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The Bethe Permanent of a Non-Negative Matrix∗

Pascal O. Vontobel

Abstract— It has recently been observed that the permanent
of a non-negative matrix, i.e., of a matrix containing only non-
negative real entries, can very well be approximated by solving a
certain Bethe free energy minimization problem with the help of
the sum-product algorithm. We call the resulting approximation
of the permanent the Bethe permanent.

In this paper we give reasons why this approach to ap-
proximating the permanent works well. Namely, we show that
the Bethe free energy is a convex function and that the sum-
product algorithm finds its minimum efficiently. We also show
that the permanent is lower bounded by the Bethe permanent,
and we list some empirical evidence that the permanent is
upper bounded by some constant (that modestly grows with the
matrix size) times the Bethe permanent. Part of these results
are obtained by a combinatorial characterization of the Bethe
permanent in terms of permanents of so-called lifted versions
of the matrix under consideration.

We conclude the paper with some conjectures about
permanent-based pseudo-codewords and permanent-based ker-
nels, and we comment on possibilities to modify the Bethe
permanent so that it approximates the permanent even better.

I. I NTRODUCTION

Central to the topic of this paper is the definition of the
permanent of a square matrix (see, e.g., [1]).

Definition 1 Let θ = (θi,j)i,j be a real matrix of sizen×n.
The permanent ofθ is defined to be the scalar

perm(θ) =
∑

σ

∏

i∈[n]

θi,σ(i), (1)

where the summation is over alln! permutations of the set
[n] , {1, 2, . . . , n}.

Contrast this definition with the definition of thedetermi-
nant of θ, i.e.,

det(θ) =
∑

σ

sgn(σ)
∏

i∈[n]

θi,σ(i),

where sgn(σ) equals+1 if σ is an even permutation and
equals−1 if σ is an odd permutation.

A. Complexity of Computing the Permanent

Because the definition of the permanent looks simpler than
the definition of the determinant, it is tempting to conclude
that the permanent can be computed at least as efficiently
as the determinant. However, this does not seem to be the
case. Namely, whereas the arithmetic complexity (number
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of real additions and multiplications) needed to compute the
determinant is inO(n3), Ryser’s algorithm (one of the best
known algorithms for computing the permanent) requires
Θ(n · 2n) arithmetic operations [2]. This clearly improves
upon the brute-force complexityO(n·n!) = O

(

n3/2·(n/e)n
)

for computing the permanent, but is still exponential in the
matrix size.

In terms of complexity classes, the computation of the
permanent is in the complexity class #P (“sharp P” or
“number P”) [3], where #P is the set of the counting problems
associated with the decision problems in the set NP. Note
that even the computation of the permanent of zero-one
matrices is #P-complete. Therefore, the above-mentioned
complexity numbers for the computation of the permanent
are not surprising.

B. Approximations to the Permanent

Given the difficulty of computing the permanent exactly,
and given the fact that in many applications it is good enough
to compute anapproximationto the permanent, this paper
focuses on efficient methods to approximate the permanent.
This relaxation in requirements, from exact to approximate
evaluation of the permanent, allows one to devise algorithms
that potentially have much lower complexity.

Moreover, we will consider only the case where the matrix
θ in (1) is non-negative, i.e., where all entries ofθ are non-
negative. It is to be expected that approximating the perma-
nent is simpler in this case because with this restriction the
sum in (1) contains only non-negative terms, i.e., the terms
in this sum “interfere constructively.” This is in contrast
to the general case where the sum in (1) contains positive
and negative terms, i.e., the terms in this sum “interfere
constructively and destructively.” Despite this restriction to
non-negative matrices, many interesting counting problems
can be captured by this setup.

Earlier work on approximating the permanent of a non-
negative matrix includes Markov-chain-Monte-Carlo-based
methods by Broder (see [4]), fully polynomial-time ran-
domized approximation schemes (FPRAS) [5], and Bethe-
approximation-based / sum-product-algorithm-based meth-
ods [6], [7].

The study in this paper was very much motivated by
this last set of papers on graphical-model-based methods,
in particular by the fact these methods yield algorithms that
arevery efficientand by the fact that the obtained permanent
estimates have anaccuracy that is good enough for many
purposes.

