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Abstract

We discuss two techniques for obtaining lower bounds

on the (AWGN channel) pseudo-weight of binary lin-

ear codes. Whereas the first bound is based on the

largest and second-largest eigenvalues of a matrix as-

sociated with the parity-check matrix of a code, the

second bound is given by the solution to a linear pro-

gram.

Keywords: Linear codes, parity-check matrix,

pseudo-weight, eigenvalues, linear program.

1 Introduction

In order to obtain bounds on the maximum-likelihood

decoding performance of a linear code, one needs to

know the minimum Hamming weight of the code and

the multiplicity of the minimum Hamming weight

codewords (or even better, the whole Hamming

weight spectrum of the code.) As argued in [1], if

one wants to assess the performance under iterative

message-passing decoding, one needs to study the

pseudo-weight of pseudo-codewords, i.e. one needs to

find the minimum pseudo-weight (or even better, the

whole pseudo-weight spectrum). As observed in [1],

the pseudo-codewords characterized by the funda-

mental polytope/cone, give an astonishingly accurate
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picture.1 Given a code, note that the minimum Ham-

ming weight is a function of the code whereas the

minimum pseudo-weight is a function of the parity-

check matrix describing the code.

Finding the minimum Hamming weight of a linear

code is known to be a hard problem.2 Obtaining the

minimum AWGN channel pseudo-weight seems not

to be an easy task either; therefore, one has to find

techniques that yield upper and lower bounds on the

minimum pseudo-weight. Related problems include

finding the minimum stopping set size3 and finding

the minimum fractional/max-fractional distance.4

In [1] we discussed two ways of obtaining upper

bounds on the minimum (AWGN channel) pseudo-

weight: one of them was based on searching for low-

weight pseudo-codewords in the fundamental cone,

the other was based on the so-called canonical com-

pletion. In this paper we now introduce two tech-

niques for obtaining lower bounds: the first one is a

purely algebraic eigenvalue-based bound (see Sec. 3),

whereas the second is a linear-programming-based

bound (see Sec. 4).

1One more reason to study the minimum pseudo-weight

of pseudo-codewords is that for (certain relaxations) of the

linear programming decoder by Feldman and Karger [2] the

characterization by the fundamental polytope/cone is actually

exact.
2The papers [3, 4] discuss this issue; it seems though that

for codes like turbo and LDPC codes, the problem might not

be as hard as the general case, see e.g. [5, 6].
3Its hardness for general codes was established in [7] by

modifying the proof of [3].
4The fractional and the max-fractional distance [2] are lower

bounds on the binary symmetric channel pseudo-weight [8]; [2]

gives lower bounds on the max-fractional distance in terms of

the girth and it is also shown that the fractional distance can

be computed efficiently.
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2 Definitions

All vectors will be row vectors. The L1 and the L2

norm of a vector x ∈ R
n of length n are ||x||1

4
=

∑n

i=1 |xi| and ||x||2
4
=
√∑n

i=1 |xi|2, respectively. All

codes will be binary linear codes; wmin
H (C) denotes

the minimum Hamming weight of a linear code C.

Definition 1 Let H be the parity-check matrix of a

binary linear code C. We let V
4
= V(H) be the set of

column indices of H and R
4
= R(H) be the set of row

indices of H, respectively. For each r ∈ R, we let

Vr
4
= Vr(H)

4
=
{
v ∈ V | [H]r,v = 1

}
. Furthermore,

for any r ∈ R and any vector x of length |V|, we let

xVr
be the vector that has only the entries of x whose

indices are in Vr. We call C a (j, k)-regular code if

the uniform column weight of H is j and the uniform

row weight of H is k.

Therefore, a vector x ∈ F
n
2 is a codeword of C if

and only if the modulo-2 sum of the entries of xVr

equals zero for each r ∈ R. Throughout the paper

we will consider a code of length n, i.e. |V| = n.

Definition 2 (Positive orthant) Let O(n) be the

positive orthant of the n-dimensional real space, i.e.,

O(n) 4
=
{
x ∈ R

n | xi ≥ 0 for all i = 1, . . . , n
}
. More-

over, we let Ȯ(n) be the punctured positive orthant,

i.e., Ȯ(n) 4
= O(n) \ {0}.

