
A Factor-Graph Approach to Universal Decoding

Pascal O. Vontobel

Abstract— We consider data communication over a discrete
memoryless channel where neither the sender nor the receiver
knows the channel law. The setup is universal in the sense that
no training sequence is allowed, i.e. no position of the channel
code is allowed to be fixed to a certain symbol. We discuss
a variety of approaches for solving this problem efficiently. It
turns out that it is worthwhile to design decoders which try to
minimize the symbol error probability. This is in contrast to the
usual approach where the block error probability is minimized.

As a side result, we present a very simple derivation of the
so-called one-sweep algorithm by Johansson and Zigangirov. In
the context of universal channel decoding, this algorithm has
certain structural advantages over the BCJR algorithm.

I. I NTRODUCTION

In the last decade it has become more and more clear how
one can efficiently achieve reliable communication close to
capacity when the channel law is known. A very helpful tool
in deriving such codes / decoders has been the factor-graph /
message-passing iterative decoding framework.

Some work has also been done for formulating decoders
when the channel law is not known, see e.g. [1], [2], [3], [4],
[5], [6]. However, in these papers the channel law was never
totally unknown (the channel was within a very specific class
of channels) and/or the decoders could rely on the presence
of training sequences or pilot symbols. In this paper we study
the case where the channel law is unknown except that it is a
discrete memoryless channel (DMC) with known input and
output alphabet.

We remark that papers and books that discuss universal
decoding include [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16], [15], [17], [18], [19]. However, the practicality of
most of the proposed schemes is not quite clear.

The paper is structured as follows. After reviewing the case
of decoding when transmitting over a channel with known
channel law in Sec. II, we will deal with the case of unknown
channel law in Sec. III. With the help of an excursion on the
one-sweep algorithm in Sec. IV, we show in Sec. V that the
one-sweep algorithm is very useful for the universal decoding
setup. Finally, we conclude this paper in Sec. VI. Some more
technical parts of the paper were relegated to the Appendix.

While being at MIT, the author was partially supported by NSF Grants
CCF-0514801 and CCF-0515109 and by HP through the MIT/HP Alliance.

Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, CA
94304, USA. E-Mail:pascal.vontobel@ieee.org. The work for this
paper was partially done while being at the Dept. of EECS, Massachusetts
Institute of Technology, Cambridge, MA, USA.

This is essentially the paper that was published in the proceedings of
the 44th Annual Allerton Conference on Communications, Control, and
Computing, Sept. 27-29, 2006.

A. Notation

In the following, we will use Forney-style factor graphs
(FFGs), also called normal factor graph [20], [21], [22]. A
key feature of FFGs is that the variables are associated to
the (half-)edges. Unless a variable is a measured quantity,we
will use the capitalized variable name to label (half-)edges.
All our codes will be binary, however, the results can easily
be generalized to other alphabets. Vectors will usually be
row vectors. We will use the abbreviation

∫

θ
for
∫

TΘ

. . . dθ.
Moreover, the expression[A] is 1 if the statementA is true
and0 otherwise.

II. D ECODING WITH KNOWN CHANNEL LAW

In this section we briefly discuss how the factor-graph /
message-passing iterative decoding framework [21], [20] can
be used in the case where the channel law is known at the
receiver. More precisely, we consider a DMC with input
alphabetX , output alphabetY, and channel lawW (y|x),
i.e. W (y|x) =

∏n
ℓ=1 W (yℓ|xℓ). Assume that we are using

a channel codeC overX of lengthn and dimensionk, that
the sent codeword is denoted by the random vectorX and
that the received vector is denoted by the random vectorY.
Moreover, we assume that all codewords are sent equally
likely, which means thatPX(x) = 2−k · [x ∈ C] for all
x ∈ Xn.

Two popular approaches for designing a decoder are
to minimize to block error rate or the symbol error rate,
respectively.

• If we minimize the block error rate then we obtain the
so-called block-wise maximum a-posteriori (MAP) de-
cision rule which says that upon observing the channel
outputY = y one decides

x̂block(y) = arg max
x∈Xn

PX|Y(x|y)

= arg max
x∈Xn

PX,Y(x,y)

= arg max
x∈Xn

[x ∈ C] ·
n
∏

ℓ=1

PYℓ|Xℓ
(yℓ|xℓ)

= arg max
x∈Xn

[x ∈ C] ·

n
∏

ℓ=1

W (yℓ|xℓ).

For the components of̂xblock(y) ,
(

x̂block
1 (y), . . . ,

x̂block
n (y)

)

this means that

x̂block
i (y) = arg max

xi∈X
max
x∈Xn

xi fixed

[x ∈ C] ·

n
∏

ℓ=1

W (yℓ|xℓ).

