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The Bethe Permanent of a Non-Negative Matrix

Pascal O.

Abstract— It has recently been observed that the permanent
of a non-negative matrix, i.e., of a matrix containing only non-
negative real entries, can very well be approximated by solving a
certain Bethe free energy minimization problem with the help of
the sum-product algorithm. We call the resulting approximation
of the permanent the Bethe permanent.

In this paper we give reasons why this approach to ap-
proximating the permanent works well. Namely, we show that
the Bethe free energy is a convex function and that the sum-
product algorithm finds its minimum efficiently. We also show
that the permanent is lower bounded by the Bethe permanent,
and we list some empirical evidence that the permanent is
upper bounded by some constant (that modestly grows with the
matrix size) times the Bethe permanent. Part of these results
are obtained by a combinatorial characterization of the Bethe
permanent in terms of permanents of so-called lifted versions
of the matrix under consideration.

We conclude the paper with some conjectures about
permanent-based pseudo-codewords and permanent-basedrke
nels, and we comment on possibilities to modify the Bethe
permanent so that it approximates the permanent even better.

I. INTRODUCTION

Central to the topic of this paper is the definition of th
permanent of a square matrix (see, e.g., [1]).

Definition 1 Let& = (6; ;); ; be a real matrix of sizes x n.
The permanent of is defined to be the scalar

perm(60) = Z H Oi.0()»
]

o i€n

1)

where the summation is over all permutations of the set
[n] £ {1,2,...,n}. 4

Contrast this definition with the definition of thetermi-
nantof @, i.e.,

det(e) = ZSgI’l(O’) H 91',0(71)7
o i€[n]

wheresgn(o) equals+1 if o is an even permutation and
equals—1 if ¢ is an odd permutation.

A. Complexity of Computing the Permanent

Because the definition of the permanent looks simpler that?

\ontobel

of real additions and multiplications) needed to compute th
determinant is inO(n?), Ryser’s algorithm (one of the best
known algorithms for computing the permanent) requires
O(n - 2™) arithmetic operations [2]. This clearly improves
upon the brute-force complexity(n-n!) = O(n*/?-(n/e)")

for computing the permanent, but is still exponential in the
matrix size.

In terms of complexity classes, the computation of the
permanent is in the complexity class #P (“sharp P” or
“number P”) [3], where #P is the set of the counting problems
associated with the decision problems in the set NP. Note
that even the computation of the permanent of zero-one
matrices is #P-complete. Therefore, the above-mentioned
complexity numbers for the computation of the permanent
are not surprising.

B. Approximations to the Permanent

Given the difficulty of computing the permanent exactly,
and given the fact that in many applications it is good enough
to compute arapproximationto the permanent, this paper

Socuses on efficient methods to approximate the permanent.

This relaxation in requirements, from exact to approximate
evaluation of the permanent, allows one to devise algogthm
that potentially have much lower complexity.

Moreover, we will consider only the case where the matrix
6 in (1) is non-negative, i.e., where all entrieséfire non-
negative. It is to be expected that approximating the perma-
nent is simpler in this case because with this restricti@ th
sum in (1) contains only non-negative terms, i.e., the terms
in this sum “interfere constructively.” This is in contrast
to the general case where the sum in (1) contains positive
and negative terms, i.e., the terms in this sum “interfere
constructively and destructively.” Despite this restantto
non-negative matrices, many interesting counting problem
can be captured by this setup.