Definition 3 (Additive white Gaussian noise

channel (AWGNC) pseudo-weight [9, 8]) Let

x ∈ Ȯ(n). The AWGNC pseudo-weight wp(x) of x is

given by

wp(x)
4
= wAWGNC

p (x)
4
=

||x||21
||x||22

.

Remark 4 The pseudo-weight as defined in Def. 3

is invariant under scaling by a positive scalar, i.e.

wp(α · x) = wp(x) for any α > 0 and any x ∈ Ȯ(n).

Definition 5 (Fundamental Polytope/Cone)

The fundamental polytope P(H) and the fundamen-

tal cone K(H)of a linear code C with parity-check

matrix H were introduced in [1]. Moreover,

Ṗ(H)
4
= P(H) \ {0} and K̇(H)

4
= K(H) \ {0} will

denote the punctured fundamental polytope and cone,

respectively.

Reformulating the mathematical definition given

in [1], one obtains the following simple characteri-

zation of the fundamental cone.

Theorem 6 Let H be a parity-check matrix of a code

C of length n. A necessary and sufficient condition

for a vector x ∈ O(n) to be in the fundamental cone

K(H) is that for each r ∈ R and for each v ∈ Vr we

must have
∑

v′∈Vr\{v}

xv′ ≥ xv.

All these inequalities can be expressed as KxT ≥ 0

for some K
4
= K(H).

Proof: Omitted. ¤

Definition 7 (Minimum Pseudo-Weight) For a

given parity-check matrix H of a code C, the mini-

mum AWGNC pseudo-weight is defined to be

wmin
p (H)

4
= min

x∈Ṗ(H)
wp(x)

(∗)
= min

x∈K̇(H)
wp(x),

where equality (∗) follows from the scaling-invariance

of wp( · ) and the properties of Ṗ(H) and K̇(H) [1].

Note that for any parity-check matrix H of a binary

linear code C we have wmin
p (H) ≤ wmin

H (C).

3 An Eigenvalue-Based Lower

Bound on the Minimum

Pseudo-Weight

The following lemma will prove useful for our

eigenvalue-based lower bound.

Lemma 8 Let x ∈ K(H) be a vector in the funda-

mental cone of H. Then, for any r ∈ R we have
(
∑

v∈Vr

xv

)2

≥ 2 ·

(
∑

v∈Vr

x2
v

)

.

Proof: For any r ∈ R we get
(
∑

v∈Vr

xv

)2

=

(
∑

v∈Vr

xv

)

·

(
∑

v′∈Vr

xv′

)

=

(
∑

v∈Vr

xv

(
∑

v′∈Vr

xv′

)

︸ ︷︷ ︸

(∗)

≥ 2xv

)

≥ 2

(
∑

v∈Vr

x2
v

)

,
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where (∗) follows from Th. 6 ¤

Theorem 9 Let C be a (j, k)-regular code of length n

defined by the parity-check matrix H and let the cor-

responding Tanner graph have one component. Let

L
4
= HTH and let µ1 and µ2 be the largest and second-

largest eigenvalue, respectively, of L. Then the min-

imum Hamming weight and the minimum AWGNC

pseudo-weight are lower bounded by

wmin
H (C) ≥ wmin

p (H) ≥ n ·
2j − µ2

µ1 − µ2
.

Remark 10 Interestingly, the lower bound given in

Th. 9 is the same as the bit-oriented lower bound

given by Tanner [10] for the minimum Hamming

weight of a binary code.

Proof: The proof is very much inspired by the proof

of the bit-oriented lower bound given by Tanner [10],

although some of the equalities and inequalities hold

because of other (more general) reasons. Let 1 be

a vector of length n containing only ones. Then, the

pseudo-weight of any pseudo-codeword x ∈ K̇(H) can

be rewritten as

wp(x) =
||x||21
||x||22

=
(x · 1T)2

||x||22
. (1)

The crucial idea is to define y
4
= x · HT, which is a

vector of length |R|, and to try to get a lower and an

upper bound on ||y||22.

First, let us derive a lower bound on ||y||22.

||y||22 =
∑

r∈R

y2
i =

∑

r∈R

(
∑

v∈Vr

xv

)2
(∗)

≥
∑

r∈R

2

(
∑

v∈Vr

x2
v

)

= 2
∑

r∈R

∑

v∈Vr

x2
v

(∗∗)
= 2j · ||x||22, (2)

where (∗) follows from Lemma 8 and (∗∗) from the

fact that in the double sum
∑

r∈R

∑

v∈Vr

every term

x2
v, v ∈ V, appears exactly j times.

