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Abstract— We consider data communication over a discrete
memoryless channel where neither the sender nor the receiver

knows the channel law. The setup is universal in the sense that

A. Notation
In the following, we will use Forney-style factor graphs

no training sequence is allowed, i.e. no position of the channel (FFGS), also called nprmal factor gr.aph [20], [21], [22]- A
code is allowed to be fixed to a certain symbol. We discuss key feature of FFGs is that the variables are associated to

a variety of approaches for solving this problem efficiently. It
turns out that it is worthwhile to design decoders which try to
minimize the symbol error probability. This is in contrast to the
usual approach where the block error probability is minimized.

As a side result, we present a very simple derivation of the
so-called one-sweep algorithm by Johansson and Zigangirov. In
the context of universal channel decoding, this algorithm has
certain structural advantages over the BCJR algorithm.

I. INTRODUCTION

In the last decade it has become more and more clear h
one can efficiently achieve reliable communication close tg
capacity when the channel law is known. A very helpful too
in deriving such codes / decoders has been the factor-grapI

message-passing iterative decoding framework.

the (half-)edges. Unless a variable is a measured quantty,
will use the capitalized variable name to label (half-)ezige
All our codes will be binary, however, the results can easily
be generalized to other alphabets. Vectors will usually be
row vectors. We will use the abbreviatigly for [, ...do.
Moreover, the expressiom] is 1 if the statementd is true
and0 otherwise.

Il. DECODING WITH KNOWN CHANNEL LAW

In this section we briefly discuss how the factor-graph /
rUVessage—passing iterative decoding framework [21], [26] c
e used in the case where the channel law is known at the
receiver. More precisely, we consider a DMC with input
IphabetX, output alphabef), and channel lawV (y|x),
e. W(ylx) = IT)—, W(ye|z¢). Assume that we are using
a channel cod€ over X of lengthn and dimensiork, that

Some work has also been done for formulating decode{ﬁe sent codeword is denoted by the random veBoand

when the channel law is not known, see e.qg. [1], [2], [3], [4]
[5], [6]. However, in these papers the channel law was nev
totally unknown (the channel was within a very specific Clasﬁkely which means thatPy (x) = 2%
of channels) and/or the decoders could rely on the presen e X”

of training sequences or pilot symbols. In this paper weystu
the case where the channel law is unknown except that it i
discrete memoryless channel (DMC) with known input an

output alphabet.

We remark that papers and books that discuss universal

decoding include [7], [8], [9], [10], [11], [12], [13], [14]
[15], [16], [15], [17], [18], [19]. However, the practicdyi of
most of the proposed schemes is not quite clear.

that the received vector is denoted by the random ve¥tor

foreover, we assume that all codewords are sent equally

- [x € (] for all

Two popular approaches for designing a decoder are
& minimize to block error rate or the symbol error rate,
espectively.

« If we minimize the block error rate then we obtain the
so-called block-wise maximum a-posteriori (MAP) de-
cision rule which says that upon observing the channel
outputY = y one decides

)A(block(

The paper is structured as follows. After reviewing the case
of decoding when transmitting over a channel with known
channel law in Sec. I, we will deal with the case of unknown
channel law in Sec. Ill. With the help of an excursion on the
one-sweep algorithm in Sec. IV, we show in Sec. V that the
one-sweep algorithm is very useful for the universal dengdi
setup. Finally, we conclude this paper in Sec. VI. Some more
technical parts of the paper were relegated to the Appendix.
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If we minimize the symbol error rate then we obtain the
so-called symbol-wise maximum a-posteriori decision
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Fig. 1. Factor graph representing the factorizatiorj>of C| - W (y|x). Fig. 3. FFG representing the factorizatipn € C] - Te (8) - W(y|x', 6).
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Fig. 2. Factor graph representing the factorization [&f € C] - Fig. 4. FEG representing the factorizatigx € (] - Te(8) -

