
Efficiently Adapting Java Binaries in Limited Memory Contexts

Pramod G. Joisha∗

Department of Electrical and Computer Engineering
Northwestern University
Evanston, IL 60208, USA.

pjoisha@ece.northwestern.edu

Samuel P. Midkiff
IBM T. J. Watson Research Center
Yorktown Heights, NY 10598, USA.

smidkiff@us.ibm.com

Mauricio J. Serrano∗

Intel Microprocessor Research labs
Santa Clara, CA 95052, USA.
mauricio.j.serrano@intel.com

Manish Gupta
IBM T. J. Watson Research Center
Yorktown Heights, NY 10598, USA.

mgupta@us.ibm.com

Abstract

This paper presents a compilation framework that allows executable code to be shared across different
Java Virtual Machine (JVM) instances. All fully compliant JVMs that target servers rely on run-time compi-
lation, since dynamic Java features prevent a static compiler from being fully Java compatible. These JVMs
are burdened with large memory footprints (because of the size of the increasingly complicated compilers)
and high startup costs. Fully compliant JVMs on handheld devices often rely on interpretation—since the
overhead of an on-device compiler cannot be supported—and therefore suffer from slower execution speeds
and increased energy costs. Quasi-static compilation was proposed as a solution to these difficulties by
reusing precompiled binary images after performing validation checks and adapting them to a new execu-
tion context, falling back to interpretation or dynamic compilation only when necessary to maintain Java
semantics. Our previous quasi-static system required that the executable binary be duplicated and modi-
fied during adaptation to the new execution context. This is a major burden both for scalable servers and
embedded systems. In this paper, we describe a new approach that allows this adaptation to be done on an
indirection table, leaving the executable code unmodified. On embedded devices, this allows the executable
to be stored in ROM with only the much smaller indirection table being written to writable memory. On
scalable servers, this allows a single image of the executable to be shared by multiple JVMs, improving
scalability. Furthermore, we describe a technique for dynamically linking classes that uses traps to detect
when a class should be linked and initialized, rather than explicit run-time tests and code modification. We

∗This work was done while the authors were at the IBM T. J. Watson Research Center

1

have implemented this approach in the Quicksilver quasi-static compiler for the Jikes RVM (Jikes Research
Virtual Machine). On the SPECjvm98 benchmark suite, our approach gives writable memory space savings
of between 82% to 89% over that of our previous quasi-static approach, while delivering performance that
is typically within 1% to 7% of that approach, performance that is competitive with the performance of the
Jikes RVM adaptive optimization system.

1 Introduction

The Java Programming Language [7] has become the language of choice for important application domains,
on platforms ranging from embedded systems to servers. A major concern when implementing an application
in Java has been its poor performance relative to languages like C and C++. To overcome these performance
woes, the simple interpretive model favored by early Java Virtual Machines (JVMs) has been replaced by
increasingly sophisticated dynamic compilation systems that compile methods during program execution.
With dynamic compilation, the execution time to compile a program is absorbed by a single execution of

the program rather than being amortized over many executions, as with static optimization. To reduce the
overhead of run-time compilation, adaptive optimization systems have been developed that use interpretation
or low levels of optimization for most parts of the program, and select frequently executed (or “hot”) parts of
the code for more extensive optimization. The IBMmixed-mode interpreter [11], the Sun Hotspot compiler [27],
and the Jikes RVM adaptive optimization system [3] are examples of this type of system. Nevertheless, two
serious problems appear to be endemic to even the most sophisticated dynamic compilation systems:

• Large memory footprint : Sophisticated dynamic compilers support aggressive optimizations, and are
themselves complex software systems. They usually have a memory footprint, and in general, the more
aggressive the optimizations supported by the compiler and better the quality of the compiled code, the
larger the memory footprint. This makes them unsuitable for deployment on embedded systems, where
the available memory is severely limited. Therefore, all existing JVMs for embedded devices (examples
include the IBM J9 JVM [12], the HP ChaiVM [9], and the Sun KVM [26]) either rely on interpretation
of bytecodes, abandoning good performance on compiled code, or use static compilation, abandoning
compliance with dynamic Java features. On server platforms, the large memory footprint adversely
affects locality, competes with applications for real memory, and can lead to a decrease in the number of
JVMs that can efficiently execute at a single time.

• Startup overhead of JVMs : Running even a tiny (e.g., “hello world” style) Java program requires execution
of tens of millions of native instructions on most platforms. This is due to the interpretation and/or
compilation of the many core classes that are needed by the JVM. This high overhead is particularly
undesirable in a transactional environment in a highly secure server, where each transaction using Java
code spawns a new JVM to execute it [5].

• Restricted application domains: Many servers today run many short-running applications rather than a
few long lived ones. An example of these is Java server pages. Because the application is short running,
the startup and execution time of a dynamic compiler is larger than the performance increase gained by
the optimizations of the dynamic compiler. Often, the short-running application is invoked many times
during its life, making it possible to amortize the compilation time if it were performed statically.

While static compilers for Java (such as BulletTrain [20], HPCJ [24], JOVE [13], Marmot [6], and Tow-
erJ [29]) address these problems, they are unable to support the dynamic features of Java. Static compilers are
inherently incapable of supporting dynamic loading of a class whose bytecode has never been compiled before.
Furthermore, run-time binding of methods and the rules for binary compatibility in Java prevent static compil-
ers from applying very simple (but crucial) optimizations, such as inlining of methods across class boundaries,
without breaking the language specifications [7, 23]. As a consequence, none of the JVMs mentioned above is
Java compliant, and all commercial JVMs for servers use dynamic compilation.
Serrano, et al. [23] presented quasi-static compilation, a hybrid compilation model that allows many desirable

attributes of static compilation (like incurring the compilation overhead ahead of production runs of a program)
to be incorporated into a dynamic compilation system without sacrificing compliance with Java’s dynamic

2

features. Under quasi-static compilation, methods in classes are compiled off-line into native, highly optimized
executable images. The results of these compilations are saved, along with sufficient information to determine
if the compilation is still valid under Java’s dynamic semantics. If a precompiled image is invalid, the JVM
falls back to dynamic compilation, allowing a correct compilation of the methods of the class to be performed.
In the expected case, when the precompiled image is valid, the optimized native code is loaded and executed
directly. During loading of a method’s code, a process called stitching alters the code image, adapting it to the
current virtual machine instance.
This approach has several benefits, discussed in detail in [23]. From the perspective of performance, it

enables expensive optimizations and whole-program analysis techniques that would be impractical during an
application execution, while incurring very low run-time overheads in loading and validating the class. More-
over, because heavily used routines are optimized off-line, the fall-back compiler used in the rare cases when
the precompiled code is no longer valid can be very simple, reducing memory pressure.
For two large application domains—large servers where hundreds or thousands of instances of a single

class may be active at any time, and embedded systems—quasi-static compilation as just described is still
problematic. The problem lies in the stitching process. Stitching, as described in [23], adapts an executable to
a virtual machine instance by editing the executable code. This means that at least two versions of the method
code are necessary—one as the original version, and a second as the stitched version. Moreover, each instance
of a class in use by another JVM requires producing another stitched copy. For servers, scalability is adversely
impacted by requiring that each instance of a class have, in memory, another copy of the compiled code image.
Having two copies is clearly unacceptable for embedded systems where memory is a critical resource.
In this paper, we show how a modified form of stitching, inspired by dynamically linked shared libraries,

allows us to overcome these problems. More specifically, this paper makes the following contributions:

• It presents an approach that obtains the benefits of static compilation and dynamic linking while main-
taining full Java compatibility. We describe a solution to the problem of needing two or more copies of
the executable that allows a single executable to be used in an embedded quasi-static system, and for that
executable to exist in an immutable form, e.g., burned into a ROM. Moreover, additional executables can
be dynamically loaded and, along with bytecodes, exist and interact within a single JVM. The solution
also allows a single executable to be shared among multiple virtual machines in the context of a scalable
Java-based server environment.