• If we minimize the symbol error rate then we obtain the
so-called symbol-wise maximum a-posteriori decision

[x ∈ C]

X

y

W (y|x)

Fig. 1. Factor graph representing the factorization of[x ∈ C] · W (y|x).

y1

W (y1|x1)

X1

[x ∈ C]

W (yn|xn)

yn

Xn

y2

W (y2|x2)

X2

· · ·

· · ·

· · ·

Fig. 2. Factor graph representing the factorization of[x ∈ C] ·
Q

n

ℓ=1
W (yℓ|xℓ).

rule. Upon observing the channel outputY = y, it says
that for all i ∈ {1, . . . , n} one decides

x̂symb
i (y) = arg max

xi∈X
PXi|Y(xi|y)

= arg max
xi∈X

PXi,Y(xi,y)

= arg max
xi∈X

∑

x∈Xn

xi fixed

PX,Y(x,y)

= arg max
xi∈X

∑

x∈Xn

xi fixed

[x ∈ C] ·
n
∏

ℓ=1

PYℓ|Xℓ
(yℓ|xℓ)

= arg max
xi∈X

∑

x∈Xn

xi fixed

[x ∈ C] ·

n
∏

ℓ=1

W (yℓ|xℓ).

In both cases, we can use the FFG in Fig. 1 or the FFG
in Fig. 2 to visualize the decoding. Because the FFGs are
loopless, the decisions will be given by the max-product
algorithm in the case of the block-wise MAP decision rule
and by the sum-product algorithm in the case of the symbol-
wise MAP decision rule.

The above decision rules yield only efficient algorithms
if the message updates can be performed efficiently at the
function nodes. This is e.g. the case whenC is a con-
volutional code (with not too many states), a low-density
parity-check (LDPC) code, or a turbo code. For the latter
two cases, the function node representing the code indicator
function [x ∈ C] is replaced by an FFG that typically has
loops. Note that in this case the max-product and the sum-
product algorithms usually do not minimize, respectively,the
block and symbol error rate. However, for suitably chosen
LDPC and turbo codes very good performance results can
be achieved with relatively low algorithmic complexity.

Θ

[x ∈ C]

X

y

W (y|x′, θ)

TΘ(θ)

Fig. 3. FFG representing the factorization[x ∈ C] · TΘ(θ) ·W (y|x′, θ).

y1

W (y1|x′

1
, Θ) W (yn|x′

n,Θ)

yn

(X1,Θ)

[x ∈ C] · TΘ(θ)

(Xn, Θ)

y2

· · ·(X2,Θ)

· · ·W (y2|x′

2
,Θ)

· · ·

Fig. 4. FFG representing the factorization[x ∈ C] · TΘ(θ) ·
Q

n

ℓ=1
W (yℓ|x

′

ℓ
, θ).

III. D ECODING WITH UNKNOWN CHANNEL LAW:
UNIVERSAL DECODING

In contrast to Sec. II we now assume that we transmit over
a DMC where the channel law is neither known by the sender
nor by the receiver. Mathematically, we do this by replacing
the channel lawW (y|x) by W (y|x,θ): the setup is such that
the sender and the receiver know the input alphabetX , the
output alphabetY, the setTΘ of possibleθ-vectors, and the
function W (y|x,θ), however they do not know the actual
θ-vector. Subsequently, we will not directly transmitx but
x′ wherex′

i , σi(xi) for some given permutationsσi(·) of

y1

X1
TΘ

Θ

[x ∈ C]

X2

y2

W (y1|x′

1
,Θ)

Xn

W (yn|x′

n,Θ)

yn

· · ·

· · ·

· · ·

W (y2|x′

2
,Θ)

= = =

Fig. 5. Another FFG representing the factorization[x ∈ C] · TΘ(θ) ·
Q

n

ℓ=1
W (yℓ|x

′

ℓ
, θ)

block-wise MAP symbol-wise MAP

with joint channel law
estimate

① ③

without joint channel
law estimate

② ④

TABLE I

DECISION/ESTIMATION RULES FOR THE CASE WHERE THE CHANNEL

LAW IS UNKNOWN .

X .1

Definition 1 In the following, we assume thatθ =
(θx′,y)(x′,y)∈X×Y , that

W (y|x′,θ) , θx′,y (for every(x′, y) ∈ X × Y),

and that

TΘ ,

{

θ

∣

∣

∣

∣

θx′,y ≥ 0 for all (x′, y) ∈ X×Y,

∑

y

θx′,y = 1 for all x′ ∈ X

}

.