Earlier work on approximating the permanent of a non-
negative matrix includes Markov-chain-Monte-Carlo-lzhse
methods by Broder (see [4]), fully polynomial-time ran-
domized approximation schemes (FPRAS) [5], and Bethe-
proximation-based / sum-product-algorithm-based meth

the definition of the determinant, it is tempting to concludé)dS [61. [7].

that the permanent can be computed at least as efficien

as the determinant. However, this does not seem to be t ; . .
bd particular by the fact these methods yield algorithmg tha

case. Namely, whereas the arithmetic complexity (hum
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*Due to space limitations, some of the text and the proofs haea be

omitted. They will appear as part of a longer paper on the topithis
paper.

ity 1he study in this paper was very much motivated by
dﬁs last set of papers on graphical-model-based methods,

arevery efficientand by the fact that the obtained permanent
estimates have aaccuracy that is good enough for many
purposes

The idea behind this graphical-model-based approach is to

formulate a factor graph whose partition function equaés th
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permanent that we are looking for. Consequently, the neg&- Related Work
tive logarithm of this partition function can be written &t Let us briefly mention some related work. Namely, some

minimum of the so-called Gibbs free energy function that i§qpects of the Bethe free energy function were analyzed by
assomateq with this factor graph. Although being an elegaWatanabe and Chertkov in [9] (in particular, they appliegl th
reformulation of the permanent computation problems, th'l%op calculus technique by Chernyak and Chertkov) and by
does not yet yield any computational savings. Neverthelessy arikoy et al. in [10].

it suggests to look for a function that is tractable and Because computing the permanent is related to counting

whose minimum is clos_e tq the minimum of the Gibbs fre erfect matchings, the paper by Bayati and Nair [11] (of
energy. One such function is the so-called Bethe free ener ich we became aware of while writing up the present

function [8]. The Bethe fre_e_energy function is interestin aper) on counting matchings in graphs with the help of
because a theorem by Yedidia, Freeman, and Weiss [8] s he sum-product algorithm is very relevant. Note that their

that, ixed pOiF‘ts of the sum-product algorithm correspond tQetup is such that the perfect matching case can be seen as a
stationary points of the Bethe free energy. _ limiting case of the matching setup. However, for the perfec
In general, this approach of replacing the Gibbs freég,5iching case (a case for which the authors of [11] make no

energy function by the Bethe free energy function cOmegaims) the convergence proof of the sum-product algorithm
with very few guarantees, though. in [11] is incomplete.

o The Bethe free energy function might have multiple
local minima. D. Overview of Paper

o It is unclear how close the (global) minimum of the This paper is structured as follows. We conclude this
Bethe free energy is to the minimum of the Gibbs fregntroductory section with a discussion of some of the notati
energy. that is used. In Section Il we then introduce the main normal

o It is unclear if the sum-product algorithm convergeSactor graph for this paper, in Section Il we formally define
(even to a local minimum of the Bethe free energy). the Bethe permanent, in Section IV we discuss properties

Luckily, in the case of the permanent approximation problen?f the Bethe entropy function and the Bethe free energy
one can formulate a factor graph where the Bethe free enerfijiction, in Section V we analyze the sum-product algorithm
function is very well behaved. In particular, in this papes w in Section VI we give a “combinatorial characterization” of

show that a factor graph with the following properties carihe Bethe permanent, in Section VIl we bound the permanent
be formulated. in terms of the Bethe permanent, in Section VIII we list some

thoughts on using the concept of “fractional Bethe entfopy,

« The Bethe free energy function é®nvexand therefore . : : .
and in Section IX we list some conjectures.

has no local minima.
« The minimum of the Bethe free energydsite closelo £ Basic Notations and Definitions

the minimum of the Gibbs free energy. (In particular, the _ ) ) ) )
permanent is lower bounded by the Bethe permanent. This subsection discusses the most important notatiohs tha

Moreover, empirical evidence suggests that the perm&fi" be used in this paper. More notational definitions will

nent is upper bounded by some constant (that modesfi# 9iven in later sections.
grows with the matrix size) times the Bethe entropy.) We letR be the field of real numbers. Scalars are denoted

« The sum-product algorithmonvergego the minimum by non-boldface characters, whereas vectors and matrjces b
of the Bethe free energy. (In fact, the error w.r.tpoldface characters. For any positive intederthe matrix
minimum of the Bethe free energy decays exponentiallj Zx~ IS the all-one matrix of size x L. _
fast, with an exponent depending on the madix We use calligraphic letters for sets, and the size of aset

is denoted byS|. The convex hull [12] of some subs&tof

Besides leaving some q_uestions open with respect to tQSme multi-dimensional real space is denotedcbyv(S).
Bethe free energy function (see for example the abovq,‘_-or any positive integef, we define[L] £ {1,...,L}. For

mentioned conjecture), these results by-and-large \alitthe any positive integet,, we defineP, ., to be the set of all
empirical success, as observed by Chert&bal. [6] and by L x L permutation matrices, i.e