• It presents a technique for dynamic linking of Java classes using a trap mechanism, which is a superior
alternative to back-patching of code. Like back-patching, this technique allows all accesses to a field or
method of a class to proceed at full speed after the first access that results in the class being loaded. It
does not, however, suffer from the drawbacks of back-patching in an SMP environment [2].

• It presents extensive experimental results from an implementation of these ideas in a state-of-the-art
JVM, the Jikes RVM (Jikes Research Virtual Machine) [1].1 On the SPECjvm98 benchmark suite, we
obtain writable memory code space savings, of between 82% to 89% of that of the earlier Quicksilver
quasi-static compiler [23], with performance that is typically within 1% to 7% of the earlier quasi-static
implementation (one of the benchmarks is outside that range, being worse by 24%). Moreover, our
compiler delivers performance that is competitive with the performance of a sophisticated adaptive op-
timization system [3]. In particular, with the benefit of precompilation, for SPECjvm98 benchmarks
with size 10 (the short running versions), it delivers an overall performance that is 12% to 93% better,
considering both compilation and execution times.

The rest of this paper is organized as follows. Section 2 gives an overview of the quasi-static compilation
approach, and describes the basic indirection scheme to enable binary code reuse. Section 3 describes how the
indirection table is created and used during production runs of the program, including a description of our novel
technique for handling dynamic linking in Java. Section 4 presents experimental results. Section 5 describes
an extension of the method described in the rest of the paper that should yield better results when whole
applications are compiled as a unit. Section 6 discusses related work. Finally, Section 7 presents conclusions.

1The Jikes RVM is an open source offshoot of the Jalapeño research project [14].

3

2 An Indirection Scheme for Code Sharing

In this section, we first present a brief overview of the techniques used in the original quasi-static compiler.
We then discuss our new techniques that allow immutable precompiled executables to be adapted for use in
embedded systems or by multiple, simultaneously active JVMs.

2.1 The Quicksilver Quasi-Static Compiler

The Quicksilver quasi-static compiler operates in two logical phases. During the first phase, called the write
phase, methods in classes are compiled and the resulting code is stored in a persistent form which we call
a quasi-static image (QSI) [23]. The current implementation forms one QSI for each class. The compilation
can be done either by executing the program and using dynamic compilation, or by statically compiling the
methods in each class. Our system uses the former approach, and in particular we use the Jikes RVM optimizing
compiler. During the write phase, auxiliary information, such as garbage collection maps and exception tables
for the binary code are written to the QSI. This is information that is needed by the JVM to execute the
executable contained in the QSI. Furthermore, relocation information that allows the compiler to adapt the
QSI to a new execution instance is also written to the QSI during the write phase. Because QSI file creation
is done off-line from a production run of the program, it is possible to expend sufficient resources to produce
highly optimized code.
The second phase, called the read phase, is used during production runs of the program. During this phase,

the quasi-static compiler tries to reuse the code contained in the QSI that was produced during the write phase,
after performing validation checks and adapting the code to the new execution instance. The validation checks
include checks to verify if

• the original class has remained the same;

• the QSI has not been tampered with;

• if any classes on which interprocedural optimizations for this code are dependent have changed [23]. These
checks are called dependency checks.

Once these checks pass, the executable code and auxiliary information from the QSI is stitched. Stitching
involves modifying all parts of the executable that are not valid during the current execution of the program.
The remainder of this paper will describe a new methodology for quasi-static compilation that allows the
method executables contained in a QSI to be reused without having to modify the executable.

2.2 Program Entities Requiring Adaptation

We now list the items in a QSI (both in the executable and in the auxiliary information, such as exception
tables) that contain values that may be valid only during a particular execution instance of the JVM. In our
system, these values are the ones that were valid during the instance that was active at the time of QSI creation.

• Static field and static method references : Java’s dynamic class loading semantics allow a static field or
method reference that is resolved during the compilation of a method containing the reference to not
necessarily be resolved when the precompiled code is loaded for execution in a different JVM instance.
Therefore, a direct static reference cannot be reused without modification across different execution
instances of the class containing that reference. Also, the Jikes RVM system uses a single global array
(called the Jikes RVM Table Of Contents, or JTOC) to store all static field and method references [1].
The offset into the JTOC for a resolved static field or method reference depends on the order in which
classes are loaded in a given JVM instance, and will, in general, change across different instances.

• Instance field and virtual method references: Changes to an immediate or ancestral superclass can alter
the field and method offsets into an instance of the class [8]. Furthermore, the resolution status of such a
reference, at the time of compilation of the method containing the reference, could be different in various
execution instances.

4

• Symbol table identifiers: The indices into the symbol table, where entries for types (loaded classes) and
interface methods are stored in the Jikes RVM, can change over different JVM instances, again due to a
different order in which classes are loaded.

• String, floating-point and double literals: These literals are interned in, and directly available from,
the JTOC in the Jikes RVM. Therefore, the JTOC offsets for these items can change over different
JVM instances. In some cases it is advantageous to make these constants available (and shared) across
JVMs [5]. This has not been done in the work described in this paper.

• Run-time field and method references: The Jikes RVM boot image consists of a collection of predefined
classes that mainly comprise the part of the run-time library of Java needed for booting. The boot-image
classes are needed since the Jikes RVM is itself written in Java [1]; this requires certain classes—such as
those that implement the primordial class loader—to be loaded when the JVM begins executing, because
without them, it would be unable to load other classes that are required either for its own execution or
for the execution of the application program. The boot image remains “frozen” in time—that is, not
only are its classes always loaded and resolved, its various field and method offsets are also fixed across
execution runs. Though not strictly necessary, the quasi-static compiler provides the option of stitching
boot-image references so as to support version compatibility. In this way, the QSI files can continue to
be used even when new releases of the Jikes RVM boot image are used.

2.3 Indirection Tables and Mappings

We introduce an indirection table for each class, which is used to hold at fixed locations, relevant entries for
the above kinds of references that otherwise need to be stitched. This allows references in a compiled method
code to remain the same, as long as the class containing that method has not changed. Remember that the
quasi-static compiler checks for the class being the same before reusing a QSI.

exception
handler

compiled method code

0

JTOC register

6

string literal

5

type information block (TIB)

7

static method code

static field

Jikes RVM Table Of Contents (JTOC)

1

2

3

4

indirection table

float

header

double

Figure 1: The Indirection Scheme to Quasi-Static Compilation

5

Figure 1 illustrates the indirection scheme. The entries in the indirection table for static fields, static
methods, TIBs2 and string literals consist of pointers to the corresponding JTOC entries. All other entries,
such as offsets of instance fields and virtual methods, symbol table identifiers, and numeric literals, are stored
directly in the indirection table. These entries are initially created during the write phase of the quasi-static
compiler.