The idea behind this graphical-model-based approach is to
formulate a factor graph whose partition function equals the
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permanent that we are looking for. Consequently, the nega-
tive logarithm of this partition function can be written as the
minimum of the so-called Gibbs free energy function that is
associated with this factor graph. Although being an elegant
reformulation of the permanent computation problems, this
does not yet yield any computational savings. Nevertheless,
it suggests to look for a function that is tractable and
whose minimum is close to the minimum of the Gibbs free
energy. One such function is the so-called Bethe free energy
function [8]. The Bethe free energy function is interesting
because a theorem by Yedidia, Freeman, and Weiss [8] says
that fixed points of the sum-product algorithm correspond to
stationary points of the Bethe free energy.

In general, this approach of replacing the Gibbs free
energy function by the Bethe free energy function comes
with very few guarantees, though.

• The Bethe free energy function might have multiple
local minima.

• It is unclear how close the (global) minimum of the
Bethe free energy is to the minimum of the Gibbs free
energy.

• It is unclear if the sum-product algorithm converges
(even to a local minimum of the Bethe free energy).

Luckily, in the case of the permanent approximation problem,
one can formulate a factor graph where the Bethe free energy
function is very well behaved. In particular, in this paper we
show that a factor graph with the following properties can
be formulated.

• The Bethe free energy function isconvexand therefore
has no local minima.

• The minimum of the Bethe free energy isquite closeto
the minimum of the Gibbs free energy. (In particular, the
permanent is lower bounded by the Bethe permanent.
Moreover, empirical evidence suggests that the perma-
nent is upper bounded by some constant (that modestly
grows with the matrix size) times the Bethe entropy.)

• The sum-product algorithmconvergesto the minimum
of the Bethe free energy. (In fact, the error w.r.t.
minimum of the Bethe free energy decays exponentially
fast, with an exponent depending on the matrixθ.)

Besides leaving some questions open with respect to the
Bethe free energy function (see for example the above-
mentioned conjecture), these results by-and-large validate the
empirical success, as observed by Chertkovet al. [6] and by
Huang and Jebara [7], of approximating the permanent by
graphical-model-based methods.1

As we will see, the factor graph that we use (cf. Figure 1)
is not sparse and has many short cycles, in particular many
four-cycles. These facts might suggest that the application
of the sum-product algorithm to this factor graph is rather
problematic. However, as we have discussed above, and will
show in this paper, luckily this is not the case.

1Note that the convexity of a function in general, and of the Bethe free
energy in particular, depends on its parametrization. That might explain the
non-convexity observations in [7, Section 3.3] w.r.t. the Bethe free energy.

C. Related Work

Let us briefly mention some related work. Namely, some
aspects of the Bethe free energy function were analyzed by
Watanabe and Chertkov in [9] (in particular, they applied the
loop calculus technique by Chernyak and Chertkov) and by
Chertkov et al. in [10].

Because computing the permanent is related to counting
perfect matchings, the paper by Bayati and Nair [11] (of
which we became aware of while writing up the present
paper) on counting matchings in graphs with the help of
the sum-product algorithm is very relevant. Note that their
setup is such that the perfect matching case can be seen as a
limiting case of the matching setup. However, for the perfect
matching case (a case for which the authors of [11] make no
claims) the convergence proof of the sum-product algorithm
in [11] is incomplete.

D. Overview of Paper

This paper is structured as follows. We conclude this
introductory section with a discussion of some of the notation
that is used. In Section II we then introduce the main normal
factor graph for this paper, in Section III we formally define
the Bethe permanent, in Section IV we discuss properties
of the Bethe entropy function and the Bethe free energy
function, in Section V we analyze the sum-product algorithm,
in Section VI we give a “combinatorial characterization” of
the Bethe permanent, in Section VII we bound the permanent
in terms of the Bethe permanent, in Section VIII we list some
thoughts on using the concept of “fractional Bethe entropy,”
and in Section IX we list some conjectures.