Huang and Jebara [7], of approximating the permanent by

graphical-model-based methotls. T is a matrix of sizeL x L

As we will see, the factor graph that we use (cf. Figure 1) P2l T conta?ns exactly oné per row
is not sparse and has many short cycles, in particular many T contains exactly oné per column( ’
four-cycles. These facts might suggest that the applicatio T containsOs otherwise

of the sum-product algorithm to this factor graph is ratheEi

bl tic. H h di d ab d learly, there is a bijection betweémy ;, and the set of all
problematc. However, as we have discussed above, an \”ﬂ rmutations of L]. Moreover, for a finite sef, we define
show in this paper, luckily this is not the case.

IIs to be the set of probability mass functions ov&ri.e.,

INote that the convexity of a function in general, and of thehBefree N
energy in particular, depends on its parametrization. Thghtrexplain the IIs=<{p= (ps)ses
non-convexity observations in [7, Section 3.3] w.r.t. thetlie free energy.

ps =0 forall sesS, Zpszl}.

seS
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Finally, for any positive integel, we let A be the set
of doubly stochastic matrices of siZex L, i.e.,

Yi,j >0 for all (Z,j) S [L] X [L]
AL><L = Y= (’Yi,j) ZjE[L] Yig = 1 forallie [L]
Yieir) Vi = 1 forall j € [L]

Clearly, Ay« 1, is a convex set, and every permutation matrix
of size L x L is a doubly stochastic matrix of size x L.

Most interestingly, every doubly stochastic matrix of sizeFig. 1. ) ¢ ) >
ipartite graph with two times vertices. The left function nodes represent

e functions{g;};cz. the right function nodes represent the functions

L x L can be written as a convex combination of permutatio

Control,

and Conputi ng,

Cct. 1, 2010.

The normal factor grapN (@) which is based on a complete

matrices of sizel. x L; this observation is a consequence of(y;},. ;, and with edgee = (i,j) we associate the variable label

the important Birkhoff-von Neumann Theorem.

Theorem 2 (Birkhoff-von Neumann Theorem) For any
positive integerL, the set of doubly stochastic matrices of
size L x L is a polytope whose vertex set equals the set of
permutation matrices of sizé x L, i.e.,

vertex-set(Apxr) = PrxL-

As a consequence, the set of doubly stochastic matrices of®
size L x L is the convex hull of the set of all permutation
matrices of sizd. x L, i.e.,

ALxL = COHV(PLXL).

Proof: See, for example, [13, Section 8.7].

II. NORMAL FACTOR GRAPH REPRESENTATION

Factor graphs are a convenient way to represent multi- *
variate functions [14]. In this paper we use a variant called
“normal factor graphs” [15] (also called “Forney-style tiaic
graphs” [16]), where variables are associated with edges.

As already mentioned in the introduction, the main idea
behind the graphical-model-based approach to estimating t
permanent is to formulate a normal factor graph such that the
partition function equals the permanent. There are of @urs
different ways to do this and typically different formulatis
will yield different results when estimating the permanent
with sub-optimal algorithms like the sum-product algamith
It is well known that when the normal factor graph has no
cycles, then we get the permanent exactly, however, for the
given problem any normal factor graphithout cycles yields
highly inefficient sum-product update rules (for reasopabl
largen), and so we will focus on normal factor grapivith
cycles. The normal factor graph that is introduced in the
following definition and that is based on a complete bipartit
graph with two times: vertices is a rather natural candidate,
and as we will see, has very interesting and useful propertie

Throughout the paper, if not mentioned otherwi@eyill
represent a non-negative matrix of sizex n, wheren is
some fixed positive integer.

