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Abstract  t 
In recent times, the MATLAB language has 

emerged as a popular alternative for programming in 
diverse application domains such as signal processing 
and meteorology. The  language has a powerful array 
syntax with a large set o f  pre-defined operators and 
functions that operate on ax_rays or array sections, 
making it an ideal candidate for applications involving 
substantial ax_tay-based processing. 

Yet, for all the programming convenience that the 
language offers, designing a parser and scanner capa- 
ble o f  mimicldng the language's syntax has proven to 
be an acutely difficult task. The language has many 
context-sensitive constructions, and though numerous 
front-end implementations of  MATLAB and 
MATLAB-Iike languages exist, not  much has been 
discussed regarding the effident compile-ume parsing 
of  such languages or how its syntax impacts the pats- 
Jug process. 

In this paper, we present the design and imple- 
mentation of  a compiler front-end for the MATLAB 
language. We discuss in detail both the indigenously 
designed grammar responsible for syntax analysis as 
wen as the lex/cal specification that comp]ements the 
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g~.mmar. I n  the course of  ore: attempts to emulate 
M_A_TLAB's syntax, we were able to un~vel  certain key 
issues relating to its syntax, such as the complications 
arising in parsing command-form function invocations 
within a compile-time cnvitonrnent, the con- 
text-sensitive interpretation of  the single quote char- 
actor, and the "translation of  white space 'within matri- 
ces into dement  separators. 

The front-end effects a conversion of the original 
source to an inte.tmediate form in which statements 
are represented as abstract syntax trees and the flow of 
control between statements by z control-flow graph. 
.All subsequent compiler passes work on this interme- 
diate representation. 

The front-end was designed and implemented as 
part of  the MATCH project, which addresses the 
translation of  a M A T L A B  program by a compiler onto 
a heterogeneous target consisting of  embedded and 
commezdd-off- the-shelf  processors. 

Keywords:  syntax analysis for MATLAB, 
command-form function invocations, single quote 
character, matrices, colon ecxprcssions, assignments, 
control constructs 

1 Xntroduction 
The MATCH project [1] concerns itself with the 

task of efficiently compiling code written in 
MATLAB z a for a heterogeneous target system com- 
prising embedded processors, digital signal processors 
(DSPs) and field programmable gate arrays (FPGAs) 
[5]. Since the language is proprietary, the project also 
faced the additional onus o f  designing the grarnrna~ 
and the lexical specification for it, in addition to 
actually implementing the specifications, using publi- 

l This research was supported by DARPA under Contract 2 MATLAB is a registered trademark of The MathWorks, 
F30602--98--2--0144. Inc. 
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cally available automatic  parser and scanner genera- 
t on .  

MATLA_B is a high per formance  hnguage  geared 
toward techmcal comput ing  [122]. The  language pro-  
vides powerfu l  features, which  enable matrices and 
arrays to be  efficiently and easily manipulated- The  
very  high-level nature o f  these features makes the 
usage o f  the language very intuitive. In  fact, the lan- 
guage's s impfidty and ease o f  use are among the 
primary reasons behind its immense  popular/ ty in 
various application areas. The  language's syntactic 
simpl/city does no t  compromise  its expressive power;  
tiffs fact along with the  interactive nature o f  the system 
and the fast pzototyping that  it empowers  have made  it 
the language of choice in research, analysis and devel- 
opment. 

1.1 Mot i va t i on  
F r o m  the perspect ive o f  syntax analysis, 

M A T L A B  offers numerous  challenges w h o s e  subtlety 
makes them interesung exercises in parser design. 
Examples  o f  these include tackli- Z the single quote  
character, efficiently building 11nifo.ri.n colon expres- 
sions and handling matrix constructs. In fact, some of 
the language's traits make parsing in a compile-time 
envu:onment a much more complicated task and this 
resulted in certain modifications to the set of language 
feattuces that were finally supported by ou¢ compiler. 

For  instance, the syntax for  invoking a funct ion in 
the c o m m a n d  fotrn is fraught with parsing ambiguity 
w h e n  compiled. Because o f  dynamic binding, a par- 
ticular name could refer to either a variable or a func- 
tion depending on the path o f  execution. As a conse- 
quence (see section 3), in certain cases, it may  no t  be  
possible  to establish at compile- t ime whether  state- 
ments  such as 

Au+i; 

c o = e s p o n d  to a binary addition expression or  to a 
function invocation in the c o m m a n d  foxm. In this pa- 
per, the notat ion u will be  used  to denote  a rnixtuLre o f  
one  or  more  blanks and horizontal  tabs. 

Another example is the  single quote  character 
which is used bo th  as a complex conjugate transpose 
opera tor  as well as a string literal demarcator  [12]. This 
dual role can lead to lexical matching problems since 
the character can be  associated with two tokens: the 
CTRANSPOSZ token ( co~espond ing  to the complex 
conjugate t ranspose operator)  or  the TEXT token 
(co~espond ing  to the string literal). Thus,  while in the 
following M A T L A B  code  fragment  
Hellofl ; 
dispu ' *Hello' ; 

28 

the single quote  c h ~ c t e z  sets o f f  a string literal 3, in 
Hel io=i ; 
disp=l ; 
disp' *Hello' ; 

i t denotes the complex  conjugate transpose ope_atoz 

In  the latter code  fragment,  if  there was no 
ass/grtment to disp before  the s tatement  
d i s p '  * H e l l o ' ,  an extor w o u l d  have resulted_ Tha t  is, 
in the absence o f  a preceding assignment  to d i s p ,  
d ± s p ' * H e l l o '  wou ld  no t  have been regarded as a 
function invocat ion even though the built-in function 
d i s p  is visible at that point. Al tematdy ,  i f  an 
assignment to d i s p  had pre- ceded  the s tatement  
d i s p u  ' * H e l l o  ' ,  a n  e r r o r  would  have occurred. Th/s 
issue is further elaborated in section 5. 

M:attices also pose  certain non-tr/vial obstacles to 
parsing. T he  construct ions that M A T L A B  offers to 
represent  matrices are very user-friendly. T h o u g h  quite 
intxdtiee, these construct ions add  significance to the 
actual textual layout  o f  the matrix, making the recog- 
nition o f  these structures m u c h  harder  for the 
parser-scanneet duo.  Fo r  example,  the following lines 
on the left  define a 3 by  3 matrix having 1, 2, and 
-3+4  as the d e m e n t s  in the first row, 0 . 1 ,  +. l i  and 
.2 as =he d e m e n t s  in the second  row, and a, (3) and 
b (3) as the d e m e n t s  in the third row. 

[i, u2u-3u+u4, [1,2,-3+4; 
0.1u+.liu.2 ¢=~ 0.1,+.li, .2; 
au (3) ub(3) ;] a, (3) ,b(3) ;] 

What  should be  no t ed  here is that  the second  d e m e n t  
in the,. first r o w  is not 2 - 3 + 4 ,  that the first d e m e n t  in 
t h e  s e c o n d  r o w  is n o t  O.  l + . l i  a n d  t h a t  t h e  ~ r s t  
element  in the  third r o w  is not a (3) .  The  lines on the 
eight show the same matrix constn.mted using commas 

and semicolons. 