Secondly, let us derive an upper bound on ||y||22. To

this end, let us assume that L has s distinct eigenval-

ues µ1 > µ2 > · · · > µs. Let z(v) be the projection

of x onto the v-th eigenspace, v ∈ {1, . . . , s}. (Be-

cause L is a symmetric matrix, the algebraic and the

geometric multiplicities are equal for each eigenvalue

and all eigenspaces are orthogonal on each other.)

It can easily be checked that 1 is a left eigenvec-

tor of L with eigenvalue µ1 = j · k whose multiplic-

ity is 1. (Multiplicity 1 follows from the assumption

that the Tanner graph has one component.) There-

fore, the projection of x onto the first eigenspace is

z(1) = (x · 1T)/(1 · 1T) · 1 = (1/n) · (x · 1T) · 1, whose

squared L2-norm equals

||z(1)||22 =
1

n2
·
(
x · 1T

)2
· ||1||22 =

1

n
·
(
x · 1T

)2
. (3)

We also have ||x||22 =
∑s

v=1 ||z
(v)||22, from which

s∑

v=2

||z(v)||22 = ||x||22 − ||z(1)||22 = ||x||22 −
1

n
·
(
x · 1T

)2

(4)

follows. Using this partial results, we can now try to

upper bound ||y||22. We get

||y||22 = ||x · HT||22 = x · HT · H · xT = x · L · xT

=

(
s∑

`=1

z(`)

)

· L ·

(
s∑

`′=1

z(`′)T

)

=

s∑

`=1

s∑

`′=1

µ` · z
(`) · z(`′)T =

s∑

`=1

µ` · ||z
(`)||22

= µ1 · ||z
(1)||22 +

(
s∑

`=2

µ` · ||z
(`)||22

)

(∗)

≤ µ1 · ||z
(1)||22 + µ2 ·

(
s∑

`=2

||z(`)||22

)

(∗∗)
= µ1 ·

1

n
·
(
x · 1T

)2
+

µ2 ·

(

||x||22 −
1

n
·
(
x · 1T

)2
)

= (µ1 − µ2) ·
1

n
·
(
x · 1T

)2
+ µ2 · ||x||

2
2, (5)

where (∗) follows from µ` < µ2 for ` ∈ {3, . . . , s}

(equality can happen if s = 2 or if x lies in the sub-

space spanned by the first two eigenspaces) and (∗∗)

from (3) and (4). Combining (2) and (5) we obtain

(µ1−µ2) ·
1
n
·
(
x · 1T

)2
+µ2 · ||x||

2
2 ≥ ||y||22 ≥ 2j · ||x||22.

Because µ1 > µ2, we have µ1 − µ2 > 0, which allows

us to formulate

(
x · 1T

)2

||x||22
≥ n ·

2j − µ2

µ1 − µ2
,

This, combined with (1), leads to the desired result

in the theorem. ¤
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Remark 11 All known cases, where Tanner’s bit-

oriented lower bound on the minimum Hamming

weight gives non-trivial results, give now also non-

trivial results on the minimum pseudo-weight. Codes

from partial geometries [11], which include projec-

tive planes [12] (finite generalized triangles) and fi-

nite generalized quadrangles [13], belong to this set.

Note that for codes from projective planes and for

some codes from generalized quadrangles the above

lower bound on the minimum pseudo-weight matches

the minimum Hamming weight, therefore for these

codes the minimum pseudo-weight equals the mini-

mum Hamming weight.

Theorem 12 Consider a binary code of length n

whose automorphism group is two-transitive on the

bits and whose dual code has minimum Hamming

weight wmin
H

⊥
(C). Let H be the matrix consisting of

all vectors in the dual code whose Hamming weight

equals wmin
H

⊥
(C). Then,

wmin
H (C) ≥ wmin

p (H) ≥
n − 1

wmin
H

⊥
(C) − 1

+ 1.

(We assume that the above parity-check matrix H

spans indeed the whole dual code; if not, then the

lower bound is for an even larger code.)