Ae = A; ;. (See Definition 3 for more details.)

The set of vertices i& = ZUJ whereZ = [n] will be
called the set of left vertices and = [n] will be called
the set of right vertice$.

The setofedges 8= IxJ = {(i,j) | i € Z,j € J}.
Moreover, all edges are full edges, i.€51 = £ and
Enatt = { }-

For everye = (i,5) € € we defined. = A; ; = {0,1}.

« For everyi € Z we define the local functiofs

gi - HA@]‘HR? a,7,_>{\/m (ifaiZEj)
J

0 (otherwise)

Similarly, for everyj € 7 we define the local functions

0 (otherwise)

For everyi € 7 we define the function node alphabet
A; to be the set

A & aiGHAi,j gi(a;) #0» ={e; | j € T}.
J

Similarly, for everyj € 7 we define the function node
alphabet4; to be the set

.Aj S {aj S H'Ai*rj

gj(aj) 750} = {ei | ’L'EI}.

o With a slight abuse of notation, the lettet will also

denote the sed £ [], A, = [1,; A ;. With this, a
vector
a £ (ac)ece = (aij)ijerxg € A

will be called a configuration of the normal factor
graph. For a given vectom, we also define the sub-
vectors

a; £ {(aij)jes} and a; £ {(a;;)iez}-

2Here,F £ 7UJ stands for the more cumbersomfe2 ({left} x Z) U
({right} X J). In the following, i (and variations thereof) will refer to a
left vertex and; (and variations thereof) will refer to a right vertex. In tha

spirit, variables liken; andn; are different variables, also if= j.

Definition 3 We define the normal factor grapN (@)
N(F,E, A, G) as follows (see also Figure 1).

A SHere and in the followinge;, j € J, stands for the length- vector
where all entries are zero except for ti¢h entry that equals. The vector
e;, 1 € Z, is defined similarly.
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When convenient, the vectarwill be considered to be Moreover, we define the sets
an n x n matrix. Thena; corresponds to thé-th row

A .
of a, and a; corresponds to thg-th column ofa. Bi =14, i€T,

« The global functiory is defined to be B £1lu, jeJ,
B, e HAE, eef.
g: A=R, a— (Hgi(ai)) : ng(aj) : and call B;, B;, and B,, the ith local marginal polytope,
i J

the jth local marginal polytope, theeth local marginal
« A configurationc with g(c) # 0 will be called a valid pol_ytope, respectively. (SometimBsis also called theith
configuration. Clearly, the set of valid configurationsPelief polytope, etc.)
Ceage IS Characterized as follows With this, the local marginal polytope (or belief polytope)

B is defined to be the set
Ci,j S .Ai’j, (Z,j) clxJ

Cedge =% (Cij)ijerxs| €€ A i€l . Bi €§i ]for allll Z €z
cieA,jed Bj e B forall jeJ
B. € B, forall ec &
Consideringc € Ceqqe @S ann x n matrix, it can easily
be verified thatc is a permutation matrix, i.e.¢c € > Bia; = Be,a.
P B = ﬂ alcA;: a;c:ae ,
e forall e = (i,j) € &, a. € A

In the following, we denote by, Ug, Hg, and Zg
the Gibbs free energy function, the Gibbs average energy
function, the Gibbs entropy function, and the Gibbs paniti
function, respectively, associated with a normal fact@pgr
(In the following, when confusion can arise what normaivhere 8 € B is called a pseudo-marginal. (The two con-
factor graph a certain Gibbs partition function is refegrin straints that Were_listed last in the definition 6f will be
to, we will useZg(N), etc., instead of.) called “edge consistency constraints.”) [

> Bja; = Be.a.

