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Abstract—Although min-sum algorithm (MSA) and linear pro-
gramming (LP) decoding are tightly related, it is not straightfor-
ward to translate MSA decoding performance analysis techniques
to the LP decoding setup. Towards closing this performance
analysis techniques gap, Koetter and Vontobel [ITAW 2006]
showed how the collection of messages from several MSA
decoding iterations can be used to construct a dual witness for
LP decoding, thereby deriving some performance results forLP
decoding.

In a recent breakthrough paper by Arora, Daskalakis, and
Steurer (ADS) [STOC 2009], the understanding of the perfor-
mance of LP decoding was brought to a new level, not only
from the perspective of available analysis tools but also from the
perspective of significantly improving the known asymptotic LP
decoding threshold bounds. ADS achieved this by showing how
MSA decoding analysis type results can be used in the primal
domain of the LP decoder, along the way also giving evidence
that the above detour over the dual domain is neither necessary
nor simpler.

In the present paper we focus on the geometrical aspects of the
ADS paper and show that one of the key results of the ADS paper
can be reformulated as the construction of a rather nontrivial
class of supersets of the fundamental cone, where these supersets
are convex cones that are generated by vectors that are derived
from computation trees and minimal valid deviations therein. As
we will discuss, the main ingredient that allows the verification
of this superset construction is a certain class of backtrackless
random walks on the code’s normal factor graph. Moreover,
formulating our results in terms of normal factor graphs wil l
facilitate the generalization of the geometrical results of the ADS
paper to setups with non-uniform node degrees, with other types
of constraint function nodes, and with no restrictions on the
girth. We conclude the paper by showing connections between
the entropy rates of the above-mentioned random walks and the
Bethe entropy function of the normal factor graph that these
random walks are defined on.

I. I NTRODUCTION

Linear programming (LP) decoding was introduced by
Feldman, Wainwright, and Karger [1], [2] as a relaxation of an
LP formulation of the blockwise maximum likelihood decoder.
Namely, consider a binary linear codeC that is described by
somem×n parity-check matrixH . LP decoding can then be
written as

ωLP , arg max
ω∈P

〈λ,ω〉,

whereλ is the length-n vector containing the log-likelihood
ratios of the channel output symbols, and whereP , P(H)
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Fig. 1. Left: Fundamental polytopeP and fundamental coneK of a binary
linear codeC that is described by some parity-check matrixH. Right: A
convex coneK that is a subset of the fundamental coneK, and a convex
coneK that is a superset of the fundamental coneK: K ⊆ K ⊆ K.

is the fundamental polytope, which is a certain relaxation of
the codeword polytopeconv(C), which in turn is obtained by
embeddingC in R

n and then taking its convex hull [1], [2], [3],
[4]. In the following, we will also need the fundamental cone
K , K(H), which is the conic hull ofP , i.e.,K , conic(P),
cf. Figure 1 (left).

Assessing the decoding performance of the LP decoder is an
intriguing problem. Under the assumption that the channel is
a memoryless binary-input output-symmetric channel, it turns
out to be sufficient to study the LP decoding performance
when the all-zero codeword was sent [1], [2]. Moreover,
because of the relationship
{

λ

∣
∣
∣
∣
0 6= arg min

ω∈P
〈λ,ω〉

}

=

{

λ

∣
∣
∣
∣
0 6= arg min

ω∈K
〈λ,ω〉

}

,

studying if the all-zero codeword loses against any vector in P
is equivalent to studying if the all-zero codeword loses against
any vector inK.1

Although the determination of the exact decoding error
probability of the LP decoder is highly desirable, this is not
always feasible because of complexity reasons. This motivates
the study of lower and upper bounds on the decoding error

1Here and in the following, we assume that the resolution of ties is done
in a systematic and/or uniform way. In particular, the resolution of ties can
be done in such a way that the error probability under LP decoding when
sending the all-zero vector equals the error probability under LP decoding
when sending any other codeword. For simplicity of exposition, however, in
this text we assume that there are no ties and that the abovearg min gives
back a single vector and not a set with possibly more than one vector.



probability of the LP decoder. A way to obtain such bounds
is as follows. Namely, letK andK be convex cones that satisfy

K ⊆ K ⊆ K,

cf. Figure 1 (right). Then, because of the relationships
{

λ
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0 6= arg min

ω∈K
〈λ,ω〉

}

⊇
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〈λ,ω〉
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,
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0 6= arg min

ω∈K
〈λ,ω〉

}

⊆

{

λ

∣
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∣
0 6= arg min

ω∈K
〈λ,ω〉

}

,

it is straightforward to derive the following lower and upper
bounds on the decoding error probability of LP decoding

Pr

(

0 6= arg min
ω∈P

〈Λ,ω〉

)

> Pr

(

0 6= arg min
ω∈K

〈Λ,ω〉

)

, (1)

Pr

(

0 6= arg min
ω∈P

〈Λ,ω〉

)

6 Pr

(

0 6= arg min
ω∈K

〈Λ,ω〉

)

, (2)

where Λ is the random vector associated with the log-
likelihood ratio vectorλ.

The inequality in (1) was for example used in [5] to obtain
lower bounds on the error probability of the LP decoder.
There the convex coneK ⊆ K was implicitly defined by
constructing pseudo-codewords based on a modified version
of the canonical completion technique [3], [4].

The inequality in (2) is the focus of this paper, i.e., we
want to construct convex conesK ⊇ K which can be used
to obtain upper bounds on the error probability of the LP
decoder. Clearly, such conesK are relaxations of the conic
hull of the codebookconic(C) becauseK is a relaxations of
the fundamental coneK, which in turn is a relaxation of the
conic hull of the codebook.

There have been several attempts at studying upper bounds
on the decoding error probability of LP decoding, in particular
towards the goal of formulating asymptotic results. (For ex-
ample, if the channel is the binary symmetric channel (BSC)
then such asymptotic results typically give guarantees that
a certain fraction of bit flips can be successfully corrected,
either with absolute certainty or with high probability.) In that
line of research, let us mention [6], [7] that gave threshold
results for low-density parity-check (LDPC) codes whose
Tanner graphs [8] have good expansion. Similar type of results
were also given in [9], [10]. However, the approach in these
latter two papers was to leverage performance analysis tools
from message-passing iterative (MPI) decoding, in particular
from min-sum algorithm (MSA) decoding. Although all four
papers [6], [7], [9], [10] show that LP decoding can correct
a constant fraction of errors for the BSC under rather mild
conditions on the LDPC code, the analysis techniques in
the latter two papers yield much better lower bounds on the
fraction of errors that can be corrected. (We refer to [10] for
a comparison of some numerical results.)