The above examples serve to demonstrate the 
complexity of the parsing and scanning process in 
M A T L A B ,  esperi~lly w h e n  a formal  grarnmax and 
lexica[ descript ion axe no t  publicly available, and when  
such :a specification has to be  designed, duplicating as 
much  o f  the language's obse rved  syntax and behavior  
as possible. Some o f  these p rob lems  are peculiar to a 
compiler  fxamework, since in the presence o f  inter- 
pretalion, the control flow is known by the time a 
stateraent is parsed and executed. We mention and 
discuss these issues in this paper, descJ:ibing the solu- 
tions that we have adopted to solve them in our 
implementation. 

The MATLAB builtin function disp displays its 
arguuatent. 
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1.2 Background  
Work in building a front-end began by experi- 

menting with the Free Software Foundation's distri= 
but/on for G N U  Octave [3], a language having much 
o f  MATLAB's syntactic and semantic features. Begin- 
ning with Octave's grammar, a cote set o f  productions 
were retained and modified with many more  added to 
capture MATLAB's syntax as faithfially as possible. 
The lexical specification was written from scratch. 

The ~ont -end cxmcently supports only a proper 
subset o f  the MATLAB language. Support for struc- 
tures and cell a~ays is presently unavailable in the 
front-end. Furthermore, the c u r r e n t  version o f  the 
parser recognizes expressions, assignments, f o r  loops, 
if statements, global dedawations, while loops, 
return statements and a limited form of function 
invocations in the command form. Both Eunctions and 
scripts can be processed by the front-end. Additional 
constructs such as switch and break statements can 
be easily handled with relatively litde modification to 

the cur_tent grammar. 

The main tools that were used in implernenting 
the front-end were bison and flex. Bison is an auto- 
matic parser generator in the style o f  yacc [9] (see 
y a c c  ( 1 ) ) .  Flex---which is a contraction of  "'Fast 
Lexical Analyzer"---is an automatic scanner generator 
that was implemented as a rewrite of  AT&T's lex tool 
[11] (see l e x ( 1 ) ) ,  with some useful extensions over 
lex as well as some incompatibilities. While bison was 
primatily written by Richard Stallrnan as part of  the 
G N U  project, flex wag authored by Veto Paxson 
when at Lavrcence Berkeley Laborato W. 

1.3 Related work  

Recently, there has been much interest and work 
in compiling MATLAB programs into object code [2, 
15, 14, 3]. However, not  much has been discussed 
regarding the language's syntactic nuances or how they 
may be handled in a compile-time environment. To  
the best o f  our knowledge, we are not  aware o f  any 
previously published work that discusses the parsing 
o f  the MATLAB language. 

The MATLAB language is in many ways a new in- 
carnation of  the APL Language [13]. Both languages 
advocate a functional style o f  programming, support a 
laxge rcpositocy o f  built-in (or primitive) functions and 
treat data in much  the same way---that is, as atrays. In 
fact, there often exist direct correspondences between 
APL's primitive functions and MATLAB's built-in 
functions. A case in point is the p operator in APL. 

In its monadic role, it resembles NLATLAB's s i z e  

built-in function, while in its dyadic role, it behaves 
like MATLAB's r e s h a p e  built-in function..A.uothe.t 
example is the monadic I (iota) APL primitive, also 
known as the index generator fi.mcdon. This operator 
resembles a specialiT.ed version o f  MATLAB's c o l o n  

built-in function. 

However, f rom the standpoint o f  syntax analysis, 
the two languages present matkedly different issues. 
The APL language syntax is so regular that it can 
almost be recognized by a finite state automaton [7]. 
On  the other hand, due to the context-sensitivity o f  
the MATLAB language, it appears that the language's 
syntax cannot be described by a conventional 
LALR(1) specification alone. O n  the Rip-side, the 
same context-sensitivity has imparted to the language 
an intuithreness and nehness that is among the chief 
reasons behind its widespread popularity. Though 
APL is a rich language in its own right, the same 
"regulamess'" is probably also the reason behind the 
language's notoriously cryptic syntactic structure. 

In [8], a non-tecursive parsing algorithm that uses 
a two-symbol lookahead and that shifts between two 
parsing states is briefly ment ioned for a restffcted ver-  
s/on o f  the APL language. These restrictions included 
disallowing the usage o f  function names as either 
variable or labd names, thereby eliminating the pos- 
sibility o f  patsing ambiguities arising f rom late binding. 
Since supporting all o f  APL's features would necessar- 
ily entail  some r a n - t i m e  parsing, reseatchers have 
proposed systems that rely on "entw-time partial 
parsers" and ."ran-time parser completers" [16] to 
mitigate the run-time parsing overhead. Though such 
methodologies can be cam:led over to MATLAB, it is 
not  cleat how these techniques can be incorpowated in 
an optimizing compiler fwamework. Approaches such 
as [17] parse and compile a class of  APL programs 
that do not  utilize features that could dynarnicaily 
change the syntactic meaning o f  the program's state- 
ments. This approach is probably justifiable in light of  
empkical evidence that suggests that most  APL coders 
abstain from using language features that alter the 
syntactic structure o f  the program with each execution 
instance [16, 6]. By excluding support for some of  
MATLAB's language constructs, this is essentially the 
philosophy that we also adopt in the MATCH com- 
piler. 

The complete source code containing the lexical 
specification and the context-free grammar is available 
as an appendix to [10], a technical report  that descrbes 
the design and implementation o f  the MATCH com- 
piler front-end in greater detail, 
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1.4 Out l ine 
The  rest o f  the paper is organ/zed as follows. In  

2, we provide an overview o f  the M A T L A B  language, 
describing in brief  some o f  its lexical aspects, besides 
in t roducing the n o d o n  o f  M-files and  showing a 
sample MATLAB program. Terms such as " c o m m a n d  
fozrn" and " c o m m a n d - f o r m  invocat ion"  will be 
explained in this section. In  ~ 3, we consider the 
implications o f  MATLAB's  c o m m a n d - f o r m  funct ion 
invocat ion syntax and argue the reasons for support-  
ing a limited version o f  that  syntax in our  compiler. In  
§ 4, we account  for the grammar  rules that  enable 
assignments to matxix-like lef t -hand sides which may 
also contain multiple variables. The  dual rule played by 
the single quote character and the issues that  it entails 
are presented in ~ 5. Matrices in M ATLAB and the 
m a n n ~  in which commas axe inserted to separate 
d e m e n t s  are explained in g 6. In  g 7, we show h o w  the 
syntax directed t ransht ion  process can be levexaged to 
parse all colon expressions to a un i fo rm full ternary 
tree form. Finally, the structure o f  the conditional 
s ta tement  as well as the shift-reduce conflicts that  its 
grammar  nxles g/re rise to are discussed in g 8. 