H?:l W(yékﬁé)' ?71 W(ydw}, 9).
rule. Upon observing the channel outftit= y, it says I1l. DECODING WITH UNKNOWN CHANNEL L AW:
that for all: € {1,...,n} one decides UNIVERSAL DECODING
3 (y) = arg max Py, vy (z:]y) In contrast to Sec. Il we now assume that we transmit over
TiEd a DMC where the channel law is neither known by the sender
= arg glggg Px, y(zi,y) nor by the receiver. Mathematically, we do this by replacing
’ the channel law (y|x) by W (y|z, 8): the setup is such that
—aremas Zx:n Pxx(xy) the sender and the receiver know the input alphabethe
1 e output alphabed, the set7g of possiblef-vectors, and the

n function W (y|z, @), however they do not know the actual
= arg max Z xec]- H Py, ix,(yelze)  g-vector. Subsequently, we will not directly transmsitbut
e =1 x’ wherex! £ o;(x;) for some given permutations;( - ) of
=argmax > [x €] [TW(yelze).

xeEX™ /=1
x; fixed l

xeC]

Xn
In both cases, we can use the FFG in Fig. 1 or the FFG

in Fig. 2 to visualize the decoding. Because the FFGs are
loopless, the decisions will be given by the max-product [ W (sl ©)
algorithm in the case of the block-wise MAP decision rule
and by the sum-product algorithm in the case of the symbol-

wise MAP decision rule.

The above decision rules yield only efficient algorithmg % 5.W(An|otlh%r)FFG representing the factorizatipn € C] - Te (6) -
if the message updates can be performed efficiently at the ~' vete
function nodes. This is e.g. the case whénis a con-
volutional code (with not too many states), a Iow-densityl
parity-check (LDPC) code, or a turbo code. For the latter | With joint channel law 0 O

g ) € e fimat
two cases, the function node representing the code indicato estimate

W (yn|z),, ©)

Yn

[| block-wise MAP | symbol-wise MAP |

function [x € C] is replaced by an FFG that typically has Y;ﬁgg:,éﬂg channel 0 O

loops. Note that in this case the max-product and the sum-

product algorithms usually do not minimize, respectivéig TABLE |

block and symbol error rate. However, for suitably chosen DecisioNESTIMATION RULES FOR THE CASE WHERE THE CHANNEL
LDPC and turbo codes very good performance results can LAW IS UNKNOWN.

be achieved with relatively low algorithmic complexity.



Xt O Symbol-wise MAP decoding (with joint block-wise
estimate of the channel parameters):
Definition 1 In the following, we assume tha® =

(Qw’,y)(z’,y)eXxya that (2, 0)(3’)
A —
W(ylz',0) = 0, , (for every(z',y) € X x ), = arg (a:i,or)nea;{xT@ x;n xe(]- H Oty
and that 2 fired

O Symbol-wise MAP decoding (without joint block-wise
A /
Te = {0 ‘ Oury 2 0 for all (a',y) € X%, estimate of the channel parameters):

n

0., =1forall 2’ € X 3. 5
zy: 'y orall z* € } Zi(y) fargingz\(‘/ Z / xel] Te( ).Hﬁmz,ye.
o !

Moreover, we will take a Bayesian approach where the actual
6-vector will be considered to be a realization of the randond h€ resulting decision rules for the components of the above
vector ® with a priori densityTe(0).2 O decision vectors are then
o . . _ O Block-wise MAP decoding (with joint block-wise esti-
A popular way of obtaining low-complexity algorithms is mate of the channel parameters):
to redraw an FFG, e.g. the FFG in Fig. 4 can be redrawn

as the FFG in Fig. 5. Unfortunately, although the message #:(y) = arg max max max|x € C] H9 .
updates would be rather simple, message-passing iterative = z€X X7 0eTo wre
decoding on the new FFG does not work: roughly speaking,

the messages in the FFG will all be messages that favor- Blo.ck-wisef I\r/I1APhde00(|jing (without .]omt block-wise
none of the symbols ifY. The reason is that the algorithm estimate of the channel parameters):

works too locally and does not incorporate enough global

information to break the symmetry. Ti(y) = arg A e / [xec]- H Oz -
So, in the following we will not split the factor node € @i fred

