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Abstract—Although min-sum algorithm (MSA) and linear pro-
gramming (LP) decoding are tightly related, it is not straightfor-
ward to translate MSA decoding performance analysis techrgjues
to the LP decoding setup. Towards closing this performance

analysis techniques gap, Koetter and Vontobel [ITAW 2006] K
showed how the collection of messages from several MSA K _IC
decoding iterations can be used to construct a dual witnes®if P —
LP decoding, thereby deriving some performance results folLP K
decoding. 0 0

In a recent breakthrough paper by Arora, Daskalakis, and
Steurer (ADS) [STOC 2009], the understanding of the perfor-
mance of LP decoding was brought to a new level, not only Fig. 1. Left: Fundamental polytop® and fundamental conk of a binary
from the perspective of available analysis tools but also &m the ﬂgﬁséxciiﬁgzcthﬁtaﬁsdisﬁﬂgigt % ;?é“ﬁj r?c?:rtny(:r:]rt]aelciorgsgfd Elgcrgﬁvéx
perspective of significantly improving the known asymptote LP - . =
decoding threshold bounds. ADS achieved this by showing how S°NeX- that is a superset of the fundamental cdielC € K € K.
MSA decoding analysis type results can be used in the primal
domain of the LP decoder, along the way also giving evidence o ) ]
that the above detour over the dual domain is neither necessa S the fundamental polytope, which is a certain relaxatibn o
nor simpler. _ the codeword polytopeonv(C), which in turn is obtained by
In the present paper we focus on the geometrical aspects ofeh embedding’ in R" and then taking its convex hulll[1].][21.]3],

ADS paper and show that one of the key results of the ADS paper . .
can be reformulated as the construction of a rather nontrival [4]. In the following, we will also need the fundamental cone

s s ; ) a
class of supersets of the fundamental cone, where these stgms < = KC(H), which is the conic hull of, i.e., K = conic(P),

are convex cones that are generated by vectors that are desd  cf. Figure[l (left).

from computation trees and minimal valid deviations theren. As Assessing the decoding performance of the LP decoder is an

we will discuss, the main ingredient that allows the verificéion intriguing problem. Under the assumption that the chanmel i
of this superset construction is a certain class of backtradess a memoryless binary-input output-symmetric channel, fitgu

random walks on the code’s normal factor graph. Moreover, . .
formulating our results in terms of normal factor graphs will ©Out to be sufficient to study the LP decoding performance

facilitate the generalization of the geometrical results bthe ADS ~ when the all-zero codeword was seni [1[] [2]. Moreover,
paper to setups with non-uniform node degrees, with other tyes  because of the relationship

of constraint function nodes, and with no restrictions on tke

girth. We conclude the paper by showing connections between {)\
the entropy rates of the above-mentioned random walks and th

Bethe entropy function of the normal factor graph that these
random walks are defined on.

O#argurflei%<)\7w>} = {)\ O#argglei%)\,w)},

studying if the all-zero codeword loses against any vectd? i
is equivalent to studying if the all-zero codeword losesirgta
. INTRODUCTION any vector incH

Linear programming (LP) decoding was introduced by Although the determination of the exact decoding error
Feldman, Wainwright, and Karger [1[1[2] as a relaxation of aprobability of the LP decoder is highly desirable, this ig no
LP formulation of the blockwise maximum likelihood decoderalways feasible because of complexity reasons. This ntetiva
Namely, consider a binary linear codethat is described by the study of lower and upper bounds on the decoding error
somem x n parity-check matrixH . LP decoding can then be

IHere and in the following, we assume that the resolution ex t5 done

written as . ! ! ! ; ;
in a systematic and/or uniform way. In particular, the rasoh of ties can
WP 2 arg max ()\,w>, be d(_)ne in such a way that the error probability un_d_er LP degodlhgn
wEP sending the all-zero vector equals the error probabilitdeunLP decoding

. . S when sending any other codeword. For simplicity of expositihowever, in
where A is the |engthﬂ vector containing the IOg'I'keI'hOOd this text we assume that there are no ties and that the ah@wein gives

ratios of the channel output symbols, and whgré P(H) back a single vector and not a set with possibly more than ector



probability of the LP decoder. A way to obtain such boundsy leveraging computation tree based technique$ [12]. The
is as follows. Namely, lekC andC be convex cones that satisfymain obstacle that has to be overcome when trying to connect
the performance analysis of these two decoders is to find a

K ckcKk, way to merge “locally valid configurations” so as to obtain
cf. Figurell (right). Then, because of the relationships “globally valid _conﬂguratlons,” in the sense that one has_ to
find a way to piece together valid computation tree deviation
{A ‘ 0 £ argmin()\,w>} 5 {A ‘ 0 # arg min(\, w) ©, to form valid configurations in te factor graph [;3}, [_14],
wek wek [15] that represents the LP decoHefowards achieving this,
c [Q] considered the LP decoder in the dual domain and pieced

{)‘ ‘ 0# argi,nei%o"w} {)‘ ‘ 0 # arg flei%)"w)} ’ together messages from computation trees to form valid con-
I . : _ figurations on the factor graph that represents the dualef th

it is straightforward to derive the following lower and uppe| 5 jocoder

bounds on the decoding error probability of LP decoding Arora, Daskalakis, and Steurer (AD$) [10] had the insight