2 L a n g u a g e  P r e l i m i n a r i e s  

A M A T L A B  program basically consists o f  a se- 
quence o f  statements. A statement  in M A T L A B  could 
be a funct ion call, an expression, an assignment., a 
control  construct  or a g l o b a l  declaration. Fo r  exam- 
pie, the s ta tement  

disl~ ( 'HelloUWorld! ' ) ;  

invokes the bu~t-in function crisp that displays its 
argument  on the s tandard output.. The  disp funct ion 
does no t  return a value; functions that  do can be used 
to build expressions. Fo r  instance, 

r=rand (2) +i; 

produces a 2 X2 matrix o f  r a n d o m  values between 1 
and 2 and assigns the result to the variable r. Th~ 
an example o f  an assignment  statement.  

2.1 Command~Funct ion dua l i ty  
In MATLAB,  functions can be invoked in two 

ways. In addit ion to the typical way o f  c.lling a func- 
t ion as shown earlier with the dl sp and rand built-in 
functions,  M A T L A B  also allows for  "command-form'"  
function invocations. T h e  disp (' HelloUWorld! ' ) 

ecxample shown above could have been re'written as 

dispU 'HelloUHorld! ' ;  

and the effect  would  have been the same. In general, 
any funct ion f that  accepts a string argument  e can be 
invoked in the functional form (i.e., as f~)) or in the 

3 0  

command firm (i.e., as f u  0 [12]. In  the latter form, 
the invocat ion is caned a command-j~rrafunction invocation 
off. 
2.2 Lexical  Speci f icat ion Overv iew 

A M A T L A B  identifier consists o f  a letter followed 
by z,=o or  more  underscores,  letters or  digits. A 
M A T L A B  numeric  quanti ty can be free o f  a decimal 
point  and  an exponent ,  or consist  o f  either a decimal 
point  or an exponent  or both.  In  the lVL&TCH lex/cal 
specification, the name definition 4 INTEGER represents 
nurne~c quantities that  are free o f  a decimal point  and 
exponent;  all o ther  numeric  quantifies c o = e s p o n d  to 
the nOUBLE name  definition. For  example, the char- 
acter sequences l e - 2  and X. associate wi th  the name 
defux[tion DOUBLE, while the character sequence X 
associates wi th  the name  definit ion INTEGER. Figure 1 
fomaaUy describes some o f  the name  definitions used 
in the: lexical specification. 
HSPACE [ \ t . ]  
HS PACES { HS PACE } + 
NEWLINE \n[ \r l \f 
NEWL INES {NEWLINE } + 

ELLIPSIS \. \. \. 
CONTINUATION {ELLIPSIS} [^\n\r\f] * 

{NEWL Ibm} ? 

COMKENT \% [^\n\r\f] * {NEWLINE} ? 
IDE~PIFIER [ a-zA-Z ] [_a-zA-Z0-9 ] * 

DIGIT [ 0- 9 ] 
INT~3ER {DIGIT} + 
EXPOI~IENT [DdEe] [+-] ? {DIGIT}+ 
MANTISSA ( {DIGIT}+\. ) l 

( {DIGIT} *\. {DIGIT}+) 
FLOATINGPOINT {MANTISSA} {EXPONENT} ? 
DOUBLE ( { INTEGER } { EXPONENT } ) l 

{ FLOAT ING POINT } 
NUMBER {INTEGER} I {DOUBLE} 
IMAG INARYUNIT [ ij ] 

Figure 1: Name Definitions 

In MATLAB,  there exist a couple o f  situations in 
which horizontal  spaces become significant. A hori- 
Zontal .rpace is either a blank o t  a hor izontal  tab and is 
denoted  by the name  deRnidon HSPACE shown in 
Figure 1. Thus ,  the symbol  u represents the lexical 
pat tern ma tched  by the HSPACES name definition, 
which is at least one hor izontal  space. Apar t  ~ o m  
funct ioning as token demarcators and  matrix d e m e n t  
separators, horizontal  spaces can also influence the 
interpretat ion o f  succeeding character sequences. In  
the b l A T C H  compiler  fxont-end, they are cast away by 

4 Name definitions are basically shorthands that simplify 
the main scanner specification (see flex(l)). 
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the scannex, so that the parser sees a token stream fxee 
of  any horizontal space. 

Input lines in MATLAB can be continued onto 
multiple lines. This "breaking" of  long statements is 
accomplished by using a contiguous sequence o f  three 
periods, subsequently followed by a newline, carriage- 
return or form-feed character (i.e., a I~mWLINE lexical 
pattern). Everything from the ellipsis until and in- 
clucling the ~rgwLImg character---or untU the end of  
the input is ignored, s Comments likewise begin at a 
percent character (%) and continue until a NEWLINE 
character, or until the end o f  the input. 

2.3 M-f i les 
Statements in a MATLAB program axe separated 

from each other  by &limitcn'. Delimiters are sequences 
consisting o f  an axbittaxy mixture of  comma (','), 
semicolon (';') and LINE tokens. Input files that con- 
rain code w=i~en in MATLAB axe called M-t/e;. 
M-flies can either be ffie.dio.; (which r~ay accept input 
arguments and wh/ch may return output axguments), 
or so/pt, r (which neither accept inputs nor  produce 
outputs). The formex are often dabo~te ly  refereed to 
as function M-files to distinguish them from built-in 
functions. Other than being available in files, there is 
no difference between the two. The main distinction 
between functions and scripts is that while the former 
execute in a workspace independent o f  the caller's 
environment, the latter execute in the caller's work- 
space. 

Syntactically, functions and scripts axe the same, 
except that the first .0~-eenp~ line in a function must  
be thef t .chin d~finition h.e [10]. A LINE token ,  which is 
returned by the lexical analyzer to the parser whenever 

s At  the time of  this writing, the complete line 
continuation specifics for MATLAB (in both versions 
5.0 and 5.2) seemed non-unifozrn and inconsistent. 
This is because in certain cases, the line continuation 
sequence behaved as a token demaxcator, while not  in 
other cases. For instance, while the following lines 

displ=2 ; 

disp... 

1 

resulted in the value of  displ being displayed, the 
following lines 

displ=2 ; 

a=disp... 

1 

resulted in an error situation when an assignment  to a was 
attempted. More esoteric behavior was observed when the 
line continuation sequence occurred within matrices and 
among M A T L A B  keywords  such as global and for. 

a COMMENT oi: a NEWLINES lexical pa t t e rn  is s c a n n e d  
b y  it, signifies an  e m p t y  line. A p r o g r a m  file that  is a 
script m a y  e i ther  con ta in  optional delimiters,  o r  c o n -  
tain a sequence o f  statements optionally preceded by 
delirnitets. Additionally, external programs can be 
made to act like 1MATLAB functions using the she// 
~ea]~e mechanism [12]. 

2.4 Expressions 
Expressions in MATLAB axe composed as opera- 

tions on subexpressions. Subexpressions could be 
functions returning values, resuhs o f  an array section 
operation, identifiers, matrices, string literals and 
quantities that could either be nurnedc or imaginary. 
The MATCH lexical specification enables two types of  
numeric quantifies to be identified (INTEGER and 
DOUBLE). In addition, the scanner identifies any num- 
ber (i.e., NUMBER) followed immediately by the imagi- 
naxy unit as an imaginary quantity. The imaginary unit 
is specified by either of  the chaxacters i or j .  This is a 
lexical match and is not  affected by any reaching 
definition against the variables i or j .  For instance, 
the character sequence 2j  wiU always be considered as 
an imaginary quantity irrespective of  any preceding 
definitions against the variable j .  