’ e =
ajEA]. al =ae

forall e=(i,5) € &, ac € Ae

Lemma 4 Consider the normal factor grapiN(@). The With this, we define the Bethe free energy functibp,
permanent of@ can be expressed in terms of the Gibbdhe Bgthe average energy functitg, and the Bethe entropy
partition function or in terms of the minimum of the GibbsfunCt'onHB associated with a (normal) factor graph as in [8].

free energy function. Namely, e . ) . )
9 y Definition 6 The Bethe partition function associated with

perm(8) = Z¢ = exp (_ min Fc;(p)) some normal factor graph(F, &, A, G) is defined to be
p
L . . S .
where the minimization is ovegs € 11 4. ZB = exp < glelg Fg (:3)) .
Proof: Omitted. | In the following, when confusion can arise what normal

Although the reformulation of the permanent in the abov&Ctor graph a certain Bethe partition function is refegrio,
lemma is elegant, from a computational perspective it dod¥e Will use Z5(N), etc., instead op. _
not buy us much. However, it suggest to look for an opti- The next definition is the main definition of this paper and
mization problem that can easily be minimized and whos@as motivated by the work of Chertkov et al. [6] and by the
minimal value is related to the desired quantity. This is th&/ork of Huang and Jebara [7].

approach that is taken in the next section. o _
Definition 7 Consider the normal factor graphl(80). The
[1l. THE BETHE PERMANENT Bethe permanent @, which will be denoted byermg(6),

For a motivation of the Bethe free energy we refer t¢S defined to be
Section I-B. permg(0) £ Zg,
Definition 5 Consider the normal factor graph(8). We let Where Zg is specified in Definition 6.

B2 ((Bi)iez, (Bj)jer, (Be)ece) IV. PROPERTIES OF THEBETHE ENTROPY FUNCTION

. AND THE BETHE FREE ENERGY FUNCTION
be a collection of vectors based on the real vectors Lo
The Bethe entropy function is in general not a concave

Bi £ (Bia;)aicA; function and therefore the Bethe free energy function is in
3 A (Bia))as et general not a convex func_non. (Note that the Bethe average

Lo energy function is linear in the arguments.) However, here
Be = (Beac)aceA.- we show that the Bethe entropy function, when suitably
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parametrized, is a concave function. Consequently theeBetMoreover, for P € ¥, we define theP-lifting of € to be
free energy, when suitably parametrized, is a convex funthe following(nM) x (nM) matrix

tion. As_ a consequence, the Bethe free energy doekave 0, POY ... g, pQn)
local minima. ; :

o'r 2 :
Theorem 8 The local marginal polytope can be para- 9n,1P("’1) . 9n,nP(”’”)

metrized by doubly stochastic matrices A, «,. With this, o o _
the Bethe entropy functiof/s(v) is a concave function of Definition 11 For any positive integerM, we define the
~ and the Bethe free energy functidiz(v) is a convex degreeA/ Bethe permanent @ to be

function of-~. 0 2 < ( TP)>
perm 0)= ”\’/ perm (6 ,
Proof: Omitted. O B PcUy

where the angular brackets represent the arithmetic averag
V. SUM-PRODUCTALGORITHM-BASED SEARCH OF THE ¢ perm(a“’) over all P € ¥,,. (Note that the permanent,
MINIMUM OF THE BETHE FREE ENERGY FUNCTION not the Bethe permanent, appears on the right-hand side of
In Section Il we have defined the Bethe permanent of the above expression.)
square matrix@ via the minimum of the Bethe free energy
function of the normal factor grapR(8). In Section IV we Theorem 12 Consider the non-negative matkof sizen x
have seen that the Bethe free energy function is a convex It holds that
function, i.e., it behaves very favorably. This means that limsup permpg y;(8) = permy (6)
we could use any generic optimization algorithm to find the NpooP DEItiB, M PErtipi®)-
minimum of the Bethe free energy function (see, e.g., [12 ) .
[17]) and therefore the Bethe permanen@oHowever, given broof. Omitted, =
the special structure of the optimization problem, therthés
hope that there are more efficient approaches.
A natural candidate for searching this minimum is thénanent
sum-product algorithm (SPA) [14]-{16]. The reason for this  v||. RELATIONSHIP BETWEEN THEPERMANENT
is that the theorem by Yedidia, Freeman, and Weiss [8] says AND THE BETHE PERMANENT
that fixed points of the sum-product algorithm correspongemma 13 Let 1
to stationary points of the Bethe free energy. Given th?hen
convexity of the Bethe free energy function, the only questi