2.3.1 Allocating Indirection Tables

Before the indirection table is built for a class during the write phase, the compiler obtains an upper bound on
its size using information about the bytecode size for the class and the code-expansion budget for inlining. If
we were to allow the indirection table to grow during compilation, code generation would be more complicated.
Consider a method foo() that is compiled, and that calls a method bar() of the same class during its execution,
thereby triggering the latter’s compilation. If the compilation of bar() leads to a growth in the indirection
table, which is an array, it would be relocated in memory. Therefore, when bar() returns, the base address
of the indirection table as previously used in foo()’s code would no longer be valid. By ensuring that the
indirection table does not need to grow, the code generated to get the invariant base address of the table
becomes much simpler. By the end of the write phase, the exact size of the indirection table is known for each
class, and the table is stored as part of the QSI for that class.

in
d

ire
c

tio
n

 t
a

b
le

in
d

ire
c

tio
n

 t
a

b
le

 (
g

ro
w

n
 a

n
d

 re
lo

c
a

te
d

)

bar()

foo()

c
a

ll
st

a
c

k

Figure 2: A Nonindirected Base Address

in
d

ire
c

tio
n

 t
a

b
le

Base
Address

in
d

ire
c

tio
n

 t
a

b
le

 (
g

ro
w

n
 a

n
d

 re
lo

c
a

te
d

)

bar()

foo()

c
a

ll
st

a
c

k

Figure 3: An Indirected Base Address

2.3.2 Mapping Indirection Table Entries

Consider a reference to a float literal f in a member method foo() declared in a class A. When foo() is
compiled in the write phase, a slot in A’s indirection table is set aside for f . This slot is used by other member
methods in A that also get compiled and that refer to f . Thus, in the write phase, it is necessary to maintain
a mapping H from program entities such as static fields, static methods, numeric literals and string literals
to the indirection table slots that they correspond to. As described in [23], for the purpose of stitching, the

2Each object in the Jikes RVM implementation carries important information pertaining to its type in an array of Java references
called the Type Information Block (TIB).

6

Quicksilver compiler also creates extended constant pools to keep entries for methods that are inlined from
other classes (for which a constant pool entry might not exist in the given class). For those entries, H includes
the mapping from the extended constant pool index to the indirection table slot index assigned to them. A
suitable data structure to represent this mapping is a hash table. For example, in the case of the float literal
f , the hash table contains the float literal’s constant pool or extended constant index and the indirection table
slot index as the key/value pair.

0

1

2

3

compiled method code

4

5

6

7
indirection table

constant pool index indirection table index
array

read phase

constant pool index indirection table index
hash table

write phase

R

H

Figure 4: Mapping to and from the Indirection Table

Since every indirection table slot is associated with a unique program entity, we record the reverse map
R at the end of the write phase. This reverse map is required during the read phase to fill in the indirection
table and is stored as part of the QSI. An appropriate data structure to capture the reverse association R is
an array, since R is equivalent to H−1 and, at the end of the write phase, the complete hash table for H is
known. Figure 4 shows how these mappings are used.

3 Using Indirection Tables During Production Runs

In this section, we discuss how the indirection table is recreated and used during the read phase of the quasi-
static compiler.

3.1 Filling the Indirection Table Entries

When a method in class A is invoked for the first time during the read phase, the JVM invokes the run-time
(quasi-static) compiler, which causes the QSI file for A to be loaded and subject to validation checks. (Note
that the JVM would have already loaded, linked, and initialized the class A before attempting compilation of
any method in it.) The indirection table that is loaded as part of the QSI file is immediately filled in by the
quasi-static compiler, using the following approach. The compiler scans through the slots of the indirection
table and uses the recorded map R to determine the program entity that a slot corresponds to. If the declaring
class for that entity is loaded and resolved, the quasi-static compiler updates the contents of the slot. The
value of the slot entry is found by querying the Jikes RVM run-time system for the appropriate JTOC offset.
For example, if the indirection table slot is for a static field, the entry is updated to the absolute address of
the static field in the JTOC. In this way, slots are updated at load-time. The remaining slots that correspond

7

to program entities whose declaring classes are yet to be loaded and initialized at A’s loading time, are set to
a special exception-throwing value, and handled as described in Section 3.2.
The quasi-static compiler need not attempt to update all entries in the indirection table at the time of initial

loading. Slots that correspond to numeric literals will have contents that remain the same with every execution
run. Our current implementation saves the entire indirection table into the QSI for the sake of simplicity. In
principle, it may just store the literal and slot index pairs in the QSI (instead of the entire indirection table),
and insert them into the indirection table when it is first created following the loading of the QSI.
String literals are treated differently in that they are not directly stored in the indirection table. This is

due to the Java language requirement that strings be interned [18]—i.e., identical string literals throughout
the program must refer to the same instance of the class java.lang.String. Therefore, the address of the
(global) JTOC slot that contains the string literal reference is stored instead in the indirection table for a class.
We store the address of a reference to a string rather than the reference itself because the address of a string
literal object can change during program execution due to garbage collection.

3.2 Dynamic Linking Using Traps

We now describe a novel technique for efficiently dealing with a potentially unresolved reference (such as a
static field or method reference) to another class, without having to modify the generated code. The JVM
specification requires that a class be initialized at its first active use [18]. Therefore, even though the class
being referenced (say, B) may be eagerly loaded (with some restrictions on when an error during class loading
may be reported), the JVM is not free to initialize the class B eagerly while compiling methods of the original
class (say, A).
Two techniques have been used in most JVMs to handle accesses to unresolved references. The first is to

use an explicit test using a flag to see if the reference is resolved yet. If not, a branch to a resolution code, which
loads, links and initializes the corresponding class B, is taken. Subsequent accesses to the reference pass the test.
This approach incurs the overhead of the test for every execution of the guarded access. Run-time compilers
(such as the Jikes RVM optimizing compiler) take advantage of the run-time information about the resolution
status of classes to use this check only if class B has not been resolved3 at the time of compilation of the method
in class A. The second technique also uses a test in the code to determine if the class has been resolved. If it has
not, the class is resolved, and then the test and access code is overwritten, or back-patched, to directly reference
the original class member. This approach suffers from requiring the code to be mutable, and not sharable,
since the resolution status of the class may differ across different JVM instances. Additionally, it suffers from
all of the synchronization and I-cache issues that plague self-modifying code on a modern processor [2].
In contrast, we present a trap-based strategy to class resolution. The basic idea is to mark an unresolved

entry with a special value, denoted X in Figure 1, which causes a trap to be generated on the first access. The
trap handler takes care of resolving the class and updating the entry in the indirection table, so that future
accesses are fast. We illustrate our approach by discussing the details of code generation for a getstatic
instruction:

getstatic B.f

where f is a static field declared in the class B. When the above instruction is compiled, class B could either be
resolved or unresolved. If resolved, the offset offset4 into the JTOC for the field in question will be known at
compile time, allowing the Jikes RVM optimizing compiler to generate the following code, shown in low-level
intermediate representation:

int load r ← JTOC, offset

The above instruction adds offset to the base address of the JTOC (held in a dedicated register called JTOC),
and loads the contents at that address into register r (the JTOC entry contains the actual value of the static
field). The Quicksilver compiler, described in [23], takes care of the following adaptation of code during the
read phase: (i) if the class B is already resolved at stitching time, it updates the value of offset , or (ii) if the

3We are using the term resolved loosely, to indicate that the class has been loaded, linked, and initialized.
4We adopt the convention of italicizing immediate values in the code.

