
S u p p l e m e n t to t h e A P L B e r l i n 2 0 0 0 P r o c e e d i n g s

H a n d l i n g C o n t e x t - S e n s i t i v e S y n t a c t i c i s s u e s in t h e D e s i g n
o f a F r o n t - e n d f o r a I q A T L A B C o m p i l e r t

Pramod G.. loisha, Abhay Kanhere, Pr i thviraj Banerjee,
U. Nagaraj Shenoy, and Alok Choudhary

Center for Parallel and Distributed Computing, Electrical and Computer Engineering
Department, Technological

Institute, 2145 Sheridan Road, Northwestern University, IL 60208--3118.
Phone: (847) 467--4610, Fax: (847) 491--4455

E-mail: {fpjoisha, abhay, banerjee, nagaraj, choudharg)@ece.nwu.edu

Abstract t
In recent times, the MATLAB language has

emerged as a popular alternative for programming in
diverse application domains such as signal processing
and meteorology. The language has a powerful array
syntax with a large set o f pre-defined operators and
functions that operate on ax_rays or array sections,
making it an ideal candidate for applications involving
substantial ax_tay-based processing.

Yet, for all the programming convenience that the
language offers, designing a parser and scanner capa-
ble o f mimicldng the language's syntax has proven to
be an acutely difficult task. The language has many
context-sensitive constructions, and though numerous
front-end implementations of MATLAB and
MATLAB-Iike languages exist, not much has been
discussed regarding the effident compile-ume parsing
of such languages or how its syntax impacts the pats-
Jug process.

In this paper, we present the design and imple-
mentation of a compiler front-end for the MATLAB
language. We discuss in detail both the indigenously
designed grammar responsible for syntax analysis as
wen as the lex/cal specification that comp]ements the

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage, and that copies bear this
notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission
and/or a fee.
APL00, 07/00, Berlin, Germany
~ 0 0 1 ACM 1-58113-398-7 / 00/0007 5.00

g~.mmar. I n the course of ore: attempts to emulate
M_A_TLAB's syntax, we were able to un~vel certain key
issues relating to its syntax, such as the complications
arising in parsing command-form function invocations
within a compile-time cnvitonrnent, the con-
text-sensitive interpretation of the single quote char-
actor, and the "translation of white space 'within matri-
ces into dement separators.

The front-end effects a conversion of the original
source to an inte.tmediate form in which statements
are represented as abstract syntax trees and the flow of
control between statements by z control-flow graph.
.All subsequent compiler passes work on this interme-
diate representation.

The front-end was designed and implemented as
part of the MATCH project, which addresses the
translation of a M A T L A B program by a compiler onto
a heterogeneous target consisting of embedded and
commezdd-off- the-shelf processors.

Keywords: syntax analysis for MATLAB,
command-form function invocations, single quote
character, matrices, colon ecxprcssions, assignments,
control constructs

1 Xntroduction
The MATCH project [1] concerns itself with the

task of efficiently compiling code written in
MATLAB z a for a heterogeneous target system com-
prising embedded processors, digital signal processors
(DSPs) and field programmable gate arrays (FPGAs)
[5]. Since the language is proprietary, the project also
faced the additional onus o f designing the grarnrna~
and the lexical specification for it, in addition to
actually implementing the specifications, using publi-

l This research was supported by DARPA under Contract 2 MATLAB is a registered trademark of The MathWorks,
F30602--98--2--0144. Inc.

Handl ing. . . Syntac t ic Issues in the Design o f a F ron t -end fo r a IV/ATI.AB Comp i l e r 27

Supplement to the APL Berlin 2,000 Proceedings

cally available automatic parser and scanner genera-
t on .

MATLA_B is a high per formance hnguage geared
toward techmcal comput ing [122]. The language pro-
vides powerfu l features, which enable matrices and
arrays to be efficiently and easily manipulated- The
very high-level nature o f these features makes the
usage o f the language very intuitive. In fact, the lan-
guage's s impfidty and ease o f use are among the
primary reasons behind its immense popular/ ty in
various application areas. The language's syntactic
simpl/city does no t compromise its expressive power;
tiffs fact along with the interactive nature o f the system
and the fast pzototyping that it empowers have made it
the language of choice in research, analysis and devel-
opment.

1.1 Mot i va t i on
F r o m the perspect ive o f syntax analysis,

M A T L A B offers numerous challenges w h o s e subtlety
makes them interesung exercises in parser design.
Examples o f these include tackli- Z the single quote
character, efficiently building 11nifo.ri.n colon expres-
sions and handling matrix constructs. In fact, some of
the language's traits make parsing in a compile-time
envu:onment a much more complicated task and this
resulted in certain modifications to the set of language
feattuces that were finally supported by ou¢ compiler.

For instance, the syntax for invoking a funct ion in
the c o m m a n d fotrn is fraught with parsing ambiguity
w h e n compiled. Because o f dynamic binding, a par-
ticular name could refer to either a variable or a func-
tion depending on the path o f execution. As a conse-
quence (see section 3), in certain cases, it may no t be
possible to establish at compile- t ime whether state-
ments such as

Au+i;

c o = e s p o n d to a binary addition expression or to a
function invocation in the c o m m a n d foxm. In this pa-
per, the notat ion u will be used to denote a rnixtuLre o f
one or more blanks and horizontal tabs.

Another example is the single quote character
which is used bo th as a complex conjugate transpose
opera tor as well as a string literal demarcator [12]. This
dual role can lead to lexical matching problems since
the character can be associated with two tokens: the
CTRANSPOSZ token (co~espond ing to the complex
conjugate t ranspose operator) or the TEXT token
(co~espond ing to the string literal). Thus, while in the
following M A T L A B code fragment
Hellofl ;
dispu ' *Hello' ;

28

the single quote c h ~ c t e z sets o f f a string literal 3, in
Hel io=i ;
disp=l ;
disp' *Hello' ;

i t denotes the complex conjugate transpose ope_atoz

In the latter code fragment, if there was no
ass/grtment to disp before the s tatement
d i s p ' * H e l l o ' , an extor w o u l d have resulted_ Tha t is,
in the absence o f a preceding assignment to d i s p ,
d ± s p ' * H e l l o ' wou ld no t have been regarded as a
function invocat ion even though the built-in function
d i s p is visible at that point. Al tematdy , i f an
assignment to d i s p had pre- ceded the s tatement
d i s p u ' * H e l l o ' , a n e r r o r would have occurred. Th/s
issue is further elaborated in section 5.

M:attices also pose certain non-tr/vial obstacles to
parsing. T he construct ions that M A T L A B offers to
represent matrices are very user-friendly. T h o u g h quite
intxdtiee, these construct ions add significance to the
actual textual layout o f the matrix, making the recog-
nition o f these structures m u c h harder for the
parser-scanneet duo. Fo r example, the following lines
on the left define a 3 by 3 matrix having 1, 2, and
-3+4 as the d e m e n t s in the first row, 0 . 1 , +. l i and
.2 as =he d e m e n t s in the second row, and a, (3) and
b (3) as the d e m e n t s in the third row.