C] - Te(0) into two factor nodes (as was done when going I Symbol-wise MAP decoding (with joint block-wise

from Fig. 4 to Fig. 5). Our goal will therefore be to find estimate of the channel parameters):

algorithms that work efficiently despite the fact that wedav

“complicated” function nodes. #;(y) = arg max max xeC]- H 01 -

z,€X 0cTg

x; fixed

Paralleling the case of the known channel in Sec. II, we xn
can derive a decision rule by minimizing either the block or

the symbol error ratd However, because not onkybut also LI Symbol-wise MAP decoding (without joint block-wise

6 is unknown, we can either estimateby itself or jointly estimate of the channel parameters):

with 6. The resulting decision / estimation rules are shown

in Table | and the formulas look as follows. 2i(y) = arg max > / x €C|-Te(0)- H O, e
O Block-wise MAP decoding (with joint block-wise esti- e

mate of the channel parameters): Let us point out the connection of some of the above

0. decision rules to some universal decoders that were pro-
H =pye: posed so far in the literature. For this, we introduce

(aw y(x',¥)) . which counts the number of indices
Y (a/,y)EX XY
0 Block-wise MAP decoding (without joint block -wise p - ,.

t the ch | .,n} such thatr} = o;(z;) = 2’ andy; = v.
estimate of the channel parameters): a AssumingT@(G) o 1 for all 8, we can write

(%,0)(y) = arg oo [xeC]-

n
x(y) = arg irelév)i/g [x eC]- H Ot ye- 2(y)
=1 n
= arg max max max [x € C] - H e

IWe will not discuss much further why we introduce the permateti zi€X :Ggi;; 0cTe 1
oi(-). The main reason is that we would like to use a linear cGde 7n
Permuting the symbols helps insure that the zero codeword mintelsave
a special position in the codebook. Moreoverl ifs in the codebook, then = arg max max xecCl- maX Te(0 H ewe,yg
for everyx € C, x + 1 (mod2) is in C and this symmetry complicates T €X ):Zeflxed
universal decoding if it is not broken by the permutatiens - ). ag . (x' y)

2For computational reasons it is more important tfas(8) has a = arg max max [X € C] max - H 6 I,yy
convenient form than that it exactly represents the a pderisity of ® zi€X ’;En)ieu 6€Te (¢ y)EXXY
(if such a density exists at all). As long as no parameterrgets excluded
a priori, it can be seen from the expressions later in thiepépmt for large We see that the maximizingd* is 0z, o

block lengthn the influence of the a priori distribution is negligible. ar (%' o as (X! for all (z _
3|t seems that in the past, people have mainly focused on minignthie z 7y( 7}’)/ Zyel.} x ,y( aY) ( ( y)) €
word error rate in the context of universal channel decading XxY. We obtain H(W,y)Eny(g;,’y)au,y x'y



exp(—nH (y|x)), where H (y|x) is the empirical con- the factor-graph / message-passing iterative decoding

ditional entropy ofy given x. Letting H(y) be the framework.

empirical entropy ofy (note that it is only a function of [0 Similar to the above case, here we have three different
the observed channel outputand not ofx, and letting operations: maximization, summation, and the product
I(x;y) = H(y) — H(y|x) be the empirical mutual of non-negative real numbers.

information ofx andy, we get O In this case, the “marginalization” corresponds to the

i(y) x € (] ( I )> sum-product algorithm.
xZ; = arg max max |X - ex ni(x; .
W gmex xexn P Y We see that in the casés and [0 we do not have a

o . . . semi-ring, in the casé&l we have a semi-ring that is not
This is the maximum mutual information (MMI) de- a ring (there is no “additive inverse”), and in the cdse

coder of Csisar and Korner [9]. Recently, Coleman et o have a semi-ring that is also a ring. It seems therefore
al. [_12_3]' [19] have studied relaxation approac_hes t0 thigyat the case (symbol-wise MAP decoding without joint
decision rule wherex € C] was relaxed according to the 0y yise estimate of the channel parameters) has more
recipes in [23], [24]. (Actually, Coleman et al. studiedyqepraic structure than the other decision rules. It igdely