8

class B is not yet resolved at stitching time, it patches in a jump to code that performs the class resolution and
retries the instruction with the appropriate offset.
In our new, indirection approach, irrespective of whether class B is resolved or unresolved, the following

code is generated:

int load t ← TA, tableOffset
� int load r ← t, 0

where TA is a register containing the base address of the indirection table for class A (being compiled), and
tableOffset is the offset into the table where the slot for the static field B.f is located. The second instruction in
the above code sequence is annotated with a “�” to indicate that it can throw an exception. If the indirection
table slot at tableOffset contains a valid JTOC address (which will happen only if the class B is already
resolved), the above instruction sequence will execute normally, producing the desired outcome in register r.
If, however, the class B is unresolved, the associated indirection table slot will contain the special exception-
throwing value X, an address in high memory that is not accessible to the process. Therefore, the second
instruction will generate a trap. The trap handler identifies the faulting instruction (the auxiliary data stored
with that instruction gives the handler sufficient information about the cause and remedy), resolves class B,
updates the indirection table, sets the contents of register t to the resolved address, and retries the faulting
instruction. From then on, execution proceeds as before. Interestingly, class resolution can result both in other
statics associated with the class being available, and also other classes becoming resolved [18]. Therefore, as
an optimization, the trap handler also updates the indirection table with other entries that become available.

3.3 Comparison with Back-Patching and Explicit Checks

Our trap-based technique for dynamic linking can serve as an attractive alternative to back-patching even in
purely dynamic compilation systems, as long as the operating system supports precise traps. For instance, in
the Jikes RVM, by setting the JTOC entry to an exception-throwing value when the corresponding class is not
resolved, the single int load instruction described above could be used to handle the getstatic instruction,
regardless of the resolution status of the class. Our technique delivers the advantage of back-patching, in
that all accesses after the first access proceed at full speed, without the drawbacks and complications of back-
patching, such as the need to invalidate the instruction cache block and instruction prefetch buffer, and in an
SMP environment, the need to avoid data races [2].
Since exceptions are relatively expensive, a condition-based technique could also be used to update the

indirection table. This is shown below for the getstatic bytecode:

TRY:
int load t ← TB, tableOffset
int cmp s ← t, X
int if s �= 0, RESOLVE
int load r ← t, 0

· · ·

RESOLVE:
{ resolution code }
goto TRY

The first instruction in the above code fragment loads the contents of the indirection table slot into the
register t. The second instruction then checks whether t contains the special exception-throwing value. If
so, control is transferred by the third instruction to code that performs the resolution. The resolution code
then attempts to load and resolve the class, and if successful, jumps back to the first instruction in the code
fragment.
While handling a trap is more expensive than a conditional check for ensuring class resolution, the check-

based approach has the drawback of a recurring test overhead for repeated accesses during program execution.

9

Furthermore, the check-based approach is likely to result in a slight increase in code size. Therefore, in long-
running codes, the trap-based approach can be expected to perform better. Section 4 presents experimental
results comparing the performance obtained with the two approaches.

3.4 Code Generation

We now describe how code generation (performed during the write phase) is modified so that the generated
code properly uses the indirection table during the read phase.

3.4.1 Setting the Indirection Table Base Pointer

The method prologue code is modified to set the pointer holding the base address of the indirection table for its
class (which is identified using the efficient, internal support for reflection in the Jikes RVM [1]). This ensures
that the base address is available before any code in that method is executed. This modification is done before
the register allocation phase of the Jikes RVM optimizing compiler, to avoid hardwiring a decision on whether
or not to use a register to hold the base address.

3.4.2 Compiling Instructions That Use Indirection

We have already discussed in Section 3.2 how references to static fields and methods are handled. Interface
methods are invoked in the Jikes RVM via an interface method table. Whenever an interface method is to
be invoked, the run-time system indexes into the object’s interface method table using the interface method’s
dictionary identifier. Since the dictionary identifier can change from one JVM instance to another, we use an
entry in the indirection table to keep this identifier, thus handling interface method calls without having to
modify the code.
We now describe how references to instance fields and virtual method invocations are handled. We first

discuss the basic approach, and then present an improved version that was used in our implementation. For
the purpose of illustration, let us consider an invokevirtual instruction (appearing in the code for a method
in class A) for a virtual method b.foo(), where b is a reference to an object of type B.
The basic approach is similar to the way we handle static fields and methods—regardless of whether or not

class B is resolved, the compiler would generate the following code sequence to load the address of the method
into register r:

� get obj tib tib ← b

int load t ← TA, tableOffset
� int load r ← tib, t

The get obj tib pseudo-code instruction accesses an object’s type information block (TIB), given a reference
to the object. (A reference to the TIB, which contains the virtual method table, is part of a two-word header
in each object in the Jikes RVM [1].) If b is null, a NullPointerException exception would be thrown by
the first instruction in the above sequence. If b is not null, then class B must be resolved. However, the third
instruction would generate a trap if the indirection table slot for the virtual method (obtained by the second
instruction) does not have a valid value. (The trap-generating value X is chosen such that any valid object
address added to it will still lie in high memory.) If a trap is generated, the trap handler appropriately updates
the indirection table slot and then successfully re-executes the instruction.
An improved approach, which we use in our implementation, is to avoid using the indirection table if the

virtual method’s declaring class is resolved during the write phase. The offset vOffset into the virtual method
table for the given instance method would then be known during the write phase and can therefore be used
directly in the generated code (instead of being obtained from the indirection table):

� get obj tib tib ← object

int load r ← tib, vOffset

As long as there are no changes to class B or any of its superclasses, this offset vOffset will continue
to remain valid in every subsequent JVM instance, independent of the order in which classes get loaded.

10

However, to take into account the additional dependence of the generated method code on the superclasses of
B, this dependence is recorded during the write phase, using the usual mechanism available for accommodating
interprocedural optimizations in Quicksilver [23]. During the read phase, the method code is invalidated
whenever a dependence check fails (due to a change in any superclass of B), in which case the quasi-static
compiler falls back to nonoptimizing compilation using the Jikes RVM baseline compiler. For relatively stable
code, in which such changes are not very frequent, this is a reasonable choice over using indirection to improve
performance.

4 Experimental Results

This section presents experimental results obtained from the implementation of our approach in the Jikes RVM
as part of the Quicksilver compiler. We present results on the memory savings in code size achieved by our
techniques. We then describe how the performance of this approach compares with that of the previous quasi-
static compilation approach using in-place stitching [23] and with that of a sophisticated run-time adaptive
optimization system [3]. We also present results showing the performance impact of some of the design trade-offs
we have made, and present important metrics relating to the composition of the indirection table.
All experiments were done using the SPECjvm98 industry-standard benchmark suite [28]. These exper-

iments were performed using two threads on a 12-way 64-bit SMP server running the AIX 4.3.3 operating
system and having a system-wide memory of 16 GB. Each node in the machine was the 450 MHz PowerPC
RS64III processor with a 8MB L2 cache. The highest compilation optimization level (i.e., -O3) was used during
the write phase for both the indirection and the in-place stitching approaches. Execution runs with the Jikes
RVM adaptive optimization system were performed with the adaptive code recompilation option enabled. A
copying garbage collector was used in all of the executed JVMs.

4.1 Memory Savings

A sophisticated and purely dynamic compilation approach would effectively add the memory footprint of
the compiler itself to that of the application, preventing it from being a viable option on a limited-memory
device. Interpretation alone leads to poor performance, both in terms of time expended and energy consumed.
Hence, we shall analyze memory savings by comparing our approach with the previous quasi-static compilation
approach in which in-place modification of code is used for stitching.
We begin by introducing metrics that quantify memory overheads under an embedded system scenario.

