
International Symposium on Information Theory and its Applications, ISITA2004
Parma, Italy, October 10–13, 2004

On the Relationship between

Linear Programming Decoding and Min-Sum Algorithm Decoding

Pascal O. Vontobel and Ralf Koetter

Coordinated Science Laboratory and Dept. of ECE
University of Illinois at Urbana-Champaign

1308 West Main Street, Urbana, IL 61801, USA
E-mail: vontobel@ifp.uiuc.edu, koetter@uiuc.edu

Abstract

We are interested in the characterization of the deci-
sion regions when decoding a low-density parity-check
code with the min-sum algorithm. Observations made
in [1] and experimental evidence suggest that these de-
cision regions are tightly related to the decision regions
obtained when decoding the code with the linear pro-
gramming decoder. We introduce a family of quadratic
programming decoders that aims at explaining this be-
havior. Moreover, we also point out connections to
electrical networks.

1. INTRODUCTION

The main tool of this paper is a theorem by Weiss
and Freeman [2, Claim 1] that characterizes the be-
havior of the min-sum algorithm (MSA) decoder when
it converges. Weiss and Freeman actually formulated
the theorem for the max-product algorithm (MPA) but
the MPA applied to a graphical model representing a
global function exp(−f(x)) and the min-sum algorithm
applied to a graphical model representing the global
function f(x) do essentially the same computations, so
any statement about the MPA can be turned into a
statement about the MSA and vice-versa. Note that
we define the range of the message functions for the
MSA to be not only the real line R but the extended
real line R ∪ {−∞,+∞} and when we talk about con-
vergence of the MSA we also allow convergence to ±∞.

Before we can restate the theorem here, we briefly
need to introduce the notion of an SLT neighborhood [2,
p. 738].

Definition 1 A single loops and trees (SLT) neigh-
borhood of an assignment x∗ in a graphical model1 G

Both authors were supported by NSF Grants CCR 99-84515
and CCR 01-05719.

1A graphical model here can be a factor graph or one of the
graphical models considered in [2].

includes all assignments x that can be obtained from x∗

by the following:

• Choosing an arbitrary subset S of nodes in G that
consists of disconnected combinations of trees and
single loops.

• Assigning arbitrary values to xS – the chosen sub-
set of nodes. The other nodes have the same as-
signment as in x∗.

Theorem 2 Consider an arbitrary graphical model G
with arbitrary potentials whose global function2 we de-
note by f(x,y) = f(y) + f(x|y). Here, x and y rep-
resent unobserved and observed variables, respectively.
For a given y the global function equals a constant plus
f(x|y). Now, if m∗ is a fixed point of the messages of
the MSA (applied to G and with the standard update
schedule) and x∗ is the assignment based on m∗ then
f(x∗|y) < f(x|y) for all x 6= x∗ in the SLT neighbor-
hood of x∗.

Proof: See [2, Claim 1]. �

The above theorem can for example be used to
prove an important fact about Gaussian graphical mod-
els.

Corollary 3 For a Gaussian graphical model of arbi-
trary topology. If belief propagation converges, then the
posterior marginal means calculated using belief propa-
gation are exact.3

Proof: See e.g. [2, Cor. 1]. �

2Here and in the following the global functions will represent
additive cost functions.

3Remember that for Gaussian graphical models belief propa-
gation and MPA are essentially equivalent.

2. NOTATION AND PRELIMINARIES

We let R, R+, and R++ be the set of real numbers,
the set of non-negative real numbers, and the set of
positive real numbers, respectively. In the following,
all scalars, entries of vectors,4 and entries of matrices
will be considered to be in R, unless noted otherwise.
The Galois field with two elements will be denoted by
F2 and the set F2 will be embedded in the natural way
into R. Any binary code C ⊆ F

n
2 will consequently

be seen as a discrete subset of R
n. (Note that C de-

notes here a binary code and not the set of complex
numbers.) Moreover, we will use Iverson’s convention,
i.e. for a statement A we have [A] = 1 if A is true
and [A] = 0 otherwise. From this we also derive the
notation

q

A
y 4

= − log[A], i.e.
q

A
y

= 0 if A is true

and
q

A
y

= +∞ otherwise. Let S be some set. A
function like R

n → R+ : x 7→ [x ∈ S] is called an in-
dicator function for the set S, whereas a function like
R

n → R+ : x 7→
q

x ∈ S
y

is called a neglog indicator
function for the set S. Of course, this second function
can also be considered as a cost or penalty function.