Moreover, we will take a Bayesian approach where the actual
θ-vector will be considered to be a realization of the random
vectorΘ with a priori densityTΘ(θ).2 �

A popular way of obtaining low-complexity algorithms is
to redraw an FFG, e.g. the FFG in Fig. 4 can be redrawn
as the FFG in Fig. 5. Unfortunately, although the message
updates would be rather simple, message-passing iterative
decoding on the new FFG does not work: roughly speaking,
the messages in the FFG will all be messages that favor
none of the symbols inX . The reason is that the algorithm
works too locally and does not incorporate enough global
information to break the symmetry.

So, in the following we will not split the factor node[x ∈
C] · TΘ(θ) into two factor nodes (as was done when going
from Fig. 4 to Fig. 5). Our goal will therefore be to find
algorithms that work efficiently despite the fact that we have
“complicated” function nodes.

Paralleling the case of the known channel in Sec. II, we
can derive a decision rule by minimizing either the block or
the symbol error rate.3 However, because not onlyx but also
θ is unknown, we can either estimatex by itself or jointly
with θ. The resulting decision / estimation rules are shown
in Table I and the formulas look as follows.

① Block-wise MAP decoding (with joint block-wise esti-
mate of the channel parameters):

(x̂, θ̂)(y) = arg max
(x,θ)∈Xn×TΘ

[x ∈ C] · TΘ(θ) ·

n
∏

ℓ=1

θx′
ℓ
,yℓ

.

② Block-wise MAP decoding (without joint block-wise
estimate of the channel parameters):

x̂(y) = arg max
x∈Xn

∫

θ

[x ∈ C] · TΘ(θ) ·

n
∏

ℓ=1

θx′
ℓ
,yℓ

.

1We will not discuss much further why we introduce the permutations
σi(·). The main reason is that we would like to use a linear codeC.
Permuting the symbols helps insure that the zero codeword doesnot have
a special position in the codebook. Moreover, if1 is in the codebook, then
for every x ∈ C, x + 1 (mod 2) is in C and this symmetry complicates
universal decoding if it is not broken by the permutationsσi(·).

2For computational reasons it is more important thatTΘ(θ) has a
convenient form than that it exactly represents the a prioridensity ofΘ
(if such a density exists at all). As long as no parameter setting is excluded
a priori, it can be seen from the expressions later in this paper that for large
block lengthn the influence of the a priori distribution is negligible.

3It seems that in the past, people have mainly focused on minimizing the
word error rate in the context of universal channel decoding.

③ Symbol-wise MAP decoding (with joint block-wise
estimate of the channel parameters):

(x̂i, θ̂)(y)

= arg max
(xi,θ)∈X×TΘ

∑

x∈Xn

xi fixed

[x ∈ C] · TΘ(θ) ·

n
∏

ℓ=1

θx′
ℓ
,yℓ

.

④ Symbol-wise MAP decoding (without joint block-wise
estimate of the channel parameters):

x̂i(y) = arg max
xi∈X

∑

x∈Xn

xi fixed

∫

θ

[x ∈ C] · TΘ(θ) ·

n
∏

ℓ=1

θx′
ℓ
,yℓ

.

The resulting decision rules for the components of the above
decision vectors are then

① Block-wise MAP decoding (with joint block-wise esti-
mate of the channel parameters):

x̂i(y) = arg max
xi∈X

max
x∈Xn

xi fixed

max
θ∈TΘ

[x ∈ C] · TΘ(θ) ·
n
∏

ℓ=1

θx′
ℓ
,yℓ

.

② Block-wise MAP decoding (without joint block-wise
estimate of the channel parameters):

x̂i(y) = arg max
xi∈X

max
x∈Xn

xi fixed

∫

θ

[x ∈ C] · TΘ(θ) ·

n
∏

ℓ=1

θx′
ℓ
,yℓ

.

③ Symbol-wise MAP decoding (with joint block-wise
estimate of the channel parameters):

x̂i(y) = arg max
xi∈X

max
θ∈TΘ

∑

x∈Xn

xi fixed

[x ∈ C] · TΘ(θ) ·
n
∏

ℓ=1

θx′
ℓ
,yℓ

.

④ Symbol-wise MAP decoding (without joint block-wise
estimate of the channel parameters):

x̂i(y) = arg max
xi∈X

∑

x∈Xn

xi fixed

∫

θ

[x ∈ C] · TΘ(θ) ·

n
∏

ℓ=1

θx′
ℓ
,yℓ

.

Let us point out the connection of some of the above
decision rules to some universal decoders that were pro-
posed so far in the literature. For this, we introduce
(

ax′,y(x′,y)
)

(x′,y)∈X×Y
which counts the number of indices

ℓ ∈ {1, . . . , n} such thatx′
i = σi(xi) = x′ andyi = y.