Let M and M ′ respectively represent the overall memory costs using the in-place stitching technique and the
indirection scheme. Each of these memory costs can be regarded as being an additive sum of two parts: a
volatile memory cost (Mv and M

′
v) and a nonvolatile memory cost (Mnv and M

′
nv). Thus,

M = Mv +Mnv, (1)

M ′ = M ′v +M
′
nv. (2)

Different applications running simultaneously on an embedded system, such as a handheld PDA, may use
many identical classes, such as those of the JDK class library. With the indirection approach, we would only
need separate indirection tables (rather than complete binary code) in volatile memory (such as RAM) for each
loaded class instance, in addition to the single copy of binary code for each class in nonvolatile memory (such
as ROM). Using a ROM to store the single shared program text allows precompiled software to be shipped by
the manufacturer, and also prevents the accidental overwriting or tampering of code.
An exact measurement of the memory savings on a PDA would require measuring class by class savings,

over some standard workload, to determine the system-wide savings. Since the infrastructure to perform these
measurements does not yet exist, we approximate them with measurements of savings for whole applications.
We note, for reasons discussed below, that the savings per class instance of potentially more expensive volatile
memory (such as RAM) is invariant over the number of instances of that class loaded by different applications,
and therefore the numbers we present are precise, and not approximations of, the volatile memory savings for
whole applications.

11

If an in-place stitching technique were used for code adaptation, we would have n stitched copies of the
method code resident in RAM, and one original copy in ROM from which the n stitched versions are produced.
Hence, the dominant contributions to each of the memory component costs in Equations (1) and (2) would be

Mv ≈ nQcv Mnv ≈ Qcnv, (3)

M ′v ≈ nIcv M ′nv ≈ Q′cnv, (4)

where Q and Q′ denote the application-wide method code sizes with the in-place stitching technique and the
indirection scheme respectively, I represents the total indirection table size per JVM instance, and cv and cnv
respectively indicate the per-byte costs of the volatile and nonvolatile memory modules. Table 1 shows these
values measured for the SPECjvm98 benchmark suite, for input sizes of 10 and 100. The measurements for Q′

and I were taken when a trap-based strategy was used to update the indirection table.
If we were to determine the savings ξv in writable memory, expressed as a fraction of the writable memory

cost when in-place stitching is used, we would obtain

ξv =
Mv −M ′v
Mv

≈ n(Q− I)cv
nQcv

=
Q− I
Q
. (5)

We could also compute the overall memory savings ξ(n) as a fraction of the original memory cost (i.e., corre-
sponding to in-place stitching):

ξ(n) =
M −M ′
M

≈ (ncv + cnv)(Q− I)− (Q′ − I)cnv
(ncv + cnv)Q

= ξv −
(Q′ − I)
(n cvcnv + 1)Q

. (6)

From Equation (6), it is clear that the overall memory savings asymptotically approaches the writable memory
savings. This should not be surprising since with every new JVM instance, the additional memory required
is of the writable kind, and since for every Q bytes of RAM required by the in-place stitching technique, the
indirection scheme requires only I bytes of RAM, where I is much smaller than Q. By a similar argument,
it can be seen that the amount of RAM saved for each class that is loaded is independent of the number of
instances of the class that have been loaded—each loading of a class saves Q− I bytes of RAM.

Table 1: Method Code and Indirection Table Sizes

SPECjvm98 Input Size
Benchmark 10 100

Q′ I Q ξ(1) ξv Q′ I Q ξ(1) ξv
(bytes) (bytes) (bytes) (bytes) (bytes) (bytes)

compress 27366 4472 24842 0.359 0.820 27616 4480 25055 0.359 0.821
jess 59256 8200 52944 0.363 0.845 60319 8268 54299 0.368 0.848
db 29512 4528 27071 0.371 0.833 29719 4480 27297 0.374 0.836
javac 107836 11004 101307 0.413 0.891 108818 11072 101984 0.412 0.891

mpegaudio 73932 8652 69281 0.404 0.875 74634 8716 70318 0.407 0.876
mtrt 39276 5272 35938 0.380 0.853 39423 5272 35967 0.379 0.853
jack 66197 6832 61900 0.410 0.890 66197 6832 62268 0.414 0.890

The cost factors cv and cnv can be considered as reflecting the power consumption levels of each type of
memory, their access time costs, or simply their dollar costs. Though the ratio cv/cnv, which dictates the actual
savings achieved, is a function of the memory technology used, its value in a given system is typically greater
than 1. Therefore, we can obtain a lower bound to the savings by considering this ratio to be unity. Figure 5
graphs this lower bound for the SPECjvm98 benchmarks using the measured values Q′, I and Q from Table 1,

12

for a benchmark input size of 100. Notice from the curves that the savings initially accrue at a fast rate.
For instance, with one JVM instance, the savings are between 0.36 to 0.41, while for two JVM instances, the
savings jump to between 0.51 to 0.57. By the time we reach five JVM instances, the savings are already within
17% to 18% of the maximum possible. This rate of growth is basically controlled by the ratio cv/cnv, and the
larger the ratio, the faster is the rate at which the maximum savings are approached. Because of the setting
of cv/cnv at its least value, the curves in Figure 5 should be considered as portraying a conservative estimate
of the improvement in savings. In Table 1, two sample values ξ(1) and ξv for ξ(n) have been computed. Note
that ξ(∞) is nothing but ξv.

5 10 15 20 25
n

0.2

0.4

0.6

0.8

1

ξ(n)

Input Size: 100

jack
mtrt
mpegaudio
javac
db
jess
compress

SPECjvm98 Benchmark Suite

Figure 5: Overall Memory Savings ξ(n) in an Embedded System Setting

5 10 15 20 25
n

-1

-0.5

0.5

1

ζ(n)

Input Size: 100

jack
mtrt
mpegaudio
javac
db
jess
compress

SPECjvm98 Benchmark Suite

Figure 6: Overall Memory Savings ζ(n) in a Server Setting

13

We can similarly devise metrics that model memory costs in a transactional server system. Assuming that
S and S ′ represent the overall memory costs with in-place stitching and indirection respectively, we have

S = Sv + Snv, (7)

S ′ = S ′v + S
′
nv, (8)

where

Sv ≈ nQcv Snv ≈ Qcnv, (9)

S ′v ≈ (Q′ + nI)cv S ′nv ≈ Q′cnv. (10)

For a transactional server system, Sv could be regarded as being the main memory cost, while Snv could be
considered as being the secondary storage cost. Hence, the overall memory savings ζ(n) becomes

ζ(n) =
S − S ′
S

≈ Q− I
Q
−
Q′(cv

cnv
+ 1)− I

(n cvcnv + 1)Q
. (11)

Figure 6 graphs Equation (11) with cv/cnv set to 1, with the measured values of Q
′, I and Q for a benchmark

input size of 100. The trends are similar to that seen in Figure 5 except for one important departure: Rather
than savings, losses occur at n = 1. This is true irrespective of the ratio cv/cnv and happens because of
Equation (10). That is, for a single JVM instance, indirection requires Q′ + I bytes of main memory and
Q′ bytes of secondary storage, whereas only Q bytes of main memory and Q bytes of secondary storage is
what in-place stitching requires. Since Q′ always exceeds Q, memory losses, rather than memory savings, will
occur in this particular case of a transactional server. Actual savings begin to manifest from n = 2 and above,
reaching the same asymptotic overall memory savings seen in the embedded system case.