When representing global functions by factor graphs
we will use normal factor graph (also called Forney-
style factor graphs, FFGs [3, 4, 5]). Let f(x) be some
global function. We say that x is a valid configuration
if f(x) < ∞. (When considering the MPA, a vector x
is a valid configuration if it fulfills f(x) > 0.) Instead
of writing “we perform algorithm A on the graph G”
we simply write “AG”.

Let S ⊆ R
n be some set and let φ : R

n → R be some
function. A minimization problem of the form5 x̂ =
arg minx∈S φ(x) is equivalent to the minimization prob-
lem x̂ = arg minx∈Rn

q

x ∈ S
y

+ φ(x). E.g. any stan-
dard linear program (LP) x̂ = arg minx∈Rn:AxT≤bT cxT

is equivalent to the minimization problem x̂ = arg
minx∈Rn

q

AxT ≤ bT
y

+ cxT. In order to facilitate the
statements in this paper, we will assume that all the
minimization problems have a unique minimum.

Remark 4 Let g : R
n1 × R

n2 → R be a convex func-
tion, let P = P1×P2 ⊂ R

n1 ×R
n2 where P1 ⊂ R

n1 and
P2 ⊂ R

n2 are some convex and closed sets, let f : R
n1×

R
n2 → R, u = (u1,u2) 7→

q

u1 ∈ P1

y

+
q

u2 ∈ P2

y

+
g(u), and let u∗ = (u∗

1,u
∗
2) be a point on the boundary

of P. If we can show that f(u∗
1,u

∗
2) ≤ f(u1,u

∗
2) for

every u1 ∈ P1 and that f(u∗
1,u

∗
2) ≤ f(u∗

1,u2) for every
u2 ∈ P2 then f(u∗) = minu∈Rn f(u), i.e. f attains the

4Note that all vectors will be row vectors.
5Note that strictly speaking, arg min returns a set containing

all minimum-achieving points. For simplicity, we assume that
arg min does not give back this set itself but an element thereof;
in the case the set contains more that one element ties will be
broken in a consistent fashion.

global minimum at u∗. (This statement can easily be
generalized to functions g : R

n1 × · · · × R
nk → R and

sets P1, . . . ,Pk for some arbitrary finite k.)

Proof: (Sketch) Firstly, let us restrict f to the set
P1 × {u∗

2}: we see that f(u) is globally minimal for
this restricted f . Secondly, let us restrict f to the set
{u∗

1} × P2: we see again that f(u) is globally minimal
for this restricted f . This gives us enough information
about the first-order behavior of the function f over
P around u∗ to conclude the global minimality of u∗

from the convexity of g. �

3. BLOCK-WISE MAXIMUM A-POSTERIO-
RI DECODING OF CODES

We consider the problem of data communication
over a noisy channel with the help of a binary code
C ⊆ F

n
2 of length n over F2. We assume that every

codeword x ∈ C is transmitted with equal probability,
i.e. PX(x) = 2−nR if x ∈ C and PX(x) = 0 otherwise,
where R is the rate of the code. Upon observing the
output Y = y of a channel with channel law PY|X,
block-wise maximum a-posteriori decoding can be for-
mulated as the following optimization problem:

x̂(y) = arg max
x∈Fn

2

PX,Y(x,y)

= arg min
x∈Fn

2

− log PX,Y(x,y),

where PX,Y(x,y) = PX(x) · PY|X(y|x) is the joint
pmf/pdf of the the coded channel input X and the
channel output Y.

We want to be more specific about the code and
the channel now, namely we would like to focus on
low-density parity-check (LDPC) codes and memo-
ryless channels. So, let C be an LDPC code de-
fined by some m × n parity-check matrix H

4
= (hj,i),

let I
4
= {1, . . . , n} be the set of codeword indices,

J
4
= {1, . . . ,m} be the set of check indices, Ji

4
= {j ∈

J |hj,i = 1} be the set of check indices that involve
the i-th bit and Ij

4
= {i ∈ I |hj,i = 1} be the set of

bits that are involved in the j-th check. If x ∈ F
n
2

and S ⊆ I, we let xS be the sub-vector of those po-
sitions of x whose indices are elements of S and we
define the function LXOR(xS) to be the neglog indica-
tor function of a simple parity-check code of length
|S|, i.e. LXOR(xS) = 0 if the modulo-2 sum of the
components of xS is zero and LXOR(xS) = +∞ oth-
erwise. Then it can easily be seen that the function
LH : F

n
2 → R+ with

LH(x)
4
=

∑

j∈J

LXOR(xIj
)