[i, u2u-3u+u4, [1,2,-3+4;
0.1u+.liu.2 ¢=~ 0.1,+.li, .2;
au (3) ub(3) ;] a, (3) ,b(3) ;]

What should be no t ed here is that the second d e m e n t
in the,. first r o w is not 2 - 3 + 4 , that the first d e m e n t in
t h e s e c o n d r o w is n o t O. l + . l i a n d t h a t t h e ~ r s t
element in the third r o w is not a (3) . The lines on the
eight show the same matrix constn.mted using commas

and semicolons.

The above examples serve to demonstrate the
complexity of the parsing and scanning process in
M A T L A B , esperi~lly w h e n a formal grarnmax and
lexica[descript ion axe no t publicly available, and when
such :a specification has to be designed, duplicating as
much o f the language's obse rved syntax and behavior
as possible. Some o f these p rob lems are peculiar to a
compiler fxamework, since in the presence o f inter-
pretalion, the control flow is known by the time a
stateraent is parsed and executed. We mention and
discuss these issues in this paper, descJ:ibing the solu-
tions that we have adopted to solve them in our
implementation.

The MATLAB builtin function disp displays its
arguuatent.

Pramod G. Joisha, Abhay Kanhere, Prithviraj Banerjee, U. Nagaraj Shenoy, and Alol¢ Choudhary

Supplement to the APL Berlin 2000 Proceedings

1.2 Background
Work in building a front-end began by experi-

menting with the Free Software Foundation's distri=
but/on for G N U Octave [3], a language having much
o f MATLAB's syntactic and semantic features. Begin-
ning with Octave's grammar, a cote set o f productions
were retained and modified with many more added to
capture MATLAB's syntax as faithfially as possible.
The lexical specification was written from scratch.

The ~ont -end cxmcently supports only a proper
subset o f the MATLAB language. Support for struc-
tures and cell a~ays is presently unavailable in the
front-end. Furthermore, the c u r r e n t version o f the
parser recognizes expressions, assignments, f o r loops,
if statements, global dedawations, while loops,
return statements and a limited form of function
invocations in the command form. Both Eunctions and
scripts can be processed by the front-end. Additional
constructs such as switch and break statements can
be easily handled with relatively litde modification to

the cur_tent grammar.

The main tools that were used in implernenting
the front-end were bison and flex. Bison is an auto-
matic parser generator in the style o f yacc [9] (see
y a c c (1)) . Flex---which is a contraction of "'Fast
Lexical Analyzer"---is an automatic scanner generator
that was implemented as a rewrite of AT&T's lex tool
[11] (see l e x (1)) , with some useful extensions over
lex as well as some incompatibilities. While bison was
primatily written by Richard Stallrnan as part of the
G N U project, flex wag authored by Veto Paxson
when at Lavrcence Berkeley Laborato W.

1.3 Related work

Recently, there has been much interest and work
in compiling MATLAB programs into object code [2,
15, 14, 3]. However, not much has been discussed
regarding the language's syntactic nuances or how they
may be handled in a compile-time environment. To
the best o f our knowledge, we are not aware o f any
previously published work that discusses the parsing
o f the MATLAB language.

The MATLAB language is in many ways a new in-
carnation of the APL Language [13]. Both languages
advocate a functional style o f programming, support a
laxge rcpositocy o f built-in (or primitive) functions and
treat data in much the same way---that is, as atrays. In
fact, there often exist direct correspondences between
APL's primitive functions and MATLAB's built-in
functions. A case in point is the p operator in APL.

In its monadic role, it resembles NLATLAB's s i z e

built-in function, while in its dyadic role, it behaves
like MATLAB's r e s h a p e built-in function..A.uothe.t
example is the monadic I (iota) APL primitive, also
known as the index generator fi.mcdon. This operator
resembles a specialiT.ed version o f MATLAB's c o l o n

built-in function.

However, f rom the standpoint o f syntax analysis,
the two languages present matkedly different issues.
The APL language syntax is so regular that it can
almost be recognized by a finite state automaton [7].
On the other hand, due to the context-sensitivity o f
the MATLAB language, it appears that the language's
syntax cannot be described by a conventional
LALR(1) specification alone. O n the Rip-side, the
same context-sensitivity has imparted to the language
an intuithreness and nehness that is among the chief
reasons behind its widespread popularity. Though
APL is a rich language in its own right, the same
"regulamess'" is probably also the reason behind the
language's notoriously cryptic syntactic structure.

In [8], a non-tecursive parsing algorithm that uses
a two-symbol lookahead and that shifts between two
parsing states is briefly ment ioned for a restffcted ver-
s/on o f the APL language. These restrictions included
disallowing the usage o f function names as either
variable or labd names, thereby eliminating the pos-
sibility o f patsing ambiguities arising f rom late binding.
Since supporting all o f APL's features would necessar-
ily entail some r a n - t i m e parsing, reseatchers have
proposed systems that rely on "entw-time partial
parsers" and ."ran-time parser completers" [16] to
mitigate the run-time parsing overhead. Though such
methodologies can be cam:led over to MATLAB, it is
not cleat how these techniques can be incorpowated in
an optimizing compiler fwamework. Approaches such
as [17] parse and compile a class of APL programs
that do not utilize features that could dynarnicaily
change the syntactic meaning o f the program's state-
ments. This approach is probably justifiable in light of
empkical evidence that suggests that most APL coders
abstain from using language features that alter the
syntactic structure o f the program with each execution
instance [16, 6]. By excluding support for some of
MATLAB's language constructs, this is essentially the
philosophy that we also adopt in the MATCH com-
piler.

The complete source code containing the lexical
specification and the context-free grammar is available
as an appendix to [10], a technical report that descrbes
the design and implementation o f the MATCH com-
piler front-end in greater detail,

Handling... Syntactic Issues in the Design of a Front-end for a MATLAB Compiler 29

Supplement to the APL Berlin 2000 Proceedings

1.4 Out l ine
The rest o f the paper is organ/zed as follows. In

2, we provide an overview o f the M A T L A B language,
describing in brief some o f its lexical aspects, besides
in t roducing the n o d o n o f M-files and showing a
sample MATLAB program. Terms such as " c o m m a n d
fozrn" and " c o m m a n d - f o r m invocat ion" will be
explained in this section. In ~ 3, we consider the
implications o f MATLAB's c o m m a n d - f o r m funct ion
invocat ion syntax and argue the reasons for support-
ing a limited version o f that syntax in our compiler. In
§ 4, we account for the grammar rules that enable
assignments to matxix-like lef t -hand sides which may
also contain multiple variables. The dual rule played by
the single quote character and the issues that it entails
are presented in ~ 5. Matrices in M ATLAB and the
m a n n ~ in which commas axe inserted to separate
d e m e n t s are explained in g 6. In g 7, we show h o w the
syntax directed t ransht ion process can be levexaged to
parse all colon expressions to a un i fo rm full ternary
tree form. Finally, the structure o f the conditional
s ta tement as well as the shift-reduce conflicts that its
grammar nxles g/re rise to are discussed in g 8.

2 L a n g u a g e P r e l i m i n a r i e s

A M A T L A B program basically consists o f a se-
quence o f statements. A statement in M A T L A B could
be a funct ion call, an expression, an assignment., a
control construct or a g l o b a l declaration. Fo r exam-
pie, the s ta tement

disl~ ('HelloUWorld! ') ;

invokes the bu~t-in function crisp that displays its
argument on the s tandard output.. The disp funct ion
does no t return a value; functions that do can be used
to build expressions. Fo r instance,

r=rand (2) +i;

produces a 2 X2 matrix o f r a n d o m values between 1
and 2 and assigns the result to the variable r. Th~
an example o f an assignment statement.