% Create a 1024 x 1024 array, initialized 

to O. 
a(l : i024,1 : 1024) =0; 

% Set all values along the first column to 

l+i. 

a(: , i) =l+i; 
% 

% The Jacobi iteration. 
% 

a(2:1023,2:1023)=(a(l:1022,2:1023) . . . 

+a(3:1024,2:1023)+a(2:1023,1:1022) . . . 

+a(2:1023,3:1024))/4; 

Figure 2: The Ja¢obi Itc=ation 

To illustrate, we show a sample MATLAB code 
fragment that performs the wall-known Jacobi ite_a- 
tion in Figure 2. The Jacobi iteration executes a 
four-point stencil computation in which the values at 
each interior grid point (1022X 1022 in all) axe updated 
as an average of  the values associated with its four 
caxdinal neighbors. This averaging operation is suc- 
cincdy expressed using MATLAB's vector notation. In 
the above code fragment, the tight-hand side of  the 
last assignment statement adds the values at corre- 
sponding grid points in four conforming a m y  sections 
and averages the result. The assignment to another  
conforming aa=tay section achieves the desired update 
action. 

Handling... Syntactic Issues in the Design of  a Front-end for a MA TLAB Compiler 3 1  
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3 C o m m a n d s  
As men t ioned  earfier, funct ions can either be in- 

y o k e d  in the funct ional  fo rm or  in the c o m m a n d  fo rm 
in M A T L A B .  For  instance, we could invoke the 
built-in funct ion type either like type('rank') 

which corresponds to the functional  form, or  like 
t y p e U r a n k  which corresponds  to the c o m m a n d  
form. A s ta tement  such as tYl~e /U ' r a n k '  also 
qualifies as a c o m m a n d - f o r m  funct ion invocat ion and  
is equivalent to type/u rank. 

A c o m m a n d - f o r m  invocat ion o f  a funct ion occuxs 
whenever  the fizst token  on the M A T L A B  input  line is 
an identifier that  cozresponds to a funct ion,  and ff  the 
second  token is separated f rom the first by  hor izontal  
spaces. T h e  only exception to this rule is when  the 
second token is an opening paxenthesis. In  this case, 
the invocat ion c o ~ e s p o n d s  to a notrnal  funct ion call. 

Fo r  ~ - r a p l e ,  the fol lowing lines 
dispu 1+2 ; 
dispu (1+2} ; 

display 1+2  a n d  3 as the ig  r e s p e c t i v e  r e su l t s .  

Therefore ,  i f  A.xn is a funct ion  M-file, the  state- 
s e n t  Au +i resuhs in an a t t empt  to invoke the func- 
tion M-file wi th  the ste/,,g a rgument  +1. In  fact, A.m 
m u s t  be def ined as a funct ion  M-file that  accepts at 
least one  input  a rgument  for  this particular line o f  
input  to work;  otherwise M A T L A B  complains o f  an 
eg£oE. 
command_form 

text_list 

name text_list 

TEXT 
I text_list TEXT 

identifier 

IDENTIFIER 

name 

identifier 

Figure  3: Productions for command form 

In  the M A T C H  compiler,  sentences that  derive 
f rom the c o m m a n d  fo rm non- terminal  shown in 
Figure 3 require arguments  to the funct ion to be 
explicitly quoted.  6 T h a t  is, only strings such as 
type U ' rank' reduce to the c o m m a n d  fo rm 
non- terminal  in the compiler  front-end.  Sentences 
such as t y p e  u r a n k  are n o t  recognized as com- 
m a n d - f o r m  funct ion invocations and  resuh  in a parse 
error. T h e  M A T L A B  code f ragment  in Figure 4 

6 W e  shall present grammar rules in a format compliant 
with bison's input syntax (see bison(l ) ) .  In general, 
n o n ~ n n i n a l  symbol  names will be in lowercase and 
terminal symbol names will be in uppercase. 

3 2  

p r ~ d e s  the reason beh ind  the  imposi t ion o f  this 
constraint.  

S u p p o s e  t h a t  a f u n c t i o n  M - f i l e  c a l l e d  
% A . m  e x i s t s  i n  t h e  MATLAB M - f i l e  
% search path. 

if (rand > 0.50) 
A=i ; 

end; 
A +i; 

Figure 4: A Syntactically Ambiguous Code Fragment 

Cont ro l  can teach  the s ta tement  A uJ + 1 either after 
executing the control  c o n s t r u c t - - i n  which  case, A wiU 
be lxeated as a vari-blc or  w i thou t  executing the i f  
s ta tement  b o d y - - i n  which  case, A will be regarded as 
a function.  Thus ,  on  reaching the s ta tement  A u  +1, it 
is n o t  d e a r  to the compiler  whe the r  to parse the 
s ta tement  as a funct ion invocat ion  in which  the func-  
t i on  A is invoked  with the s tnng  literal + 1 as the only 
argxtrnent, or as the binary addi t ion o f  the variable A 
w i t h  the numer ic  cons tan t  1. Hence ,  bo th  the abstract 
syn1:ax trees (ASTs) sho,am in Figure 5 qualify as 
possible parse trees for  the  above statement.  

A 4- 

" + L "  A E 

Figu re  8: Candidate Parse Trees 

I t  m u s t  be emphas ized  that  this is a.par.ring prob- 
lem in addit ion to an inferencing one. This  p rob lem is 
pecaliat  to the  compiler  and  the M A T L A B  interpreter  
is n o t  faced v0ith the  same pred icament  because the 
pan;ing o f  A u +1 begins only after control  reaches it, 
by wh/ch t ime the parser is aware o f  the nature o f  A. 
A n  interest ing sidebar to this discussion is that  i f  
A U +1 were  the only  s ta tement  in the above code 
frag~xlent and i f  A.m were a func t ion  M-file in the 
M A T L A B  search path,  M A T L A B  always parses it into 
the left  AST shown in Figure 5. T h a t  is, the s ta tement  
is aJkvays considered to be a c o m m a n d - f o r m  funct ion 
invocat ion irrespective o f  whe the r  A accepts an input  
argxunent and  whe the r  A produces  a re turn value. O n  
the o ther  hand,  i f  the s ta tement  were  A+i,  M A T L A B  
will always parse it in to  the zight AST shown in Figure 
5, itxespective o f  whe the r  A accepts an inpu t  a rgument  
and whe the r  A returns a value. In  this case, t h e / n t e r -  
pretat ion is tha t  the  value re tu rned  by an invocat ion o f  
the funct ion A wi thou t  axguments is added  to the 
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numeric constant 1. Hence, i f  it turns out that A does 
not return a value, the execution results in an error. 

The problem cited here is essentially one stem- 
ming from delayed binding. In other words, it may not 
be possible to conclusively say whether the A in AU +1 
is a variable or a function M-file until tun-time. In that 
way, the problem has an analogy in APL. Expressions 
such as e+f  in APL could be statically ambiguous if  
the binding of  e is not known until run-time. De- 
pending on whether e is bound to a monad/c defined 
function or a variable, the expression could mean 
cithere(+(f)) or  (e)+(f). 