. . how to achieve a connection between valid computation tree
Pr (O # afgf?g%“‘”) > Pr (0 # afgf?g,%<Av“>) » (1) deviations (more precisely, minimal valid computationetre
deviations) and valid configurations on the factor graph tha
Pr (0 # arg miD<Aaw>) < Pr (0 # arg mig(A,w>) , (2) represents the LP decoder in the primal domain. Compared
weP wer . . . . .
to [9], not only is the resulting technique simpler but itaals
where A is the random vector associated with the logseems to be more powerful. Assuming families of regular
likelihood ratio vectorA. LDPC codes with Tanner graphs whose girth grows suffi-
The inequality in[[ll) was for example used in [5] to obtaigiently fast, ADS were able to show very good numerical
lower bounds on the error probability of the LP decodefhreshold results for LP decoding for the BSC. Interesting
There the convex conig C K was implicitly defined by extensions of the technique of the ADS paper to memoryless
constructing pseudo-codewords based on a modified versigifary-input output-symmetric channels beyond the BSG:hav
of the canonical completion techniqué [3]] [4]. recently been presented by Halabi and E\en [16].
The inequality in [R) is the focus of this paper, i.e., we The LP decoding performance analysis technique in the

want to construct convex congé 2 K which can be used ADS paper can be seen as having two parts: a geometrical
to obtain upper bounds on the error probability of the LBart and a density evolution part.

decoder. Clearly, such conds are relaxations of the conic
hull of the codebookonic(C) becauseC is a relaxations of
the fundamental con&, which in turn is a relaxation of the
conic hull of the codebook.

There have been several attempts at studying upper bounds
on the decoding error probability of LP decoding, in parécu
towards the goal of formulating asymptotic results. (For ex
ample, if the channel is the binary symmetric channel (BSC)
then such asymptotic results typically give guarantees tha
a certain fraction of bit flips can be successfully corrected
either with absolute certainty or with high probabilityn) that
line of research, let us mentioql [6].1[7] that gave threshold
results for low-density parity-check (LDPC) codes whose
Tanner graph<]8] have good expansion. Similar type of tesul
were also given in[]9],[110]. However, the approach in these
latter two papers was to leverage performance analysis tool
from message-passing iterative (MPI) decoding, in paldicu
from min-sum algorithm (MSA) decoding. Although all four
papers (5], [[¥], 8], [10] show that LP decoding can correct

a constant fraction of errors for the BSC under rather mlldzValid deviations in computation trees are valid configunasi where the

conditions on the LDPC code, the analysis techniques d8signment at the root is non-zero, see, e.g., Fidure 3 iio8& (Note that
the latter two papers yield much better lower bounds on tie a given factor graph there is a computation tree for evesgle and for
fraction of errors that can be corrected. (We refer(td [10] fGVS'Y fteration of the MSA decoding algorithm.) L

. . Note that a randomly constructed Tanner graph with fixedoumifbit node
a comparison of some numerical results.) degree and fixed uniform check node degree wit have logarithmically
It is clear that MSA decoding and LP decoding are tightlyrowing girth. However, there are explicit deterministionstructions that

related [T1]. This fact was the motivation fdr [9] to obtairyield Iogyarithmi_cally growing girth, for example the consttion presented in
£ lvsi lts for LP decoding by levera .Gallager’s thesid 118, Appendix C]. Note that in the contekSA decoding
performance analysis results Ing Dy lev g"agrformance analysis, one usually uses the fact that thédnaof short cycles

performance analysis results for MSA decoding, in paréiculvanishes asymptotically with high probabilit]17].

« Geometrical part: The ADS paper implicitly constructs a
convex cong O K based on minimal valid computation
trees deviations. The present paper will focus entirely
on this geometrical aspect of the ADS paper, and will
show how the results in the ADS paper can be extended
to a much larger family of factor graphs than the one
containing only factor graphs of regular LDPC codes. In
particular, our results are independent of the girth of the
factor graph.

o Density evolution part: Once the geometrical part
has been established, techniques akin to density evolu-
tion [14] can be applied to obtain thresholds and other
results. For this part of the LP decoding performance
analysis, it remains to be seen how far the requirements
on the growth of the girth with respect to the growth of
the blocklength can be relaxed. (The threshold results in
the ADS paper are based on the girth growing logarith-
mically with the blocklengt)



As we will see, the key ingredient to obtain the abovesalois field with two elements; as a s&y is considered to
mentioned geometrical results is a class of backtrackldss a subset aR. The size of a sef is denoted byS|.
random walks that are defined on normal factor graphs. Thisin the following, all scalars, all entries of vectors, and al
class of random walks is such that for every (edge-baseaitries of matrices will be considered to beRnunless noted
pseudo-codeword there is at least one random walk in this clatherwise. So, if an addition or a multiplication is not ireth
with the property that the edge visiting probability distriion real field, we indicate this, e.g., by writing+ b (in F3) or
is proportional to this (edge-based) pseudo-codeword. a+ b (in F3). As usually done in coding theory, we use only

Any random walk in this class can be described by a Mark@ow vectors. The transpose of a veciois denoted byz". An
chain with a suitably defined transition probability matrixinequality of the forma > b involving two vectors of length
Necessarily, the stationary distribution of this Markowirhis N is to be understood component-wise, icg.> b; forall 1 <
an eigenvector (with eigenvaluagfor the transition probability i < N. We let0y and 1y be, respectively, the all-zero and
matrix. Because any eigenvector of the transition profigbil the all-one row-vector of lengtiV; when the length of these
matrix is “self-consistent”, i.e., it is proportional tsélf after vectors is obvious from the context, we omit the subscript.
multiplication by the transition probability matrix, alshe The supportupp(a) of a vectora is the set of indices where
stationary distribution vector is “self-consistent.” ltrbs out a is non-zero. In that context, we use the shorthahd a to
that this “self-consistency property” of stationary distitions denote the statementipp(a’) C supp(a), i.e., the statement
is the crucial ingredient in the verification of the fact thathat, for alli, a} is non-zero only ifa; is non-zero.
any valid configuration in the LP decoding normal factor By (z,y) £ >, z;y; we denote the standard inner product
graph can be obtained by a suitably weighted combination @ftwo vectors having the same length. Thenorm of a vector
valid computation tree deviations. In other words, thislf:se z is ||z||, = >_,|=;|; note that|z||, = (z, 1) if and only if
consistency property” of stationary distributions guaeas = > 0. Let z,y € FY be two vectors of lengthV. The
that configurations, although obtained by combining “omly | Hamming weightwy () of a vectorz is defined to be the
cally valid configurations,” are “globally valid configurahs.” number of non-zero positions af and the Hamming distance