2.1 Command~Funct ion dua l i ty
In MATLAB, functions can be invoked in two

ways. In addit ion to the typical way o f c.lling a func-
t ion as shown earlier with the dl sp and rand built-in
functions, M A T L A B also allows for "command-form'"
function invocations. T h e disp (' HelloUWorld! ')

ecxample shown above could have been re'written as

dispU 'HelloUHorld! ' ;

and the effect would have been the same. In general,
any funct ion f that accepts a string argument e can be
invoked in the functional form (i.e., as f~)) or in the

3 0

command firm (i.e., as f u 0 [12]. In the latter form,
the invocat ion is caned a command-j~rrafunction invocation
off.
2.2 Lexical Speci f icat ion Overv iew

A M A T L A B identifier consists o f a letter followed
by z,=o or more underscores, letters or digits. A
M A T L A B numeric quanti ty can be free o f a decimal
point and an exponent , or consist o f either a decimal
point or an exponent or both. In the lVL&TCH lex/cal
specification, the name definition 4 INTEGER represents
nurne~c quantities that are free o f a decimal point and
exponent; all o ther numeric quantifies c o = e s p o n d to
the nOUBLE name definition. For example, the char-
acter sequences l e - 2 and X. associate wi th the name
defux[tion DOUBLE, while the character sequence X
associates wi th the name definit ion INTEGER. Figure 1
fomaaUy describes some o f the name definitions used
in the: lexical specification.
HSPACE [\ t .]
HS PACES { HS PACE } +
NEWLINE \n[\r l \f
NEWL INES {NEWLINE } +

ELLIPSIS \. \. \.
CONTINUATION {ELLIPSIS} [^\n\r\f] *

{NEWL Ibm} ?

COMKENT \% [^\n\r\f] * {NEWLINE} ?
IDE~PIFIER [a-zA-Z] [_a-zA-Z0-9] *

DIGIT [0- 9]
INT~3ER {DIGIT} +
EXPOI~IENT [DdEe] [+-] ? {DIGIT}+
MANTISSA ({DIGIT}+\.) l

({DIGIT} *\. {DIGIT}+)
FLOATINGPOINT {MANTISSA} {EXPONENT} ?
DOUBLE ({ INTEGER } { EXPONENT }) l

{ FLOAT ING POINT }
NUMBER {INTEGER} I {DOUBLE}
IMAG INARYUNIT [ij]

Figure 1: Name Definitions

In MATLAB, there exist a couple o f situations in
which horizontal spaces become significant. A hori-
Zontal .rpace is either a blank o t a hor izontal tab and is
denoted by the name deRnidon HSPACE shown in
Figure 1. Thus , the symbol u represents the lexical
pat tern ma tched by the HSPACES name definition,
which is at least one hor izontal space. Apar t ~ o m
funct ioning as token demarcators and matrix d e m e n t
separators, horizontal spaces can also influence the
interpretat ion o f succeeding character sequences. In
the b l A T C H compiler fxont-end, they are cast away by

4 Name definitions are basically shorthands that simplify
the main scanner specification (see flex(l)).

Prarnod G. Joisha, Abhay Kanhere, Prithviraj Banerjee, U. Nagaraj Shenoy, and A/ok Choudhary

Supplement to the APL Berlin 2000 Proceedings

the scannex, so that the parser sees a token stream fxee
of any horizontal space.

Input lines in MATLAB can be continued onto
multiple lines. This "breaking" of long statements is
accomplished by using a contiguous sequence o f three
periods, subsequently followed by a newline, carriage-
return or form-feed character (i.e., a I~mWLINE lexical
pattern). Everything from the ellipsis until and in-
clucling the ~rgwLImg character---or untU the end of
the input is ignored, s Comments likewise begin at a
percent character (%) and continue until a NEWLINE
character, or until the end o f the input.

2.3 M-f i les
Statements in a MATLAB program axe separated

from each other by &limitcn'. Delimiters are sequences
consisting o f an axbittaxy mixture of comma (','),
semicolon (';') and LINE tokens. Input files that con-
rain code w=i~en in MATLAB axe called M-t/e;.
M-flies can either be ffie.dio.; (which r~ay accept input
arguments and wh/ch may return output axguments),
or so/pt, r (which neither accept inputs nor produce
outputs). The formex are often dabo~te ly refereed to
as function M-files to distinguish them from built-in
functions. Other than being available in files, there is
no difference between the two. The main distinction
between functions and scripts is that while the former
execute in a workspace independent o f the caller's
environment, the latter execute in the caller's work-
space.

Syntactically, functions and scripts axe the same,
except that the first .0~-eenp~ line in a function must
be thef t .chin d~finition h.e [10]. A LINE token , which is
returned by the lexical analyzer to the parser whenever

s At the time of this writing, the complete line
continuation specifics for MATLAB (in both versions
5.0 and 5.2) seemed non-unifozrn and inconsistent.
This is because in certain cases, the line continuation
sequence behaved as a token demaxcator, while not in
other cases. For instance, while the following lines

displ=2 ;

disp...

1

resulted in the value of displ being displayed, the
following lines

displ=2 ;

a=disp...

1

resulted in an error situation when an assignment to a was
attempted. More esoteric behavior was observed when the
line continuation sequence occurred within matrices and
among M A T L A B keywords such as global and for.

a COMMENT oi: a NEWLINES lexical pa t t e rn is s c a n n e d
b y it, signifies an e m p t y line. A p r o g r a m file that is a
script m a y e i ther con ta in optional delimiters, o r c o n -
tain a sequence o f statements optionally preceded by
delirnitets. Additionally, external programs can be
made to act like 1MATLAB functions using the she//
~ea]~e mechanism [12].

2.4 Expressions
Expressions in MATLAB axe composed as opera-

tions on subexpressions. Subexpressions could be
functions returning values, resuhs o f an array section
operation, identifiers, matrices, string literals and
quantities that could either be nurnedc or imaginary.
The MATCH lexical specification enables two types of
numeric quantifies to be identified (INTEGER and
DOUBLE). In addition, the scanner identifies any num-
ber (i.e., NUMBER) followed immediately by the imagi-
naxy unit as an imaginary quantity. The imaginary unit
is specified by either of the chaxacters i or j . This is a
lexical match and is not affected by any reaching
definition against the variables i or j . For instance,
the character sequence 2j wiU always be considered as
an imaginary quantity irrespective of any preceding
definitions against the variable j .

% Create a 1024 x 1024 array, initialized

to O.
a(l : i024,1 : 1024) =0;

% Set all values along the first column to

l+i.

a(: , i) =l+i;
%

% The Jacobi iteration.
%

a(2:1023,2:1023)=(a(l:1022,2:1023) . . .

+a(3:1024,2:1023)+a(2:1023,1:1022) . . .

+a(2:1023,3:1024))/4;

Figure 2: The Ja¢obi Itc=ation

To illustrate, we show a sample MATLAB code
fragment that performs the wall-known Jacobi ite_a-
tion in Figure 2. The Jacobi iteration executes a
four-point stencil computation in which the values at
each interior grid point (1022X 1022 in all) axe updated
as an average of the values associated with its four
caxdinal neighbors. This averaging operation is suc-
cincdy expressed using MATLAB's vector notation. In
the above code fragment, the tight-hand side of the
last assignment statement adds the values at corre-
sponding grid points in four conforming a m y sections
and averages the result. The assignment to another
conforming aa=tay section achieves the desired update
action.