not the universal channel coding setup but rather thgegjraple to use this additional structure to perform the
dugl universal source coding §?TB'2) —1/2 message updates more efficiently. We will use the one-sweep
Setting Te(8) H(-’vhy)eXxy gr’,y = 0. Y for algorithm to make a case for this claim; To that end, the next

all 6 (which corresponds to Dirichlett/2,...,1/2)  gection gives a review of this algorithm. Afterwards, welwil
distributions for each’ € X), we can write discuss its use in the universal setup.

2i(y) IV. THE ONE-SWEEPALGORITHM
n
— arg max maX/ x€C] To(8)- H Our e As;ume to have a (partial) FFG as in Fig_. 6, Whert_a the
zeX xexn [o —1 function node represents the indicator function of a linear

x,; fixed
o () (sub)codeC. During an update of this function node we
= arg max max|[x € C| - / H QI}Ty’y( RA

X mex 0 compute the qutgoir)g messages_. x, (;), i_ =1,...,n,
oi fed (@' y)exX =y based on the incoming messages, . ;(x;), i = 1,...,n,
= arg mir}l{ min [x € C] - exp (Ikr(y[x')), using the sum-product algorithm. In the following, we will
T e assume that the underlying semi-ring is a ring, i.e. thatyeve

wherelxr(y|x’) is the compression length when Com_element of the ring has an additive inverse. N
pressingy given x' according to the Krichevsky- If the su_bcode is repre_sented _byatrellls, one eff|_0|ent way
Trofimov universal measure [25]. The resulting decodt© SOIVe this update task is by using the BCJR algorithm [26],
ing rule is very similar to the decoding rule in [14,°" equivalently, the forward-backward algorithm.

Sec. V] wherelkr(x'|y) is minimized over the code-

words. Instead of using the source compression length fo) =[xed

according to the Krichevsky-Trofimov universal mea-
sure, one can also take the source compression length
that is obtained by applying the Lempel-Ziv algorithm,
see e.g. [10], [13].

—

In all these decision / estimation setups considered above,
the expression fori;(y) has the same structure. Starting
from the right-hand side and going to the left-hand side, the
expression contains the produgte C|-Te () -[[;_; 0./,
(which in the factor-graph framework is represented by an
FFG), then there is the “marginalization” operation, andfig. 6. (Partial) FFG where the function nogiéx) = [x € C] represents
finally arg max,,cx chooses the best,. the subcode.

Let us now have a closer look at the “marginalization”
operation for the various cases.

O In this case, the “marginalization” corresponds to the So St S Sn—1 Sn
max-product algorithm. Note though th#& is con-
tinuous and so it might not be easy to perform the
maximization oveid. It seems to be better to leave this
maximization untouched untihaxxef;;r; is performed.

00 Algebraically, we have three different operations here:
maximization, summation (we consider integration as a
summation), and the product of non-negative real num-
bers. This is obviously not a semi-ring as is required for Fig. 7. Detailed version of the partial factor graph showrFig. 6.
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However, there are alternatives when the underlying semithere y and y; were defined in Def. 2.
ring is actually a ring. One of them is to do the computations
using the dual code [27] (see also [20]). Another very interff T0Of: See App. B. , , U
esting alternative is the one-sweep algorithm by Johansson!" the case that for some € 7 the expressiom; =
and Zigangirov [28]. In contrast to the BCJR algorithm/4i(0)” — #i(1)” is not a multiplicatively invertible element,
which needs a forward and a backward sweep, the one-swed}f has to use different procedures or one has to use some
algorithm only needs a slightly more complex forward Sweebefo_rmulatmn of the setup_ (e.g. one can reorder_ the code bit
with some simple processing at the énd. positions and use a mpdlfled one-sweep algorithm, see the
In [29, App. D] we have already discussed the relationshiffMarks after Eq. (24) in [28]). B .
between these three algorithms that perform the above-!" APP- A we show how the quantities, xi, ..., x» In
mentioned message update, especially we showed a simﬂ;ﬁ_@f' 2 can be computed efficiently. From that dlscu_ssmn_lt
fied derivation of the one-sweep algorithm. Here we willVill become clear that the name “one-sweep algorithm” is

discuss an even more simplified derivation of this algorithmideed justified.