It is clear that MSA decoding and LP decoding are tightly
related [11]. This fact was the motivation for [9] to obtain
performance analysis results for LP decoding by leveraging
performance analysis results for MSA decoding, in particular

by leveraging computation tree based techniques [12]. The
main obstacle that has to be overcome when trying to connect
the performance analysis of these two decoders is to find a
way to merge “locally valid configurations” so as to obtain
“globally valid configurations,” in the sense that one has to
find a way to piece together valid computation tree deviations
to form valid configurations in the factor graph [13], [14],
[15] that represents the LP decoder.2 Towards achieving this,
[9] considered the LP decoder in the dual domain and pieced
together messages from computation trees to form valid con-
figurations on the factor graph that represents the dual of the
LP decoder.

Arora, Daskalakis, and Steurer (ADS) [10] had the insight
how to achieve a connection between valid computation tree
deviations (more precisely, minimal valid computation tree
deviations) and valid configurations on the factor graph that
represents the LP decoder in the primal domain. Compared
to [9], not only is the resulting technique simpler but it also
seems to be more powerful. Assuming families of regular
LDPC codes with Tanner graphs whose girth grows suffi-
ciently fast, ADS were able to show very good numerical
threshold results for LP decoding for the BSC. Interesting
extensions of the technique of the ADS paper to memoryless
binary-input output-symmetric channels beyond the BSC have
recently been presented by Halabi and Even [16].

The LP decoding performance analysis technique in the
ADS paper can be seen as having two parts: a geometrical
part and a density evolution part.

• Geometrical part: The ADS paper implicitly constructs a
convex coneK ⊇ K based on minimal valid computation
trees deviations. The present paper will focus entirely
on this geometrical aspect of the ADS paper, and will
show how the results in the ADS paper can be extended
to a much larger family of factor graphs than the one
containing only factor graphs of regular LDPC codes. In
particular, our results are independent of the girth of the
factor graph.

• Density evolution part: Once the geometrical part
has been established, techniques akin to density evolu-
tion [17] can be applied to obtain thresholds and other
results. For this part of the LP decoding performance
analysis, it remains to be seen how far the requirements
on the growth of the girth with respect to the growth of
the blocklength can be relaxed. (The threshold results in
the ADS paper are based on the girth growing logarith-
mically with the blocklength.3)

2Valid deviations in computation trees are valid configurations where the
assignment at the root is non-zero, see, e.g., Figure 3 in Section V. (Note that
for a given factor graph there is a computation tree for everynode and for
every iteration of the MSA decoding algorithm.)

3Note that a randomly constructed Tanner graph with fixed uniform bit node
degree and fixed uniform check node degree willnot have logarithmically
growing girth. However, there are explicit deterministic constructions that
yield logarithmically growing girth, for example the construction presented in
Gallager’s thesis [18, Appendix C]. Note that in the contextof MSA decoding
performance analysis, one usually uses the fact that the fraction of short cycles
vanishes asymptotically with high probability [17].



As we will see, the key ingredient to obtain the above-
mentioned geometrical results is a class of backtrackless
random walks that are defined on normal factor graphs. This
class of random walks is such that for every (edge-based)
pseudo-codeword there is at least one random walk in this class
with the property that the edge visiting probability distribution
is proportional to this (edge-based) pseudo-codeword.

Any random walk in this class can be described by a Markov
chain with a suitably defined transition probability matrix.
Necessarily, the stationary distribution of this Markov chain is
an eigenvector (with eigenvalue1) for the transition probability
matrix. Because any eigenvector of the transition probability
matrix is “self-consistent”, i.e., it is proportional to itself after
multiplication by the transition probability matrix, alsothe
stationary distribution vector is “self-consistent.” It turns out
that this “self-consistency property” of stationary distributions
is the crucial ingredient in the verification of the fact that
any valid configuration in the LP decoding normal factor
graph can be obtained by a suitably weighted combination of
valid computation tree deviations. In other words, this “self-
consistency property” of stationary distributions guarantees
that configurations, although obtained by combining “only lo-
cally valid configurations,” are “globally valid configurations.”

The importance of this class of random walks is corrobo-
rated by the fact that this class also appears in the analysisof
cycle codes,4 in particular it gives the link between the Bethe
entropy function and the edge zeta function associated witha
normal graph [19]. Moreover, these random walks also fit in
the theme of expressing a code in terms of some cycle code,
along with some additional constraints [20, Section 6].

This paper is structured as follows. Section II collects
notations that will be used throughout the paper. Afterwards,
Section III defines and discusses a variety of normal graphs,
Section IV presents the above-mentioned class of random
walks, Section V shows how to construct convex cones that
are supersets of the fundamental cone, and Section VI presents
some connections between the entropy rates of the above-
mentioned random walks and the Bethe entropy function of
the normal factor graph that these random walks are defined
on. Finally, Section VII contains some conclusions.

Because of space restrictions, Section VI is omitted and
proofs are sketched or omitted. All details are provided in the
journal version of this paper [21].

II. N OTATION

This section discusses the most important notations that we
will use in this paper. More notational definitions will be given
in later sections.

We start with some sets, rings, and fields. We letZ, Z>0,
Z>0, R, R>0, andR>0 be the ring of integers, the set of non-
negative integers, the set of positive integers, the field ofreal
numbers, the set of non-negative real numbers, and the set of
positive real numbers, respectively. We letF2 , {0, 1} be the

4Cycle codes are LDPC codes described by a parity-check matrix with
uniform column weight two.

Galois field with two elements; as a set,F2 is considered to
be a subset ofR. The size of a setS is denoted by|S|.