① AssumingTΘ(θ) ∝ 1 for all θ, we can write

x̂i(y)

= arg max
xi∈X

max
x∈Xn

xi fixed

max
θ∈TΘ

[x ∈ C] · TΘ(θ) ·

n
∏

ℓ=1

θx′
ℓ
,yℓ

= arg max
xi∈X

max
x∈Xn

xi fixed

[x ∈ C] · max
θ∈TΘ

TΘ(θ) ·

n
∏

ℓ=1

θx′
ℓ
,yℓ

= arg max
xi∈X

max
x∈Xn

xi fixed

[x ∈ C] · max
θ∈TΘ

·
∏

(x′,y)∈X×Y

θ
ax′,y(x′,y)

x′,y .

We see that the maximizingθ
∗ is θ∗x′,y =

ax′,y(x′,y)/
∑

ỹ∈Y ax′,ỹ(x′,y) for all (x′, y) ∈

X×Y. We obtain
∏

(x′,y)∈X×Y(θ∗x′,y)ax′,y(x′,y) =

exp
(

−nH(y|x)
)

, whereH(y|x) is the empirical con-
ditional entropy ofy given x. Letting H(y) be the
empirical entropy ofy (note that it is only a function of
the observed channel outputy and not ofx, and letting
I(x;y) = H(y) − H(y|x) be the empirical mutual
information ofx andy, we get

x̂i(y) = arg max
xi∈X

max
x∈Xn

xi fixed

[x ∈ C] · exp
(

nI(x;y)
)

.

This is the maximum mutual information (MMI) de-
coder of Csisźar and K̈orner [9]. Recently, Coleman et
al. [18], [19] have studied relaxation approaches to this
decision rule where[x ∈ C] was relaxed according to the
recipes in [23], [24]. (Actually, Coleman et al. studied
not the universal channel coding setup but rather the
“dual” universal source coding setup.)

② Setting TΘ(θ) ∝
∏

(x′,y)∈X×Y θ
−1+1/2
x′,y = θ

−1/2
x′,y for

all θ (which corresponds to Dirichlet-(1/2, . . . , 1/2)
distributions for eachx′ ∈ X), we can write

x̂i(y)

= arg max
xi∈X

max
x∈Xn

xi fixed

∫

θ

[x ∈ C] · TΘ(θ) ·

n
∏

ℓ=1

θx′
ℓ
,yℓ

= arg max
xi∈X

max
x∈Xn

xi fixed

[x ∈ C] ·

∫

θ

∏

(x′,y)∈X×Y

θ
ax′,y(x′,y)−1/2

x′,y

= arg min
xi∈X

min
x∈Xn

xi fixed

[x ∈ C] · exp
(

lKT(y|x′)
)

,

wherelKT(y|x′) is the compression length when com-
pressing y given x′ according to the Krichevsky-
Trofimov universal measure [25]. The resulting decod-
ing rule is very similar to the decoding rule in [14,
Sec. V] wherelKT(x′|y) is minimized over the code-
words. Instead of using the source compression length
according to the Krichevsky-Trofimov universal mea-
sure, one can also take the source compression length
that is obtained by applying the Lempel-Ziv algorithm,
see e.g. [10], [13].

In all these decision / estimation setups considered above,
the expression for̂xi(y) has the same structure. Starting
from the right-hand side and going to the left-hand side, the
expression contains the product[x ∈ C] ·TΘ(θ) ·

∏n
ℓ=1 θx′

ℓ
,yℓ

(which in the factor-graph framework is represented by an
FFG), then there is the “marginalization” operation, and
finally arg maxxi∈X chooses the bestxi.

Let us now have a closer look at the “marginalization”
operation for the various cases.

① In this case, the “marginalization” corresponds to the
max-product algorithm. Note though thatθ is con-
tinuous and so it might not be easy to perform the
maximization overθ. It seems to be better to leave this
maximization untouched untilmax x∈Xn

xi fixed
is performed.

② Algebraically, we have three different operations here:
maximization, summation (we consider integration as a
summation), and the product of non-negative real num-
bers. This is obviously not a semi-ring as is required for

the factor-graph / message-passing iterative decoding
framework.

③ Similar to the above case, here we have three different
operations: maximization, summation, and the product
of non-negative real numbers.

④ In this case, the “marginalization” corresponds to the
sum-product algorithm.

We see that in the cases② and ③ we do not have a
semi-ring, in the case① we have a semi-ring that is not
a ring (there is no “additive inverse”), and in the case④
we have a semi-ring that is also a ring. It seems therefore
that the case④ (symbol-wise MAP decoding without joint
block-wise estimate of the channel parameters) has more
algebraic structure than the other decision rules. It is certainly
desirable to use this additional structure to perform the
message updates more efficiently. We will use the one-sweep
algorithm to make a case for this claim; To that end, the next
section gives a review of this algorithm. Afterwards, we will
discuss its use in the universal setup.