=

=

=

=

=

X1

X2

X3

X4

X5

x1γ1(y1)

Y1

Y2

Y3

Y4

Y5

x2γ2(y2)

x3γ3(y3)

x4γ4(y4)

x5γ5(y5)

LXOR

LXOR

LXOR

=

=

=

=

=

X1

X2

X3

X4

X5

x1γ1(y1)

Y1

Y2

Y3

Y4

Y5

x2γ2(y2)

x3γ3(y3)

x4γ4(y4)

x5γ5(y5)

w1

w2

w3

LCHSPC

LCHSPC

LCHSPC

Figure 1: Left: IP-FFG whose global function is fIP;
Xi ∈ F2. Right: LP-FFG whose global function is fLP;
Xi ∈ R.

is the code neglog indicator function, i.e. it is 0
when x ∈ C and +∞ otherwise and it follows
from the last paragraph that the negative logarithm
of the pmf PX can be written as − log PX(x) =
nR log(2) + LH(x) = const + LH(x). The memory-
less assumption about the channel implies PY|X =
∏

i∈I PYi|Xi
(yi|xi) and − log PX,Y(x,y) = const +

LH(x) −
∑

i∈I log PYi|Xi
(yi|xi). Using these results,

the maximum a-posteriori decision rule can now be re-
formulated to read x̂(y) = arg minx∈Fn

2
fIP(x), where

fIP(x)
4
= LH(x) +

∑

i∈I

xiγi (1)

and γi
4
= γi(yi)

4
= log(PYi|Xi

(yi|0)/PYi|Xi
(yi|1)). The

function fIP(x) can be represented by an FFG: Fig. 1
(left) shows the FFG for an exemplary code C with
n = 5 and m = 3. An FFG of this type will be called
an IP-FFG where IP stands for integer programming.

4. THE LP DECODER

Minimizing f(x) in (1) can be seen as an integer
programming problem with a linear cost function. In
general, this integer program is computationally in-
tractable because the complexity grows exponentially
in the block length n; therefore, block-wise maximum
a-posteriori (and also maximum likelihood) decoding of
codes is in general computationally infeasible for LDPC
codes. Feldman, Karger, and Wainwright [6, 7] pro-
posed to relax this problem in order to obtain a simple
LP; the resulting decoder is called the LP decoder. Let
us derive the LP decoder in two steps. The first step
is to realize that the minimization problem before (1)
can be written as6 x̂(y) = arg minx∈Rn f(x) with

f(x)
4
= Lconhull(C)(x) +

∑

i∈I

xiγi,

6This reformulation stems from the fact that if an LP has
a unique solution then it must be a vertex of the region one is
minimizing over. If there are multiple solutions then at least one
vertex is minimal.

where Lconhull(C)(x) is the neglog indicator function
of the polytope that is the convex hull of C ⊆ R

n.
This minimization problem is equivalent to an LP but
the description complexity of the convex hull of C is
exponential in n for general LDPC codes. The sec-
ond step remedies this problem: instead of minimiz-
ing over the convex hull of C one minimizes over a
relaxed region, i.e. a region that can easily be de-
scribed yet for LDPC codes is not much larger than
the convex hull of C. The most canonical relaxation
yields7 x̂(y) = arg minx∈Rn minw fLP(x,w), where
fLP(x,w)

4
= Lrel

H (x,w) +
∑

i∈I xiγi with

L
rel
H (x,w)

4
=

X

i∈I

q

0 ≤ xi ≤ 1
y

+
X

j∈J

LCHSPC(Ij ,xIj
,wj).

The global function fLP(x,w) is shown by the FFG
in Fig. 1 (right); an FFG of this type will be called an
LP-FFG. Here, LCHSPC is the neglog indicator function
of the convex hull of a simple parity-check code whose
length is given by the size of the first argument; it can
be written as

LCHSPC(Ij ,xIj
,wj)

4
=

u

v

X

S∈Ej

wj,S = 1

}

~

+

0

@

X

S∈Ej

q

wj,S ≥ 0
y

1

A +

0

@

X

i∈Ij

u

vxi =
X

S∈Ej : i∈S

wj,S

}

~

1

A ,

where we have introduced the variables wj,S , S ∈ Ej

and the set Ej
4
= {S ⊆ Ij : |S| even}. (E.g. for a

check node j involving x1, x2, and x3 we have Ej =
{{}, {1, 2}, {1, 3}, {2, 3}}).