4.2 Performance

The graphs in Figure 7 and Figure 8 show how the indirection approach compares in performance with the
in-place stitching approach for quasi-static compilation (described in [23]), and with the Jikes RVM adaptive
optimization system (described in [3]). The graphs show that in general, the indirection approach incurs a
small performance degradation with respect to the in-place stitching approach. This degradation occurs when
static fields, static methods, TIBs, string literals and interface method dictionary identifiers are accessed. For
the aforementioned program entities, code generated in the indirection scheme goes through an extra level
of indirection via the indirection table. However, code generated by the in-place stitching technique would
directly access the relevant JTOC slots, perhaps after stitching the slot offsets in the generated code. For all
the benchmarks except mtrt, this degradation was found to be between 1.1% to 6.6% for an input size of 100,
and between 0.9% to 4.5% for an input size of 10. For mtrt, the degradation was more pronounced; it was
24.2% for an input size of 100, and 13.7% for an input size of 10.
In certain cases, the indirection scheme generates more efficient code than the in-place stitching technique.

For example, if a reference to an unresolved static field is encountered in the write phase, the in-place stitching
approach would generate resolution code along with code that performs the actual JTOC access. The resolution
code would be executed each time prior to the actual access in the read phase, so as to ensure the resolution
status of the static field involved. In the indirection scheme, the first access to the static field in the read phase
will automatically force any necessary resolution using the exception-based strategy, while subsequent accesses
will not incur the overhead of a resolution status check. This is the reason behind the small degradation of 1.1%
for javac for an input size of 10, and why a performance improvement of 5.8% occurs for the same benchmark
at an input size of 100.
Timings in Figure 7 and Figure 8 also show how the indirection scheme performs in relation to the Jikes

RVM adaptive optimization system. Overall, the timings are competitive, ranging between performance im-
provements of 37.2% for mpegaudio, 16.4% for compress, 13.3% for javac, to performance degradations of
0.3% for jess, 1.3% for jack, 8.9% for mtrt and 9.3% for db—all for an input size of 100. Performance
degradations relative to the adaptive system are likely to be due to the overhead of indirection and the benefits

14

compress jess db javac mpegaudio mtrt jack

SPECjvm98 Benchmark Suite

10

20

30

40

50

T
im

in
g

in
S

ec
on

ds

Input Size: 100

Jikes RVM Adaptive Optimization System

In−Place Stitching

Trap−Based

Schemes

Figure 7: Timing Measurements for an Input Size of 100

compress jess db javac mpegaudio mtrt jack

SPECjvm98 Benchmark Suite

1

2

3

4

5

6

T
im

in
g

in
S

ec
on

ds

Input Size: 10

Jikes RVM Adaptive Optimization System

In−Place Stitching

Trap−Based

Schemes

Figure 8: Timing Measurements for an Input Size of 10

of the delayed program optimizations that the Jikes RVM adaptive optimization system applies at run time,
while the improvements are primarily due to the savings in run-time compilation overhead due to the reuse
of QSIs. For the small input size of 10, the indirection scheme performed consistently better than the Jikes
RVM adaptive optimization system, registering performance improvements of 93.5% for mpegaudio, 42.1% for
javac, 39.3% for jess, 38.7% for compress, 33.5% for mtrt, 26.9% for db and 12.3% for jack.
Finally, Figure 9 shows how the trap-based strategy to updating the indirection table compares with a

checking-based strategy in terms of performance. For the SPECjvm98 benchmark suite, the trap-based strategy
that we used was found to be consistently superior. For an input size of 10, the performance improvements

15

compress jess db javac mpegaudio mtrt jack

SPECjvm98 Benchmark Suite

10

20

30

40

50

T
im

in
g

in
S

ec
on

ds

Input Size: 100

Checking−Based

Trap−Based

Schemes

Figure 9: Comparing Indirection Table Update Strategies

ranged from 0.3% to 30.5%, while for an input size of 100, the improvements were between 0.5% to 30.4%.

4.3 Indirection Table Composition

Another issue of interest is the composition of the indirection table. Figure 10 reveals the breakup of the
indirection table for the SPECjvm98 benchmarks, when extra slots are used to generate shorter and faster
code sequences against bytecodes such as new and newarray. For each benchmark, the stacked bar shows the
percentage composition of each program entity for an input size of 100. The program entities considered are
shown in the legend of Figure 10. A key observation that immediately emerges from the bar chart is that string
literals account for the largest percentage space in the indirection table, ranging from 38.4% in the case of
mpegaudio to 74.7% in the case of db, for an input size of 100. It was this fact that influenced the decision to
store a string literal’s JTOC slot address in an indirection table slot, rather than directly store a string literal
reference in it. By doing so, a potentially significant overhead of having to update the contents of the string
literal indirection table slots whenever garbage collection occurred was avoided. More importantly, notice that
program entities such as static fields, static methods, <init> methods,5 double literals, float literals, string
literals and the TIBs account from 77.3% (for javac) to 93.1% (for mpegaudio) of the total indirection space,
for an input size of 100. These percentages are indicated by markers in Figure 10. They are interesting because
for these program entities, the same information stored in the indirection table is already available in the
JTOC. This means that if code sharing occurred at an application level wherein individual JVM instances
maintained single indirection tables, a substantially improved savings in the volatile memory used would be
possible by merging the roles of the single indirection table and the JTOC. Such an extension is discussed
further in Section 5.
The percentage composition only changes slightly when the benchmark’s input size is changed. This is a

consequence of different or additional code being compiled during the write phase for different input sizes. This
is also the reason behind the differences in the measured values for Q′, Q and I in Table 1, between the input
settings of 10 and 100. In fact, fluctuations in the indirection table size with changes in the input were found
to be very small, being at most 1.06% in the case of db, as can be seen from Table 1.
The “unresolved methods” component in Figure 10 refers to instance methods, static and <init> methods

5At the level of the Java Virtual Machine, every constructor appears as an instance initialization method that has the special
name <init> [8].

16

compress jess db javac mpegaudio mtrt jack

SPECjvm98 Benchmark Suite

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
P

er
ce

nt
ag

es

91.61%

85.05%

91.16%

77.31%

93.12%
90.82%

87.82%

Static Fields
Static Methods
<init> Methods
Double Literals
Float Literals
String Literals
TIBs
Unresolved Methods
Unresolved Fields
Type IDs
Instance Methods
Instance Fields
Interface Methods

Components

Figure 10: Indirection Table Composition

that remain unresolved in the read phase. While it is possible that static and <init> methods that were
resolved in the write phase assume an unresolved status at the end of the read phase, all instance methods in
the indirection table are necessarily those that were unresolved in the write phase.6 The “unresolved fields”
component in Figure 10 means the same in the context of fields. These components account for a very small
fraction of the indirection table space, and range from 0.02% to 0.03% in the case of unresolved methods, and
from 0.000% to 0.007% in the case of unresolved fields. In other words, at the end of each production run,
nearly all entries in the indirection table will be resolved.

5 Granularity of Code Sharing

The indirection scheme discussed so far creates and maintains an indirection table for every class in the
application. If a class is used by two or more JVM instances, each instance would have a separate indirection
table for the class. In this way, sharing of code across application instances is permitted, with the granularity
of sharing at the level of a class. The granularity of sharing can be made coarser: In situations in which a set
of classes are always used together (such as classes that form sealed user packages [31]), all of the classes in the
set could share the same indirection table in an application instance.
The granularity of code sharing could be further increased until the entire application code is reused across

different execution instances of the application. For example, in a transactional server, numerous instances of
the same application often run simultaneously, each handling a separate client request. In this situation, each
instance of the application could use a single or “global” indirection table. All code for the application would
be compiled to use this global indirection table, with each application instance maintaining its own copy of the
global indirection table, since the contents of this table could be different in different instances. For the special
case of multiple execution instances of the same application, however, the roles of the global indirection table

6In the current implementation, instance methods and instance fields that are resolved in the write phase do not use the
indirection table in the read phase. Dependencies recorded against instance class members in the write phase are used to ensure
their validity in the read phase. If the recorded dependencies are honored, the code compiled in the write phase for these instance
field accesses and instance method invocations can be directly reused in the read phase without modification.