In the following, all scalars, all entries of vectors, and all
entries of matrices will be considered to be inR, unless noted
otherwise. So, if an addition or a multiplication is not in the
real field, we indicate this, e.g., by writinga + b (in F2) or
a+ b (in F2). As usually done in coding theory, we use only
row vectors. The transpose of a vectora is denoted byaT. An
inequality of the forma > b involving two vectors of length
N is to be understood component-wise, i.e.,ai > bi for all 1 6
i 6 N . We let 0N and1N be, respectively, the all-zero and
the all-one row-vector of lengthN ; when the length of these
vectors is obvious from the context, we omit the subscript.
The supportsupp(a) of a vectora is the set of indices where
a is non-zero. In that context, we use the shorthanda′ ⊆ a to
denote the statementsupp(a′) ⊆ supp(a), i.e., the statement
that, for all i, a′

i is non-zero only ifai is non-zero.
By 〈x,y〉 ,

∑

i xiyi we denote the standard inner product
of two vectors having the same length. Theℓ1-norm of a vector
x is ‖x‖1 ,

∑

i|xi|; note that‖x‖1 = 〈x,1〉 if and only if
x > 0. Let x,y ∈ F

N
2 be two vectors of lengthN . The

Hamming weightwH(x) of a vectorx is defined to be the
number of non-zero positions ofx and the Hamming distance
dH(x,y) between two vectorsx and y is defined to be the
number of positions wherex andy disagree.

We also need some notions from convex geometry (see,
e.g., [22]). Letx(1), . . . ,x(ℓ) be ℓ points in R

N . A point of
the form θ1x

(1) + · · · + θℓx
(ℓ), with θ = (θ1, . . . , θℓ) such

that 〈θ,1〉 = 1 and θ > 0, is called a convex combination
of x(1), . . . ,x(ℓ). A set S ⊆ R

N is called convex if every
possible convex combination of two points ofS is in S. By
conv(S) we denote the convex hull of the setS, i.e., the set
that consists of all possible convex combinations of all the
points inS; equivalently,conv(S) is the smallest convex set
that containsS.

Again, let x(1), . . . ,x(ℓ) be ℓ points in R
N . A point of

the form θ1x
(1) + · · · + θℓx

(ℓ) with θ > 0 is called a conic
combination ofx(1), . . . ,x(ℓ). A set K ⊆ R

N is called a
convex cone if every possible conic combination of two points
of K is in K. By conic(S) we denote the conic hull of the set
S, i.e., the set that consists of all possible conic combinations
of all the points inS; equivalently,conic(S) is the smallest
convex conic set that containsS.

Finally, we use Iverson’s convention, i.e., for a statementS
we define[S] , 1 if S is true and[S] , 0 otherwise.

III. N ORMAL GRAPHS AND THE

LOCAL MARGINAL POLYTOPE

We will express our results in terms of normal graphs [14],
which are also known as normal factor graphs or Forney-style
factor graphs.

Definition 1: A normal graphN(F , E ,A,G) consists of

• a graph(F , E), with vertex setF (also known as function
node setF ) and (half-)edge setE .

• a collection of alphabetsA , {Ae}e∈E , where the
alphabetAe is associated with the edgee ∈ E ;



• a collection of functionsG , {gf}f∈F , where the local
function gf is associated with the function nodef ∈ F
and further specified below.

In the following, we will, for everyf ∈ F , useEf ⊆ E
to denote the subset of edges that is incident tof , and for a
vector c ∈

∏

e∈E Ae we define for everyf ∈ F the vector
cf , (ce)e∈Ef

.
With this, for a multiplicatively written normal graph the

global functiong :
∏

e∈E Ae → R is defined to beg(c) ,
∏

f∈F gf (cf ) with local functionsgf :
(∏

e∈Ef
Ae

)
→ R,

f ∈ F , whereas for an additively written normal graph (that
typically represents some type of cost function) the global
function g :

∏

e∈E Ae → R ∪ {∞} is defined to beg(c) ,
∑

f∈F gf(cf ) with local functionsgf :
(∏

e∈Ef
Ae

)
→ R ∪

{∞}, f ∈ F .
For a multiplicatively written normal graph, we define for

everyf ∈ F the function node alphabetAf to be the set

Af ,






af ∈

∏

e∈Ef

Ae

∣
∣
∣
∣
∣
∣

gf (af ) 6= 0






,

and for an additively written normal graph we define for every
f ∈ F the function node alphabetAf to be

Af ,






af ∈

∏

e∈Ef

Ae

∣
∣
∣
∣
∣
∣

gf (af ) 6= ∞






.

The alphabetsAf , f ∈ F , will also be considered to be part
of the collectionA.

In the following, we will useaf,e to denote the component
of af related to the edgee ∈ Ef , we will use the short-hand
∑

af
for
∑

af∈Af
, and we will use the short-hand

∑

ae
for

∑

ae∈Ae
.

Finally, a vectorc ∈
∏

e∈E Ae will be called a configuration
of the normal graph, and a configurationc with g(c) 6= 0
(with g(c) 6= ∞ in the context of additively normal graphs)
will be called a valid configuration. Clearly, the set of valid
configurationsCedge is characterized as follows

Cedge ,

{

(ce)e∈E

∣
∣
∣
∣

ce ∈ Ae for all e ∈ E
cf ∈ Af for all f ∈ F

}

.

In this paper we will focus on a special class of normal
graphs as defined below.

Definition 2: Let N be the collection of all normal graphs
N(F , E ,A,G)

• where|F| < ∞ and |E| < ∞,
• whereE contains no half-edges,
• whereAe = {0, 1} for all e ∈ E , and
• wherewH(af ) 6= 1 for all f ∈ F , af ∈ Af .

Let us comment on this definition.

• The first constraint is not much of a constraint since
usually we are interested in finite graphs.

• Also the second constraint is not really much of a
constraint since any normal graph with half-edges can
be turned into another normal factor graph where the
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Fig. 2. Left: Normal graph for Example 3. Right: Normal graphfor
Example 5.

variables associated with the half-edges are “marginalized
out” by modifying the adjacent function nodes. (Here the
marginalization process depends on the type of message-
passing algorithm that is applied to the normal graph.)

• Moreover, note that any normal graph with a degree-one
function node can also be turned into a normal graph
without this degree-one function node. Namely, letf be
such a degree-one function node and lete be the edge
between the function nodef and some other function
node f ′. Then, “marginalizing out” over the variable
associated withe and over the function nodef , we obtain
a new normal graph without edgee, without function
nodef , and with a modified function nodef ′. Applying
this procedure repeatedly if necessary, we obtain the
“core” of the normal graph that contains only function
nodes of degree at least two.

• A class of normal graphs that is not included inN
(even after the above-mentioned graph modifications) is
the class of normal graphs that have function nodes
whose degree is at least two and whose alphabet contains
elements of weight one. However, in coding theory such
function nodes usually do not appear since normal graphs
with such function nodes do not yield good codes.