The importance of this class of random walks is corrobak: (x,y) between two vectorg andy is defined to be the
rated by the fact that this class also appears in the anafsiswumber of positions where andy disagree.
cycle codef in particular it gives the link between the Bethe We also need some notions from convex geometry (see,
entropy function and the edge zeta function associated avitte.g., [22]). Letz(, ..., 2® be (¢ points inRY. A point of
normal graph[[I9]. Moreover, these random walks also fit the form 6,2 + .- 4 9,2, with § = (4,,...,6,) such
the theme of expressing a code in terms of some cycle cotligt (8,1) = 1 and @ > 0, is called a convex combination
along with some additional constrainfs [20, Section 6].  of (), ... z(®. A setS C RV is called convex if every

This paper is structured as follows. Sectikh 1l collectgossible convex combination of two points &fis in S. By
notations that will be used throughout the paper. Afterwarcconv(S) we denote the convex hull of the s8f i.e., the set
Section[dI] defines and discusses a variety of normal grapitidat consists of all possible convex combinations of all the
Section[I¥ presents the above-mentioned class of rand@@ints inS; equivalently,conv(S) is the smallest convex set
walks, Sectior .V shows how to construct convex cones thhat containsS.
are supersets of the fundamental cone, and Secfion VI geesenAgain, let z(, ... 2 be ¢ points in RY. A point of
some connections between the entropy rates of the abothe form@,z(™ + .- + 6,2*) with 6 > 0 is called a conic
mentioned random walks and the Bethe entropy function e®mbination ofz™), ... z(“). A set K C RY is called a
the normal factor graph that these random walks are defingghvex cone if every possible conic combination of two p@int
on. Finally, Sectioi_Vll contains some conclusions. of KCis in IC. By conic(S) we denote the conic hull of the set

Because of space restrictions, Section VI is omitted add i.€., the set that consists of all possible conic combmeti
proofs are sketched or omitted. All details are providechim t of all the points inS; equivalently,conic(S) is the smallest
journal version of this papef I21]. convex conic set that contaids

Finally, we use Iverson’s convention, i.e., for a statement
[I. NOTATION we define[S] £ 1 if S is true and[S] £ 0 otherwise.

This section discusses the most important notations that we I11. NORMAL GRAPHS AND THE
will use in this paper. More notational definitions will bevgn LoCAL MARGINAL POLYTOPE
in later sections.

We start with some sets, rings, and fields. WeZetZ,
Zso, R, R, andRs( be the ring of integers, the set of non
negative integers, the set of positive integers, the fieltcaf
numbers, the set of non-negative real numbers, and the set
positive real numbers, respectively. We et = {0,1} be the

We will express our results in terms of normal graghs [14],
which are also known as normal factor graphs or Forney-style
tactor graphs.
0I?efinition 1: A normal graphN(F, £, A, G) consists of
« agraph(F,¢&), with vertex setF (also known as function

node setF) and (half-)edge sef.

H A
4Cycle codes are LDPC codes described by a parity-check xnaith e a COHeCt'On. of alph.abetszl. = {Ae}eéf' where the
uniform column weight two. alphabetA. is associated with the edgec &;



« a collection of functiong £ {g;} e+, where the local
function g; is associated with the function nogec F
and further specified below. [l

In the following, we will, for everyf € F, use&;y C &
to denote the subset of edges that is incidenf tand for a
vectore € ], . A. we define for everyf € F the vector
cr = (Ce)eegf-

With this, for a multiplicatively written normal graph the
global fUﬂCtion_g ] Meee Ae - R is defined to bey(c) = Fig. 2.  Left: Normal graph for ExamplEl 3. Right: Normal grajr
[Iser 9s(cy) with local functionsg (ITece, Ae) — R, Examplel®.

f € F, whereas for an additively written normal graph (that
typically represents some type of cost function) the global
function g : [].ce Ae — R U {oc} is defined to bey(c) £

> rer 97(cr) with local functionsgy @ ([T.ce, Ae) — RU
{0}, feF.

For a multiplicatively written normal graph, we define for
every f € F the function node alphabet; to be the set

variables associated with the half-edges are “margirglize
out” by modifying the adjacent function nodes. (Here the
marginalization process depends on the type of message-
passing algorithm that is applied to the normal graph.)
« Moreover, note that any normal graph with a degree-one
function node can also be turned into a normal graph
without this degree-one function node. Namely, febe
, such a degree-one function node andddbe the edge
between the function nod¢ and some other function
node f’. Then, “marginalizing out” over the variable
associated witls and over the function nodg, we obtain
a new normal graph without edge without function
} node f, and with a modified function nodg. Applying

Ap £ {af e II Ac | gslay) #0

e€&y

and for an additively written normal graph we define for every
f € F the function node alphabet; to be

this procedure repeatedly if necessary, we obtain the
“core” of the normal graph that contains only function
nodes of degree at least two.

o A class of normal graphs that is not included
(even after the above-mentioned graph modifications) is
the class of normal graphs that have function nodes
whose degree is at least two and whose alphabet contains
elements of weight one. However, in coding theory such

acE A" ; . - function nodes usually do not appear since normal graphs
Finally, a vectorc € A, will be called a configuration . ) .
Yy c € [[oce Ae 9 with such function nodes do not yield good codes.

of the normal graph, and a configuratienwith g(c) # 0 ) ) )
(with g(c) # oo in the context of additively normal graphs) EXa@mple 3:Consider a binary linear ﬁgg@pf length n
will be called a valid configuration. Clearly, the set of dali d€scribed by a parity-check matréf € ;""" i.e.,
configuration<eqee is characterized as follows = {m 4 ’ H - mT:()T} .