E. Basic Notations and Definitions

This subsection discusses the most important notations that
will be used in this paper. More notational definitions will
be given in later sections.

We letR be the field of real numbers. Scalars are denoted
by non-boldface characters, whereas vectors and matrices by
boldface characters. For any positive integerL, the matrix
1L×L is the all-one matrix of sizeL × L.

We use calligraphic letters for sets, and the size of a setS
is denoted by|S|. The convex hull [12] of some subsetS of
some multi-dimensional real space is denoted byconv(S).
For any positive integerL we define[L] , {1, . . . , L}. For
any positive integerL, we definePL×L to be the set of all
L × L permutation matrices, i.e.,

PL×L ,















T

∣

∣

∣

∣

∣

∣

∣

∣

T is a matrix of sizeL × L
T contains exactly one1 per row
T contains exactly one1 per column
T contains0s otherwise















,

Clearly, there is a bijection betweenPL×L and the set of all
permutations of[L]. Moreover, for a finite setS, we define
ΠS to be the set of probability mass functions overS, i.e.,

ΠS ,

{

p =
(

ps

)

s∈S

∣

∣

∣

∣

∣

ps > 0 for all s ∈ S,
∑

s∈S

ps = 1

}

.
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Finally, for any positive integerL, we let ∆L×L be the set
of doubly stochastic matrices of sizeL × L, i.e.,

∆L×L ,







γ =
(

γi,j

)

∣

∣

∣

∣

∣

∣

γi,j > 0 for all (i, j) ∈ [L] × [L]
∑

j∈[L] γi,j = 1 for all i ∈ [L]
∑

i∈[L] γi,j = 1 for all j ∈ [L]







.

Clearly,∆L×L is a convex set, and every permutation matrix
of size L × L is a doubly stochastic matrix of sizeL × L.
Most interestingly, every doubly stochastic matrix of size
L×L can be written as a convex combination of permutation
matrices of sizeL×L; this observation is a consequence of
the important Birkhoff–von Neumann Theorem.

Theorem 2 (Birkhoff–von Neumann Theorem) For any
positive integerL, the set of doubly stochastic matrices of
sizeL × L is a polytope whose vertex set equals the set of
permutation matrices of sizeL × L, i.e.,

vertex-set(∆L×L) = PL×L.

As a consequence, the set of doubly stochastic matrices of
sizeL × L is the convex hull of the set of all permutation
matrices of sizeL × L, i.e.,

∆L×L = conv(PL×L).

Proof: See, for example, [13, Section 8.7].

II. N ORMAL FACTOR GRAPH REPRESENTATION

Factor graphs are a convenient way to represent multi-
variate functions [14]. In this paper we use a variant called
“normal factor graphs” [15] (also called “Forney-style factor
graphs” [16]), where variables are associated with edges.

As already mentioned in the introduction, the main idea
behind the graphical-model-based approach to estimating the
permanent is to formulate a normal factor graph such that the
partition function equals the permanent. There are of course
different ways to do this and typically different formulations
will yield different results when estimating the permanent
with sub-optimal algorithms like the sum-product algorithm.
It is well known that when the normal factor graph has no
cycles, then we get the permanent exactly, however, for the
given problem any normal factor graphwithout cycles yields
highly inefficient sum-product update rules (for reasonably
largen), and so we will focus on normal factor graphswith
cycles. The normal factor graph that is introduced in the
following definition and that is based on a complete bipartite
graph with two timesn vertices is a rather natural candidate,
and as we will see, has very interesting and useful properties.

Throughout the paper, if not mentioned otherwise,θ will
represent a non-negative matrix of sizen × n, wheren is
some fixed positive integer.

Definition 3 We define the normal factor graphN(θ) ,
N(F , E ,A,G) as follows (see also Figure 1).

Fig. 1. The normal factor graphN(θ) which is based on a complete
bipartite graph with two timesn vertices. The left function nodes represent
the functions{gi}i∈I , the right function nodes represent the functions
{gj}j∈J , and with edgee = (i, j) we associate the variable label
Ae = Ai,j . (See Definition 3 for more details.)