17

and the JTOC in each instance could be merged. This extension is shown in Figure 11.

ITOC register

exception
handler

compiled method code

Indirection Table Of Contents (ITOC)

string literal

type information block (TIB)

static method code

static field

floatheader

Figure 11: Using a Global Table for Indirection

As shown in the figure, the extension proposes to replace the JTOC with a global array called the Indirection
Table Of Contents (ITOC). The ITOC is similar to the JTOC in that its slots hold references to static fields,
static methods, TIBs, string literals, and numeric literals. In addition to these entries, the ITOC also holds other
entries such as instance method offsets and dictionary identifiers not contained in the JTOC. Measurements
in Section 4.3 show that these entries occupy only a small percentage of the indirection table slots. Because of
information overlap across local indirection tables, these percentages may be even smaller for a global indirection
table. Memory savings are increased over the indirection table approach in two other ways. First, fields in
the indirection table which point to fields in the JTOC are, in some sense, a redundant representation of the
referenced JTOC field in that they make access to that field possible without modifying the code, but do not
add to the information contained in the field. Second, references to the same JTOC entries in the indirection
tables of different classes are redundant, and can be merged in the ITOC scheme. Thus, further improvements
in memory savings are likely. Since program entities such as instance method offsets and dictionary identifiers
account for a small fraction of the global indirection table, the overall size of the ITOC will be competitive in
relation to that of the JTOC while still providing the benefits of using indirection tables.
This representation is possible because, unlike the JTOC where slots are filled in as classes are loaded and

resolved, slots in the ITOC are permanently assigned to a particular class. This assignment occurs during the
write phase and remains fixed in future executions of the application. Thus, whenever a class is loaded in the
read phase, it will always be assigned to the same set of slots in the ITOC. Any classes without predefined
ITOC slots that are loaded during the read phase can be put into later, unused slots in the ITOC and adapted
to the JVM instance either by using in-place stitching or by using local indirection tables.
Adding to the attractiveness of this extension is that, in addition to further reducing the overall memory

footprint of the application, it enables the generation of more efficient code sequences since a level of indirection
is removed. For instance, for the getstatic JVM instruction discussed in Section 3.2, the following code
sequence now becomes possible:

� int load r ← ITOC, itocOffset

18

where itocOffset remains unchanged across future executions of the application, and where r contains a one-
word primitive data type or a reference to an object.

6 Related Work

This work is an extension of the quasi-static compiler described in [23]. It presents an extended version of a
project originally described in [15, 16], and gives more details and additional experimental results.
Several dynamic compilers for Java have been developed—they include the IBM JIT [25], Sun HotSpot [27],

Microsoft JIT [19], and the OpenJIT [21]. We differ significantly from this work in that we allow compiled
native code images and related information to persist longer than the lifetime of the JVM executing the code.
Closer to our work are several static “Java” compilers—most prominently, HPCJ [24], JOVE [13], Marmot [6],
TowerJ [29] and BulletTrain [20]. However, unlike our compiler, none of these compilers fully comply with the
Java language specifications. Our work builds upon the quasi-static compilation approach, described in [23]. By
developing novel techniques so that previously generated binary code can be reused without any modifications
to it, we significantly enhance the utility of Java on embedded systems as well as scalable servers.
The Chai environment from Hewlett-Packard provides an embedded JVM [9] and bytecode interpreter. The

TurboChai [10] ahead-of-time compiler provides a bytecode to C compiler that runs on, and interacts with,
the ChaiVM JVM. It supports dynamic class loading by the precompiled classes. It does not support sharing
of precompiled classes among multiple JVMs, or sharing of classes among multiple applications. Detailed
performance numbers for applications running under ChaiVM do not seem to be publicly available. In general,
performance will vary depending on the quality of the C compiler used to compile the output from TurboChai.
Two projects within IBM are related to the work described in this paper. The first project is a scalable

Java virtual machine implementation for OS/390 [5]. This work is similar to ours in that their system allows
multiple JVMs to use the same code image by putting static data in a shared heap. Because they exploit
special features of OS/390 to accomplish this, rather than using indirection tables, their approach is not as
general as ours. Their code images only live as long as the shared heap that contain them, and are not as
long-lived as those in our approach.
The second project [22] was developed by the IBM AS/400 JVM team. A significant difference in this

project from ours is that there is no central JTOC. Rather, static information for each class is a separate data
structure that is associated with a loaded instance of the class. Interned data, such as strings, are stored in a
separate structure. Like static compilers, their system uses explicit checks to deal with potentially unresolved
references, in contrast to the trap-based dynamic linking technique that we use. Neither this project nor
the OS/390-based work have released detailed descriptions of their implementation and performance data to
characterize the savings in storage that have been accomplished, and the costs and benefits of the different
design decisions.
A team at Yale is developing a static compiler that compliantly handles binary compatibility issues [30].

Their approach differs from ours in that much of the work that they do at class loading time, we do at “stitch”
time. For example, v-tables used by a class are constructed at class loading time, and the proper field in
the table is indexed using an offset table also constructed at class loading time. The fields in a v-table that
access methods in a different class are initialized when that class is loaded, meaning that they are always
initialized when needed. Their performance results reinforce our claim that quasi-static compilation is an
effective compilation model.
The Forest project [17] at Sun Labs deals with orthogonal persistence for the Java platform (OPJ). OPJ

provides support for checkpointing the state of a Java application. OPJ is a programming model that enables
generation and reuse of persistent images of Java application variables including classes, objects and threads.
Our approach does not store the state of a Java application; rather it stores and reuses method binaries needed
for the Java application.
Another project [4] at Sun Labs uses indirection to share code in a multitasking Java environment, i.e.,

where multiple applications are executing on a single JVM. This goal is different from our goal which is to
efficiently support precompiled code in an embedded or scalable environment. They have two implementations
both of which assume bytecode interpretation, which therefore prevents them from gaining the advantages of
quasi-static compilation. In their bytecode editing implementation, indirection to allow multiple applications

19

to share code without sharing class statics is supported by using helper classes. Their bytecode-based approach
also requires manual editing of a small number of system classes. This approach replicates the static fields to
a predefined maximum number, which becomes the maximum number of applications that can share the class
code. Our method has no such limit.