Ap £ {af e I Ac | 97(ay) #

ec&y

The alphabetsdy, f € F, will also be considered to be part
of the collectionA.

In the following, we will usea; . to denote the component
of ay related to the edge € &, we will use the short-hand
>a, for >, ca,. and we will use the short-hanil, for

c 2 (e ce € A foralle e € ' In the same way that we can draw a Tanner graph for this code,
edge ¢Jectler e Apforall fe F we can draw a normal graph whose global function represents
In this paper we will focus on a special class of normahe indicator function of the code. Let the set of functi_onies»
graphs as defined below. be F £ I_U J, whereZ is the _set_ of all column indices of
Definition 2: Let A be the collection of all normal graphst andJ is thAe set of all row indices off, and let the set
N(F, &, A,G) of edges bef = {(z,]). €IxJ | hji =1}. If the function
nodef is inZ, thengy is defined to be an equal function node

where|F| < oo and|€| < oo, of degredlé,|. i.e.,

« wheref contains no half-edges,
« whereA, = {0,1} for all e € £, and As = {af e {0,1}1€/] ‘ wi(ay) € {0, |gf|}}’
o Wherewg(ay) # 1 forall f e F, ar € Ay. O (@) = A
. o grla = |lar € .
Let us comment on this definition. 7 ) ! ) f_ ) _ _
« The first constraint is not much of a constraint sincg the function nodgf isin 7, thengy is de_fmed to be asingle
usually we are interested in finite graphs. parity-check function node of degré|, i.e.,
« Also the second constraint is not really much of a Ay = {af € {0, 1}/%] ‘ wy(ay) is ever},

constraint since any normal graph with half-edges can
be turned into another normal factor graph where the gr(ay) = lay € Af].



For example, the parity-check matrix on the real vectorg; £ (Bf.a,)a,ca;r Be = (Be,a.)accA. -

11110 Then, for f € F, the fth local marginal polytope (oifth

110 1 1 3) belief polytope)B; is defined to be the set
1 01 1 1
. I A | Azl _
yields the normal graph shown in Figu 2 (left). By 2By eRL | D Bra, =17,
To be precise, the above procedure does strictly speaking af

not define the indicator functiofr € C], but the indicator and for alle € £, theeth local marginal polytope (arth belief
function [c € Ceage]. However, there is a bijection betweerpolytope)s, is defined to be the set

codewordsz = (z;);cz € C and valid configurationg =
Zﬁe,ae - 1} .

(Ce)ece € Cedge. Wherec, = xy foralle € &, f € T. O B. 2 {3, e R
Note that in the case where the parity-check mafdxin -

With this, the local marginal polytope (or belief polytopg)

is defined to be the set

Example[B contains a column with a single one in it, i.e.,ehe
exists anf € 7 such that/€;| = 1, then the resulting normal
graph is not inV.

Example 4:This example continues Examp@ 3. Assume Bf € By forall f e F
that the code’ is used for data transmission over a binary- Be € Be foralle e &
input memoryless channel with channel 1&i(y|z), wherex B=4 B o )
. . . Z /Bj-,(lf - ﬁe,a,i
is a channel input symbol angis a channel output symbol, afE€Afas o=ac
and that we would like the global function of the normal graph forall fe F,eec &, ac. € A

to be proportional to the indicator function of the code mewhereﬁ € B is called a pseudo-marginal. (The constraints
Hiel’ W (yilz:).

It is possible to formulate a normal graph Xf with this that were listed last in the definition & will be called “edge

global function. Namely, starting with the normal graph "%:on5|stency constraints.) 0

Example[®, for everyf € Z, the equal function node is Definition 7: Consider a normal grapi(F, &, A, G) € N.
replaced by a modified equal function node as follows: the s define the edge-based fundamental poly®pg. and the
Ay is defined as in Examplg 3 but the functipnis modified €dge-based fundamental cokig. to be, respectively,
toreadgs(ay) = [ay € Af]-W(yslay,.), Wheree is arbitrary DA cB

in £;. Moreover, for everyf € 7, the set4; and the function cdge = {(Be,1)ece | B € B},

gy are defined as in Examplé 3. O

Example 5:This example continues Examplds 3 &hd 4. ABlements of Peqge and Keqgqe Will be called edge-based
an alternative to the procedure that modified the normallgrapseudo-codewords. The connectioMd” is given byCly =
in Example[B to obtain the normal graph in Examiple 4, WP.4... We will also need the projection
can also modify the normal graph in Example 3 as follows.