By introducing more/different inequalities one can
get other (possibly tighter) relaxations [6]. In this pa-
per we only consider the relaxation presented above,
mainly because Lrel

H (x,w) is the neglog indicator func-
tion of a polytope that was called the fundamental
polytope in [1] (and which characterizes valid config-
urations of finite covers of Tanner graphs).

5. THE MIN-SUM ALGORITHM DECODER

Let f :
(

X1 ×· · ·×Xn

)

→ R be the global function
of an FFG where the alphabets Xi can be finite or
infinite. The min-sum algorithm (MSA) is a message-
passing algorithm that sends messages along edges of
an FFG and does some processing at the nodes [8, 3]. If
the FFG has no loops then the result is the following:
for each i we obtain a function fi : Xi → R where8

fi(xi) = minx: x|i=xi
f(x). If the FFG has loops, then

this is in general not the case anymore. Nevertheless,
it is well-known that the MSA can be used to decode

7The vector w is an auxiliary vector that helps expressing
fLP.

8The expression x|i denotes the i-th component of x.

LDPC codes (whose FFGs in general have loops) and
the decoding performance is very good.

Definition 5 (MSA Decoder) The MSA decoder
works as follows: Perform MSAIP−FFG. Because Xi =
F2 we get after r iterations for each i ∈ I some func-

tion f
〈r〉
i : F2 → R and based on this we can decide

x̂
〈r〉
i = 0 if f

〈r〉
i (0) < f

〈r〉
i (1) and x̂

〈r〉
i = 1 otherwise.

The question we would like to address here is: is
there some connection between the result of the MSA
decoder and the result of the LP decoder from Sec. 4?
A first observation is stated in the next theorem.

Theorem 6 Performing MSAIP−FFG gives essentially
the same result as performing MSALP−FFG. More pre-

cisely, if MSAIP−FFG produces the function fIP
〈r〉
i :

F2 → R after r iterations and MSALP−FFG produces

the function fLP
〈r〉
i : R → R after r iterations, then

fLP
〈r〉
i (xi) =

(

(1 − xi)fIP
〈r〉
i (0) + xifIP

〈r〉
i (1) (0 ≤ xi ≤ 1)

+∞ (otherwise)

This means that we reach the same decision for x̂
〈r〉
i .

Moreover, if m∗ is a fixed point of the messages of
MSALP−FFG and x∗ is an assignment based on m∗ then
the components of x∗ are either 0 or 1.

Proof: (Sketch) One can prove this by comparing the
MSA message update rules for both FFGs. �

An important conclusion of Th.6 is that an un-
derstanding of MSAIP−FFG gives an understanding of
MSALP−FFG and vice-versa, however note that by go-
ing from the IP to the LP we have changed the set-
ting from a discrete optimization problem to the prob-
lem of minimizing a continuous function over a con-
vex set. Another conclusion is that if x∗ is a pseudo-
codeword [6, 7, 1] then it must be a codeword.

In a further step, we would like to use Th. 2 in
order to characterize the behavior of MSAIP−FFG and
MSALP−FFG, respectively. The main obstactle is that
Th. 2 gives in neither case some valuable information.
The reason is that the SLT neighborhoods for both
FFGs do in general not lead to valid configurations.

Remark 7 Let C be some LDPC code defined by a
parity-check matrix H. Let m∗ be a fixed point of
MSAIP−FFG and let x∗ be the assignment based on
m∗.9 Let x∗ be a valid configuration: in general Th. 2
does not imply global minimality of x∗.

Now, let m∗ be a fixed point of MSALP−FFG and let
(x∗,w∗) be the assignment based on m∗. Let (x∗,w∗)

9Note that x
∗ can be a valid or invalid configuration.

be a valid configuration: as in the first case, in general
Th. 2 does not imply global minimality of (x∗,w∗).

Proof: (Sketch) Consider the first statement and let
x∗ be a valid configuration. For proving some global
minimality result we would like to combine Th. 2 with
Rem. 4, but this is not possible as we now explain.