Example 3:Consider a binary linear codeC of length n
described by a parity-check matrixH ∈ F

m×n
2 , i.e.,

C ,
{
x ∈ F

n
2

∣
∣ H · xT =0

T
}

.

In the same way that we can draw a Tanner graph for this code,
we can draw a normal graph whose global function represents
the indicator function of the code. Let the set of function nodes
be F , I ∪ J , whereI is the set of all column indices of
H andJ is the set of all row indices ofH , and let the set
of edges beE ,

{
(i, j) ∈ I × J

∣
∣ hj,i = 1

}
. If the function

nodef is in I, thengf is defined to be an equal function node
of degree|Ef |, i.e.,

Af =
{

af ∈ {0, 1}|Ef |
∣
∣
∣ wH(af ) ∈

{
0, |Ef |

}}

,

gf(af ) =
[
af ∈ Af

]
.

If the function nodef is in J , thengf is defined to be a single
parity-check function node of degree|Ef |, i.e.,

Af =
{

af ∈ {0, 1}|Ef |
∣
∣
∣ wH(af ) is even

}

,

gf (af ) =
[
af ∈ Af

]
.



For example, the parity-check matrix

H ,





1 1 1 1 0
1 1 0 1 1
1 0 1 1 1



 (3)

yields the normal graph shown in Figure 2 (left).
To be precise, the above procedure does strictly speaking

not define the indicator function[x ∈ C], but the indicator
function [c ∈ Cedge]. However, there is a bijection between
codewordsx = (xi)i∈I ∈ C and valid configurationsc =
(ce)e∈E ∈ Cedge, wherece = xf for all e ∈ Ef , f ∈ I.

Note that in the case where the parity-check matrixH in
Example 3 contains a column with a single one in it, i.e., there
exists anf ∈ I such that|Ef | = 1, then the resulting normal
graph is not inN .

Example 4:This example continues Example 3. Assume
that the codeC is used for data transmission over a binary-
input memoryless channel with channel lawW (y|x), wherex
is a channel input symbol andy is a channel output symbol,
and that we would like the global function of the normal graph
to be proportional to the indicator function of the code times
∏

i∈I W (yi|xi).
It is possible to formulate a normal graph inN with this

global function. Namely, starting with the normal graph in
Example 3, for everyf ∈ I, the equal function node is
replaced by a modified equal function node as follows: the set
Af is defined as in Example 3 but the functiongf is modified
to readgf(af ) =

[
af ∈ Af

]
·W (yf |af,e), wheree is arbitrary

in Ef . Moreover, for everyf ∈ J , the setAf and the function
gf are defined as in Example 3.

Example 5:This example continues Examples 3 and 4. As
an alternative to the procedure that modified the normal graph
in Example 3 to obtain the normal graph in Example 4, we
can also modify the normal graph in Example 3 as follows.
Namely,Af andgf are left unchanged for allf ∈ I ∪J , but
every edgee ∈ E is replaced by two edgese′ and e′′, along
with a function nodef that is a modified equal function node
with incident edgese′ ande′′ and with

Af =
{
af ∈ {0, 1}2

∣
∣ wH(af) ∈ {0, 2}

}
,

gf (af ) =
[
af,e′ = af,e′′

]
·
(
W (yf |af,e′)

)1/|Ei|
,

wherei ∈ I is the column index ofH corresponding to the
edgee. This approach is exemplified in Figure 2 (right) for
the parity-check matrixH shown in (3).

Given a normal graphN(F , E ,A,G) = N
(
F , E , {Af}f ∪

{Ae}e,G
)
, the LP relaxation normal graph is defined to be the

normal graphNLP
(
F , E , {conv(Af )}f ∪{conv(Ae)}e,GLP

)
,

where GLP is suitably extended fromG. (This extension
depends on whetherN is an additively or a multiplicatively
written normal graph. We omit the details.)

The local marginal polytope (see, e.g., [23], [24]), defined
next, is tightly related to the set of valid configurationsCLP

edge

of N
LP.

Definition 6: Consider a normal graphN(F , E ,A,G) ∈ N .
Let β ,

(
(βf )f∈F , (βe)e∈E

)
be a collection of vectors based

on the real vectorsβf , (βf,af
)af∈Af

, βe , (βe,ae
)ae∈Ae

.
Then, for f ∈ F , the f th local marginal polytope (orf th
belief polytope)Bf is defined to be the set

Bf ,






βf ∈ R

|Af |
>0

∣
∣
∣
∣
∣
∣

∑

af

βf,af
= 1






,

and for alle ∈ E , theeth local marginal polytope (oreth belief
polytope)Be is defined to be the set

Be ,

{

βe ∈ R
|Ae|
>0

∣
∣
∣
∣
∣

∑

ae

βe,ae
= 1

}

.

With this, the local marginal polytope (or belief polytope)B
is defined to be the set

B =







β

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

βf ∈ Bf for all f ∈ F
βe ∈ Be for all e ∈ E
∑

af∈Af : af,e=ae

βf,af
= βe,ae

for all f ∈ F , e ∈ Ef , ae ∈ Ae







,

whereβ ∈ B is called a pseudo-marginal. (The constraints
that were listed last in the definition ofB will be called “edge
consistency constraints.”)

Definition 7: Consider a normal graphN(F , E ,A,G) ∈ N .
We define the edge-based fundamental polytopePedge and the
edge-based fundamental coneKedge to be, respectively,

Pedge ,
{
(βe,1)e∈E

∣
∣ β ∈ B

}
,

Kedge , conic(Pedge).

Elements of Pedge and Kedge will be called edge-based
pseudo-codewords. The connection toN

LP is given byCLP
edge =

Pedge. We will also need the projection

ψedge : B → Pedge,

β 7→ (βe,1)e∈E .

(Clearly, in general there are manyβ ∈ B that map to the
same edge-based pseudo-codeword inPedge.)

The (usual) fundamental polytopeP , P(H) [1], [2], [3],
[4] of some parity-check matrixH representing some codeC
is related as follows to the edge-based fundamental polytope
Pedge of the normal graph that is associated withH according
to the construction in Example 3. Namely, there is a bijection
between pseudo-codewordsω = (ωi)i∈I ∈ P and edge-based
pseudo-codewordsǫ = (ǫe)e∈E ∈ Pedge, whereǫe = ωf for
all e ∈ Ef , f ∈ I.

The next object will be crucial towards defining one of the
main objects of this paper, namely backtrackless random walks
on normal graphs.