Namely,.A; andg; are left unchanged for af € ZU J, but Yedge : B — Pedge,
every edgee € £ is replaced by two edgeg ande”, along B = (Be,1)ece-

with a function nodef that is a modified equal function node .
with incident edges’ and¢” and with (Clearly, in general there are may € B that map to the

Kedge 4 conic(Pedge)-

same edge-based pseudo-codewor@if..) O
As = {ay €{0,1}* | wu(as) € {0,2}}, The (usual) fundamental polytopge £ P(H) [, [, 3],
1/1&:] [4] of some parity-check matridd representing some codke

91(as) = loge = ager] - (Wlwslase)) is related as follows to the edge-based fundamental patytop

wherei € 7 is the column index off corresponding to the Pedge Of the normal graph that is associated wihaccording
edgee. This approach is exemplified in Figui® 2 (right) foko the construction in Exampl@ 3. Namely, there is a bijectio
the parity-check matri¥d shown in [B). [} between pseudo-codewords= (w;);cz € P and edge-based

Given a normal grapiN(F,&, 4,G) = N(F,&E,{As}; U pseudo-codewords = (cc)ecs € Pedges Wheree, = wy for
{Ac}e,G), the LP relaxation normal graph is defined to be thall ¢ € &, f € 7.
normal graptN™" (F, €, {conv(Af)} f U{conv(Ac)}e, GMF), The next object will be crucial towards defining one of the
where G'F is suitably extended fron. (This extension main objects of this paper, namely backtrackless randorkswal
depends on whethe is an additively or a multiplicatively on normal graphs.
written normal graph. We omit the details.) Definition 8: Consider a normal grap(F, &, A, G) € N.

The local marginal polytope (see, e.d..1[23].1[24]), defineBased on this normal graph, we define a new normal graph
next, is tightly related to the set of valid configuratia?lg’,, N(F,€,A,G) € N with set of valid configuration€.qge,
of NP, with local marginal polytopéé, with edge-based fundamental

Definition 6: Consider a normal graph(F, &, A, G) € N. pontopeﬁedge, and with edge-based fundamental cdtigze
Let B £ ((By)ser, (Be)ece) be a collection of vectors basedas follows.



FEFandé 26,
For everyf € F,

A 2 {ay e (0.1} | wa(ar) € 0,2}
For everye € €&,
A. £{0,1}.

The local functionsj¢, f € F, are left unspecified, but

Let us comment on this definition.

« Let B € B be such that it has an associated pseudo-
marginal 3 € B according to the above definition.
Introducing,€ £ 1eage(B) andé £ 1Peage(3), We obtain

€ =€,

i.e., bothB and 3 yield the same edge-based pseudo-

codeword. ]

their respective supports are assumed to match the sets The above remark implies thieage N O C Pedge N O,

Af f E .7:

Cedge, B, Pedge, edge for N are defined analogously to
Ccdgcn B, Pcdgm ’Ccdgc for N.

Note that the little circle on top dfi, etc., is mnemonic for the

fact that valid configurations in this new normal graph form

cycles, or vertex-disjoint cycles, in the underlying graple
may therefore call this new normal grapha vertex-disjoint
cycle normal graph. Note that, unless the degree of all fanct
nodes is two or three«*ﬁcdgC is not a cycle code. However, one

can show thaiCcdgC equals the edge-based fundamental cone®

of the cycle code defined off, &). O

The above definition of the normal graphbased orN can
be seen as a distillation of several earlier concepts thoatepr
to be useful.

o Expressing a code in terms of a cycle code, along
with some additional constraints, as was donelin [20,

Section 6].

Lemma 2 in [ID, Section 5.1].

above. (Note that in the case of cycle codésf, C Ay
forall f e F.)

The next definition introduces a mapping between certa?g__ £)

pseudo-marginals i and pseudo-marginals 1. For this we
will need the set) £ {e € Rlﬁé ’ lesll, <2 forall fe ]—"}
that is a polytope containing points iR!¢! that have non-
negative coordinates and that are (somewhat) close to
origin. Note that the conic hull o® equals]R“g|

Definition 9: Let 3 € B be such thak = zpedgg(ﬁ) €0.
Then we associate witlB the pseudo-margingd € 5 as
follows.

o Foreveryf e F,

1— 5 lleflly if wu(és) =0

Zaf ﬁfvaf !

(Note that the term correspondingdg € A contributes
to the above sum only iy ., > 0 andéy C ay.)
o For everye € &,

Bra, 2 4 ca _
fias [arCar] it e, =2

WH (lf) 1

B. 2 p. .

An Appendix showing thag in Definition[d is well defined
is omitted.

A certain function that was very useful in the proof of

A construction of a new normal graph ih_]19] based
on a normal graph defining a cycle code. In fact, the
construction in[[19] is a special case of the constructidh

and soKegge C Kedge Therefore ICedge is a superset
of Keqge and can be used to obtain upper bounds on
the LP decoding performance. Howevlég,dge equals the
edge-based fundamental cone of the cycle code defined
n (F, &), and because cycle codes are relatively weak
performance-wise, one expects that the resulting bounds
would be loose. Nevertheless, the supersTt(‘-L\ggge that
will appear in Theorerﬂl are relatedldegC Namely,
’Ccdgc g chgc g chgc
Consider a binary linear code defined by some parity-
check matrixH, along with the normal graph as defined
in Example[3. Define the sett £ {e € R/
forall feT: e =e forallee € Er}. It follows that
Pedge NO = Pcdgc NONH, and SoKcdge = chgc NH.
This observation generalizes the construction [inl [20,
Section 6] where a code was expressed in terms of a
cycle code, along with some additional constraints. (Note
that in contrast to[[20, Section 6] we do not require the
column weights of the parity-check matr{ to be even
integers.)
For the rest of this paper we will assume that we consider
d fixed normal grapMN(F,&,4,G) € N, along with the
hormal grath(]—" £, A, g) € N that was specified in
Definition [@. Moreover,8 and 5 will be the local marginal
ontopes assouated with these two normal graphs. Note tha
), but A and A are in general different.

IV. ASSOCIATING ARANDOM WALK
WITH A PSEUDO-MARGINAL

thve come now to one of the main objects of this paper,
namely a certain class of backtrackless random walks on a
normal graph. Many of the definitions in this section were
motivated by similar definitions in_[19], and by some coneept
in [L0, Section 5.1].