The problem is that points in an SLT neighborhood
of x∗ lie outside the set of feasible points, i.e. for LDPC
codes where the bit nodes are only connected to more
than two check nodes one usually has to change more
bits than allowed by an SLT neighborhood in order to
obtain a valid configuration. So, when applying Th. 2
we get that f(x∗|y) < f(x|y) for all x 6= x∗ in the SLT
neighborhood of x∗, but this is trivial because usually
f(x|y) = +∞ for all x 6= x∗ in the SLT neighborhood
of x∗. This result clearly does not give enough informa-
tion for applying Rem. 4 which requires us to be able
to say something about points in the set of all valid
configurations. The second statement is proven along
the same lines. �

6. THE QP DECODER

In order to avoid problems as encountered in Rem. 7
we propose the following remedy. We introduce a new
convex optimization problem (more precisely, a quadra-
tic program (QP)) whose global function is closely re-
lated to the global function of the LP. One of the steps
in going from the LP to the QP is to replace “hard”
equalities by “soft” equalities, i.e. terms like

q

x = 0
y

in the global function are replaced by terms like α · x2

where α � 1. The precise statements are given in
the next definition, where for every ε > 0 we define a
quadratic program QP(ε).

Definition 8 Let Ra,0 > 0 and Rb,0 > 0 be some
constants and let10 Ra(ε)

4
= εRa,0 and Rb(ε)

4
= Rb,0/ε

for some ε > 0. We define the global function of the
quadratic program QP(ε) to be

fQP(ε)(x,w,g)
4
=

X

i∈I

q

0 ≤ xi ≤ 1
y

+
X

j∈J

L′
CHSPC(Ij ,xIj

,w,g)

+
X

i∈I

γixi +
X

i∈I

(xi −
1
2
)2

2/Ra(ε)
+

X

i∈I

X

j∈Ji

g2
ij

2/Rb(ε)
.

with

L′
CHSPC(Ij ,xIj

,w,g)
4
=

u

v

X

S∈Ej

wj,S = 1

}

~ +
X

S∈Ej

q

wj,S ≥ 0
y

+
X

i∈Ij

u

vxi + gij =
X

S∈Ej : i∈S

wj,S

}

~ .

10We have chosen the letter R for the following reason: when
associating an electrical network to QP(ε) (as will be done in
Sec. 7) the values Ra(ε) and Rb(ε) correspond to resistor values.

Definition 9 (QP Decoder) For each ε > 0 and
each 0 < δ < 1/2 we can now define a QP decoder
as follows. Solve the quadratic program QP(ε), i.e. find
x̃

4
= arg minx minw,g fQP(ε)(x,w,g) and decide x̂i = 0

if |x̃i − 0| < δ, x̂i = 1 if |x̃i − 1| < δ, and x̂i =? other-
wise.

It is easily possible to draw an FFG for the global
function fQP(ε), such an FFG will be called a QP(ε)-
FFG. Note that compared to the LP-FFG we did not
introduce new cycles.

Theorem 10 In the limit ε → 0 the solution of QP(ε)
equals the solution of the LP. Moreover, in the limit
ε → 0 the global function of the QP(ε)-FFG is essen-
tially the same as the LP-FFG.

Proof: (Sketch) Let (x̂, ŵ) minimize fLP and let (x̃(ε),
w̃(ε), g̃(ε)) minimize fQP(ε). It can easily be seen that
(x̂, ŵ,g = 0) is a feasible point (valid configuration)
of fQP(ε). Because of the penalty terms g2

ij/(2/Rb(ε))
the length of the difference vector d(ε)

4
= (x̂, ŵ,g =

0) − (x̃(ε), w̃(ε), g̃(ε)) cannot be too large for small ε.
In fact, in the limit ε → 0 the length of the difference
vector goes to zero. �

Theorem 11 Consider MSAQP(ε)−FFG for ε > 0: if
the algorithm converges then it delivers the solution to
QP(ε).

Proof: (Sketch) The idea of introducing the vec-
tors g in the QP(ε) was to “decouple” the variables
x and w. Let m∗ be a fixed point of MSAQP(ε)−FFG

and let (x∗,w∗,g∗) be the assignment based on m∗.
Note that the key difference between MSALP−FFG

and MSAQP(ε)−FFG is that in the latter case the
SLT neighborhoods of (x∗,w∗,g∗) imply minimality of
(x∗,w∗,g∗).