IV. T HE ONE-SWEEPALGORITHM

Assume to have a (partial) FFG as in Fig. 6, where the
function node represents the indicator function of a linear
(sub)codeC. During an update of this function node we
compute the outgoing messagesµf→Xi

(xi), i = 1, . . . , n,
based on the incoming messagesµXi→f (xi), i = 1, . . . , n,
using the sum-product algorithm. In the following, we will
assume that the underlying semi-ring is a ring, i.e. that every
element of the ring has an additive inverse.

If the subcode is represented by a trellis, one efficient way
to solve this update task is by using the BCJR algorithm [26],
or equivalently, the forward-backward algorithm.

f(x) = [x ∈ C]

X1 X2 Xn

µ
X

1
→

f
(
x
1
)

µ
f
→

X
1
(
x
1
)

µ
X

2
→

f
(
x
2
)

µ
f
→

X
2
(
x
2
)

µ
X

n
→

f
(
x

n
)

µ
f
→

X
n

(
x

n
)

· · ·

Fig. 6. (Partial) FFG where the function nodef(x) = [x ∈ C] represents
the subcodeC.

X1 X2 Xn· · ·

S1 S2 SnSn−1S0

Fig. 7. Detailed version of the partial factor graph shown inFig. 6.

However, there are alternatives when the underlying semi-
ring is actually a ring. One of them is to do the computations
using the dual code [27] (see also [20]). Another very inter-
esting alternative is the one-sweep algorithm by Johansson
and Zigangirov [28]. In contrast to the BCJR algorithm,
which needs a forward and a backward sweep, the one-sweep
algorithm only needs a slightly more complex forward sweep
with some simple processing at the end.4

In [29, App. D] we have already discussed the relationship
between these three algorithms that perform the above-
mentioned message update, especially we showed a simpli-
fied derivation of the one-sweep algorithm. Here we will
discuss an even more simplified derivation of this algorithm.
Originally, the one-sweep algorithm was presented as an
algorithm for computing the a-posteriori probabilities when
decoding a code. However, in our opinion, the slightly more
abstract setup of message updates helps considerably in
obtaining a rather straightforward derivation of the algorithm.

In the following, we will assume thatC is a binary
linear code of lengthn defined by a parity-check matrix
H. (The results here can easily be generalized to linear
codes over other finite fields.) LetI , {1, . . . , n}. To
simplify notation, we will use for alli ∈ I the abbreviation
µi(xi) , µXi→f (xi) for the incoming messages. With this,
the outgoing messageµf→Xi

(xi), i ∈ I, is given by

µf→Xi
(0) ,

∑

x∈Xn

xi=0

[x ∈ C]
∏

ℓ∈I
ℓ 6=i

µℓ(xℓ) =
∑

x∈C
xi=0

∏

ℓ∈I
ℓ 6=i

µℓ(xℓ),

µf→Xi
(1) ,

∑

x∈Xn

xi=1

[x ∈ C]
∏

ℓ∈I
ℓ 6=i

µℓ(xℓ) =
∑

x∈C
xi=1

∏

ℓ∈I
ℓ 6=i

µℓ(xℓ).

Let ei be the all-zeros row vector of lengthn except for a
“1” at positioni and letCi , C +ei (i ∈ I) be cosets of the
codeC.

The main idea of the one-sweep algorithm is to compute
the intermediate quantitiesχ, χ1, . . ., χn from which the
outgoing messages can be obtained efficiently. Ifχ, χ1,
. . ., χn can be computed efficiently, then also the outgoing
messages can be computed efficiently.

Definition 2 We define

χ ,
∑

x∈C

n
∏

ℓ=1

µℓ(xℓ),

χi ,
∑

x∈Ci

n
∏

ℓ=1

µℓ(xℓ) (for all i ∈ I).

�

Theorem 3 Let i ∈ I. If ∆i , µi(0)2 − µi(1)2 is a
multiplicatively invertible element of the underlying ring, the
i-th outgoing messageµf→Xi

(xi) is given by
(

µf→Xi
(0)

µf→Xi
(1)

)

=
1

∆i

(

+µi(0) −µi(1)
−µi(1) +µi(0)

)

·

(

χ
χi

)

,

4The one-sweep algorithm is non-local in the sense that the mentioned
processing at the end is non-local in the factor graph shown in Fig. 7.

whereχ and χi were defined in Def. 2.

Proof: See App. B. �

In the case that for somei ∈ I the expression∆i =
µi(0)2 − µi(1)2 is not a multiplicatively invertible element,
one has to use different procedures or one has to use some
reformulation of the setup (e.g. one can reorder the code bit
positions and use a modified one-sweep algorithm, see the
remarks after Eq. (24) in [28]).