Definition 8: Consider a normal graphN(F , E ,A,G) ∈ N .
Based on this normal graph, we define a new normal graph
N̊
(
F̊ , E̊ , Å, G̊

)
∈ N with set of valid configurations̊Cedge,

with local marginal polytope̊B, with edge-based fundamental
polytopeP̊edge, and with edge-based fundamental coneK̊edge

as follows.



• F̊ , F and E̊ , E .
• For everyf ∈ F̊ ,

Åf ,
{

åf ∈ {0, 1}|Ef |
∣
∣
∣ wH(̊af ) ∈ {0, 2}

}

.

• For everye ∈ E ,

Åe , {0, 1}.

• The local functions̊gf , f ∈ F̊ , are left unspecified, but
their respective supports are assumed to match the sets
Åf , f ∈ F̊ .

• C̊edge, B̊, P̊edge, K̊edge for N̊ are defined analogously to
Cedge, B, Pedge, Kedge for N.

Note that the little circle on top of̊N, etc., is mnemonic for the
fact that valid configurations in this new normal graph form
cycles, or vertex-disjoint cycles, in the underlying graph; we
may therefore call this new normal graph̊N a vertex-disjoint
cycle normal graph. Note that, unless the degree of all function
nodes is two or three,̊Cedge is not a cycle code. However, one
can show that̊Kedge equals the edge-based fundamental cone
of the cycle code defined on(F , E).

The above definition of the normal graph̊N based onN can
be seen as a distillation of several earlier concepts that proved
to be useful.

• Expressing a code in terms of a cycle code, along
with some additional constraints, as was done in [20,
Section 6].

• A certain function that was very useful in the proof of
Lemma 2 in [10, Section 5.1].

• A construction of a new normal graph in [19] based
on a normal graph defining a cycle code. In fact, the
construction in [19] is a special case of the construction
above. (Note that in the case of cycle codes,Åf ⊆ Af

for all f ∈ F .)
The next definition introduces a mapping between certain

pseudo-marginals inB and pseudo-marginals in̊B. For this we
will need the setO ,

{

ǫ ∈ R
|E|
>0

∣
∣
∣ ‖ǫf‖1 6 2 for all f ∈ F

}

that is a polytope containing points inR|E| that have non-
negative coordinates and that are (somewhat) close to the
origin. Note that the conic hull ofO equalsR

|E|
>0.

Definition 9: Let β ∈ B be such thatǫ , ψedge(β) ∈ O.
Then we associate withβ the pseudo-marginal̊β ∈ B̊ as
follows.

• For everyf ∈ F ,

β̊f,̊af
,







1 − 1
2 · ‖ǫf‖1 if wH(̊af ) = 0

∑

af
βf,af

·

[
åf⊆af

]

wH(af )−1 if wH(̊af ) = 2
.

(Note that the term corresponding toaf ∈ Af contributes
to the above sum only ifβf,af

> 0 and åf ⊆ af .)
• For everye ∈ E ,

β̊e , βe.

An Appendix showing that̊β in Definition 9 is well defined
is omitted.

Let us comment on this definition.
• Let β ∈ B be such that it has an associated pseudo-

marginal β̊ ∈ B̊ according to the above definition.
Introducing,ǫ , ψedge(β) and ǫ̊ , ψedge(β̊), we obtain

ǫ = ǫ̊,

i.e., bothβ and β̊ yield the same edge-based pseudo-
codeword.

• The above remark implies thatPedge ∩ O ⊆ P̊edge ∩ O,
and soKedge ⊆ K̊edge. Therefore,K̊edge is a superset
of Kedge and can be used to obtain upper bounds on
the LP decoding performance. However,K̊edge equals the
edge-based fundamental cone of the cycle code defined
on (F , E), and because cycle codes are relatively weak
performance-wise, one expects that the resulting bounds
would be loose. Nevertheless, the supersetsKedge that
will appear in Theorem 21 are related to̊Kedge. Namely,
Kedge ⊆ Kedge ⊆ K̊edge.

• Consider a binary linear codeC defined by some parity-
check matrixH , along with the normal graph as defined
in Example 3. Define the setH ,

{
ǫ ∈ R

|E|
∣
∣

for all f ∈ I: ǫe = ǫe′ for all e, e′ ∈ Ef

}
. It follows that

Pedge ∩O = P̊edge ∩O∩H, and soKedge = K̊edge ∩H.
This observation generalizes the construction in [20,
Section 6] where a code was expressed in terms of a
cycle code, along with some additional constraints. (Note
that in contrast to [20, Section 6] we do not require the
column weights of the parity-check matrixH to be even
integers.)

For the rest of this paper we will assume that we consider
a fixed normal graphN(F , E ,A,G) ∈ N , along with the
normal graphN̊

(
F̊ , E̊ , Å, G̊

)
∈ N that was specified in

Definition 9. Moreover,B and B̊ will be the local marginal
polytopes associated with these two normal graphs. Note that
(F , E) = (F̊ , E̊), but A andÅ are in general different.

IV. A SSOCIATING A RANDOM WALK

WITH A PSEUDO-MARGINAL

We come now to one of the main objects of this paper,
namely a certain class of backtrackless random walks on a
normal graph. Many of the definitions in this section were
motivated by similar definitions in [19], and by some concepts
in [10, Section 5.1].

Let us start with some graph-related definitions that will
be helpful later on for specifying these backtrackless random
walks.

Definition 10 ([25], [20]): Let (F , E) be some graph, and
assume thatE =

{
1, . . . , |E|

}
. A directed graphderived from

(F , E) is any pair(F ,D) where

D ,
{
de

∣
∣ e ∈ E

}
∪
{
d|E|+e

∣
∣ e ∈ E

}

is a set of ordered triples(f, e, f ′) ∈ F × E × F such that,
for all e ∈ E , if e connectsf andf ′, then either

de , (f, e, f ′) and d|E|+e , (f ′, e, f), or

de , (f ′, e, f) and d|E|+e , (f, e, f ′).



(Thus we may think of(F ,D) as having two directed edges,
with opposite directions, for every edge of(F , E).)

We will use e(d) to denote the undirected edge inE that
is associated with some directed edged ∈ D. Moreover, for
every e ∈ E the setDe will be defined to contain the two
directed edges that are associated withe, i.e., De , {d ∈
D | e(d) = e}, and for everyf ∈ F the setDf will contain
all the directed edges pointing out of the function nodef .