Handling... Syntactic Issues in the Design of a Front-end for a MA TLAB Compiler 3 1

Supplement to the APL Berlin 2000 Proceedings

3 C o m m a n d s
As men t ioned earfier, funct ions can either be in-

y o k e d in the funct ional fo rm or in the c o m m a n d fo rm
in M A T L A B . For instance, we could invoke the
built-in funct ion type either like type('rank')

which corresponds to the functional form, or like
t y p e U r a n k which corresponds to the c o m m a n d
form. A s ta tement such as tYl~e /U ' r a n k ' also
qualifies as a c o m m a n d - f o r m funct ion invocat ion and
is equivalent to type/u rank.

A c o m m a n d - f o r m invocat ion o f a funct ion occuxs
whenever the fizst token on the M A T L A B input line is
an identifier that cozresponds to a funct ion, and ff the
second token is separated f rom the first by hor izontal
spaces. T h e only exception to this rule is when the
second token is an opening paxenthesis. In this case,
the invocat ion c o ~ e s p o n d s to a notrnal funct ion call.

Fo r ~ - r a p l e , the fol lowing lines
dispu 1+2 ;
dispu (1+2} ;

display 1+2 a n d 3 as the ig r e s p e c t i v e r e su l t s .

Therefore , i f A.xn is a funct ion M-file, the state-
s e n t Au +i resuhs in an a t t empt to invoke the func-
tion M-file wi th the ste/,,g a rgument +1. In fact, A.m
m u s t be def ined as a funct ion M-file that accepts at
least one input a rgument for this particular line o f
input to work; otherwise M A T L A B complains o f an
eg£oE.
command_form

text_list

name text_list

TEXT
I text_list TEXT

identifier

IDENTIFIER

name

identifier

Figure 3: Productions for command form

In the M A T C H compiler, sentences that derive
f rom the c o m m a n d fo rm non- terminal shown in
Figure 3 require arguments to the funct ion to be
explicitly quoted. 6 T h a t is, only strings such as
type U ' rank' reduce to the c o m m a n d fo rm
non- terminal in the compiler front-end. Sentences
such as t y p e u r a n k are n o t recognized as com-
m a n d - f o r m funct ion invocations and resuh in a parse
error. T h e M A T L A B code f ragment in Figure 4

6 W e shall present grammar rules in a format compliant
with bison's input syntax (see bison(l)) . In general,
n o n ~ n n i n a l symbol names will be in lowercase and
terminal symbol names will be in uppercase.

3 2

p r ~ d e s the reason beh ind the imposi t ion o f this
constraint.

S u p p o s e t h a t a f u n c t i o n M - f i l e c a l l e d
% A . m e x i s t s i n t h e MATLAB M - f i l e
% search path.

if (rand > 0.50)
A=i ;

end;
A +i;

Figure 4: A Syntactically Ambiguous Code Fragment

Cont ro l can teach the s ta tement A uJ + 1 either after
executing the control c o n s t r u c t - - i n which case, A wiU
be lxeated as a vari-blc or w i thou t executing the i f
s ta tement b o d y - - i n which case, A will be regarded as
a function. Thus , on reaching the s ta tement A u +1, it
is n o t d e a r to the compiler whe the r to parse the
s ta tement as a funct ion invocat ion in which the func-
t i on A is invoked with the s tnng literal + 1 as the only
argxtrnent, or as the binary addi t ion o f the variable A
w i t h the numer ic cons tan t 1. Hence , bo th the abstract
syn1:ax trees (ASTs) sho,am in Figure 5 qualify as
possible parse trees for the above statement.

A 4-

" + L " A E

Figu re 8: Candidate Parse Trees

I t m u s t be emphas ized that this is a.par.ring prob-
lem in addit ion to an inferencing one. This p rob lem is
pecaliat to the compiler and the M A T L A B interpreter
is n o t faced v0ith the same pred icament because the
pan;ing o f A u +1 begins only after control reaches it,
by wh/ch t ime the parser is aware o f the nature o f A.
A n interest ing sidebar to this discussion is that i f
A U +1 were the only s ta tement in the above code
frag~xlent and i f A.m were a func t ion M-file in the
M A T L A B search path, M A T L A B always parses it into
the left AST shown in Figure 5. T h a t is, the s ta tement
is aJkvays considered to be a c o m m a n d - f o r m funct ion
invocat ion irrespective o f whe the r A accepts an input
argxunent and whe the r A produces a re turn value. O n
the o ther hand, i f the s ta tement were A+i, M A T L A B
will always parse it in to the zight AST shown in Figure
5, itxespective o f whe the r A accepts an inpu t a rgument
and whe the r A returns a value. In this case, t h e / n t e r -
pretat ion is tha t the value re tu rned by an invocat ion o f
the funct ion A wi thou t axguments is added to the

Pramod G. Joisha, Abhay Kanhere, Prithviraj Banet jee, U. Nagaraj Shenoy, and Alok Choudhary

Supplement to the APL Berlin 2000 Proceedings

numeric constant 1. Hence, i f it turns out that A does
not return a value, the execution results in an error.

The problem cited here is essentially one stem-
ming from delayed binding. In other words, it may not
be possible to conclusively say whether the A in AU +1
is a variable or a function M-file until tun-time. In that
way, the problem has an analogy in APL. Expressions
such as e+f in APL could be statically ambiguous if
the binding of e is not known until run-time. De-
pending on whether e is bound to a monad/c defined
function or a variable, the expression could mean
cithere(+(f)) or (e)+(f).

A strategy by which our compiler could have sup-
ported the interpreter's full-fledged command-form
fimction invocation syntax would have been to create
and maintain both ASTs against a statement when in
doubt. Apart firom the fact that the parser would now
have to detect such syntactic ambiguities, the creation
and maintenance of two ASTs would have further
complicated analysis by subsequent compiler passes.
Hence, we decided to eliminate the potential for such
parsing ambiguities by' supporting a limited version of
MATLAB's command-form function revocation
syntax, and by flagging ambigu/ties to the programmer.

4 Assignments
Assignments in MATLAB come in three varia-

tions. The first variation allows the assignment of an
arbitrary expression to a variable or an array section.
As an example,

clear a;

a(1:2:3,I:3) = 2;

creates a 3 by 3 matrix against the variable a having the
dement 2 along the first and third rows and the de-
ment 0 in the remaining rows and columns. The
second variation is essentially the same as the first,
except that the variable or array section syntax is
endosed within a pair o f box brackets. For instance,
the previous example could have also been written as

clear a;

[a(1:2:3,1:3)] = 2;

and the same value would have been assigned to a.
The third form allows a function to return more than
one value. In this form, the right-hand side of the
assignment is restricted to be a function invocation.
This is illustrated in the following example using the
built-in function s i ze.