If (x∗,w∗,g∗) is not a boundary point of the set of
all valid configurations then we can apply Th. 2 right
away to reach the conclusion in the theorem statement.

If (x∗,w∗,g∗) is not a boundary point of the set
of all valid configurations then we can apply Th. 2 in
conjunction with Rem. 4. E.g. fix some j ∈ J ; then a
configuration (x,w,g) that equals (x∗,w∗,g∗) except
for the the values wj,S , S ∈ Ej and where gij , i ∈ Ij ,
are chosen such that L′

CHSPC(Ij ,xIj
,w,g) = 0 is in an

SLT neighborhood of (x∗,w∗,g∗) yet it still yields a
valid configuration. Or, we can fix some i ∈ I; then a
configuration (x,w,g) that equals (x∗,w∗,g∗) except
for the the value xi and where gij , j ∈ Ji is chosen
such that L′

CHSPC(Ij ,xIj
,w,g) = 0 for all j ∈ Ji is in

an SLT neighborhood of (x∗,w∗,g∗) yet it still yields
a valid configuration. This allows us to use Rem. 4 and

come to the conclusion in the theorem statement. �

Remark 12 In Th. 6 we saw a tight connection be-
tween the behavior of MSAIP−FFG and MSALP−FFG.
There is not anymore such a simple connection between
MSAIP−FFG and MSAQP(ε)−FFG. This is probably the
price one has to pay in order to get a statement like in
Th. 11.

Note that also other quadratic programs could have
been introduced; potentially also slightly simpler ones.
But we conjecture that by introducing QP(ε) as done
above one might be able to say more than what is
proved in Th. 11, e.g. one might be able to say when
MSAQP(ε)−FFG converges.

7. ELECTRICAL NETWORK INTERPRETA-
TION OF THE LP AND QP DECODER

Dennis [9] showed that there is a simple way of as-
sociating an electrical network (EN) to a convex opti-
mization problem (especially to linear and quadratic
programming problems). Such ENs consist of ideal
voltage sources, ideal current sources, (linear and non-
linear) resistors, ideal diodes, and DC-transformers.
In Dennis’ approach, the currents through certain el-
ements of the EN correspond to the components of
the solution vector of the primal optimization problem,
whereas the voltages across the same elements yield
the components of the solution vector of the dual op-
timization problem. (Equivalently, one can derive an
EN where one can also associate the voltages with the
solution of the primal problem and the currents with
the solution of the dual problem.) In [10, 11] Vonto-
bel and Loeliger explored the connection between FFGs
(which represent global functions whose negative expo-
nent is a convex function) and ENs (that are obtained
by Dennis’ approach). One can show that there is a
topographical one-to-one correspondence between the
FFG and the EN obtained by Dennis’ approach. Var-
ious results can be derived, one of them is that the
MSA/MPA can be given an interpretation as simplify-
ing an electrical network (for details, see [10, 11]). In a
forthcoming paper we will discuss how one can derive
the EN that represents fLP and fQP(ε), respectively,
and also discuss connections between the LP and the
Bethe free energy associated to the IP-FFG. Similar to
the function fQP(ε), the Bethe free energy associated
to the IP-FFG can be seen as an approximation to the
function fLP, but in this case the situation is somewhat
“reversed”: while for the function fQP(ε) one can for-
mulate a theorem like Th. 11 but performing the MSA
is computationally demanding (see Rem. 12), for the

Bethe free energy one can in general not formulate a
theorem like Th. 11 on the global minimality, but per-
forming the MSA can be done very efficiently (in fact,
the resulting algorithm is essentially equivalent to the
sum-product algorithm).

8. CONCLUDING REMARKS

Let us summarize the results of this paper. Let
x∗(IP), x∗(LP), and x∗(QP(ε)) be the solution of the
IP, the LP, and the QP(ε) associated to the same LDPC
code, respectively. If m∗(MSAIP−FFG) is a fixed point
of MSAIP−FFG then we let x∗(m∗(MSAIP−FFG)) be an
assignment based on m∗(MSAIP−FFG); we introduce
similar notation for MSALP−FFG and MSAQP(ε)−FFG.
With this notation, Th. 10 says that

lim
ε→0

x∗(QP(ε)) = x∗(LP).

And for ε > 0, Th. 11 says that if MSAQP(ε)−FFG con-
verges then

x∗(m∗(MSAQP(ε)−FFG)) = x∗(QP(ε)).