In App. A we show how the quantitiesχ, χ1, . . ., χn in
Def. 2 can be computed efficiently. From that discussion it
will become clear that the name “one-sweep algorithm” is
indeed justified.

V. THE ONE-SWEEPALGORITHM

FOR UNIVERSAL DECODING

Let us briefly discuss the application of the one-sweep
algorithm to the update of the function node[x ∈ C] ·TΘ(θ)
in Fig. 4. Here, thei-th incoming message is

µi(0) = γ0,i · θσi(0),yi
,

µi(1) = γ1,i · θσi(1),yi

for some non-negative real valuesγ0,i andγ1,i. We observe
that the computations for obtainingχ, χ1, . . ., χn involve
only the following computations:

• we only multiply polynomials by monomials;
• we add two polynomials.

However, we donot need to compute the product of two
general polynomials.

Moreover, the division by

∆i = µi(0)2 − µi(1)2

= γ2
0,i · θ

2
σi(0),yi

− γ2
1,i · θ

2
σi(1),yi

= +γ2
0,iθ

2
σi(0),yi

(

1 −
γ2
1,i

γ2
0,i

·
θ2

σi(1),yi

θ2
σi(0),yi

)

= −γ2
1,iθ

2
σi(1),yi

(

1 −
γ2
0,i

γ2
1,i

·
θ2

σi(0),yi

θ2
σi(1),yi

)

can be preformed quite efficiently as a long division. De-
pending if the ratioγ0,i/γ1,i is larger or smaller than one, it
is advisable to use one or the other representation of∆i.

Note that when performing the BCJR algorithm, the for-
ward and the backward recursions will also only involve the
multiplication of polynomials by monomials and the addition
of two monomials. However, when computing the outgoing
messages based on the forward and backward messages, one
needs to compute the product of two polynomials. It might
be possible to compute this product (which can be seen
as a multidimensional convolution) via the Fourier domain,
however, given the dynamical range of the coefficients, it is
not clear how robust this approach is.

In some contexts the approach of computing the outgoing
messages via the dual code might also be an efficient
alternative. However, some considerations (note e.g. that
the i-th dual incoming message is(γ0,i · θσi(0),yi

+ γ1,i ·
θσi(1),yi

, γ0,i ·θσi(0),yi
−γ1,i ·θσi(1),yi

), i.e. both components

(0, 0, 0)

(0, 0, 1)

(0, 1, 0)

(0, 1, 1)

(1, 0, 0)

(1, 0, 1)

(1, 1, 0)

(1, 1, 1)

x2 x3 x4 x5x1 x6
0 1 2 3 4 5 6

Fig. 8. Grid for a trellis of a code having a parity-check matrix with n = 6
columns andr = 3 rows.

are not monomials) show that it is not quite clear that this
approach will be more efficient than the one-sweep algorithm
or the BCJR algorithm in general (but perhaps it is in some
special cases).

VI. CONCLUSIONS ANDOUTLOOK

In this paper we have made some initial considerations
within the factor-graph / message-passing iterative decod-
ing framework concerning efficient algorithms for universal
channel decoding. We envision that in order to construct
well-performing and efficient universal decoders, large codes
will have to be built out of subcodes where the message
updates of the subcodes will be done according to the
algorithms that we have outlined above. It will also be
interesting to see how the knowledge about the channel
parameters can be efficiently gathered from the subcodes and
used in further iterations.

VII. A CKNOWLEDGMENTS

We are indebted to Amos Lapidoth for pointing out to us
the very interesting subject of universal channel decoding
and for asking if the insights from [30] can be used in the
context of universal channel decoding.

APPENDIX

A. Construction of Trellises and Extended Trellises

In this appendix we discuss a method by Bahl et al. [26]
for constructing an optimal5 trellis for a binary linear[n, k]
code. They assume that the code is defined by a parity-check
matrix like

H ,
[

hT

1 hT

2 · · · hT

n

]

.

This trellis construction method by Bahl et al. is also the
one used in [28]. Letr be the number of rows ofH. For
simplicity in exposition, we will make in the following the
reasonable assumption thathT

i 6= 0T for all i ∈ I.

Definition 4 Let i ∈ I.

• If x = (x1, x2, . . . , xn) is a row vector of lengthn, we
let x[1:i] , (x1, x2, . . . , xi).

• Let H[1:i] ,
[

hT

1 ,hT

2 , . . . ,hT

i

]

be a submatrix ofH.

5By optimal we mean optimal in various senses, see e.g. [31]. For other
orderings of the time axis there might be realizations with less states.

(0, 0, 0)

(0, 0, 1)

(0, 1, 0)

(0, 1, 1)

(1, 0, 0)

(1, 0, 1)

(1, 1, 0)

(1, 1, 1)

x2 x3 x4 x5x1 x6

Fig. 9. Trellis for Ex. 6 (Solid line: “0”, dashed line: “1”).

