but mandel confirms the
significant benefit of the RC subsumption optimization.

8.4 Effects of Optimization Phase Ordering

The counter-intuitive behavior on mandel in Table 2 is an interest-
ing one because it reveals how the ordering of the static optimiza-
tions can affect execution times. For the experiments in this paper,
the ordering chosen was: (1) immortal object RC update elision,
(2) RC subsumption, (3) RC update coalescing, (4) static acyclic
object RC update specialization, (4) non-null operand RC update
specialization, and (5) RC update inlining. There is no particular
reason why this ordering was chosen; it only reflects the sequence
in which they were implemented. For the most part, the individual
optimizations don’t interact with one another. For example, the spe-
cializations don’t affect RC subsumption, and vice versa. However,
coalescing could interact with RC subsumption in a way so that per-
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formance is actually better without RC subsumption. Essentially,
when RC subsumption happens before coalescing, it may prevent
the coalescing of a pair of RC updates that occur in a hot loop. This
is the reason why the sum of the third to the sixth columns is less
than the sum from the seventh to the tenth columns in mandel.

8.5 Influence of the Overlooking Roots’ Set Computation

Figure 12 demonstrates how better approximations of the overlook-
ing roots’ set can appreciably improve the effectiveness of RC sub-
sumption, all other optimizations being the same. The leftmost and
rightmost bars for each benchmark are the execution times when
RC subsumption is fully off and on; these therefore correspond to
the seventh and eighth columns in Figure 11.

The second bar is the result of an RC subsumption in which
R̀(s, u ) is only computed for statements of the forms u := v and z
:= ẑ. This produces a performance improvement of about between
1% to over 20% relative to without any RC subsumption.

The third bar is after including statements of the form u := v.g,
where g is a read-only field. This contributes up to an additional
87% performance improvement, with the biggest happening on go.

The fourth bar is after including statements of the form u :=
v.f, where v.f isn’t written into before v dies, and v is inferred
to point to a thread-local object using a simple thread-escape anal-
ysis. The analysis treats every static reference field as pointing to
globally visible data and similarly marks any local reference vari-
able that may alias such a field. The extension contributes up to
another 12% improvement over the performance for the third bar.

The last bar is after considering the same statements as in the
fourth bar, except with a more powerful thread-escape analysis that
takes thread creation information into account. This contributes up
to a factor of 4.33 in additional improvement. Of course, our bench-
marks were single threaded to begin with, so we expect the im-
provements to be somewhere between the fourth and fifth bars in
multithreaded applications. However, it should also be mentioned
that we haven’t yet fully capitalized on all opportunities. For in-
stance, we are very conservative about writes and assume that v.f
could be written into before v dies, if v is live at the end of a basic
block and is written into somewhere else in the program.

9. Related Work
There has been a considerable amount of past research in RC
collection. Much of it has centered on important collector-side
techniques for handling concurrency, reclaiming garbage cycles

and improving throughput [11, 3, 2, 18, 6, 23]. The relatively
fewer efforts in the area of compile-time optimizations for RC
collection in imperative-style procedural languages have focused
on optimizing RC-related operations in deferred RC collection [5].

An analysis was outlined in [5] for cancelling adjacent RC in-
crement and decrement operations. When an object allocation is
followed by a reference creation (as is often the case), the analysis
merges the RC update required for the reference creation event with
the code sequence for the allocation event. Additionally, it takes
care of directly returning an allocated object to the free list if all ref-
erences to that object are subsequently lost. The RC update coalesc-
ing optimization of Section 6 corresponds to the cancelling part of
this analysis. Three other optimizations were suggested in [5]: (1)
removing RC updates on null references; (2) removing RC updates
on data structures that are known to persist (like storage manage-
ment tables); and (3) batching adjacent RC updates (called “trans-
actions” in the paper) into a larger one. The first two correspond to
the immortal object RC update elision optimization of Section 4.
While [5] didn’t report any performance data, Section 8 of this pa-
per shows that at least the first two along with the cancelling opti-
mization don’t significantly affect the throughputs of nondeferred
RC-collected object-oriented programs.

The use of reference counting for deterministic finalization is
discussed in [30]. The work is in the context of .NET’s Common
Language Runtime (CLR). RC operations are performed only on
references that live in the evaluation stack of the CLR. (The eval-
uation stack is a special data structure in the CLR’s programming
model.) The reference counting isn’t necessarily deferred. The pa-
per mentions the inlining of RC updates as an optimization. As fu-
ture work, it also mentions that being more intelligent about which
objects are reference counted could improve performance.