A strategy by which our compiler could have sup- 
ported the interpreter's full-fledged command-form 
fimction invocation syntax would have been to create 
and maintain both ASTs against a statement when in 
doubt. Apart firom the fact that the parser would now 
have to detect such syntactic ambiguities, the creation 
and maintenance of  two ASTs would have further 
complicated analysis by subsequent compiler passes. 
Hence, we decided to eliminate the potential for such 
parsing ambiguities by' supporting a limited version of  
MATLAB's command-form function revocation 
syntax, and by flagging ambigu/ties to the programmer. 

4 Assignments 
Assignments in MATLAB come in three varia- 

tions. The first variation allows the assignment of  an 
arbitrary expression to a variable or an array section. 
As an example, 

clear a; 

a(1:2:3,I:3) = 2; 

creates a 3 by 3 matrix against the variable a having the 
dement  2 along the first and third rows and the de- 
ment  0 in the remaining rows and columns. The 
second variation is essentially the same as the first, 
except that the variable or array section syntax is 
endosed within a pair o f  box brackets. For instance, 
the previous example could have also been written as 

clear a; 

[a(1:2:3,1:3)] = 2; 

and the same value would have been assigned to a. 
The third form allows a function to return more than 
one value. In this form, the right-hand side of  the 
assignment is restricted to be a function invocation. 
This is illustrated in the following example using the 
built-in function s i ze. 

Ix y] = size(1); 

4.1 LefT-hand sides 

To describe' the above three varieties o f  assign- 
ment  statements, the productions shown in Figure 6 

can be used. The non-terminals s_assignee_matrix 
and m_assignee_~trix represent left-hand sides 
that are enclosed within a pair o f  box brackets. While 
the former non-terminal captures single value 
left-hand sides, the latter expands to muhip1e value 
left-hand sides. These non-terminals are formally 
elaborated in Figure 7. 
assignment : reference 

' = ' expr 

I s_assignee_matrix 

' = ' expr 

I m_as s ignee matrix 

'=' reference 

Figure 6: Productions for assignment 

Do we need the non-terminals s_assignee_matxix 
and rr~ass/gnee_ma~x shown in Figure 7 to denote 
box-bracketed left-hand sides? Can't wc rely on pro- 
ductions which expand to matt{ces to represent such 
left-hand side constructions? The answer is no. 
Though the non-terminals s_assignee matrix and 
re_assignee mat,-ix correspond to sentences that 
largdy resemble matrices, they are not cxacdy the 
same. Both sentences consist of a SCClUCnCe of one or 
more dements that are separated from each other by 
horizontal spaces or commas and that are enclosed 
within a pair o f  box brackets. But that is 

reference : name 

I name 
' (' argument--list ') ' 

name 

identifier 

argument_list 

s_assignee_matrix 

m_assignee_matrix 

reference_list 

: identifier 

: IDENTIFIER 

1 i ;  , 

] e x p r  
I ' : ' ' ,  ' a r g u m e n t  l i s t  
B 

: LD reference RD 

: LD reference 

' ' reference list RD 

: reference 

I reference 

' ' reference--list 

Figure 7: Productions for the Left-hand Side 

where the resemblance stops. First, while matrices 
allow for an optional comma after the last dement,  
box-bracketed left-hand sides do not. Second, semi- 
colons and LIIVE token delimiters cannot be used to 
separate dements in a box-bracketed left-hand side. 
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Third, the dements ha an s_assignee_~trix or 
re_assignee_matrix sentence tan only be variables 
or array sections. Four th ,  any expression may  be 
assigned to a n  s_assignee_matrix whereas the 
same is not true for  a n  re_assignee_matrix. PiEth, 
assignments to empty  matrices are invalid. Not ice  that 
though  the last three differences could have been 
handled  by incorporat ing semantic  checks in the 
action par t  o f  the matr ix  productLons, the first two 
differences are p u r d y  syntactic and  warrant  the intro- 
duct ion o f  new non-terminals  to describe such 
lef t -hand sides. 

The non-temainal expr in the assignment and 
argument Ust productions corresponds to a MATLAB 
expression (see ~ 2.4). I t  mus t  be no t ed  that  the 
M A T C H  grammar  does no t  permi t  assignments t o  be 
a part  o f  expressions. In  o ther  words,  s tatements such 
as (a=l)+l are n o t  allowed. This res t r /cdon is in 
accordance with  that  observed in MATLAB.  

4.2 The LD and RD t o k e n s  

T h e  tokens LD and ND shown in Figure 7 actually 
cor respond  to the lexemes [ and ] respectively. These  
lexemes also cor respond  to the tokens '[" and  ']" tha t  
the  lexical analyzer returns w h e n  matrices are en- 
countered  (see ~ 6). Hence ,  w h y  do we  need to distin- 
garish the [ and  ] lexemes in these two situations? 

I f  the g rammar  rules for s_assignee~natrix 
and re_assignee_matrix ass~nee mat~Y had used 
the  '[" and  "]'  tokens to enclose the demen t s ,  a re- 
duce-reduce conflict  wou ld  have arisen. T o  i.Uustrate 
th/s, suppose that  the token stream seen so far by the 
parser were ' [', 'a '  and  '] '. Then ,  the parser could 

Blnllmtluldll ~mdl-nlltiml klmll.. I 

I - - ' - ' - - ' - - - " - -  I 

m J l ¢ .  

1 
C --'- 3~ 
Figure 8: The LD, T Tokens 

either be in the middle  o f  an ass ignment  or an expres- 
sion. T h a t  is, unK! the "=' token  is seen, the parser 
could  either be in the mids t  o f  a sentence that  ulti- 
mately reduces to the s_assignee_matrix o r  

m_~Lssignee__matrix non-tenxfinah, or in the midst 
o f  a sentence that  ul t imately reduces to a matrix. T h e  
defimlt course o f  act ion taken by the parser in such 
situations cannot  be relied on, since a reduct ion to the 
s_~s signee matrix or re_assignee_matrix 
nor.L-terrninals m u s t  prevail in an ass ignment  context,  
while a reduct ion  to the  matr ix  non- terminal  mus t  
prc ta i l  in an expression context.  