(0, 0, 0)

(0, 0, 1)

(0, 1, 0)

(0, 1, 1)

(1, 0, 0)

(1, 0, 1)

(1, 1, 0)

(1, 1, 1)

x2 x3 x4 x5x1 x6

χ

χ1

χ4

χ5

χ2 = χ6

χ3

Fig. 10. Extended trellis for Ex. 6 (Solid line: “0”, dashed line: “1”).

• Let s0 , 0 and let the row vectorssi = x[1:i] ·H
T

[1:i] of
lengthr be the so-called partial syndromes.

• In a trellis each path from left to right represents a
codeword and all paths should start and end in the
same state (usually the zero state). Moreover, for each
codeword there is such a path.

�

Algorithm 5 (to construct a trellis for a block code)
Given a block code, a trellis is now drawn according to
the following steps.

• Draw a grid of nodes with2r rows andn + 1 columns
and do the labeling at the bottom and on the left-hand
side of the grid as shown in Fig. 8. The vertical labels
are the different possible partial syndromes, i.e. all
binary vectors of lengthr. The horizontal positions are
labeled from0 to n whereas the label of code-bitxi is
in-between positioni − 1 and i, i ∈ I.

• The paths through the trellis are constructed in the
following way. For eachx ∈ C one calculates the partial
syndromessi for all i ∈ {0, 1, . . . , n}; the path ofx
through the trellis is then the unique path that goes
through statesi at positioni for all i ∈ {0, 1, . . . , n}.
If the path between positioni−1 and positioni connects
two different partial syndromes the label is “1”, else it
is “ 0”. Note that s0 = 0 and sn = 0 for all x ∈ C,
so all the paths start and end in the same state (as it
should be by definition of a trellis).

Example 6 (First trellis construction example)As a first
example we consider the binary linear[6, 3, 2] code with the

(0, 0, 0)

(0, 0, 1)

(0, 1, 0)

(0, 1, 1)

(1, 0, 0)

(1, 0, 1)

(1, 1, 0)

(1, 1, 1)

x2 x3 x4 x5x1 x6 x7

Fig. 11. Trellis for Ex. 7 (Solid line: “0”, dashed line: “1”).

(0, 0, 0)

(0, 0, 1)

(0, 1, 0)

(0, 1, 1)

(1, 0, 0)

(1, 0, 1)

(1, 1, 0)

(1, 1, 1)

x2 x3 x4 x5x1 x6

χ

χ1

χ2

χ3

χ5

χ6

x7

χ4

χ7

Fig. 12. Extended trellises for Ex. 7 (Solid line: “0”, dashed line: “1”).

parity-check matrix

H =

0 1 1 0 0 1
0 0 1 1 1 0
1 1 0 0 1 1

 .

Performing Alg. 5 for the given code results in the trellis
shown in Fig. 9. E.g., for the codewordx = (1, 1, 0, 1, 1, 1)
we get the partial syndromes

s0 =
(

0 0 0
)

, s1 =
(

0 0 1
)

, s2 =
(

1 0 0
)

,

s3 =
(

1 0 0
)

, s4 =
(

1 1 0
)

, s5 =
(

1 0 1
)

,

s6 =
(

0 0 0
)

.

�

Example 7 (Second trellis construction example)As a
second example we consider the binary[7, 4, 3] Hamming
code given by the parity-check matrix

H =

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

 .

Performing Alg. 5 we get the trellis shown in Fig. 11.�

We extend the above trellis construction in Alg. 5 in the
following way: we not only draw all paths forx ∈ C, but
also the paths associated to allx ∈ Ci for all i ∈ I. By this
extension we get for the codes in Exs. 6 and 7 the extended
trellises in Fig. 10 and Fig. 12, respectively. The labelsχi

on the right-hand side are attached to the level where all
codewords of a coset end.6 The labelχ is attached to the

6Note thatsn = x · HT = ei · H
T = hi is the same for all vectorsx

in the same cosetCi.

level 0 where all paths of the codewords ofC end. Note
that not all possible final syndromes are associated with a
χ or χi; however, there are some which are connected to
severalχi’s, namely exactly when there are several identical
columns in the parity-check matrix.

Remark 8 (Special property of Ex. 7) The parity-check
matrix in Ex. 7 is special in the sense that all possi-
ble columns except the zero column appear exactly once.
Thus to every final syndrome we can associate exactly a
χ, χ1, . . . , χn. (Note,n = 2n−k−1, wherek is the dimension
andn − k the redundancy of the code, respectively.) �

Algorithm 9 (to calculate χ and χi (i ∈ I))

• Set

χ(s, 0) ,

{

1 (s = 0),

0 (s 6= 0),
.

for all binary vectorss of lengthr.
• Given µi(xi) = µXi→f (xi), perform the following

calculations for alli from 1 to n for all binary vectors
s of lengthr.