There have been a number of past efforts at optimizing RC up-
dates in functional languages [16, 22]. These however exploit an
operational semantics in which references can be updated at most
once. For instance, the abstract interpretation approach in [16] re-
lies on every occurrence of a reference in a function being con-
sumed at most once in an activation. It isn’t clear how applicable
or effective these techniques would be in a programming paradigm
that supports loops. Moreover, since approaches like those in [16]
only compute reference counts approximately, they would have to
be coupled with a backup storage reclamation method.

An abstract interpretation scheme for obtaining lifetime infor-
mation on dynamically allocated data is presented in [12]. It can
therefore be applied to optimizing RC updates. However, the anal-
ysis is for functional languages—only forward jumps are permitted
and the effect of looping is achieved by function application.

In [22], an abstract interpretation scheme called reference es-
cape analysis with similar aims as RC subsumption is presented.
The objective is to determine when a reference “escapes”, i.e.,
when its value is returned out from the function scope in which
it is created. RC updates against non-escaping references can then
be eschewed if they point to objects also targeted by escaping ref-
erences. The analysis differs from RC subsumption in three main
ways: (1) references can only be updated by direct assignment and
not indirectly through devices like pointers; (2) it treats lifetimes
at the granularity of procedures and doesn’t consider finer grain in-
traprocedural lifetime information; and (3) the analysis was worked
out for a toy language without loops.

The omission of RC updates on the formal parameters of a func-
tion when the actual parameters at the call site are used after the call
was identified in [28]. RC optimizations aimed at an implementa-
tion of the OPAL functional language are described in [29]. These
include specializing RC updates when the operand is known to be
a reference, and eliminating RC updates when they are known to
be non-references. [29] also discusses the possible reuse of storage
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when the reference count of an object is about to fall to zero and a
similarly sized object is allocated at a following point.

A run-time approach that reduces the number of RC updates in
deferred RC collection was presented in [18]. The idea is based
on the observation that RC updates needn’t be applied on the
intermediate values of a reference between two garbage collections.

An alternate approach to RC update elision is to adhere to a pro-
gramming model that expressly creates and destroys references and
that uses language constructs with explicit lifetime information [4].

The elimination of extraneous write barriers in concurrent
garbage collection presents issues analogous to the identification
of unnecessary RC updates. [31] discusses covering conditions for
recognizing redundant write barriers. Although the conditions re-
late to the provisions of RC subsumption, [31] doesn’t provide
a scheme for automatically deducing them. Their potential was
however demonstrated by examining dynamic program traces and
showing that a large percentage of write barriers satisfy them.

Static analyses identifying writes to heap locations that contain
null references before the write were described in [21]. The anal-
yses were based on abstract interpretation, and considered object
fields and array elements for the heap locations. The motivation
was that write barriers for such operations could be removed.

A data structure similar to the live-range subsumption graph
called the containment graph was described in [9]. Nodes in the
containment graph denote live ranges (unlike the live-range sub-
sumption graph where they represent local variables). A directed
edge is inserted from a node j to a node i if i is live at a definition
or use of j [9]. Thus the containment relation in [9] is different from
the live-range subsumption relation; a simple example showing the
difference is when the live ranges of two distinct variables x and y
only partially overlap. The purpose of the containment graph was
to reduce spill code costs through the splitting of live ranges.

Optimizations to eliminate RC update operations are also ben-
eficial in areas like programming for Microsoft’s Common Object
Model (COM) [25]. Opportunities similar to RC subsumption have
been known for a long time in COM. However, these opportuni-
ties have to be exploited by the programmer, and the model only
provides guidelines that assist in their realization.

10. Summary
This paper presented a set of six optimizations that dramatically
reduce the execution time of a nondeferred RC collection scheme.
The reduction is chiefly realized by a new analysis and optimization
called RC subsumption that finds and removes a particular kind
of redundancy in RC updates. The reported measurements show
that throughput increases due to RC subsumption alone can be
significant, often by at least 50%. When combined with the other
optimizations, this makes it possible to achieve nondeferred RC
collection times that are on a par with both a deferred RC collector
and an advanced tracing collector on a number of programs.

In fact, we believe that there is more scope for improvement,
given that techniques like the division of the heap into generations
would be complimentary to RC collection.

While the work demonstrates that nondeferred RC collection
can be made much more efficient than what has been believed in
the past, there is still the question of how the optimizations would
fare on multithreaded code. Issues for further investigation include
extending RC subsumption to heap references, and whether there
is a commonality of structure to the optimizations presented in the
paper. At this point, it at least appears that RC subsumption has
potential beyond RC collection—for instance, to reduce the stack
scanning pressure in a concurrent collector.
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