The so-calleddirected edge matrixof (F ,D) is the|D|×|D|
matrixM = (md,d′)d∈D,d′∈D with

md,d′ =







1
if d = (f1, e, f2) andd′ = (f ′

1, e
′, f ′

2)

are such thatf2 = f ′
1 ande 6= e′

0 otherwise

.

With this, we define for everyd ∈ D the setDd ,
{
d′ ∈

D
∣
∣ md,d′ = 1

}
, which is the set of directed edges which the

directed edged can feed into.

Definition 11: For everyβ̊ ∈ B̊, we will use the following
definitions. Namely, for everyd ∈ D we define

β̊d ,
1

2
β̊e(d),1,

and for every(d, d′) ∈ D2 we define

β̊d,d′ ,

{
1
2 β̊f,̊af

if d′ ∈ Dd

0 if d′ /∈ Dd

,

where f ∈ F and åf ∈ Åf are such thatsupp(̊af) =
{
e(d), e(d′)

}
⊆ Ef .

Lemma 12:With the specifications in Definition 11,
∑

d′∈Dd

β̊d,d′ = β̊d for any d ∈ D,

∑

d: d′∈Dd

β̊d,d′ = β̊d′ for any d′ ∈ D.

Proof: We prove only the first statement; the second statement
will follow analogously. Letd = (f1, e, f2) ∈ D. Then

∑

d′∈Dd

β̊d,d′ =
∑

åf2
∈Åf2

: åf2,e=1

1

2
β̊f2 ,̊af2

(a)
=

1

2
β̊e,1 = β̊d,

where at step (a) we have used the fact thatβ̊ ∈ B̊ satisfies
the edge consistency constraints in̊B.

Definition 13: Let β̊ ∈ B̊. Based on such åβ we define a
time-invariant Markov process with the following properties.

• Its state space is the set of directed edgesD.
• The time-invariant transition probability of going from

stated ∈ D to stated′ ∈ D is defined to be

p̊d,d′ ,
β̊d,d′

β̊d

.

• The stationary probability of being in stated ∈ D is

π̊d =
β̊d

∑

d̄∈D β̊d̄

.

This time-invariant Markov process can be interpreted as a
backtrackless random walk on the normal graphN (or the
normal graph̊N), in the following called the̊β-induced random
walk on N (or N̊).

Some comments about the Markov process / random walk
in Definition 13 are in order.

• If the Markov process is indecomposable and aperiodic,
then the above stationary distribution is unique. Other-
wise, there are multiple stationary distributions, and the
one given above is just one possible stationary distribu-
tion.

• With the help of Lemma 12, it can easily be verified that
{π̊d}d∈D is indeed a valid stationary distribution and that
{p̊d,d′}d∈D,d′∈D are indeed valid transition probabilities.
In fact, defining the vector̊π , (̊π)d∈D and the matrix
P̊ , (p̊d,d′)d∈D,d′∈D, we can write

π̊ = π̊ · P̊ , (4)

i.e., π̊ is “self-consistent” according to the definition used
in the introductory section.

• Let ǫ , ψedge(β̊). From Definitions 11 and 13 it follows
that there is åβ-dependent constantγ ∈ R>0 such that

∑

d∈De

π̊d = γ · ǫe

for all e ∈ E . This observation implies that the probability
for the random walk to visit edgee ∈ E is proportional to
the corresponding coordinate of the edge-based pseudo-
codewordǫ.

• A Markov chain is called time-reversible [26, Chap-
ter 4.3] if the probability of visiting a sequence of states
is unchanged when reversing the order of the states
in the sequence. It can be verified that the Markov
chain / random walk at hand is time-reversible in the
following generalized sense. For anyT ∈ Z>0, let
d′ = (d1, . . . , dT ) ∈ DT andd = (d′1, . . . , d

′
T ) ∈ DT be

two sequences of directed edges such thate(dt) = e(d′t)
anddt 6= d′t for all t ∈ {1, . . . , T}. Then

π̊d1 · p̊d1,d2 · · · p̊dT−1,dT
= π̊d′

T
· p̊d′

T
,d′

T−1
· · · p̊d′

2,d′

1
.

This property of the Markov chain / random walk was
implicitly a key part of the proofs in [10].

• For anyβ ∈ B to which a β̊ ∈ B̊ can be associated
according to Definition 9, we will call the̊β-induced
random walk also theβ-induced random walk.

V. CONVEX CONES THAT ARE SUPERSETS OF THE

EDGE-BASED FUNDAMENTAL CONE

This section features Theorem 21, the main result of the
present paper. This theorem shows that certain convex cones
are supersets of the edge-based fundamental cone. We will
assume that the normal graphN is connected.

Definition 14: For a normal graphN, the graph distance
∆N(f, f ′) ∈ Z>0 between the two function nodesf, f ′ ∈ F is
defined as the length of the shortest path that connectsf with



f ′. The graph distance∆N(f, e) ∈ Z>0 between a function
nodef ∈ F and an edgee ∈ E is defined to bet if the shortest
path connectingf with e is f=f0, e0, f1, e1, . . . , ft, et=e.

The girthN of a normal graphN is defined to be the length
of the shortest cycle inN. Throughout this section, we fix
some scalarT ∈ Z>0 with T 6 1

2 girth(N) − 1 and define
T , {0, 1, . . . , T}. Moreover, we fix some vectorξ ∈ R

T+1
>0 .

For t > T , we defineξt , 0.
Remark 15:Although the definitions, statements, and

proofs in this section will assume thatT andN are such that
T 6 1

2 girth(N) − 1, i.e., thatT is bounded from above for a
given normal graphN, this constraint can easily be removed
as we will discuss in Remark 22 at the end of this section.

The following definition is motivated by the concept of valid
deviations in computation trees [12], [10].

Definition 16: For everyf0 ∈ F , define the normal graph
N̂

(f0)
(
F̂ (f0), Ê(f0), Â(f0), Ĝ(f0)

)
as follows.

• The factor node set̂F (f0) contains all function nodes
f ∈ F such that∆N(f0, f) 6 T .

• The function nodef0 ∈ F̂ (f0) will be called the root
node ofN̂(f0).

• The edge set̂E(f0) contains all the edgese ∈ E such that
∆N(f0, e) 6 T .

• Based onÊ(f0), the setD̂(f0) is defined analogously to
the way that the setD is defined based onE .