Ix y] = size(1);

4.1 LefT-hand sides

To describe' the above three varieties o f assign-
ment statements, the productions shown in Figure 6

can be used. The non-terminals s_assignee_matrix
and m_assignee_~trix represent left-hand sides
that are enclosed within a pair o f box brackets. While
the former non-terminal captures single value
left-hand sides, the latter expands to muhip1e value
left-hand sides. These non-terminals are formally
elaborated in Figure 7.
assignment : reference

' = ' expr

I s_assignee_matrix

' = ' expr

I m_as s ignee matrix

'=' reference

Figure 6: Productions for assignment

Do we need the non-terminals s_assignee_matxix
and rr~ass/gnee_ma~x shown in Figure 7 to denote
box-bracketed left-hand sides? Can't wc rely on pro-
ductions which expand to matt{ces to represent such
left-hand side constructions? The answer is no.
Though the non-terminals s_assignee matrix and
re_assignee mat,-ix correspond to sentences that
largdy resemble matrices, they are not cxacdy the
same. Both sentences consist of a SCClUCnCe of one or
more dements that are separated from each other by
horizontal spaces or commas and that are enclosed
within a pair o f box brackets. But that is

reference : name

I name
' (' argument--list ') '

name

identifier

argument_list

s_assignee_matrix

m_assignee_matrix

reference_list

: identifier

: IDENTIFIER

1 i ; ,

] e x p r
I ' : ' ' , ' a r g u m e n t l i s t
B

: LD reference RD

: LD reference

' ' reference list RD

: reference

I reference

' ' reference--list

Figure 7: Productions for the Left-hand Side

where the resemblance stops. First, while matrices
allow for an optional comma after the last dement,
box-bracketed left-hand sides do not. Second, semi-
colons and LIIVE token delimiters cannot be used to
separate dements in a box-bracketed left-hand side.

Handling... Syntact ic Issues in the Design o f a Front-end for a MATLAB Compi ler 33

Supplement to the APL Berlin 2 0 0 0 Proceedings

Third, the dements ha an s_assignee_~trix or
re_assignee_matrix sentence tan only be variables
or array sections. Four th , any expression may be
assigned to a n s_assignee_matrix whereas the
same is not true for a n re_assignee_matrix. PiEth,
assignments to empty matrices are invalid. Not ice that
though the last three differences could have been
handled by incorporat ing semantic checks in the
action par t o f the matr ix productLons, the first two
differences are p u r d y syntactic and warrant the intro-
duct ion o f new non-terminals to describe such
lef t -hand sides.

The non-temainal expr in the assignment and
argument Ust productions corresponds to a MATLAB
expression (see ~ 2.4). I t mus t be no t ed that the
M A T C H grammar does no t permi t assignments t o be
a part o f expressions. In o ther words, s tatements such
as (a=l)+l are n o t allowed. This res t r /cdon is in
accordance with that observed in MATLAB.

4.2 The LD and RD t o k e n s

T h e tokens LD and ND shown in Figure 7 actually
cor respond to the lexemes [and] respectively. These
lexemes also cor respond to the tokens '[" and ']" tha t
the lexical analyzer returns w h e n matrices are en-
countered (see ~ 6). Hence , w h y do we need to distin-
garish the [and] lexemes in these two situations?

I f the g rammar rules for s_assignee~natrix
and re_assignee_matrix ass~nee mat~Y had used
the '[" and "]' tokens to enclose the demen t s , a re-
duce-reduce conflict wou ld have arisen. T o i.Uustrate
th/s, suppose that the token stream seen so far by the
parser were ' [', 'a ' and '] '. Then , the parser could

Blnllmtluldll ~mdl-nlltiml klmll.. I

I - - ' - ' - - ' - - - " - - I

m J l ¢ .

1
C --'- 3~
Figure 8: The LD, T Tokens

either be in the middle o f an ass ignment or an expres-
sion. T h a t is, unK! the "=' token is seen, the parser
could either be in the mids t o f a sentence that ulti-
mately reduces to the s_assignee_matrix o r

m_~Lssignee__matrix non-tenxfinah, or in the midst
o f a sentence that ul t imately reduces to a matrix. T h e
defimlt course o f act ion taken by the parser in such
situations cannot be relied on, since a reduct ion to the
s_~s signee matrix or re_assignee_matrix
nor.L-terrninals m u s t prevail in an ass ignment context,
while a reduct ion to the matr ix non- terminal mus t
prc ta i l in an expression context.

Im, ~,u'. ~-

I= 1
. j -

Figure 9: The RD, '] ' Tokens

T o remedy the above problem, the scanner re-
tunis a separate pair o f tokens whenever an assign-
m e n t to a box-bracketed s t ructure is detected. The way
this. is done is illustzated in Figure 8 and Figure 9. The
steps shown in these f low charts are hnplernented in
the lexical specification. For instance, to determine
whe ther an LD or ' [" token needs to be re turned on
encounter ing the [lexeme, the scanner reads ahead
until a ma tch ing box bracket is found. This read ahead
is pe r fo rmed in the act ion par t o f the \ [ex tended
regular expression. I f a ma tch ing d o s i n g box bracket
is no t found, the lexical analyzer returns the token
LEXERROR s i n c e t h i s is an error situation. I f a match-
ing d o s i n g box bracket is found, the scanner deter-
mines whe the r the nex t lexerne in the input is ~ - - .
This is because while [a , b] = s i z e (1) is an assign-
m e n t to a box-bracketed structure, [a , b] = = s i z e (1)
is an expression. Here we use the symbol ~ to denote
~ r o or morn hor izonta l spaces. I f the next lexeme is
indeed ~ = = , then the operfing box bracket is part o f
a matr ix that occurs on the le f t -hand side o f an equal-
ity compar i son expression. Thus , the scanner needs to

34 Pramod G. Joisha, Abhay Kanhere, Prithviraj Bane.rjee, U. Nagaraj Shenoy, and Alok Choudhary

Supplement to the APL Berlin 2000 Proceedings

return the ' [' token in this situation. I f the next lexeme
in the input stream is instead j =, an assignment to a
box-bracketed structure is detected. Therefore, the
scanner returns the LD token in this case. I f some
other sequence o f characters occurs as the next lexeme
in the input stream, the scanner once again returns the
' [' token. In all cases, the lexical analyzer returns
control to the parser only after relinquishing the
characters that were read ahead back to the input.

5 The Single quote Character
The actual role played by the single quote charac-

ter is determined by horizontal spaces that precede it.
In a non-matr ix scenario, horizontal spaces within
expressions ate usually inconsequential. For instance,
the M A T L A B expression statements 1+2 and 1 u +2
and I u + u 2 are all the same, and it does no t mat ter
whether horizontal spaces surround the binary plus
operator. However , there are situations wherein
horizontal spaces within expressions do become sig-
nif icant. Apar t f rom the obvious case o f a matrix in
which horizontal spaces serve as d e m e n t separators,
the case o f the single quote character is another inter-
esting instance where horLzontal spaces actually de-
termine h o w a chaxacter sequence mus t be interpreted.