Let us start with some graph-related definitions that will
be helpful later on for specifying these backtrackless oamd
walks.

Definition 10 ([25], [20]): Let (F,&) be some graph, and
assume thaf = {1,...,|£|}. A directed graphderived from
(F,€) is any pair(F, D) where

D2{d|ecslUldey|cet)

is a set of ordered triple§f, e, f') € F x £ x F such that,
for all e € £, if e connectsf and f/, then either

= (fre, f") (f's e f),
(f'se, f) (f e f).

and dig|qe or

A
A
and d|g‘+e =

||l> H



(Thus we may think of 7, D) as having two directed edges
with opposite directions, for every edge @F,£).)

We will use e(d) to denote the undirected edge dnhthat
is associated with some directed edge D. Moreover, for
everye € &£ the setD. will be defined to contain the two
directed edges that are associated with.e., D, £ {d €
D | e(d) = e}, and for everyf € F the setD; will contain
all the directed edges pointing out of the function ngde

The so-calledlirected edge matrigf (F, D) is the|D|x |D|
matrix M = (md,d/)deD,d/eD with

if d=(f1,e,f2) andd = (fi,¢, f})
mq,dr = are such thafz = f] ande # ¢’
0 otherwise

With this, we define for everyl € D the setD; £ {d’ €

,This time-invariant Markov process can be interpreted as a

backtrackless random walk on the normal graph(or the
normal graptN), in the following called thg3-induced random
walk onN (or N). ]

Some comments about the Markov process / random walk
in Definition[I3 are in order.

« If the Markov process is indecomposable and aperiodic,
then the above stationary distribution is unique. Other-
wise, there are multiple stationary distributions, and the
one given above is just one possible stationary distribu-
tion.

« With the help of Lemm&12, it can easily be verified that
{7ta}aep is indeed a valid stationary distribution and that
{Pd,a }aep,arep are indeed valid transition probabilities.
In fact, defining the vecto#r £ (#)4ep and the matrix

A o .
D | mg,r = 1}, which is the set of directed edges which the P = (pa,a)acp.arep, We can write

directed edgel can feed into. ]

Definition 11: For every3 B, we will use the following
definitions. Namely, for every € D we define

. 1.
Ba & 556((1),1’

and for every(d, d') € D* we define
ﬁud p N %nyaf if d €Dy
’ 0 if d¢Dy’

where f € F anda; € A; are such thasupp(a;) =
{e(d),e(d)} C &. O
Lemma 12:With the specifications in Definitiof L1,

> Baa =pBa foranydeD,

=P, (4)

i.e.,m is “self-consistent” according to the definition used
in the introductory section.

o Lete 2 ¢oaqe(3). From DefinitiongTH anB13 it follows
that there is e@-dependent constante€ R+, such that

Z Td =" €e

deD.
for all e € £. This observation implies that the probability
for the random walk to visit edge < £ is proportional to
the corresponding coordinate of the edge-based pseudo-
codeworde.

o A Markov chain is called time-reversibleé_[26, Chap-

ter 4.3] if the probability of visiting a sequence of states
is unchanged when reversing the order of the states

Tep . . in the sequence. It can be verified that the Markov
Z Ba.a = Par foranyd € D. chain / random walk at hand is time-reversible in the
d:d’€Da following generalized sense. For arly € Z-,, let
Proof: We prove only the first statement; the second statement d' = (d1,...,dr) € DT andd = (d},...,d}) € DT be
will follow analogously. Letd = (f1,e, f2) € D. Then two sequences of directed edges such #fdt) = e(d})
/
_ 1. @ls - andd; #d; forallt € {1,...,T}. Then
Z Ba,a = Z Eﬁfz,afz = §ﬁe,1 = [, L . . ) )
d'€Dyq dpy€Asytag, =1 Tdy * Pdy,de * " Pdp—y,dr = Tdly, * Pdlp,dy_, " Pdy,di -

where at step (a) we have used the fact tHat B satisfies
the edge consistency constraintsAn ]

Definition 13: Let 3 € B. Based on such & we define a
time-invariant Markov process with the following propesi

« Its state space is the set of directed edfes
o The time-invariant transition probability of going from
stated € D to stated’ € D is defined to be

Paar = Paa
7 Ba

« The stationary probability of being in statke D is

__Pa
ZJGD Ba

Ta

This property of the Markov chain / random walk was
implicitly a key part of the proofs in([10].

. For any3 € B to which a8 € B can be associated
according to Definitior[19, we will call the3-induced
random walk also thg-induced random walk.

V. CONVEX CONES THAT ARESUPERSETS OF THE
EDGE-BASED FUNDAMENTAL CONE

This section features Theordml 21, the main result of the
present paper. This theorem shows that certain convex cones
are supersets of the edge-based fundamental cone. We will
assume that the normal graphis connected.

Definition 14: For a normal graphN, the graph distance
AN(f, f") € Zo between the two function nodgsf’ € F is
defined as the length of the shortest path that conneuatih



f'. The graph distancé\y(f,e) € Zxo between a function
nodef € F and an edge € £ is defined to be if the shortest
path connecting’ with e is f=fy, eo, f1,€1, ..., fi, er=€.

The girthN of a normal grapiN is defined to be the length
of the shortest cycle iN. Throughout this section, we fix
some scalafl’ € Zxq with T < 3 girth(N) — 1 and define
7 £{0,1,...,T}. Moreover, we fix some vecta§ € RL{".
Fort > T, we define¢, £ 0.

Remark 15:Although the definitions, statements,
proofs in this section will assume thatandN are such that
T < 1 girth(N) — 1, i.e., thatT is bounded from above for a

given normal graph\, this constraint can easily be removed

as we will discuss in RemaikP2 at the end of this section.