Im, ~,u'. ~- 

I= 1 
. j -  

Figure  9: The RD, '] ' Tokens 

T o  remedy  the  above problem,  the scanner  re- 
tunis  a separate pair o f  tokens whenever  an assign- 
m e n t  to a box-bracketed  s t ructure  is detected. The  way 
this. is done  is illustzated in Figure 8 and  Figure 9. The  
steps shown  in these f low charts are hnplernented  in 
the lexical specification. For  instance, to determine 
whe ther  an LD or  ' [" token needs to be re turned  on 
encounter ing  the [ lexeme, the scanner  reads ahead 
until  a ma tch ing  box bracket  is found.  This  read ahead 
is pe r fo rmed  in the act ion par t  o f  the \ [ ex tended 
regular expression. I f  a ma tch ing  d o s i n g  box bracket 
is no t  found,  the  lexical analyzer returns the token  
LEXERROR s i n c e  t h i s  is an error situation. I f  a match-  
ing d o s i n g  box bracket  is found,  the scanner  deter- 
mines whe the r  the nex t  lexerne in the input  is ~ - - .  
This is because while [ a , b ]  = s i z e  (1) is an assign- 
m e n t  to a box-bracketed  structure, [ a , b ]  = = s i z e  (1) 
is an expression. Here  we use the  symbol  ~ to denote  
~ r o  or  morn hor izonta l  spaces. I f  the next  lexeme is 
indeed ~ = = ,  then  the operfing box  bracket  is part  o f  
a matr ix that occurs on  the le f t -hand side o f  an equal- 
ity compar i son  expression. Thus ,  the scanner  needs to 
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return the ' [ '  token in this situation. I f  the next  lexeme 
in the input  stream is instead j =, an assignment  to a 
box-bracketed structure is detected. Therefore,  the 
scanner  returns the LD token in this case. I f  some 
other  sequence o f  characters occurs as the next  lexeme 
in the input  stream, the scanner once again returns the 
' [ '  token. In all cases, the lexical analyzer returns 
control  to the parser only after relinquishing the 
characters that  were read ahead back to the input. 

5 The Single quote Character 
The actual role played by the single quote charac- 

ter is determined by horizontal spaces that precede it. 
In  a non-matr ix  scenario, horizontal  spaces within 
expressions ate usually inconsequential.  For  instance, 
the M A T L A B  expression statements 1+2 and  1 u +2 
and  I u + u 2 are all the same, and it does no t  mat ter  
whether  horizontal  spaces surround the binary plus 
operator.  However ,  there are situations wherein 
horizontal  spaces within expressions do become sig- 
nif icant. Apar t  f rom the obvious case o f  a matrix in 
which horizontal  spaces serve as d e m e n t  separators, 
the case o f  the single quote  character is another inter- 
esting instance where  horLzontal spaces actually de- 
termine h o w  a chaxacter sequence mus t  be interpreted. 

Consider the following character sequence: 
AU ' +1 ' ; .  A n d  suppose that  the feont-end has been 
able to ascertain that  the identifier A in the above 
character sequence actually conresponds to the func- 
don 1VI-file A. In. In addition, let the funct ion deRnition 
line in A. m specify a single input  a rgument  and a single 
ou tpu t  argument.  Therefore ,  the funcdon  M-fde can 
be invoked either wi th  one argument  or no arguments.  
Consequently,  how should the parser-scanner pair 
process the above character sequence? Should the 
lexical analyzer return an IDENTIFIER token followed 
by  a TEXT token finally fol lowed by a semicolon 
token, so that  the parser recognizes a c o m m a n d - f o r m  
invocaUon o f  a function---or  should  the lexical ana- 
lyzer return the token stream IDENTIFIER, 
CTRANSPOSE, '+ ' ,  INTEGER, CTRANSPOSE, ';' SO that  
the parser recognizes an expression? Should the 
presence o f  the horizontal  spaces between the charac- 
ters A and • be ignored so that  the character sequence 
A" +1 " ;  is also treated in the same way? 

M A T L A B  interprets the single quote  character by 
always applying a simple rule: f f  a single quote  charac- 
ter immediately foUows an INTEGER, DOUBLE, 
IMAGINARY, IDENTIFIER, TRANSPOSE, CTRANS- 

POSE, =]' o r  ' ) '  token,  i t  is regaxded to  b e  t he  
CTRANSPOSE token. Otherwise,  it is considered to be 

the starting demarcator  o f  a string literal. Not ice  that  
this rule resolves the above men t ioned  ambiguity. Tha t  
is, the character sequence AU ' +1 '  ; is scanned rote the 
token stream IDENTIFIERj TEXT, c;, by this rule, 
whereas the same rule causes the character sequence 
A" +I  " ; to be scanned into the token stream 
IDENTIFIER, CTRANSPOSE, =+' ,  INTEGER, 
CTRANSPOSE, ';'. Notice also that  by this rule, the 
character sequence I u • ; produces a syntax error. 7 

The  M A T C H  scanner reproduces /viATLAB's 
single quote  semantics by using start conditions. The  
start condi t ion mechan i sm essentially enables the 
scanner to "'activate" only a subset  o f  the n.fles in its 
leadcal specification depending  on its current  state. In  
the absence o f  explicitly declared start conditions, the 
scanner  always exists in a s in~e  state wh/ch is associ- 
a ted wi th  the start  condi t ion INITIAL. ~i scs/mer can 
be transited ffi:om one statt condi t ion to another by 
BEGIN c o mma n d s  (see flex(l)). Extended  r eguh t  
expressions that  are prefixed by the construct ion 

<sc>.  where  s c  is a declared start condition, axe 

active only w h e n  the scanner  is in the start condit ion 
sc .  Ex tended  regular expressions that  are no t  prefixed 
by <sc> I re  t i ther  active or  inactive in the start  condi- 
t ion s c  depending  on whether  the start condit ion is 
inclusive or  exclusive. The  p redefmed  start condit ion 
INITIAL is inclusive. 

T o  imitate MATLAB's  single quote  semantics, the 
scanner  is always in one o f  two start  conditions. These 
are referzed to as INITIAL and QuoteSC in the lexical 
specification. When in INITIAL, the scanner regxtds 
the single quote  character as the demarcator  o f  a string 
literal. W h e n  in Q u o t e s c ,  the scanner considers the 
single quote  character as the CTRANSPOSE token. We 
thus have the extended regular expressions 
<INITIAL>' [^ " \r\f" \n] * " and <QuoteSC> ' 

whose  action parts return the tokens TEXT and 
CTRANSPOSE respectively. Since a single quote char- 
acter i m m e d i a t d y  after an ZNTEGER, DOUBLE, 
IMAGINARY, IDENTIFIER, TRANSPOSE, ~]', <)' or 

CTRANSPOSE token should be regaxded as the 
CTRANSPOSE token, the act ion parts o f  the extended 
regular expressions responsible for  each o f  the above 
tokens except  the last contain a BEGIN c o m m a n d  that  
changes the start condi t ion to QuoteSC.  Once  the 
scanner enters the QuoteSC start condition, the only 
way it can exit this start condi t ion---and thus enter the 
start condi t ion INITIA.T_,~-is i f  it  scans lexemes such 

7 This is quite comrary to what one would intuitively 
expect! 
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character curzently being scanned by the lexical 
analyzer as the cxrren# bracAet .es~.g (CBN) of the input 
stream. We thus see that ho1:/.zontal spaces aze 
significant only when their BN is either '[" or LD. 
Hence, wh.Re [iu+2] is equivalent to [I,+2], 
[(lu+2)] (oI: [(I+u2)] or [(lu+u2)]) is the 
same as [ ( I + 2 )  ]. 

Last Processed 
Token 

Next Lexeme Prefix 

~.NTEGF.,R, 
D O U B L E ,  

IMAGINARY,  
TEXT, 

~', 
CTRANSPOSE,  
TRANSPOSE,  

T, 
IDENTIFrI~.R 

Befo~e After 

[ ] ,  

m; 
Im} ] 
[ ] *  * 
~ ^  ^ 

~ :  
JB< < 

m >  > 
~ =  = 

m& & 

I l l  I 
m/ / 
m \  \ 
m0 0 
( ,(or ( 

( ,(or ( 
• ¢ 

J 

u.' L=I , 

i11-/ ./ 
i l l . \  .\ 

• -I- .-I- 

u + U  + U  
u _ U  _ U  

, *  
• • .  , . . , .  