• For any function nodef ∈ F̂ (f0) and any edgee ∈ Êf ,
the edgee will be called inward with respect tof if e
lies on a path fromf to f0. Otherwisee will be called
outward with respect tof .

• For any function nodef ∈ F̂ (f0) and any directed edge
d ∈ D̂f , the directed edged will be called inbound with
respect tof if d lies on a directed path fromf to f0.
Otherwised will be called outbound with respect tof .

• For f = f0 we defineÂ(f0)
f , Af \ {0}.

• For everyf ∈ F̂ (f0) \ {f0} we define

Â
(f0)
f ,

{
âf ∈ Af

∣
∣ âf = 0 or âf,e = 1

}
,

wheree ∈ Ê
(f0)
f is inward with respect tof .

• For everye ∈ Ê(f0) we defineÂ(f0)
e , Ae.

• The local functionŝgf , f ∈ F , are left unspecified, but
their respective supports are assumed to match the sets
Âf , f ∈ F .

In the same way asCedge is defined based onN, we will
define, for everyf0 ∈ F , the set of valid configurationŝC(f0)

edge

of N̂. Note thatĈ(f0)
edge contains all (minimaland non-minimal)

valid deviations of the computation tree rooted atf0 and of
depthT .

Example 17:Consider a parity-check matrixH of some
(3, 4)-regular LDPC code5 and associate with it a normal
graph N as defined in Example 3. Ifgirth(N) > 10 then
we can chooseT = 4. Figure 3 shows the resulting normal

5A code is called a(wcol, wrow)-regular LDPC code if it is defined by
a parity-check matrix with uniform column weightwcol and uniform row
weight wrow .
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Fig. 3. Normal grapĥN(f0) for Example 17 where the root function node
f0 is chosen to be one of the equal function nodes inN and whereT = 4.
The thick red edges highlight the non-zero part of some validdeviation, see
the text at the end of Example 17.

graphN̂
(f0) whenf0 is chosen to be one of the equal function

nodes. The normal graphN has the following alphabets.
• Af =

{
(0, 0, 0), (1, 1, 1)} if f ∈ I.

• Af contains all eight binary length-4 vectors with even
Hamming weight iff ∈ J .

• Ae = {0, 1} for all e ∈ E .
On the other hand, the normal graphN̂

(f0), f0 ∈ F , has the
following alphabets.

• Âf =
{
(1, 1, 1)} if f = f0 ∈ I.

• Âf =
{
(0, 0, 0), (1, 1, 1)} if f ∈

(
F̂ (f0) \ {f0}

)
∩ I.

• Af contains all eight binary length-4 vectors with even
Hamming weight iff = f0 ∈ J .

• Âf =
{
(0, 0, 0, 0), (1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1),

(1, 1, 1, 1)} whenf ∈
(
F̂ (f0) \{f0}

)
∩J . (Here the vec-

tors are ordered such that the first component corresponds
to the inward edge with respect tof .)

• Âe = {0, 1} for all e ∈ Ê(f0).

Figure 3 shows a possible valid deviationĉ ∈ Ĉ
(f0)
edge, where a

thick red edgee ∈ Ê(f0) corresponds tôce = 1 and where a
thin black edgee ∈ Ê(f0) corresponds tôce = 0. Observe that
ĉ happens to be aminimal valid deviation.

Note that the little hat on top of̂N, etc., is mnemonic for the
fact that the non-zero part of a valid configuration inN̂ always
looks similar to the thick-red-edge-subgraph in Figure 3, i.e.,
it is a tree rooted atf0.

The following definition introduces some graph-dependent
weighting factors. These are crucial for extending the re-
sults in [10] to normal graphs beyond normal graphs of
(wcol, wrow)-regular LDPC codes.

Definition 18: For everyf0 ∈ F and for anyĉ ∈ Ĉ
(f0)
edge,

the vectorχ(ĉ) is defined as follows.6 If e ∈ E \ Ê(f0)

6Possibly more precise would bêc(f0) instead of̂c, but we will prefer the
more concise latter notation.



then χ
(ĉ)
e , 0. Otherwise, let t , ∆N(f0, e), and let

f0, e0, f1, e1, . . . , ft, et=e be the shortest path fromf0 to e
in N. Then7

χ(ĉ)
e ,

t∏

s=1

1

wH(ĉfs
) − 1

. (5)

Definition 19: For everyf0 ∈ F and for everyĉ ∈ Ĉ
(f0)
edge

define the vectorǫ(ĉ) ∈ R
|E|
>0 with components

ǫ(ĉ)
e , ĉ(f0)

e · χ(ĉ)
e · ξ∆N(f0,e), e ∈ E .

Definition 20: For everyf0 ∈ F , defineS(f0)
edge to be the set

S
(f0)
edge ,

{

ǫ(ĉ)
∣
∣
∣ ĉ ∈ Ĉ

(f0)
edge

}

,

With this, we defineSedge to be the set

Sedge ,
⋃

f0∈F

S
(f0)
edge.

Moreover, we letKedge be the conic hull ofSedge, i.e.,

Kedge , conic (Sedge) ,

i.e., the vectors inSedge “span” the convex coneKedge.

Theorem 21:With the assumptions onT , T , andξ made
at the beginning of this section, in particular also Remark 15,
and with Definitions 16, 18, 19, and 20, it holds that

Kedge ⊆ Kedge.

Proof: (Sketch.) Choose anyǫ in Kedge ∩O. (Any ǫ in Kedge

can always be rescaled by a positive scalar such thatǫ is in
Kedge ∩ O.) We have to show thatǫ is in Kedge, which is
equivalent to showing thatǫ is in the conic hull ofSedge,
which is equivalent to showing that2 ·

(∑

t∈T ξt

)
· ǫ is in the

conic hull ofSedge, which is equivalent to showing that

2 ·

(
∑

t∈T

ξt

)

· ǫ =
∑

f0∈F

∑

ĉ∈Ĉ
(f0)

edge

γf0,ĉ · ǫ(ĉ)

for some suitable non-negative constants{γf0,ĉ}f0,ĉ. This
conclusion can indeed be established by choosing the constants

γf0,ĉ , βf0,ĉf0
·
∏

f∈F̂(f0)

(
βf,ĉf

βe(f0,f),1

)[ĉf 6=0]

,

f0 ∈ F , ĉ ∈ Ĉ
(f0)
edge, whereβ is chosen such thatψedge(β) = ǫ,

and wheree(f0, f) denotes the inward edge with respect tof
in N̂

(f0). Without going into the details, let us mention that
the above summation over̂c ∈ Ĉ

(f0)
edge is carried out by defining

a suitable cycle-free normal graph and by applying the sum-
product algorithm. Finally, the summation overf0 ∈ F is
carried out by taking advantage of the properties of theβ-
induced random walk

7Note that the product in (5) starts ats = 1. Redefining the product to
start ats = 0 is also possible, and leads to a rescaling of the vectorsǫ(ĉ)

in the upcoming Definition 19, but it does not change the statement in the
upcoming Theorem 21.