The following definition is motivated by the concept of valid

deviations in computation trees |12, [10].
Definition 16: For every f, € F, define the normal graph
N(fo)(ﬁ(fo)’(C:‘(fo)vA(fo)’gA(fo)) as follows.

The factor node sefF(/o) contains all function nodes
f € F such thatAn(fo, f) < T.

The function nodef, € F) will be called the root
node of N(fo),

The edge sef (/o) contains all the edgese & such that
An(fo,e€) § T. A

Based on£(fo), the setDfo) is defined analogously to
the way that the seD is defined based oé.

For any function nodef € #(/0) and any edge E},
the edgee will be called inward with respect tg if e
lies on a path fromf to fy. Otherwisee will be called
outward with respect tg'.

For any function nodef € #(/) and any directed edge
d € Dy, the directed edgé will be called inbound with
respect tof if d lies on a directed path fronf to fo.
Otherwised will be called outbound with respect tb.
For f = fo we defineA(ff") £ A\ {0}.

For everyf € (o) \ {f,} we define

Agcf()) é {df E-Af ’ a,f =0 Ordf,e = 1}7
fo)

wheree € EAI(C is inward with respect tg.

For everye € £U0) we defineAV) 2 4..
The local functionsjs, f € F, are left unspecified, but

and

Fig. 3. Normal graph\(fo) for Example[l¥ where the root function node
fo is chosen to be one of the equal function nodediand wherel’ = 4.
The thick red edges highlight the non-zero part of some \@didiation, see
the text at the end of Examplell7.

graphN (o) when f, is chosen to be one of the equal function
nodes. The normal graph has the following alphabets.
o Ay ={(0,0,0), (1,1,1)}if feT.
» Ay contains all eight binary length-vectors with even
Hamming weight if f € 7.
e A.={0,1} forall e € €.
On the other hand, the normal grap/®), f, € F, has the
following alphabets.
o Ay ={(L1,1)}if f=foeT
o Ay =1(0,0,0), (1,1, 1)}if fe (FYI\{fo})NT.
« Ay contains all eight binary length-vectors with even
Hamming weight if f = fy € J.
Ay {(0,0,0,0), (1,1,0,0), (1,0,1,0), (1,0,0,1),
(1,1,1,1)} when f € (FU)\{fo})NJ. (Here the vec-
tors are ordered such that the first component corresponds
to the inward edge with respect o)
A, ={0,1} for all e € £U0),
Figure[3 shows a possible valid deviatiére Cc(g‘é)c, where a
thick red edge: € £(/0) corresponds t@. = 1 and where a

tt]eir respective supports are assumed to match the s@if black edge: € £(fo) corresponds té. = 0. Observe that

Af,fE]'—. Il

In the same way a6.q4.. is defined based oN, we will
define, for everyfy, € F, the set of valid configuratioré(f“)

edge
of N. Note thatC{J2) contains all (minimaknd non-minimal)
valid deviations of the computation tree rootedfgtand of
depthT.
Example 17:Consider a parity-check matrifl of some
(3,4)-regular LDPC code and associate with it a normal

graph N as defined in ExamplEl 3. Igirth(N) > 10 then

we can choosd’ = 4. Figure[3 shows the resulting normal

5A code is called aweol, wrow )-regular LDPC code if it is defined by
a parity-check matrix with uniform column weight.,; and uniform row
weight wyow .

¢ happens to be ainimalvalid deviation. O

Note that the little hat on top d¥, etc., is mnemonic for the
fact that the non-zero part of a valid configuratiorNiralways
looks similar to the thick-red-edge-subgraph in Figdre.8,, i
it is a tree rooted af.

The following definition introduces some graph-dependent
weighting factors. These are crucial for extending the re-
sults in [10] to normal graphs beyond normal graphs of
(Weol, Wrow )-regular LDPC codes.

Definition 18: For every fo € F and for anyé < éég‘;)c,

the vectorx(® is defined as followl. If ¢ € &£\ &)

6possibly more precise would [#70) instead ofé, but we will prefer the
more concise latter notation.



)

A

then !¢ £ 0. Otherwise, lett 2 An(fo,e), and let

fo, €0, f1,€1,..., f1,es=e be the shortest path fronf to e
in N. Theffl
i 1
(e 2 e 5
S e *

fo)

Definition 19: For every f, € F and for everyé € C(dge

define the vectoe(®) € RS with components

E((gé) £ égf()) : Xt(e&) ’ gAN(fO ey €€ €. |

Definition 20: For everyf, € F, deflne&‘Cd . 1o be the set

(¢ ecei)

With this, we defineS.q,. t0 be the set

U 8(fo

edge”
fo€F

(fo)
edge

S(fo) A

odge — éecC

edge

Moreover, we letC.qq. be the conic hull 0fSeqge, i.€.,
_ A ]
Kedge = conic (Sedge)

i.e., the vectors irS.qg. “span” the convex con&egge. [

Theorem 21:With the assumptions off", 7, and¢ made
at the beginning of this section, in particular also Renidlk 1
and with Definitiond_TI6[ 14,19, arld]20, it holds that

K:edge - Kedge-

Proof: (Sketch.) Choose angin Kegge N O. (Any € i Kedge
can always be rescaled by a positive scalar suchdhatin
Kedage N ©.) We have to show that is in Keage, Which is
equivalent to showing that¢ is in the conic hull ofS.qge,
which is equivalent to showing that (}-,., &) - € is in the
conic hull of Seqge, Which is equivalent to showing that

2.<th>.€_ S @

teT fo€F éeé(ﬁ‘))
edge
for some suitable non-negative constaftsy, s}, . This
conclusion can indeed be established by choosing the guasta

Bre
Yfo.e £ ﬁfo.,éfo : H ( !