• The set of vertices isF , I∪̇J whereI , [n] will be
called the set of left vertices andJ , [n] will be called
the set of right vertices.2

• The set of edges isE , I×J =
{

(i, j)
∣

∣ i ∈ I, j ∈ J
}

.
Moreover, all edges are full edges, i.e.,Efull = E and
Ehalf = { }.

• For everye = (i, j) ∈ E we defineAe , Ai,j , {0, 1}.
• For everyi ∈ I we define the local functions3

gi :
∏

j

Ai,j → R, ai 7→
{

√

θi,j (if ai = ej)

0 (otherwise)

Similarly, for everyj ∈ J we define the local functions

gj :
∏

i

Ai,j → R, aj 7→
{

√

θi,j (if aj = ei)

0 (otherwise)

• For every i ∈ I we define the function node alphabet
Ai to be the set

Ai ,







ai ∈
∏

j

Ai,j

∣

∣

∣

∣

∣

∣

gi(ai) 6= 0







= {ej | j ∈ J } .

Similarly, for everyj ∈ J we define the function node
alphabetAj to be the set

Aj ,

{

aj ∈
∏

i

Ai,j

∣

∣

∣

∣

∣

gj(aj) 6= 0

}

= {ei | i ∈ I} .

• With a slight abuse of notation, the letterA will also
denote the setA ,

∏

e Ae =
∏

i,j Ai,j . With this, a
vector

a , (ae)e∈E = (ai,j)(i,j)∈I×J ∈ A
will be called a configuration of the normal factor
graph. For a given vectora, we also define the sub-
vectors

ai ,
{

(ai,j)j∈J

}

and aj ,
{

(ai,j)i∈I

}

.

2Here,F , I∪̇J stands for the more cumbersomeF ,
`

{left}×I
´

∪
`

{right} × J
´

. In the following, i (and variations thereof) will refer to a
left vertex andj (and variations thereof) will refer to a right vertex. In that
spirit, variables likeηi andηj are different variables, also ifi = j.

3Here and in the following,ej , j ∈ J , stands for the length-n vector
where all entries are zero except for thej-th entry that equals1. The vector
ei, i ∈ I, is defined similarly.
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When convenient, the vectora will be considered to be
an n × n matrix. Thenai corresponds to thei-th row
of a, and aj corresponds to thej-th column ofa.

• The global functiong is defined to be

g : A → R, a 7→
(

∏

i

gi(ai)

)

·





∏

j

gj(aj)



 .

• A configurationc with g(c) 6= 0 will be called a valid
configuration. Clearly, the set of valid configurations
Cedge is characterized as follows

Cedge ,







(ci,j)i,j∈I×J

∣

∣

∣

∣

∣

∣

ci,j ∈ Ai,j , (i, j) ∈ I × J
ci ∈ Ai, i ∈ I
cj ∈ Aj , j ∈ J







.

Consideringc ∈ Cedge as ann×n matrix, it can easily
be verified thatc is a permutation matrix, i.e.,c ∈
Pn×n.

In the following, we denote byFG, UG, HG, and ZG

the Gibbs free energy function, the Gibbs average energy
function, the Gibbs entropy function, and the Gibbs partition
function, respectively, associated with a normal factor graph.
(In the following, when confusion can arise what normal
factor graph a certain Gibbs partition function is referring
to, we will useZG(N), etc., instead ofZG.)

Lemma 4 Consider the normal factor graphN(θ). The
permanent ofθ can be expressed in terms of the Gibbs
partition function or in terms of the minimum of the Gibbs
free energy function. Namely,

perm(θ) = ZG = exp

(

−min
p

FG(p)

)

,

where the minimization is overp ∈ ΠA.

Proof: Omitted.

Although the reformulation of the permanent in the above
lemma is elegant, from a computational perspective it does
not buy us much. However, it suggest to look for an opti-
mization problem that can easily be minimized and whose
minimal value is related to the desired quantity. This is the
approach that is taken in the next section.

III. T HE BETHE PERMANENT

For a motivation of the Bethe free energy we refer to
Section I-B.