Consider the following character sequence:
AU ' +1 ' ; . A n d suppose that the feont-end has been
able to ascertain that the identifier A in the above
character sequence actually conresponds to the func-
don 1VI-file A. In. In addition, let the funct ion deRnition
line in A. m specify a single input a rgument and a single
ou tpu t argument. Therefore , the funcdon M-fde can
be invoked either wi th one argument or no arguments.
Consequently, how should the parser-scanner pair
process the above character sequence? Should the
lexical analyzer return an IDENTIFIER token followed
by a TEXT token finally fol lowed by a semicolon
token, so that the parser recognizes a c o m m a n d - f o r m
invocaUon o f a function---or should the lexical ana-
lyzer return the token stream IDENTIFIER,
CTRANSPOSE, '+ ' , INTEGER, CTRANSPOSE, ';' SO that
the parser recognizes an expression? Should the
presence o f the horizontal spaces between the charac-
ters A and • be ignored so that the character sequence
A" +1 " ; is also treated in the same way?

M A T L A B interprets the single quote character by
always applying a simple rule: f f a single quote charac-
ter immediately foUows an INTEGER, DOUBLE,
IMAGINARY, IDENTIFIER, TRANSPOSE, CTRANS-

POSE, =]' o r ') ' token, i t is regaxded to b e t he
CTRANSPOSE token. Otherwise, it is considered to be

the starting demarcator o f a string literal. Not ice that
this rule resolves the above men t ioned ambiguity. Tha t
is, the character sequence AU ' +1 ' ; is scanned rote the
token stream IDENTIFIERj TEXT, c;, by this rule,
whereas the same rule causes the character sequence
A" +I " ; to be scanned into the token stream
IDENTIFIER, CTRANSPOSE, =+' , INTEGER,
CTRANSPOSE, ';'. Notice also that by this rule, the
character sequence I u • ; produces a syntax error. 7

The M A T C H scanner reproduces /viATLAB's
single quote semantics by using start conditions. The
start condi t ion mechan i sm essentially enables the
scanner to "'activate" only a subset o f the n.fles in its
leadcal specification depending on its current state. In
the absence o f explicitly declared start conditions, the
scanner always exists in a s in~e state wh/ch is associ-
a ted wi th the start condi t ion INITIAL. ~i scs/mer can
be transited ffi:om one statt condi t ion to another by
BEGIN c o mma n d s (see flex(l)). Extended r eguh t
expressions that are prefixed by the construct ion

<sc>. where s c is a declared start condition, axe

active only w h e n the scanner is in the start condit ion
sc . Ex tended regular expressions that are no t prefixed
by <sc> I re t i ther active or inactive in the start condi-
t ion s c depending on whether the start condit ion is
inclusive or exclusive. The p redefmed start condit ion
INITIAL is inclusive.

T o imitate MATLAB's single quote semantics, the
scanner is always in one o f two start conditions. These
are referzed to as INITIAL and QuoteSC in the lexical
specification. When in INITIAL, the scanner regxtds
the single quote character as the demarcator o f a string
literal. W h e n in Q u o t e s c , the scanner considers the
single quote character as the CTRANSPOSE token. We
thus have the extended regular expressions
<INITIAL>' [^ " \r\f" \n] * " and <QuoteSC> '

whose action parts return the tokens TEXT and
CTRANSPOSE respectively. Since a single quote char-
acter i m m e d i a t d y after an ZNTEGER, DOUBLE,
IMAGINARY, IDENTIFIER, TRANSPOSE, ~]', <)' or

CTRANSPOSE token should be regaxded as the
CTRANSPOSE token, the act ion parts o f the extended
regular expressions responsible for each o f the above
tokens except the last contain a BEGIN c o m m a n d that
changes the start condi t ion to QuoteSC. Once the
scanner enters the QuoteSC start condition, the only
way it can exit this start condi t ion---and thus enter the
start condi t ion INITIA.T_,~-is i f it scans lexemes such

7 This is quite comrary to what one would intuitively
expect!

Front -end fo r a MATLAB Compi ler Handling... Syntact ic Issues in the Design o f a 35

Supplement to the APL Berlin 2000 Proceedings

character curzently being scanned by the lexical
analyzer as the cxrren# bracAet .es~.g (CBN) of the input
stream. We thus see that ho1:/.zontal spaces aze
significant only when their BN is either '[" or LD.
Hence, wh.Re [iu+2] is equivalent to [I,+2],
[(lu+2)] (oI: [(I+u2)] or [(lu+u2)]) is the
same as [(I + 2)].

Last Processed
Token

Next Lexeme Prefix

~.NTEGF.,R,
D O U B L E ,

IMAGINARY,
TEXT,

~',
CTRANSPOSE,
TRANSPOSE,

T,
IDENTIFrI~.R

Befo~e After

[] ,

m;
Im}]
[] * *
~ ^ ^

~ :
JB< <

m > >
~ = =

m& &

I l l I
m/ /
m \ \
m0 0
(,(or (

(,(or (
• ¢

J

u.' L=I ,

i11-/ ./
i l l . \ .\

• -I- .-I-

u + U + U
u _ U _ U

, *
• • . , . . , .

T a b l e 1: Comma Insertion Schematics

Since the potential to insert a comma exists when-
ever the C B N is either ' [' or LD, the input is read
ahead in this situation with the aim o f insezting a
comma. More predsely, the input is read ahead when
the C B N is d the r ' [' or LD and when the parser recog-
nizes a numeral, an imaginary quantity, a s~ng literal,
a p~enthes ized express/on, a transpose expression, a
conjugate transpose expression, a variable, a matrix, a
function call or an array indexing expression. This fact
is graphically shown in Figure 10.

6.2 The c o m m a inser t ion mechan i sm
The next issue that needs consideration is the ac-

tual comma insertion specifics. Where in the unscan-
ned input, and undez what cizcurnstances should a
comma be insetted? For instance, g/yen the input
character sequence [1 u 2] , the front-end must insert a
comma after the 1, effectively converting the chazacter
sequence t o [1 , 2] . Notice that the lexeme i
co~esponds to the INTEGER token. On ~ecognizing
this token, the pazscz applies the expr----~ INTEGER
production without consulting a lookahcad. 9 Since the
CBN is '[' when this reduction occurs, the ffiront-end
reads ahead, converting the yet to be scanned
character sequence u2] to , 2]. In this way, it is
ensured that the comma token (', ') will be the next
token that the scanner would return to the pazser,
rather than the ZiXPPEGER token. Table I summarizes
all the cases that need to be considered for comma
insertion. For instance, the first line of this table states
that the fi:ont-end converts [au, b] to [a,b]. Simila~
remarks apply to the next thi±teen lines in the table. To
recapitulate, B denotes zero or more horizontal

spaces. While the 0 symbol in Table I indicates a
ncwline, carriage return, fotrn-feed or percent charac-
ter, the u t symbol represents a single horizontal space
chazacter. The "Next Lexeme Pzefix'" column in this
table refers to the initial part of the next lexcme that
the lexical analyzez would scan, b~re and ,~o- comma
insertion; while the "'Before" sub-column denotes this
initial past before comma insertion, the "After"
sub-column zepresents the initial part after comma
insertion. Observe that the u (lexcme prefix gets
converted to (o~, (depending on whethc~ the
current bracket nesting is LD or not tespectivdy. That
is, while MATI_,A.B regards [x u (2)] as being
[x, (2)] (and not [x(2)]), it treats [xu (2)] =3 as
an ass ignmen t to . [x (2)] . Fuu~thezmore, the (l e x c m e

Handling... Syntactic Issues in the Design of a Front-end for a MA TLAB Compiler

9 In fact, the grammar has been written in such a way so
that a look_ahead is not consulted when any of the
productions shown in Figure 10 are applied.