Definition 11, together with Theorem 12 gives the
promised “combinatorial characterization” of the Bethe-pe

nxn D€ the all-one matrix of size x n.

that remains to be answered is if the SPA always converges to perm(1y,xn) _ [2mn (14 o(1))
a fixed point. In this section we will show that this is the gase permp (1) e
independently of the matri@?, and (nearly) independently of pyyof- Omitted. 0

the chosen initial messages.

Theorem 14 Let 6 be an arbitrary non-negative matrix of

Theorem 9 Consider the SPA for normal factor grapi{). sizen x n. Then

With very minor technical conditions on the initial message
the pseudo-marginals computed by the SPA converge to permp(0) < perm(6).

the pseudo-marginals that minimize the Bethe free ener ) ,
function ofN(8). %yroof. Omitted. [
Proof: Omitted. L1 Conjecture 15 Let  be an arbitrary non-negative matrix

of sizen x n. We conjecture that
V1. FINITE-GRAPH-COVER INTERPRETATION

OF THE BETHE PERMANENT perm(6) < p(n) - permg(0)

Note that the definition of the permanent in Definition lfor some suitable functiop(n). In particular, we conjecture
has a “combinatorial flavor.” This is in contrast to thethatp(n) = p - /n for some suitable that is independent
definition of the Bethe permanent in Definition 7 that has asf ». In fact, we conjecture that(n) is given by the ratio
“analytical flavor.” In this section we show that is possibledisplayed in Lemma 13.
to represent the Bethe permanent by an expression that has
a “combinatorial flavor.” VIII. FRACTIONAL BETHE ENTROPY

Towards closing the gap between the Bethe permanent and
Definition 10 Consider the non-negative matr& of size the permanent, the Bethe entropy can be modified following
n x n. For every positive integef/, we definel’,; be the the idea of “fractional Bethe entropy.” If the modifications
set are applied within some suitable limits, the convexity of th
Uy, 2 {P _ {P(i’j)}i ‘ pld) ¢ PZWXM}~ (modified) Bethe free energy can be maintained. We omit

€T,jeT the details.
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IX. CONJECTURES

It is an interesting challenge to look at theorems involving[1]
permaments and to prove that the theorems still hold if?]
the permanents in these theorems are replaced by Bethg
permanents. Let us mention two conjectures along thes[e‘z”
lines.

A. Perm-Pseudo-Codewords

The following conjecture is based on a theorem in [18]
involving permanents of submatrices of a parity-check ma—[6]
trix.

(5]

Definition 16 Let C be a binary linear code described by 7]
a parity-check matrixd € F"*", m < n. For a size-

(m+1) subsetS of the column index sei(H) we define [8]
the Bethe perm-vector based 6nto be the vectow € Z"™
with components [9]
a ) permg (Hs\i) ifieS
o otherwise’ (10]

where H\; is the submatrix ofH consisting of all the [11]
columns ofH whose index is in the s&t \ {i}.

Conjecture 17 Let C be a binary linear code described by [12]
the parity-check matrix € F;"*", m < n, and letS be a

size{m+1) subset off (H). The Bethe perm-vectar based [13]
on S is a pseudo-codeword d, i.e.,

w € K(H). @ M
B. Permanent-Based Kernels [15]

Based on a result by Cuturi [19], Huang and Jebara [7[16]
made the following conjecture.

[17]
Conjecture 18 ([7]) Letn be a positive integer and let be 18]
a set endowed with a kernel Let X = {z1,...,z,} € X"
andY ={y1,...,yn} € X™. Then (191

Fpermy @ (X,Y) = permg ([K(ﬁiayj)]lgign’1<j<n>

is a positive definite kernel oA’™ x X™.
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