Proof: In App. E of [14] the above lower bound

for the minimum Hamming weight was derived from

Tanner’s bit-oriented bound on the minimum Ham-

ming weight. But because Tanner’s bit-oriented lower

bound on the minimum Hamming weight and the

lower bound in Th. 9 give the same value for the

given parity-check matrix H, the theorem follows. ¤

4 An LP-Based Lower Bound

on the Minimum Pseudo-

Weight

Our linear programming lower bound on the min-

imum pseudo-weight was originally very much in-

spired by the linear programming lower bound on

the minimum Hamming weight as presented by Tan-

ner [10]. But finally, its form is quite different. Actu-

ally, the present form reminds much more of the “Lift

and Project” technique in Sec. 5.4.2 of [2] which was

used to obtain a modification of the linear program-

ming decoder. But the approach in [2] is used to

constrain the fundamental polytope whereas we are

interested in relaxing the fundamental cone. Note

moreover that in [10] and in [2] an important ingredi-

ent is the relation xi = x2
i (which holds because the

components of the vector x were desired to be 0 or

1), but this does not hold anymore for components of

pseudo-codewords.

The lower bounds on the minimum pseudo-weight

that will be presented in this section are based on the

following lemma, which can be considered as a form

of relaxed optimization. This relaxation makes sense

especially in the cases where the new optimization

problem is simpler and can be solved efficiently.

Lemma 13 Let S and S ′ be two sets, let f be a func-

tion with domain S, and let f ′ be a function with do-

main S ′. If for each x ∈ S there exists at least one

x′ ∈ S ′ such that f(x) ≤ f ′(x′), then

max
x∈S

f(x) ≤ max
x′∈S′

f ′(x′).

Proof: Let x∗ ∈ S be a vector that achieves the max-

imum in maxx∈S f(x). Because for each x ∈ S there

exists at least one x′ ∈ S ′ such that f(x) ≤ f ′(x′),

there must exist a x′∗ ∈ S ′ such that f(x∗) ≤ f ′(x′∗).

Therefore,

max
x∈S

f(x) = f(x∗) ≤ f ′(x′∗) ≤ max
x′∈S′

f ′(x′),

which proves the statement in the lemma. ¤

Definition 14 Let C be a code of length n with

parity-check matrix H and let K
4
= K(H) be as given

in Th. 6. We introduce the sets

K
4
= K(H)

4
=
{
x ∈ R

n | KxT ≥ 0T and x ≥ 0
}
,

K1
4
= K1(H)

4
=
{
x ∈ R

n | KxT ≥ 0T,x ≥ 0, ||x||1 = 1
}

=
{
x ∈ R

n | KxT ≥ 0T,x ≥ 0,x · 1T = 1
}
.

Theorem 15 Let C be a code of length n with parity-

check matrix H, let V
4
= V(H) as in Def. 1, and let

K
4
= K(H) as in Th. 6. Let the entries of a vector

y ∈ R
(V2) be indexed by (v, w) ∈ V2. Furthermore,

for v ∈ V we let y(v,:) be the sub-vector (of length |V|)

of y consisting of all entries with index (v, w), w ∈ V,
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and for w ∈ V we let y(:,w) be the sub-vector (of length

|V|) of y consisting of all entries with index (v, w),

v ∈ V. Then, the minimum Hamming weight and

the minimum pseudo-weight wmin
p (H) can be lower

bounded by

wmin
H (C) ≥ wmin

p (H) ≥
1

maxy∈K′

1
f ′(y)

, (6)

where

f ′(y)
4
=
∑

v∈V

y(v,v)

and

K′
1

4
=







y ∈ R
(V2)

∣
∣
∣
∣
∣
∣
∣

y ≥ 0,y · 1T = 1,

KyT

(v,:) ≥ 0T for all v ∈ V,

KyT

(:,w) ≥ 0T for all w ∈ V







.

Note that the maximization problem in the denomi-

nator on the right-hand side of (6) is a linear opti-

mization program.

Proof: Using the sets defined in Def. 14 we have

1

wmin
p (H)

= max
x∈K

||x||22
||x||21

= max
x∈K1

||x||22
(∗)

≤ max
y∈K′

1

f ′(y),

where in (∗) we have used Lemma 13. In order to

show that this relaxation is indeed valid, we have to

show that for each x ∈ K1 there exists a y ∈ K′
1

such that ||x||22 ≤ f ′(y). So, choose a vector x ∈ K1.

Then, let y have entries y(v,w)
4
= xv · xw. This, inter

alia, implies that y(v,:) = xv · x for each v ∈ V and

that y(:,w) = xw · x for each w ∈ V. Let us first show

that y ∈ K′
1.