T a b l e  1: Comma Insertion Schematics 

Since the potential to insert a comma exists when- 
ever the C B N is either ' [ '  or  LD, the input is read 
ahead in this situation with the aim o f  insezting a 
comma. More  predsely, the input  is read ahead when 
the C B N is d the r  ' [' or LD and when the parser recog- 
nizes a numeral, an imaginary quantity, a s~ng  literal, 
a p~enthes ized express/on, a transpose expression, a 
conjugate transpose expression, a variable, a matrix, a 
function call or an array indexing expression. This fact 
is graphically shown in Figure 10. 

6.2 The c o m m a  inser t ion mechan i sm  
The  next issue that needs consideration is the ac- 

tual comma insertion specifics. Where in the unscan- 
ned input, and undez what  cizcurnstances should a 
comma be insetted? For  instance, g/yen the input 
character sequence [ 1 u 2 ] ,  the front-end must  insert a 
comma after the 1, effectively converting the chazacter 
sequence t o  [ 1 , 2 ] .  Notice  that the lexeme i 
co~esponds to the INTEGER token. On ~ecognizing 
this token, the pazscz applies the expr----~ INTEGER 
production without consulting a lookahcad. 9 Since the 
CBN is '[' when this reduction occurs, the ffiront-end 
reads ahead, converting the yet to be scanned 
character sequence u2] to , 2]. In this way, it is 
ensured that the comma token (', ') will be the next 
token that the scanner would return to the pazser, 
rather than the ZiXPPEGER token. Table I summarizes 
all the cases that need to be considered for comma 
insertion. For instance, the first line of this table states 
that the fi:ont-end converts [au, b] to [a,b]. Simila~ 
remarks apply to the next thi±teen lines in the table. To 
recapitulate, B denotes zero or more horizontal 

spaces. While the 0 symbol in Table I indicates a 
ncwline, carriage return, fotrn-feed or percent charac- 
ter, the u t symbol represents a single horizontal space 
chazacter. The "Next Lexeme Pzefix'" column in this 
table refers to the initial part of the next lexcme that 
the lexical analyzez would scan, b~re and ,~o- comma 
insertion; while the "'Before" sub-column denotes this 
initial past before comma insertion, the "After" 
sub-column zepresents the initial part after comma 
insertion. Observe  that the u (  lexcme prefix gets 
converted to ( o~, ( depending on whethc~ the 
current bracket nesting is LD or not  tespectivdy. That  
is, while MATI_,A.B regards [ x u  ( 2 ) ]  as being 
[x, (2) ] (and not [x(2) ]), it treats [xu (2) ] =3 as 
an ass ignmen t  to  . [ x ( 2 )  ] .  Fuu~thezmore, the  ( l e x c m e  

Handling... Syntactic Issues in the Design of  a Front-end for a MA TLAB Compiler 

9 In fact, the grammar has been written in such a way so 
that a look_ahead is not consulted when any of  the 
productions shown in Figure 10 are applied. 
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prefix remains as ( or gets converted to , ( depending 
on whether  the last processed token is an 
IDENTXFXER token or  no t  respectively. Tha t  is, while 
[x ( 2 ) ] remains unchanged,  [ 1 (2) ] gets converted 
to [1, ( 2 ) ] .  The  l i s t  line in Table 1 denotes the 
comma insertion action for all other lexemes whose 
prefixes do not  match  any o f  the preceding rows; in 
this case, a comma is inserted before the first 
non-hor izontal  space character. 

A special exception to the rules documented  in 
Table 1 occurs when  the ha t  processed token is either 
an INTEGER or  g DOUBLE and when the first character 
in the unscanned input is alphabetic. This is because 
chalacteJ~ sequences such as [ la] would otherwise be 
parsed as [l,a]. When provided with this chaxactet 
sequence, MATLA_B complains with the message 
'~lissing operator, comma, or semi-colon. # 

after matching the lexeane i. Yet, when  provided With 
character sequences such as [ i .  i .  1 1 ,  [ a .  1 1 ,  [ 1 [ 1 ]  ] 
and [lil], IV[ATLAB parses them in the "'expected" 
way---as [i.i,.i], [a,.ll, [i,[i]] and [li,l] 

respectively. This " 'anomalous" behavior was noticed 
only when a lexeme corresponding to the IDENT- 

IFIER token immedL~tdy fonowed a lexeme 
cotxesponding to the INTEGER or DOITBLE tokens. 

7 Colon Expressions 
Colon expressions axe a useful way to succinctly 

describe row vectors in which the dements form an 
a.~thrnetic progcession. For example, the statement 

a=l:4; 

assigns the same value to a as does the assignment 

a=[i,2,3,4] ; 

A s~/de could also be provided, so that a=l: 2:4 is 
equivalent to a= [ i ,  3 ]. M o r e  precisely, colon expres- 
sions come in two basic flavors. The  binary construc- 

tion ~ ; ~ describes the row vector  

(cz, u +l, cz +3 ..... t) 

and the empty maln:ix otherwise. The ternary con- 
stmction (z : cr :/~ describes the row vector 

( ¢ Z , ~ + O ' , ~ + 2 C r  . . . . .  ~+[~--~JG I G  

if  U _ < f l A G > 0 ,  or O r < f l A G < 0 ,  and the 
empty mat'ei~r otherwise. As an example, 2 : 4 results in 
a row vector  With three dements :  2, 3, and 4. O n  the 
other: hand,  2 : 0 : 4 produces the empty matrix as the 
resu l t  

colon_expr : expr ' : ' expr 

I colort_expr ' : ' expr 

Pigure 11: Producfiom for colon expr 

The colon operator (':3 is left associative. Thus, 
constlalctions such as 1:2:2:2 and 1:2:2:2:2 

correspond to (1:2:2) :2 and (1:2:2) :2:2 respec- 

tively. When evaluated, the former  yields a row vector 
with two dements ,  whexeas the latter produces a 
scalar. In  a colon expression, the start, stride (if pres- 
ent) and stop values mus t  all be scalaxs. I f  any o f  these 
are not  scalars, M.ATLAB issues a warning and con- 
siders their respective flint elements to evaluate the 
colon ecxprcssion. Thus, when provided with the input 
1:2:3:4:5, MATLAB issues an alert (~Warning: 

COLON arguments should be real scalars.") 

and produces a row vector having I and  5 as its ele- 
ments.  

To simplify the processing of colon expressions 
by subsequent  compiler passes, the M A T C H  parser 
always produces a full ternary tree as the AST o f  a 
colon expression. In  o t h ~  words, the paxser retains 

colon expressions o f  the form 6¢ " O" • f l  and converts 

colon expressions o f  the form O~" fl  to rZ" 1" f t .  I t  

should be stated here that  a colon expression is differ- 
ent  ~ o m  a colon " 'atom". The  b i tes  is employed in 
array indexing operations to denote  the entire extent 
o f  a patticnlax amay dimension.  An  example o f  a colon 
a tom is in the input  a ( ; ). 