7 Conclusions

The portability of Java has made it an attractive target for both embedded systems and large, scalable servers.
Both of these domains are characterized by a wide range of hardware and software environments to be tar-
geted, and by critical performance challenges. The approach of using dynamic compilation to achieve good
performance for Java has led to severe problems in its acceptance in both embedded systems and servers. Quite
simply, it is unrealistic to expect an embedded system to host a full dynamic compiler capable of performing
aggressive power and space optimizations. The same dynamic compilation model presents difficulties on servers
by restricting the sharing of code images, thus reducing the scalability of applications. Interpretation is fun-
damentally limited in performance, and does not provide a long term solution to executing Java on embedded
and scalable platforms.
This paper has presented elegant and practical solutions to these problems, solutions that enable Java to

become the preferred platform for application development on both of these platforms. By employing quasi-
static compilation, our solutions provide the excellent performance of native code on both embedded systems
and scalable servers, without the overhead of hosting dynamic compilers and performing dynamic compilation,
and still providing full Java compliance. We allow the executable native code image for the methods of a class
to be immutable by performing all stitching, or linkage operations, on an indirection table. The approach
has the benefits of allowing the code to be stored in the ROM of an embedded system and be shared by all
applications on the embedded device, in a shared read-only segment on a server, and in a CD-ROM or DVD-
ROM for shrink-wrapped applications. Sharing of the immutable code image by different applications only
requires allocating the indirection table, which minimizes memory usage on an embedded device and increases
scalability on a server. Moreover, our approach obtains these benefits while providing application performance
that is, on average, better than that provided by advanced adaptive, or hot-spot, dynamic compilation systems.
Therefore, our approach provides high performance, a small memory footprint, and the portability and

safety benefits of full Java compliance to the developers of applications on embedded systems and scalable
servers.
In the future, we plan to investigate ways to make our techniques even more space and time efficient. In

particular, by allowing indirection tables to be created for multiple classes, entries that currently appear in
the tables of two or more classes can be replaced by a single entry. Going a step further, the JTOC and
indirection tables can be merged, with predefined slots in the merged structure being reserved for classes with
a high probability of being loaded and resolved. Merging the two structures will be more efficient than simply
merging indirection tables for multiple classes. This is because indirections are no longer needed for references
to the predefined slots, making the references faster and removing the need for a de facto indirection table
slot for the referenced entity. We also plan to exploit our ability to do off-line compilation to implement
optimizations and analyses that require large space and time resources at compile time.

References

[1] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P. Cheng, J.-D. Choi, A. Cocchi, S. J. Fink,
D. Grove, M. Hind, S. Flynn-Hummel, D. Lieber, V. Litvinov, M. F. Mergen, T. Ngo, J. R. Russell,
V. Sarkar, M. J. Serrano, J. C. Shepherd, S. E. Smith, V. C. Sreedhar, H. Srinivasan, and J. Whaley. The
jalapeño virtual machine. IBM Systems Journal, 39(1):211–238, 2000.

[2] B. Alpern, M. Charney, J.-D. Choi, A. Cocchi, and D. Lieber. Dynamic linking on a shared-memory
multiprocessor. In Proceedings of PACT’99, Los Angeles, California, June 1999.

20

[3] M. Arnold, S. Fink, D. Grove, M. Hind, and P. Sweeney. Adaptive optimization in the Jalapeño JVM.
In Proc. ACM SIGPLAN Conference on Object-Oriented Programming and Systems, Languages, and
Applications (OOPSLA) 2000, Minneapolis, MN, October 2000.

[4] G. Czajkowski. Application isolation in the Java Virtual Machine. In Proceedings of the Conference
on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA’00), pages 354 – 366,
Minneapolis, MN, USA, Oct. 2000.

[5] D. Dillenberger, R. Bordawekar, C. Clark, D. Durand, D. Emmes, O. Gohda, S. Howard, M. Oliver,
F. Samuel, and R. S. John. Building a Java virtual machine for server applications: The JVM on OS/390.
IBM Systems Journal, 39(1):194–210, 2000. Java Performance Issue.

[6] R. Fitzgerald, T. Knoblock, E. Ruf, B. Steensgard, and D. Tarditi. Marmot: An optimizing compiler for
Java. Technical Report 33, Microsoft Research, June 1999.

[7] J. Gosling, B. Joy, and G. Steele. The Java(TM) Language Specification. Addison-Wesley, 1996.

[8] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification, Second Edition. The Java
Series. Addison-Wesley Publishing Company, Redwood City, CA 94065, USA, 2000.

[9] HP ChaiVM white paper. http://www.internetsolutions.enterprise.hp.com/chai/infolibrary/
whitepapers/chai vm wp.html.

[10] Turbochai compiler. http://embedded.hp.com/products/devtools/turbochai.html.

[11] IBM rewrites the book on Java performance. http://www.developer.ibm.com/java/j2/j2perfpa
per.html.

[12] Virtual machines are not all created equal: The J9 difference. http://www.embedded.oti.com/learn/
vaesvm.html.

[13] Instantiations, Inc. Jove, Super Optimizing Deployment Environment for Java. http://www.instant
iations.com/ vti bin/shtml.dll/JOVE/jovereportdownload.htm.

[14] IBM - developerworks - open source software - jikes’ home. http://www-124.ibm.com/developerworks/
opensource/jikes.

[15] P. Joisha, M. Serrano, S. Midkiff, and M. Gupta. A framework for efficient reuse of binary code in java.
In 15’th International Conference on Supercomputing, Sorrento, Italy, June 2000.

[16] P. G. Joisha, S. Midkiff, M. Serrano, M. Gupta, R. Bordawekar, A. Bolmarcich, and P. Wu. Quicksil-
ver: A quasi-static compiler for embedded systems. In V. Narayanan and M. Wolczko, editors, Java
MicroArchitectures. Kluwer Academic Publishers, Apr. 2002.

[17] M. Jordan and M. Atkinson. Orthogonal Persistence for the Java Platform: Draft specification, October
1999. http://www.sun.com/research/forest/index.html.

[18] T. Lindholm and F. Yellin. The Java Virtual Machine Specification, Second Edition. The Java Series.
Addison-Wesley Publishing Company, Redwood City, CA 94065, USA, 1999.

[19] MS SDK for Java 4.0. http://www.microsoft.com/java/vm.htm, 1999.

[20] NaturalBridge, Inc. BulletTrain Description. http://www.naturalbridge.com/bullettrain.html.

[21] H. Ogawa, K. Shumira, S. Matsuoka, F. Maruyama, Y. Sohda, and F. Kimura. OpenJIT: An open-
ended, reflective JIT compiler framework for Java. In Proc. European Conference on Object-Oriented
Programming, Cannes, France, June 2000.

[22] P. Richards and D. Hicks. Virtual integration. AS/400, pages 50–56, March 1998.

21

[23] M. J. Serrano, R. Bordawekar, S. P. Midkiff, and M. Gupta. Quicksilver: a quasi-static compiler for Java.
In Proceedings of the Conference on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA’00), pages 66 – 82, Minneapolis, MN, USA, Oct. 2000.

[24] V. Seshadri. IBM high performance compiler for Java. AIXpert Magazine, September 1997. http://
www.developer.ibm.com/library/aixpert.

[25] T. Suganuma, T. Ogasawara, M. Takeuchi, T. Yasue, M. Kawahito, K. Ishizaki, H. Komatsu, and
T. Nakatani. Overview of the ibm java just-in-time compiler. IBM Systems Journal, 39(1):175–193,
2000.

[26] EmbeddedJava(TM) application environment. http://java.sun.com/products/embeddedjava/.

[27] Sun Microsystems, Inc. The Java HotSpot Performance Engine Architecture. http://java.sun.com/
products/hotspot/whitepaper.html.

[28] The Standard Performance Evaluation Corporation. SPEC JVM98 Benchmarks. http://www.spec.
org/osg/jvm98/.

[29] Tower Technology. TowerJ3—A New Generation Native Java Compiler And Runtime Environment.
http://www.towerj.com/products/whitepapergnj.shtml.

[30] D. Yu, Z. Shao, and V. Trifonov. Supporting binary compatibility with static compilation. In Proceedings
of the 2002 USENIX Symposium on Java Virtual Machines JVM ’02, Aug. 2002.

[31] A. Zaks, V. Feldman, and N. Aizikowitz. Sealed calls in Java packages. In Proceedings of the Conference on
Object-oriented programming, systems, languages and application (OOPSLA’00), pages 83–92, Oct. 2000.

22