>[5f¢0]
feF o) Betro. )1 7

foeF, ée éég;)e, whereg is chosen such thateqs.(3) = €,

and wheree(fy, f) denotes the inward edge with respectfto

in N(o), Without going into the details, let us mention that
the above summation ovére Ced .. Is carried out by defining

a suitable cycle-free normal graph and by applying the sum-
product algorithm. Finally, the summation ovgs € F is
carried out by taking advantage of the properties of fhe
induced random walk O

“Note that the product ir[5) starts at= 1. Redefining the product to
start ats = 0 is also possible, and leads to a rescaling of the veatbfs
in the upcoming Definitior—19, but it does not change the staté in the
upcoming TheorerfiL21.

Let us comment on this result.

o The setS.qqe CONtains vectors that are defined based on
minimal local deviations in computation trees of deffith
and rooted at all possible function nodés € F. Two
types of weighting constants appear in the construction of
the elements 08.q4.. First, the non-negative weighting
vectorg can be chosen freely. Secondly, the non-negative
weighting vectors(x(c>) . are a function ofé, and
therefore implicitly also a function of the structure of
the normal grapt\.

Because of the way that the weighting vecttx$®) . ho

were defined in[{5), one can show that for angn-

minimal valid deviationé € ch(éc the vectore(® can be

written as a conic combination of vectors Eﬁ‘él that

correspond taminimal valid deviations chdgc There-
fore, for the purpose of defmm@edge, it is suff|C|ent to
include only the minimal valid deviation& € cY

the definition ofSec’:‘;)e (cf. skinny trees in[[1i0]).

The importance of the random walks for TheorEm 21,
especially the “self-consistency property” of the corre-
sponding stationary distribution vector, can be seen as
follows. Using the same notation as in the proof sketch of
Theoreni2l, letr be the stationary distribution vector of
the B-induced random walk. Moreover, for evefy € F

we define the vectorr(/o) ¢ RIP! with components
#/") =7y [d€Dy,], d e D. Then

52 <Z£t> w=Y G- 7@y g (x

cdgc

teT teT teT
) Zg Z ;fo) . pt — Z #(fo) . th Pt
teT  fo€F fo€F teT
£5(f0)

(6)
where at step (a) we have used the “self-consistency
property” [4) multiple times, and where at step (b) we
have usedr = Y- - #l/o).

Fix somee € £. Because of the way thatand# are de-
fined, we observe that ., da = > yep, (Pier &) -
Ta =7 (Xier &) - € for somey € Rsg. On the
other hand )", 7 is only non-zero fore € £,

e., it is only non-zero on edges that belong to the local
deviations normal grapN (/o). Therefore,[[6) shows how
an edge-based pseudo-codeword can be written as a conic
combination of vectors that are non-zero only on the
edges defined by computation trees.

Of course, this is not a proof of Theor&€nd 21 (in particular,

5(fo) needs to be related to valid deviationsNf/*)) but

it goes a long way towards obtaining a proof and gaining

some intuition about it.

On the side we note that for minimal pseudo-codewords

we haver (/o) . tT:r}/T” 1 772 & for suitable
T" € Z~o andy € R+.

« For a binary linear cod€ defined by some parity-check



matrix H, along with the normal graph as defined in[4]
Exampld3, one can easily derive a convex céihbased
0N Keage SUch thatiC C K as in FigurdlL.

« The definitions and proofs in this section can be extended]
such that forbipartite normal graphs with function node
classesZ and.7 one can define a weighting vectgf?)
for all f, € Z, and a weighting vectag7) for all f, €
J- [71

e FOr a (weol, wrow)-regular LDPC codes, the weighting
vectors¢éD) and£(7) can be chosen so as to reconstruct
the results of[[10] for any choice ¢fv;, ..., wz ) in [0].  [8
In particular, choosing” 2 277, ¢ =0, ¢ = wy, [9]

(6]

fgI) = wl(wcol - 1)|I§§Z) = w2(wcol - /1)! 4(111) -
wa(Weot —1)2, -, € = wii(weer —1)T 72, P =

wr (weol —1)T 1, and€7) = 0, gives the connection.

Remark 22:As mentioned at the beginning of this section[,10
all definitions, theorems, and proofs in this section carlyas
be extended to the case whéfFeis chosen independently of
the girth of N. This is accomplished as follows. Namely, for
any givenT there is anM € Z-( such that there is an/-
fold graph coverN [3], [4] of the base grapiN such that
T < %girth(N) — 1. Choose such a graph cover and thefg)
apply all the definitions of this section to this graph cover.
Finally, the vectors of the s&.q¢. are obtained by projecting [14]
down the vectors of the s&.qg.. Specifically,e € Seqge IS
obtained fromé € Seqge Via €. = - ng:l Eem)r € € E.

[11]

[12]

[15]
[16]
VI. CONNECTIONSBETWEEN THEBETHE ENTROPY

AND THE RANDOM WALK ENTROPY RATE [17]

Omitted. [18]

VII. CONCLUSIONS [19]

In this paper we have generalized the geometrical asp
of the paperl[10]. In particular, we have seen that the gifth o
the normal graph does not impose restrictions on the aboye

. [21]
construction of supersets of the fundamental cone.

An interesting avenue for further research is to see how the
LP decoding performance guarantees that are obtained in
density evolution part of the papér]10] can be modified so
to put less restrictions on the girth of the normal graph.

Given the connection that was established [inl [2/7]. [2:?;4
between compressed sensing LP decoding [29] and chal nél
coding LP decodindg]1],12], it will be interesting to see wha
implications the techniques in this paper have on compdesé%'s]
sensing LP decoding. [26]
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