Definition 5 Consider the normal factor graphN(θ). We let

β ,
(

(βi)i∈I , (βj)j∈J , (βe)e∈E

)

be a collection of vectors based on the real vectors

βi , (βi,ai
)ai∈Ai

,

βj , (βj,aj
)aj∈Aj

,

βe , (βe,ae
)ae∈Ae

.

Moreover, we define the sets

Bi , ΠAi
, i ∈ I,

Bj , ΠAj
j ∈ J ,

Be , ΠAe
e ∈ E .

and call Bi, Bj , and Be, the ith local marginal polytope,
the jth local marginal polytope, theeth local marginal
polytope, respectively. (SometimesBi is also called theith
belief polytope, etc.)

With this, the local marginal polytope (or belief polytope)
B is defined to be the set

B =



























































β

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

βi ∈ Bi for all i ∈ I
βj ∈ Bj for all j ∈ J
βe ∈ Be for all e ∈ E
∑

a′

i
∈Ai: a′

i,e
=ae

βi,a′

i
= βe,ae

for all e = (i, j) ∈ E , ae ∈ Ae

∑

a′

j
∈Aj : a′

j,e
=ae

βj,a′

j
= βe,ae

for all e = (i, j) ∈ E , ae ∈ Ae



























































,

where β ∈ B is called a pseudo-marginal. (The two con-
straints that were listed last in the definition ofB will be
called “edge consistency constraints.”)

With this, we define the Bethe free energy functionFB,
the Bethe average energy functionUB, and the Bethe entropy
functionHB associated with a (normal) factor graph as in [8].

Definition 6 The Bethe partition function associated with
some normal factor graphN(F , E ,A,G) is defined to be

ZB , exp

(

−min
β∈B

FB(β)

)

.

In the following, when confusion can arise what normal
factor graph a certain Bethe partition function is referring to,
we will useZB(N), etc., instead ofZB.

The next definition is the main definition of this paper and
was motivated by the work of Chertkov et al. [6] and by the
work of Huang and Jebara [7].

Definition 7 Consider the normal factor graphN(θ). The
Bethe permanent ofθ, which will be denoted bypermB(θ),
is defined to be

permB(θ) , ZB,

whereZB is specified in Definition 6.

IV. PROPERTIES OF THEBETHE ENTROPY FUNCTION

AND THE BETHE FREE ENERGY FUNCTION

The Bethe entropy function is in general not a concave
function and therefore the Bethe free energy function is in
general not a convex function. (Note that the Bethe average
energy function is linear in the arguments.) However, here
we show that the Bethe entropy function, when suitably
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parametrized, is a concave function. Consequently the Bethe
free energy, when suitably parametrized, is a convex func-
tion. As a consequence, the Bethe free energy doesnot have
local minima.

Theorem 8 The local marginal polytope can be para-
metrized by doubly stochastic matricesγ ∈ ∆n×n. With this,
the Bethe entropy functionHB(γ) is a concave function of
γ and the Bethe free energy functionFB(γ) is a convex
function ofγ.

Proof: Omitted.

V. SUM-PRODUCT-ALGORITHM-BASED SEARCH OF THE

M INIMUM OF THE BETHE FREE ENERGY FUNCTION

In Section III we have defined the Bethe permanent of a
square matrixθ via the minimum of the Bethe free energy
function of the normal factor graphN(θ). In Section IV we
have seen that the Bethe free energy function is a convex
function, i.e., it behaves very favorably. This means that
we could use any generic optimization algorithm to find the
minimum of the Bethe free energy function (see, e.g., [12],
[17]) and therefore the Bethe permanent ofθ. However, given
the special structure of the optimization problem, there isthe
hope that there are more efficient approaches.

A natural candidate for searching this minimum is the
sum-product algorithm (SPA) [14]–[16]. The reason for this
is that the theorem by Yedidia, Freeman, and Weiss [8] says
that fixed points of the sum-product algorithm correspond
to stationary points of the Bethe free energy. Given the
convexity of the Bethe free energy function, the only question
that remains to be answered is if the SPA always converges to
a fixed point. In this section we will show that this is the case,
independently of the matrixθ, and (nearly) independently of
the chosen initial messages.