3 7

Supplement to the APL Berlin 2000 Proceedings

prefix remains as (or gets converted to , (depending
on whether the last processed token is an
IDENTXFXER token or no t respectively. Tha t is, while
[x (2)] remains unchanged, [1 (2)] gets converted
to [1, (2)] . The l i s t line in Table 1 denotes the
comma insertion action for all other lexemes whose
prefixes do not match any o f the preceding rows; in
this case, a comma is inserted before the first
non-hor izontal space character.

A special exception to the rules documented in
Table 1 occurs when the ha t processed token is either
an INTEGER or g DOUBLE and when the first character
in the unscanned input is alphabetic. This is because
chalacteJ~ sequences such as [la] would otherwise be
parsed as [l,a]. When provided with this chaxactet
sequence, MATLA_B complains with the message
'~lissing operator, comma, or semi-colon. #

after matching the lexeane i. Yet, when provided With
character sequences such as [i . i . 1 1 , [a . 1 1 , [1 [1]]
and [lil], IV[ATLAB parses them in the "'expected"
way---as [i.i,.i], [a,.ll, [i,[i]] and [li,l]

respectively. This " 'anomalous" behavior was noticed
only when a lexeme corresponding to the IDENT-

IFIER token immedL~tdy fonowed a lexeme
cotxesponding to the INTEGER or DOITBLE tokens.

7 Colon Expressions
Colon expressions axe a useful way to succinctly

describe row vectors in which the dements form an
a.~thrnetic progcession. For example, the statement

a=l:4;

assigns the same value to a as does the assignment

a=[i,2,3,4] ;

A s~/de could also be provided, so that a=l: 2:4 is
equivalent to a= [i , 3]. M o r e precisely, colon expres-
sions come in two basic flavors. The binary construc-

tion ~ ; ~ describes the row vector

(cz, u +l, cz +3 t)

and the empty maln:ix otherwise. The ternary con-
stmction (z : cr :/~ describes the row vector

(¢ Z , ~ + O ' , ~ + 2 C r ~+[~--~JG I G

if U _ < f l A G > 0 , or O r < f l A G < 0 , and the
empty mat'ei~r otherwise. As an example, 2 : 4 results in
a row vector With three dements : 2, 3, and 4. O n the
other: hand, 2 : 0 : 4 produces the empty matrix as the
resu l t

colon_expr : expr ' : ' expr

I colort_expr ' : ' expr

Pigure 11: Producfiom for colon expr

The colon operator (':3 is left associative. Thus,
constlalctions such as 1:2:2:2 and 1:2:2:2:2

correspond to (1:2:2) :2 and (1:2:2) :2:2 respec-

tively. When evaluated, the former yields a row vector
with two dements , whexeas the latter produces a
scalar. In a colon expression, the start, stride (if pres-
ent) and stop values mus t all be scalaxs. I f any o f these
are not scalars, M.ATLAB issues a warning and con-
siders their respective flint elements to evaluate the
colon ecxprcssion. Thus, when provided with the input
1:2:3:4:5, MATLAB issues an alert (~Warning:

COLON arguments should be real scalars.")

and produces a row vector having I and 5 as its ele-
ments.

To simplify the processing of colon expressions
by subsequent compiler passes, the M A T C H parser
always produces a full ternary tree as the AST o f a
colon expression. In o t h ~ words, the paxser retains

colon expressions o f the form 6¢ " O" • f l and converts

colon expressions o f the form O~" fl to rZ" 1" f t . I t

should be stated here that a colon expression is differ-
ent ~ o m a colon " 'atom". The b i tes is employed in
array indexing operations to denote the entire extent
o f a patticnlax amay dimension. An example o f a colon
a tom is in the input a (;).

The grammax rules colon_expr ---> expr '"

expr and colon_expr --~ colon_expr ':' expr

shown in Figure 11 give rise to a shift-reduce conflict.
This is because ff c o l o n _ e x p r is the sentential form
thus fax seen by the paxser and i f ':' is the lookahead
token, the parser could either choose to shift the
lookahead token so as to subsequently apply the
colon_expr ---> colon_expr ':' expr production,
or choose to immediztely apply the expr--> co-
lon e x p r product ion and l i te r the colon_expr --->
e x p r ' : ' e x p r pxoduction. However, to identify the
stxide and stop values o f colon expressions having
more than two operands, the parser should p ~ f o r m
the shift action ~ t h e r than the reduce action. This is in
fact the default course o f action in the event o f a
conflict. By doing so, the syntax-directed t r a n s h t o n
process is exploited to eff idenf ly determine whether
the expression following a colon operator is a stride or
stop value.

We could have repl iced the above pair o f g~am-
max rules by the single product ion e x p r --> e x p r

38 Pramod G. Joisha, Abhay Kanhere, Prithviraj Banerjee, U. Nagaraj Shenoy, and Aiok Choudhary

Supplement to the APL Berlin 2000 Proceedings

• " " e x p r and the parser would have supported the
same colon expression syntax. In fact, this replace-
ment would have eliminated the previously mentioned
shifT-reduce conflict. However , casting the recognized
colon expression to the /X : G : f l form becomes a

complicated affair involving the maintenance o f some
kind of book-keeping information, and /o r the alloca-
tion and deallocation o f temporary expressions.

8 Cont ro l S t a t e m e n t s
The control constructs that are currently sup-

ported in the M A T C H compiler enable the conditional
(if) or itcrative (for, while) execution of a body of
statements. From a syntactic perspective, these state-
merits do not pose a problem except that the grammar
rules responsible for each of these constnacts intro-
duce shifT-reduce conflicts.

Consider the conditional statement. It comprises
an expression associated with the if part o f the state-
ment and a body o f statements that is executed only if
this expression evaluates to true at ran-time. The body
may be empty and is represented by the non-terminal
delimited_input in F i g u r e 12.

If_command
=

if_cmd_list

IF if_cmd_list END

delimited_input

expr delimited_input
opt_else

: opt_delimiter
] opt_delimiter
delimited list

=

delimited_list : statement delimiter
] statement delimiter
delimited_list

Figure 12~ Productions for i f. command

opt_else
ELSE d e l i m i t e d i n p u t
ELSEIF expr
delimited_input opt_else

Figure 13; Productions for opt dse

The conditional statement may also have multiple
elseif parts and an else part, but these are op-
tional. If present, each of the elseif parts possesses
its own expressions. It should be noted that the ex-
pressions associated with the if and elseif parts can
be separated ffom their respective statement bodies by
only horizontal spaces. For ins tahoe,

ifLJaLJ (2); LJend;

is a valid conditional statement in which the e l s e i f
and e l s e parts are absent. The lexerne a forms the
conditional statement's expression. The conditional
statement's body is a single parenthesized expression.
Since the expressions associated with the i f and
elseif parts can be separated from their respective
bodies by only horizontal spaces, this gives rise to
shih-reduce conflicts in the grammar. For example, if
we were to consider the following code fragmen%

ifUlU+2; Uend;

should this be treated as a conditional statement in
which the expression is 1 and the body is the single
expression statement +2, or should this bc regarded as
a c o n d i t i o n a l s t a t e m e n t i n w h i c h t h e e x p r e s s i o n is 1+2

and the body is empty? The production
"if_cmd list---> expr delimited input opt_else"

in Figure 12 generates two shifT-reduce conflicts.
These two conflicts occur when the fight-hand side o f
this production has been seen until the non-terminal
expr and when the n e x t token is either a %' or a "-'.
In such a situation, the parser could either choose to
shift the token (the default action) so that the
expression recognized thus far becomes a
subexpression o f a binary addition operation, or
choose to apply the reduction o p t _ d e l i m i t e r --+

e I° so that the %' or '-" tokens are unary operators in
an expression that finally reduces to the non-terminal
d e l i m i t e d _ i n p u t . As it turns out, the default com~se
o f action taken by the parser to resolve this conflict
suffices since this duplicates MATLAB's behavior.