• By assumption, x ≥ 0. Therefore, for each

(v, w) ∈ V2 we have yv,w = xv · xw ≥ 0 · 0 = 0

and so y ≥ 0.

• By assumption, x · 1T = 1, i.e.
∑

v∈V xv =

1. Therefore, y · 1T =
∑

v∈V

∑

w∈V y(v,w) =
∑

v∈V

∑

w∈V xvxw =
(∑

v∈V xv

)
·
(∑

w∈V xv

)
=

1 · 1 = 1.

• Let v ∈ V. By assumption, xv ≥ 0 and KxT ≥

0T. It follows that also the scaled vector (scaled

by a non-negative value) y(v,:) = xv · x fulfills

KyT

(v,:) ≥ 0T.

• Let w ∈ V. By assumption, xw ≥ 0 and KxT ≥

0T. It follows that also the scaled vector (scaled

by a non-negative value) y(:,w) = xw · x fulfills

KyT

(:,w) ≥ 0T.

Finally, f ′(y) =
∑

v∈V y(v,v) =
∑

v∈V x2
v = ||x||22 and

so certainly ||x||22 ≤ f ′(y). ¤

There are many extensions/modifications to this

technique. We briefly mention some of them.

• An alternative formulation of Th. 15 is as follows.

Instead of y ∈ R
(V2), we consider the matrix

Y ∈ R
|V|×|V|. The function f ′(y) then becomes

the trace of Y, etc.

• Instead of the ansatz y(v,w) = xv · xw based on

quadratic terms, one can also use the ansatz

y(v,w,u) = xv · xw · xu based on cubic terms.

The vector y can then be represented by a cube

where in all three directions the content must

be in the fundamental cone. The cost function

has the form 1
3

(∑

v,w y(v,v,w) +
∑

v,w y(v,w,v) +
∑

v,w y(w,v,v)

)
. This procedure can be extended

to a quartic term approach, a quintic term ap-

proach etc. Obviously the complexity grows.

• Modifying the proof of Th. 15 appropriately, one

can set y(w,v)
4
= y(v,w) for all v, w ∈ V; this is

based on the observation that xi · xj = xj · xi

for a pseudo-codeword x. Additionally, if the

parity-check matrix has some symmetries, this

can be used to reduce the complexity of the linear

program by a factor proportional to the size of

the symmetry group.

• An approach to improve the linear programming

bound is to assume that xv is the largest com-

ponent. Then yw,v ≥ yw,v′ and yv,w ≥ yv′,w for

all w and all v′. Executing the linear program-

ming bound for all possible v ∈ V and taking

the least lower bound gives also a lower bound

on the minimum pseudo-weight. But note that

this improvement is not compatible with using

symmetries of the parity-check matrix. The only

symmetry of y that can be used is y(v,w) = y(w,v)

for all v, w ∈ V.

• The approach in Th. 15 can be generalized to

get lower bounds on the minimum pseudo-weight

of codes described by factor graphs with state
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nodes, e.g. tail-biting trellises. For tail-biting

trellises one can also formulate a fundamental

polytope/cone.5

• To all the linear programs formulated above one

can formulate a dual linear program, see e.g. [15].

For the above linear programs, the cost func-

tion of the dual linear program turns out to

have actually a rather simple form. This al-

lows one to use simple optimization heuristics

as e.g. gradient-based methods.

Whereas only the optimal point of the primal

linear program leads to a true lower bound on

the minimum pseudo-weight, any feasible point

of the dual linear program is actually a lower

bound on the minimum pseudo-weight. There-

fore, we do not need a guarantee that an opti-

mization algorithm of the dual linear program

really achieves the optimum.

Note that whereas the eigenvalue-based technique

(Th. 9) gives nontrivial results only for certain code

families, this second technique (Th. 15) gives non-

trivial results for any code, but is computationally

also more demanding.

We have some preliminary numerical results using

this technique and its extensions. For codes from

projective planes the lower bound equals the mini-

mum Hamming weight (as was the case for Th. 9, see

Rem. 11). For the [155, 64, 20] code by Tanner [16]

(for which an upper bound on the minimum pseudo-

weight is 16.4) we obtained 9.3 (by the quadratic ap-

proach) and 10.8 (a feasible point from the dual linear

program of the quadratic approach with the fourth

extension/modification mentioned above).
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