Theorem 9 Consider the SPA for normal factor graphN(θ).
With very minor technical conditions on the initial messages,
the pseudo-marginals computed by the SPA converge to
the pseudo-marginals that minimize the Bethe free energy
function ofN(θ).

Proof: Omitted.

VI. F INITE-GRAPH-COVER INTERPRETATION

OF THE BETHE PERMANENT

Note that the definition of the permanent in Definition 1
has a “combinatorial flavor.” This is in contrast to the
definition of the Bethe permanent in Definition 7 that has an
“analytical flavor.” In this section we show that is possible
to represent the Bethe permanent by an expression that has
a “combinatorial flavor.”

Definition 10 Consider the non-negative matrixθ of size
n × n. For every positive integerM , we defineΨM be the
set

ΨM ,
{

P =
{

P (i,j)
}

i∈I,j∈J

∣

∣

∣ P (i,j) ∈ PM×M

}

.

Moreover, forP ∈ ΨM we define theP -lifting of θ to be
the following(nM) × (nM) matrix

θ↑P ,







θ1,1P
(1,1) · · · θ1,nP (1,n)

...
...

θn,1P
(n,1) · · · θn,nP (n,n)






.

Definition 11 For any positive integerM , we define the
degree-M Bethe permanent ofθ to be

permB,M (θ) , M

√

〈

perm (θ↑P )
〉

P∈ΨM

,

where the angular brackets represent the arithmetic average
of perm

(

θ↑P
)

over all P ∈ ΨM . (Note that the permanent,
not the Bethe permanent, appears on the right-hand side of
the above expression.)

Theorem 12 Consider the non-negative matrixθ of sizen×
n. It holds that

lim sup
M→∞

permB,M (θ) = permB(θ).

Proof: Omitted.

Definition 11, together with Theorem 12 gives the
promised “combinatorial characterization” of the Bethe per-
manent.

VII. R ELATIONSHIP BETWEEN THEPERMANENT

AND THE BETHE PERMANENT

Lemma 13 Let 1n×n be the all-one matrix of sizen × n.
Then

perm(1n×n)

permB(1n×n)
=

√

2πn

e
·
(

1 + o(1)
)

Proof: Omitted.

Theorem 14 Let θ be an arbitrary non-negative matrix of
sizen × n. Then

permB(θ) 6 perm(θ).

Proof: Omitted.

Conjecture 15 Let θ be an arbitrary non-negative matrix
of sizen × n. We conjecture that

perm(θ) 6 p(n) · permB(θ)

for some suitable functionp(n). In particular, we conjecture
that p(n) = p · √n for some suitablep that is independent
of n. In fact, we conjecture thatp(n) is given by the ratio
displayed in Lemma 13.

VIII. F RACTIONAL BETHE ENTROPY

Towards closing the gap between the Bethe permanent and
the permanent, the Bethe entropy can be modified following
the idea of “fractional Bethe entropy.” If the modifications
are applied within some suitable limits, the convexity of the
(modified) Bethe free energy can be maintained. We omit
the details.
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IX. CONJECTURES

It is an interesting challenge to look at theorems involving
permaments and to prove that the theorems still hold if
the permanents in these theorems are replaced by Bethe
permanents. Let us mention two conjectures along these
lines.

A. Perm-Pseudo-Codewords

The following conjecture is based on a theorem in [18]
involving permanents of submatrices of a parity-check ma-
trix.

Definition 16 Let C be a binary linear code described by
a parity-check matrixH ∈ F

m×n
2 , m < n. For a size-

(m+1) subsetS of the column index setI(H) we define
the Bethe perm-vector based onS to be the vectorω ∈ Z

n

with components

ωi ,

{

permB

(

HS\i

)

if i ∈ S
0 otherwise

,

where HS\i is the submatrix ofH consisting of all the
columns ofH whose index is in the setS \ {i}.

Conjecture 17 Let C be a binary linear code described by
the parity-check matrixH ∈ F

m×n
2 , m < n, and letS be a

size-(m+1) subset ofI(H). The Bethe perm-vectorω based
on S is a pseudo-codeword ofH, i.e.,

ω ∈ K(H). (2)

B. Permanent-Based Kernels

Based on a result by Cuturi [19], Huang and Jebara [7]
made the following conjecture.