In a similar m a n n a , the grammar rule
"opt_else--> ELSEIF expr delimited_input

opt_else" introduces a pair of shifT-reduce conflicts.
Thus, the grammar rules behind the conditional
statement give rise to four shift-reduce conflicts.
Productions for the for and while statements simi-
larJy give rise to two shift-reduce conflicts each. The
default course o f act/on that the parser takes in each o f
these cases---that is, a shifT action---is the des/red way
in which these conflicts should be resolved. It is
probably worthwhile to note here that the shifT-reduce
conflict problem posed by MATLAB's conditional and
control statements is quite different from the usual
"dangling-else" problem exhibited by similar con-
sttucts in other prog~rnming hnguages such as Pascal
[4].

i0 The empty string is denoted by e.

Handling... Syntactic Issues in the Design o f a Front-end for a MA TLAB Compiler 39

Supplement to the APL Berlin 2000 Proceedings

9 Summary
In this paper, we presented the design and imple-

menta t ion o f a f ront -end for the MATLA.B language,
apart f rom discussing certain interesting con-
text-sensitive syntactic issues arising f rom the language
as well as their solutions. T h e M A T C H compiler
f ron t -end has been implemen ted and tested on a
variety o f M A T L A B programs. I t is being used to
compile code for e m b e d d e d processors, DSPs and
F P G A s [5]. T h e hnguage recognized is a p roper
subset o f MATLAB. T h e principal parts o f the
g rammar and lexical specification were men t ioned and
explained in s o m e depth. In particular, we justified
w h y the parser supports a l imited fo rm o f MATLAB's
c o m m a n d - f o r m funct ion invocat ion syntax, flagging
syntactic ambiguities to the p rog rammer whenever
they are detected. We also showed how commas were
inser ted among matrix d e m e n t s so that the only
delim/ters visible to the parser were the comma,
semicolon and LXNE tokens. The dual role played by
the single quote character and the syntactic issues that
it gave rise to were explained. Colon expressions and
their g rammar rules were also briefly described.
Finally, MATLAB's assignment statements and control
constructs were discussed along w/th their respective
g rammar rules.

W e believe that the usefulness o f this w o r k lies in
t iding future f ront -end implementat ions for the
M A T L A B language, besides point ing out possible
areas where the Language may be modif ied or aug-
mer i ted so as to make it m o r e compiler-friendly,
wi thout sacrificing its user-fi:iendliness.

1 0 References
[1] http://www.ece.nwu.edu/cpdc/Match/Match- html,

The M A T C H Pmj~t Ho~c Pa~.

[2] http: / /www.mathwoxks.com/, The MathWorks:
Developers of MATLAB, Sim~linir and Stateflow fox
Technical Computing.

[3] http://www.che.wisc.edu/octave/, TrSe ,Octa~r Ho~e
PaN.

[4] A.V. Aho, R. Sethi, and J. D. Ulknan. Co@ikrz:
PriHd2~ks, Tech~iq~*s, aad Tooh. Computer Science Series.
Addison-Wesley PublishingCompany, Inc., Redwood
City, CA 94065, USA, 1988.

[5] P. Banerjee, U. N. Shenoy, A. Choudhary, S. Hanck, C.
Bachmsnn~ M. Chang, M. Haldar, P. G. Joisha, A.
Jones, A. Kanhere, A. Nayak, S. Periyacheri, and M.
Walkden. "A MATLAB Compiler fox Conffigurable
Computing Systems". TtcbHi~l Rrporl CPDG- TR-

9906-013, Ceaxter for Parallel and Distributed
Computing, Department of Electzical and Computer
Engineering, Noxthwestern University, Evanston, IL
60208-3118, USA, Sept. 1999.

[6] A. NL Bauer and H. J. Saal. "'Does APL xea)ly need
rim-time checking?" So~are-Pmcti¢~ a~d Experience,
4:129-138, 1974.

[7] T. Budd. A n A P L Cor~Oi~. SpJ:inger-Verlag New York,
Inc., New York City, NY 10010, USA, 1988.

[8] W.-M. Ch.ing. "Program .Analysis and Code Generation
in an APL/370 compiler." IBM Jomnal of Research and
Dazclopment, 30(6):594-602, Nov. 1986.

[9] S.C. Johnson. "Yacc: Yet Another Compiler
Compiler." Technical Rsport B2, Bell Laboratories,
Murray Hill, NJ 07974-0636, USA, JUly 1975.

[10] P. G. Joisha, A. Kanhere, P. Banerjee, U. N. Shenoy,
and A. Choudhary. "The Design and I.mplerncntafion
of a Parser and Scanner fox the MATLAB Language in
the MATCH Compiler." Tech~icol Rnport CPDC- TR -
9906-017, Center fox Parallel and Distributed
Computing, Department of l/Llectrical and Computer
Engineering, Northwestern University, Evanston, IL
60208-3118, USA, Sept. 1999.

[11] M. E. Leak. "Lex: A Lexical Analyzer Generatox."
TechnicalRsport 39, Bell Laboratories, Murray Hill, NJ
07974-0636, USA, Oct. 1975.

[12] The MathWor.ks, Inc., 24 Prime Park Way, Natick, MA
01760-1500, USA. Using MATLAB-The Language of
Technical Computing, Jan. 1997. U.r/ngMATLAB
(version 5).

[13] R. P. Polivka and S. Pakin. DL" Ths .La~gssaff and I~
U.rag#. Automatic Computation Series. Pxenticc-Ha.l.1,
Inc., Englewood Cliffs, NJ 07458, USA, 1975.

[14] M.J. Q, inn, A. Malishev-~ky, N. Seelam, and Y. Zhao.
"Preliminary Results from a Pa.rallcl MATLAB
Compiler." In 12th Intsmationa/ Para/ld Pro~ssing
S.y~p0x/t#~, pages 81-87, Orlando, FL, USA, Apr. 1998.

[15] L. A. D. Rose. Cor~iitr Techmquesfar MATLzqB
Pr0A~,zm,ls. Ph.D. dissertation, University of Illinois at
Uxbana-Charnpaign, Department of Computer Sdence,
May 1996.

[16] G. O. Strawn. "Does APL Really Need Run-time
Parsing?" S ~ware-Practice and Exp~rience, 7:193-200,
1977.

[17] Z. Weiss and H. J. Sa.aL "Compile Time Syntax
Analysis of APL Programs". A P L ~uote ~uad VoL 12
No 1 (APL81 Pxoceedi.nge), pages 313-320, San
Francisco, CA, USA, Oct. 1981.

40 Pramod G. Joisha, Abhay Kanhere, Prithviraj Baneciee, U. Nagaraj Shenoy, and Alok Choudhary