Originally, the one-sweep algorithm was presented as an V. THE ONE-SWEEPALGORITHM
algorithm for computing the a-posteriori probabilities evh FOR UNIVERSAL DECODING
decoding a code. However, in our opinion, the slightly more
abstract setup of message updates helps considerably
obtaining a rather straightforward derivation of the aiton.

In the following, we will assume that is a binary
linear code of lengthn defined by a parity-check matrix 1i(0) = Y0,i * U5, (0,ys
H. (The results here can easily be generalized to linear (1) = Y16 - O (1),
codes over other finite fields.) Lef £ {1,...,n}. To R
simplify notation, we will use for ali € Z the abbreviation for some non-negative real valugs; and~; ;. We observe

.nLet us briefly discuss the application of the one-sweep
a\gorithm to the update of the function noflec C]-Te (0)
in Fig. 4. Here, the-th incoming message is

pi(xi) £ px,—s(x;) for the incoming messages. With this, that the computations for obtaining, x1, ..., x» involve
the outgoing message; . x, (x;), i € Z, is given by only the following computations:
N B o we only multiply polynomials by monomials;
pi-x,(0)2 Y x€C [ melwe) = Y T melwo), « we add two polynomials.
xEXM el xeEC LeT
. i #=0 (i However, we donot need to compute the product of two
pr-x (1) 2 Y pee ) [ e = pe(ae).  general polynomials.
x;;n g ; ,11 Moreover, the division by
z;=1 L#i z;=1 L#i
_ 2 2
Let e; be the all-zeros row vector of length except for a Ai = 1i(0)” = (1)
“1” at positioni and letC; £ C +e; (i € ) be cosets of the =0 020y — Vo O2i1) s
codeC. N2 02
The main idea of the one-sweep algorithm is to compute = +15.402%.(0) : <1 -t g“”)
the intermediate quantitieg, x1, ..., x» from which the 70,4 901:(0)4;7:
outgoing messages can be obtained efficientlyy Ifx1, V2.
.. . — 2 92 1_ 0,7 . ”i(o)vym
..., Xn Can be computed efficiently, then also the outgoing V1,i%, (1) ,y: 2 2
Li Yoi(1),y

messages can be computed efficiently.
can be preformed quite efficiently as a long division. De-

Definition 2 We define pending if the ratioy, ; /1, is larger or smaller than one, it
n is advisable to use one or the other representatiof ,of
Y2 Z HW(”)’ Note that when performing the BCJR algorithm, the for-
xeC t=1 ward and the backward recursions will also only involve the
R n _ multiplication of polynomials by monomials and the additio
Xi 2> [ me(we) (for all i € 7). of two monomials. However, when computing the outgoing
x€C; £=1 messages based on the forward and backward messages, one

O needs to compute the product of two polynomials. It might

be possible to compute this product (which can be seen

Theorem 3 Leti € Z. If A; £ p;(0)2 — u;(1)? is a as a multidimensional convolution) via the Fourier domain,
multiplicatively invertible element of the underlyinggirthe however, given the dynamical range of the coefficients, it is

i-th outgoing message;_ x, (z;) is given by not clear how robust this approach is.
In some contexts the approach of computing the outgoing
. 1 ; — 14 . : o
<MfHX‘ E(l)D = A CMZE(B +/“E(1);> - <X) ; messages via the dual code might also be an efficient
Hp=x: i Hi Hi i alternative. However, some considerations (note e.g. that

4The one-sweep algorithm is non-local in the sense that thetioneal the i-th dual incoming message (SVO_J ’ 9071(0)7117: + 71
processing at the end is non-local in the factor graph showFig. 7. 0o, (1),y:>70,i " 0o, (0),y: — V1,0 0o (1),9, ), 1-€. DOth cOMponents
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Fig. 9. Trellis for Ex. 6 (Solid line: 06", dashed line: 17).
Fig. 8. Grid for a trellis of a code having a parity-check matmth n = 6 9 ( )

columns and- = 3 rows.
(17 1, 1) ° b o —a—2 .