Conjecture 18 ([7]) Letn be a positive integer and letX be
a set endowed with a kernelκ. Let X = {x1, . . . , xn} ∈ Xn

and Y = {y1, . . . , yn} ∈ Xn. Then

κperm
B

: (X,Y ) 7→ permB

(

[

κ(xi, yj)
]

16i6n, 16j6n

)

is a positive definite kernel onXn ×Xn.

REFERENCES

[1] H. Minc, Permanents. Reading, MA: Addison-Wesley, 1978.
[2] H. J. Ryser, Combinatorial Mmathematics (Carus Mathematical

Monographs No. 14). Mathematical Association of America, 1963.
[3] L. Valiant, “The complexity of computing the permanent,”Theor.

Comp. Sc., vol. 8, no. 2, pp. 189–201, 1979.
[4] P. Dagum and M. Luby, “Approximating the permanent of graphs with

large factors,”Theoretical Computer Science, vol. 102, no. 2, pp. 283–
305, 1992.

[5] M. Jerrum, A. Sinclair, and E. Vigoda, “A polynomial-time approx-
imation algorithm for the permanent of a matrix with nonnegative
entries,”J. ACM, vol. 51, no. 4, pp. 671–697, July 2004.

[6] M. Chertkov, L. Kroc, and M. Vergassola, “Belief propagation
and beyond for particle tracking,”CoRR, available online under
http://arxiv.org/abs/0806.1199, June 2008.

[7] B. Huang and T. Jebara, “Approximating the permanent
with belief propagation,” CoRR, available online under
http://arxiv.org/abs/0908.1769, Aug. 2009.

[8] J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Constructing free-energy
approximations and generalized belief propagation algorithms,” IEEE
Trans. Inf. Theory, vol. 51, no. 7, pp. 2282–2312, July 2005.

[9] Y. Watanabe and M. Chertkov, “Belief propagation and loop calculus
for the permanent of a non-negative matrix,”Journal of Physics A:
Mathematical and Theoretical, vol. 43, p. 242002, 2010.

[10] M. Chertkov, L. Kroc, F. Krzakala, M. Vergassola, and L.Zdeborov́a,
“Inference in particle tracking experiments by passing messsages
between images,”Proc. Natl. Acad. Sci., vol. 107, pp. 7663–8, 2010.

[11] M. Bayati and C. Nair, “A rigorous proof of the cavity method for
counting matchings,” inProc. 44th Allerton Conf. on Communications,
Control, and Computing, Allerton House, Monticello, Illinois, USA,
Sep. 27-29 2006.

[12] S. Boyd and L. Vandenberghe,Convex Optimization. Cambridge,
UK: Cambridge University Press, 2004.

[13] R. A. Horn and C. R. Johnson,Matrix Analysis. Cambridge:
Cambridge University Press, 1990, corrected reprint of the 1985
original.

[14] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and
the sum-product algorithm,”IEEE Trans. Inf. Theory, vol. 47, no. 2,
pp. 498–519, Feb. 2001.

[15] G. D. Forney, Jr., “Codes on graphs: normal realizations,” IEEE Trans.
Inf. Theory, vol. 47, no. 2, pp. 520–548, Feb. 2001.

[16] H.-A. Loeliger, “An introduction to factor graphs,”IEEE Sig. Proc.
Mag., vol. 21, no. 1, pp. 28–41, Jan. 2004.

[17] D. Bertsekas,Nonlinear Programming, 2nd ed. Belmont, MA: Athena
Scientific, 1999.

[18] R. Smarandache and P. O. Vontobel, “Absdet-pseudo-codewords and
perm-pseudo-codewords: definitions and properties,” inProc. IEEE
Int. Symp. Information Theory, Seoul, Korea, June 28–July 3 2009.

[19] M. Cuturi, “Permanents, transportation polytopes and positive definite
kernels on histograms,” inProc. Int. Joint Conf. Artificial Intelligence,
Hyderabad, India, Jan. 6–12 2007.