The grammax rules colon_expr ---> expr '" 

expr and colon_expr --~ colon_expr ':' expr 

shown in Figure 11 give rise to a shift-reduce conflict. 
This is because ff c o l o n _ e x p r  is the sentential form 
thus fax seen by the paxser and i f  ':' is the lookahead 
token, the parser could either choose to shift the 
lookahead token so as to subsequently apply the 
colon_expr ---> colon_expr ':' expr production, 
or choose to immediztely apply the expr--> co- 
lon e x p r  product ion  and l i te r  the colon_expr ---> 
e x p r  ' : ' e x p r  pxoduction. However, to identify the 
stxide and stop values o f  colon expressions having 
more  than two operands, the parser should p ~ f o r m  
the shift action ~ t h e r  than the reduce action. This is in 
fact the default course o f  action in the event o f  a 
conflict. By doing so, the syntax-directed t r a n s h t o n  
process is exploited to eff idenf ly  determine whether  
the expression following a colon operator  is a stride or 
stop value. 

We could have repl iced the above pair o f  g~am- 
max rules by the single product ion  e x p r  --> e x p r  
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• " " e x p r  and the parser would have supported the 
same colon expression syntax. In fact, this replace- 
ment  would have eliminated the previously mentioned 
shifT-reduce conflict. However ,  casting the recognized 
colon expression to the /X : G : f l  form becomes a 

complicated affair involving the maintenance o f  some 
kind of  book-keeping information, and /o r  the alloca- 
tion and deallocation o f  temporary expressions. 

8 Cont ro l  S t a t e m e n t s  
The control constructs that are currently sup- 

ported in the M A T C H  compiler enable the conditional 
(if) or itcrative (for, while) execution of a body of 
statements. From a syntactic perspective, these state- 
merits do not  pose a problem except that the grammar 
rules responsible for each of  these constnacts intro- 
duce shifT-reduce conflicts. 

Consider the conditional statement. It  comprises 
an expression associated with the if  part o f  the state- 
ment  and a body o f  statements that is executed only if  
this expression evaluates to true at ran-time. The body 
may be empty and is represented by the non-terminal 
delimited_input in F i g u r e  12. 

If_command 
= 

if_cmd_list 

IF if_cmd_list END 

delimited_input 

expr delimited_input 
opt_else 

: opt_delimiter 
] opt_delimiter 
delimited list 

= 

delimited_list : statement delimiter 
] statement delimiter 
delimited_list 

Figure 12~ Productions for i f. command 

opt_else 
ELSE d e l i m i t e d  i n p u t  
ELSEIF expr 
delimited_input opt_else 

Figure 13; Productions for opt dse 

The conditional statement may also have multiple 
elseif parts and an else part, but these are op- 
tional. If present, each of the elseif parts possesses 
its own expressions. It should be noted that the ex- 
pressions associated with the if and elseif parts can 
be separated ffom their respective statement bodies by 
only horizontal spaces. For  ins tahoe, 

ifLJaLJ (2); LJend; 

is a valid conditional statement in which the e l s e i f  
and e l s e  parts are absent. The lexerne a forms the 
conditional statement's expression. The conditional 
statement's body  is a single parenthesized expression. 
Since the expressions associated with the i f  and 
elseif parts can be separated from their respective 
bodies by only horizontal spaces, this gives rise to 
shih-reduce conflicts in the grammar. For example, if 
we were to consider the following code fragmen% 

ifUlU+2; Uend; 

should this be treated as a conditional statement in 
which the expression is 1 and the body is the single 
expression statement +2, or should this bc regarded as 
a c o n d i t i o n a l  s t a t e m e n t  i n  w h i c h  t h e  e x p r e s s i o n  is 1+2 

and the body is empty? The production 
"if_cmd list---> expr delimited input opt_else" 

in Figure 12 generates two shifT-reduce conflicts. 
These two conflicts occur when the fight-hand side o f  
this production has been seen until the non-terminal 
expr and when the n e x t  token is either a %' or a "-'. 
In such a situation, the parser could either choose to 
shift the token (the default action) so that the 
expression recognized thus far becomes a 
subexpression o f  a binary addition operation, or 
choose to apply the reduction o p t _ d e l i m i t e r  --+ 

e I° so that the %' or  '-" tokens are unary operators in 
an expression that finally reduces to the non-terminal 
d e l i m i t e d _ i n p u t .  As it turns out, the default com~se 
o f  action taken by the parser to resolve this conflict 
suffices since this duplicates MATLAB's behavior. 

In a similar m a n n a ,  the grammar rule 
"opt_else--> ELSEIF expr delimited_input 

opt_else" introduces a pair of shifT-reduce conflicts. 
Thus, the grammar rules behind the conditional 
statement give rise to four shift-reduce conflicts. 
Productions for the for and while statements simi- 
larJy give rise to two shift-reduce conflicts each. The 
default course o f  act/on that the parser takes in each o f  
these cases---that is, a shifT action---is the des/red way 
in which these conflicts should be resolved. It  is 
probably worthwhile to note  here that the shifT-reduce 
conflict problem posed by MATLAB's conditional and 
control statements is quite different from the usual 
"dangling-else" problem exhibited by similar con- 
sttucts in other prog~rnming hnguages such as Pascal 
[4]. 

i0 The empty string is denoted by e. 
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9 Summary  
In  this paper,  we  presented  the design and imple- 

menta t ion  o f  a f ront -end  for the MATLA.B language, 
apart  f rom discussing certain interesting con- 
text-sensitive syntactic issues arising f rom the language 
as well as their solutions. T h e  M A T C H  compiler  
f ron t -end  has been  implemen ted  and  tested on  a 
variety o f  M A T L A B  programs.  I t  is being used to 
compile  code  for e m b e d d e d  processors,  DSPs and 
F P G A s  [5]. T h e  hnguage  recognized is a p roper  
subset  o f  MATLAB.  T h e  principal parts o f  the 
g rammar  and lexical specification were  men t ioned  and 
explained in s o m e  depth.  In  particular, we  justified 
w h y  the parser supports  a l imited fo rm o f  MATLAB's  
c o m m a n d - f o r m  funct ion invocat ion syntax, flagging 
syntactic ambiguities to the p rog rammer  whenever  
they are detected. We also showed how commas were 
inser ted among  matrix d e m e n t s  so that the only 
delim/ters visible to the parser were  the comma,  
semicolon and  LXNE tokens. The  dual role played by 
the  single quote  character  and the syntactic issues that 
it gave rise to were  explained. Colon  expressions and  
their g rammar  rules were  also briefly described. 
Finally, MATLAB's  assignment  statements and  control  
constructs were  discussed along w/th their respective 
g rammar  rules. 

W e  believe that  the  usefulness o f  this w o r k  lies in 
t iding future f ront -end  implementat ions for the 
M A T L A B  language, besides point ing out  possible 
areas where  the Language may  be modif ied  or aug- 
mer i ted  so as to make  it m o r e  compiler-friendly, 
wi thout  sacrificing its user-fi:iendliness. 
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