\
LL0)s o e e la—s g
. L. . . x X o N
are not monomials) show that it is not quite clear that this (1,0,1) . - Ll . v = e
. .. . N
approach will be more efficient than the one-sweep algorithm (1 o,0) . /,%.;a—\\,\{’.
. . oy e . / \
or the BCJR algorithm in general (but perhaps it is in some (o ¢ 1) « o« Ve N a N
. s 4y J N . N 7 N X5
special cases). (0,1,0) * o dert Sl N e N
» 1 i >/ \< :)6 - , W
VI. CONCLUSIONS ANDOUTLOOK 0,0,1) ¢ _—dl—e ST e 0
P /
In this paper we have made some initial considerations (0:0,0) ——¢———<¢——<¢———¥——3%»—3 x
1 xr2 x3 T4 x5 Z6

within the factor-graph / message-passing iterative decod
ing framework concerning efficient algorithms for univdrsa Fig. 10. Extended trellis for Ex. 6 (Solid line0®, dashed line: 17).
channel decoding. We envision that in order to construct

well-performing and efficient universal decoders, largdeso

will have to be built out of subcodes where the message » Letsy = 0 and let the row vectors; = X[1:4] ~H[T1:ﬂ of
updates of the subcodes will be done according to the lengthr be the so-called partial syndromes.

algorithms that we have outlined above. It will also be « In a trellis each path from left to right represents a
interesting to see how the knowledge about the channel codeword and all paths should start and end in the
parameters can be efficiently gathered from the subcodes and same state (usually the zero state). Moreover, for each
used in further iterations. codeword there is such a path.
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Igorithm 5 (to construct a trellis for a block code)
iven a block code, a trellis is now drawn according to
the following steps.

« Draw a grid of nodes witt2" rows andn + 1 columns

APPENDIX and do the labeling at the bottom and on the left-hand
A. Construction of Trellises and Extended Trellises side of the grid as shown in Fig. 8. The vertical labels
In this appendix we discuss a method by Bahl et al. [26] ~ are the different possible partial syndromes, i.e. all
for constructing an optimaltrellis for a binary linearn, k| binary vectors of lengthr. The horizontal positions are
code. They assume that the code is defined by a parity-check labeled from0 to n whereas the label of code-hit; is
matrix like in-between positiori — 1 and, 7 € 7.
AT T - o The paths through the trellis are constructed in the
H=[h{ hj - hi]. following way. For each € C one calculates the partial
This trellis construction method by Bahl et al. is also the ~ Syndromess; for all & € {0,1,...,n}; the path ofx
one used in [28]. Let be the number of rows cH. For through the trellis is Fhen‘the unique path that goes
simplicity in exposition, we will make in the following the ~ through states; at positioni for all i € {0.1,...,n}.
reasonable assumption tHaf £ 07 for all i € 7. If the path between positian-1 and positioni connects
two different partial syndromes the label ig” else it
Definition 4 Leti € Z. is “0”. Note thatsy = 0 ands,, = 0 for all x € C,
e If x = (21,79,...,2,) is a row vector of length, we so all the paths start and end in the same state (as it
2 should be by definition of a trellis).
let xj1.y = (z1,22,. .., 7).

o LetHp; = [h],h],... h]]| be a submatrix oH.