This can be used to make the following statement.

Theorem 13 Let ε′ > 0 be some small constant and
assume that MSAQP(ε)−FFG converges for all 0 ≤ ε ≤
ε′ and that

lim
ε→0

x
∗(m∗(MSAQP(ε)−FFG)) = x

∗(m∗(MSA lim
ε→0

QP(ε)−FFG))

holds and represents a codeword. Then

x∗(m∗(MSAIP−FFG))
(a)
= x∗(m∗(MSALP−FFG))

(b)
= x∗(LP)

(c)
= x∗(IP).

Proof: (Sketch) First, let us observe that

lim
ε→0

x∗(m∗(MSAQP(ε)−FFG))

(d)
= x∗(m∗(MSA lim

ε→0

QP(ε)−FFG))

(e)
= x∗(m∗(MSALP−FFG)). (2)

Here, step (d) follows from the assumption in the theo-
rem statement and step (e) from the second statement
in Th. 10. Now, we see that in step (a) we used Th. 6,
in step (b) we used (2) together with Ths. 11 and 10,
and in step (c) we used the fact the IP solution equals
the LP solution under the above assumptions. �

We would like to conclude the paper with a few
remarks.

• It would be interesting to see if one can give state-
ments under what conditions MSAQP(ε)−FFG con-
verges; from our experience with Gaussian FFGs
we suspect that it converges under rather general
conditions. The intuition in solving ENs might
also help in answering this question.

• The statements in this paper confirm the robust-
ness observed in practice when decoding LDPC
codes with the MSA decoder.

• Reinforcing the observations made in [1], we can
say that the results in this paper suggest that the
decision regions of the LP decoder seem to give
a tight characterization of the decoding regions
of the MSA decoder. This is interesting because
the decoding regions of the LP decoder have a
relatively simple mathematical characterization.

References

[1] R. Koetter and P. O. Vontobel, “Graph covers and it-
erative decoding of finite-length codes,” in Proc. 3rd In-
tern. Conf. on Turbo Codes and Related Topics, (Brest,
France), pp. 75–82, Sept. 1–5 2003. Available online under
http://www.ifp.uiuc.edu/~vontobel.

[2] Y. Weiss and W. T. Freeman, “On the optimality of
the max-product belief propagation algorithm in arbitrary
graphs,” IEEE Trans. on Inform. Theory, vol. IT–47, no. 2,
pp. 736–744, 2001.

[3] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor
graphs and the sum-product algorithm,” IEEE Trans. on
Inform. Theory, vol. IT–47, no. 2, pp. 498–519, 2001.

[4] G. D. Forney, Jr., “Codes on graphs: normal realizations,”
IEEE Trans. on Inform. Theory, vol. 47, no. 2, pp. 520–548,
2001.

[5] H.-A. Loeliger, “An introduction to factor graphs,” IEEE
Sig. Proc. Mag., vol. 21, no. 1, pp. 28–41, 2004.

[6] J. Feldman, Decoding Error-Correcting Codes via Linear
Programming. PhD thesis, Massachusetts Institute of Tech-
nology, Cambridge, MA, 2003. Available online under
http://www.columbia.edu/~jf2189/pubs.html.

[7] J. Feldman, D. R. Karger, and M. J. Wainwright,
“Using linear programming to decode linear codes,”
in Proc. 37th annual Conference on Informa-
tion Sciences and Systems (CISS ’03), (Baltimore,
MD), Mar. 12-14 2003. Available online under
http://www.columbia.edu/~jf2189/pubs.html.

[8] N. Wiberg, Codes and Decoding on General Graphs. PhD
thesis, Linköping University, Sweden, 1996.

[9] J. B. Dennis, Mathematical Programming and Electrical
Networks. The Technology Press of The Massachusetts In-
stitute of Technology, Cambridge, Mass., 1959.

[10] P. O. Vontobel and H.-A. Loeliger, “On factor graphs and
electrical networks,” in Mathematical Systems Theory in
Biology, Communication, Computation, and Finance, IMA
Volumes in Math. & Appl. (D. Gilliam and J. Rosenthal,
eds.), Springer Verlag, 2003.

[11] P. O. Vontobel, Kalman Filters, Factor Graphs,
and Electrical Networks. Post-Diploma Project,
ETH Zurich, 2002. Available online under
http://www.isi.ee.ethz.ch/publications.