Let us comment on this result.
• The setSedge contains vectors that are defined based on

minimal local deviations in computation trees of depthT
and rooted at all possible function nodesf0 ∈ F . Two
types of weighting constants appear in the construction of
the elements ofSedge. First, the non-negative weighting
vectorξ can be chosen freely. Secondly, the non-negative
weighting vectors

(
χ(ĉ)

)

f0,ĉ
are a function ofĉ, and

therefore implicitly also a function of the structure of
the normal graphN.

• Because of the way that the weighting vectors
(
χ(ĉ)

)

f0,ĉ
were defined in (5), one can show that for anynon-
minimal valid deviationĉ ∈ Ĉ

(f0)
edge the vectorǫ(ĉ) can be

written as a conic combination of vectors inS(f0)
edge that

correspond tominimal valid deviations inĈ(f0)
edge. There-

fore, for the purpose of definingKedge, it is sufficient to
include only the minimal valid deviationŝc ∈ Ĉ

(f0)
edge in

the definition ofS(f0)
edge (cf. skinny trees in [10]).

• The importance of the random walks for Theorem 21,
especially the “self-consistency property” of the corre-
sponding stationary distribution vector, can be seen as
follows. Using the same notation as in the proof sketch of
Theorem 21, let̊π be the stationary distribution vector of
theβ-induced random walk. Moreover, for everyf0 ∈ F
we define the vector̊π(f0) ∈ R

|D| with components
π̊

(f0)
d = πd ·

[
d ∈ Df0

]
, d ∈ D. Then

δ ,

(
∑

t∈T

ξt

)

·π̊ =
∑

t∈T

ξt · π̊
(a)
=
∑

t∈T

ξt ·
(
π̊ · P̊ t

)

(b)
=
∑

t∈T

ξt ·
∑

f0∈F

π̊(f0) · P̊ t =
∑

f0∈F

π̊(f0) ·
∑

t∈T

ξt · P̊
t

︸ ︷︷ ︸

,δ(f0)

,

(6)

where at step (a) we have used the “self-consistency
property” (4) multiple times, and where at step (b) we
have used̊π =

∑

f0∈F π̊
(f0).

Fix somee ∈ E . Because of the way thatδ andπ̊ are de-
fined, we observe that

∑

d∈De
δd =

∑

d∈De

(∑

t∈T ξt

)
·

π̊d = γ ·
(∑

t∈T ξt

)
· ǫe, for someγ ∈ R>0. On the

other hand,
∑

d∈De
δ
(f0)
d is only non-zero fore ∈ Ê(f0),

i.e., it is only non-zero on edges that belong to the local
deviations normal grapĥN(f0). Therefore, (6) shows how
an edge-based pseudo-codeword can be written as a conic
combination of vectors that are non-zero only on the
edges defined by computation trees.
Of course, this is not a proof of Theorem 21 (in particular,
δ(f0) needs to be related to valid deviations inN̂

(f0)) but
it goes a long way towards obtaining a proof and gaining
some intuition about it.
On the side we note that for minimal pseudo-codewords

we haveπ̊(f0) ·
∑T ′+T ′′

t=T ′ P̊ t T ′→∞
−→ γ · π̊, for suitable

T ′′ ∈ Z>0 andγ ∈ R>0.
• For a binary linear codeC defined by some parity-check



matrix H , along with the normal graph as defined in
Example 3, one can easily derive a convex coneK based
on Kedge such thatK ⊆ K as in Figure 1.

• The definitions and proofs in this section can be extended
such that forbipartite normal graphs with function node
classesI andJ one can define a weighting vectorξ(I)

for all f0 ∈ I, and a weighting vectorξ(J ) for all f0 ∈
J .

• For a (wcol, wrow)-regular LDPC codes, the weighting
vectorsξ(I) andξ(J ) can be chosen so as to reconstruct
the results of [10] for any choice of(w1, . . . , wT ′) in [10].
In particular, choosingT , 2T ′, ξ

(I)
0 = 0, ξ

(I)
1 = w1,

ξ
(I)
2 = w1(wcol − 1), ξ

(I)
3 = w2(wcol − 1), ξ

(I)
4 =

w2(wcol−1)2, . . . , ξ
(I)
T−1 = wT ′(wcol−1)T ′−2, ξ

(I)
T =

wT ′(wcol − 1)T ′−1, andξ(J ) = 0, gives the connection.

Remark 22:As mentioned at the beginning of this section,
all definitions, theorems, and proofs in this section can easily
be extended to the case whereT is chosen independently of
the girth ofN. This is accomplished as follows. Namely, for
any givenT there is anM ∈ Z>0 such that there is anM -
fold graph coverÑ [3], [4] of the base graphN such that
T 6 1

2 girth(Ñ) − 1. Choose such a graph cover and then
apply all the definitions of this section to this graph cover.
Finally, the vectors of the setSedge are obtained by projecting
down the vectors of the set̃Sedge. Specifically,ǫ ∈ Sedge is
obtained fromǫ̃ ∈ S̃edge via ǫe = 1

M

∑M
m=1 ǫ̃(e,m), e ∈ E .

VI. CONNECTIONSBETWEEN THE BETHE ENTROPY

AND THE RANDOM WALK ENTROPY RATE

Omitted.

VII. C ONCLUSIONS

In this paper we have generalized the geometrical aspects
of the paper [10]. In particular, we have seen that the girth of
the normal graph does not impose restrictions on the above
construction of supersets of the fundamental cone.

An interesting avenue for further research is to see how the
LP decoding performance guarantees that are obtained in the
density evolution part of the paper [10] can be modified so as
to put less restrictions on the girth of the normal graph.

Given the connection that was established in [27], [28]
between compressed sensing LP decoding [29] and channel
coding LP decoding [1], [2], it will be interesting to see what
implications the techniques in this paper have on compressed
sensing LP decoding.
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