5By optimal we mean optimal in various senses, see e.g. [31]. fhar o Example 6 (FirSt _tre”is Cor.]StrUCt.ion example) As a first
orderings of the time axis there might be realizations witls lststes. example we consider the binary lindér 3, 2] code with the
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Fig. 12. Extended trellises for Ex. 7 (Solid lined”, dashed line: 17).

parity-check matrix

011 001
H=|0 0 1 1 1 0
1 1.0 0 1 1

Performing Alg. 5 for the given code results in the trellis

shown in Fig. 9. E.g., for the codewosd= (1,1,0,1,1,1)
we get the partial syndromes
so=(0 0 0),s,=(0 0 1),s,=(1 0 0),
=(1 0 0),s4=(1 1 0),s5=(1 0 1),
=0 0 0).
O

Example 7 (Second trellis construction example)As a
second example we consider the bindry4, 3] Hamming
code given by the parity-check matrix

0001 1 11
0110011
101 0 1 01

H =

Performing Alg. 5 we get the trellis shown in Fig. 11.7

We extend the above trellis construction in Alg. 5 in the

following way: we not only draw all paths fox € C, but
also the paths associated to =l C; for all i € Z. By this

extension we get for the codes in Exs. 6 and 7 the extended
trellises in Fig. 10 and Fig. 12, respectively. The labgls
on the right-hand side are attached to the level where all
codewords of a coset efdThe labely is attached to the

SNote thats, = x-H' = e;
in the same cosef;.

-HT = h; is the same for all vectors

level 0 where all paths of the codewords 6f end. Note
that not all possible final syndromes are associated with a
X Or x;; however, there are some which are connected to
severaly;'s, namely exactly when there are several identical
columns in the parity-check matrix.

Remark 8 (Special property of Ex. 7) The parity-check
matrix in Ex. 7 is special in the sense that all possi-
ble columns except the zero column appear exactly once.
Thus to every final syndrome we can associate exactly a
X> X1s- - -5 Xn- (Note,n = 2"=F—1, wherek is the dimension
andn — k the redundancy of the code, respectively.) O

Algorithm 9 (to calculate x and x; (i € 7))
(s =0),

o Set
A1
X(S7O){O (s £0),

for all binary vectorss of lengthr.

o Given p;(z;) = px,—s(z;), perform the following
calculations for all: from 1 to n for all binary vectors
s of lengthr.

£ x(s,i = D)pi(0) + x(s — hy, i — D)y (1).

(More specifically, this has only to be done for the states
s at position: of the extended trellis if there is at least
one branch incident from the left.)

« Finally, we set

x(s, %)

x=x(0,n) and x; = x(h;,n) (forallicI).

Lemma 10 Algorithm 9 calculates the quantitieg x1, .. .,
Xn» as defined in Def. 2.

Proof: We leave it to the reader to check the validity of

Algorithm 9. ]
The above algorithm is of course akin to the forward

recursion of the BCJR algorithm, but it is nhow performed

on the extended trellis instead of on the original trellis.

B. Proof of Theorem 3

Proof: We will first show that

1i(0) i)\ [ py-x(0)) _ (X
(m(l) Hi(@) (Nfﬁxi(1)> (Xz) ' @)
Indeed, the first line in (1) follows from

11:(0) - prp—x, (0) + pi(1) - prp—x, (1)

= pi(0) Y [T mewe) + (1) D T metee)
xeC (el xeC (el
;=0 (i wi=1 C#i
= 3" [T welxe) + 3 T pelze)
:1_6:60 LeT :fzcl el
=3 I melae) = x
xeCLlel



and the second line in (1) follows from

pi(1) - pp—x,(0) + i (0) - pry—x, (1) [13]
=pi(1) Y T welae) + 1(0) D T pelae)
xeC (el xeC (eIl [14]
;=0 0#i zy=1 £#i
Y () S T o) +m(0) S T wel@) sy
%eC; LeT %eC; LeT
F,=1 £ F,=0 £#i
= > [Tre@o)+ " T (@) (el
);:E:Ci LeT §€:C6 LeT [17]
= Z HM(@) = Xi-
%EC; 6T [18]

Note that in stegx) we replaced every summande C by
X £ x+e; € C; and used the fact thdi[,; .., pue(we) =

Hzez, 040 pe(Ze)- [19]
Solving the linear equation system in (1) yields the result
in Th. 3. O
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