χ(s, i) , χ(s, i − 1)µi(0) + χ(s − hi, i − 1)µi(1).

(More specifically, this has only to be done for the states
s at positioni of the extended trellis if there is at least
one branch incident from the left.)

• Finally, we set

χ , χ(0, n) and χi , χ(hi, n) (for all i ∈ I).

Lemma 10 Algorithm 9 calculates the quantitiesχ, χ1, . . .,
χn as defined in Def. 2.

Proof: We leave it to the reader to check the validity of
Algorithm 9. �

The above algorithm is of course akin to the forward
recursion of the BCJR algorithm, but it is now performed
on the extended trellis instead of on the original trellis.

B. Proof of Theorem 3

Proof: We will first show that
(

µi(0) µi(1)
µi(1) µi(0)

)

·

(

µf→Xi
(0)

µf→Xi
(1)

)

=

(

χ
χi

)

. (1)

Indeed, the first line in (1) follows from

µi(0) · µf→Xi
(0) + µi(1) · µf→Xi

(1)

= µi(0)
∑

x∈C
xi=0

∏

ℓ∈I
ℓ 6=i

µℓ(xℓ) + µi(1)
∑

x∈C
xi=1

∏

ℓ∈I
ℓ 6=i

µℓ(xℓ)

=
∑

x∈C
xi=0

∏

ℓ∈I

µℓ(xℓ) +
∑

x∈C
xi=1

∏

ℓ∈I

µℓ(xℓ)

=
∑

x∈C

∏

ℓ∈I

µℓ(xℓ) = χ,

and the second line in (1) follows from

µi(1) · µf→Xi
(0) + µi(0) · µf→Xi

(1)

= µi(1)
∑

x∈C
xi=0

∏

ℓ∈I
ℓ 6=i

µℓ(xℓ) + µi(0)
∑

x∈C
xi=1

∏

ℓ∈I
ℓ 6=i

µℓ(xℓ)

(∗)
= µi(1)

∑

x̃∈Ci
x̃i=1

∏

ℓ∈I
ℓ 6=i

µℓ(x̃ℓ) + µi(0)
∑

x̃∈Ci
x̃i=0

∏

ℓ∈I
ℓ 6=i

µℓ(x̃ℓ)

=
∑

x̃∈Ci
x̃i=1

∏

ℓ∈I

µℓ(x̃ℓ) +
∑

x̃∈Ci
x̃i=0

∏

ℓ∈I

µℓ(x̃ℓ)

=
∑

x̃∈Ci

∏

ℓ∈I

µℓ(x̃ℓ) = χi.

Note that in step(∗) we replaced every summandx ∈ C by
x̃ , x + ei ∈ Ci and used the fact that

∏

ℓ∈I, ℓ 6=i µℓ(xℓ) =
∏

ℓ∈I, ℓ 6=i µℓ(x̃ℓ).
Solving the linear equation system in (1) yields the result

in Th. 3. �

REFERENCES

[1] A. P. Worthen and W. E. Stark, “Unified design of iterativereceivers
using factor graphs,”IEEE Trans. on Inform. Theory, vol. IT–48, no. 2,
pp. 843–849, Feb. 2001.

[2] R. Nuriyev and A. Anastasopoulos, “Pilot-symbol-assisted coded
transmission over the block-noncoherent AWGN channel,”IEEE
Trans. on Comm., vol. COM–51, no. 6, pp. 953–963, June 2003.

[3] H. Steendam, N. Noels, and M. Moeneclaey, “Iterative carrier phase
synchronization for low-density parity-check coded systems,” in Proc.
IEEE Intern. Conf. Communications, vol. 5, Anchorage, AK, USA,
May 11–15 2003, pp. 3120–3124.

[4] J. Dauwels and H.-A. Loeliger, “Joint decoding and phaseestimation:
an exercise in factor graphs,” inProc. IEEE Intern. Symp. on Inform.
Theory, Pacifico Yokohama, Japan, June 29 – July 4 2003, p. 231.

[5] ——, “Phase estimation by message passing,” inProc. IEEE Intern.
Conf. Communications, vol. 1, Paris, France, June 20–24 2004, pp.
523–527.

[6] J. Dauwels, S. Korl, and H.-A. Loeliger, “Expectation maximization
for phase estimation,” inProc. Eighth Intern. Symp. on Comm. Theory
and Appl., Ambleside, England, 2005.

[7] V. D. Goppa, “Universal decoding for symmetric channels,”Probl. In-
form. Transm., vol. 11, no. 1, pp. 15–22, 1975.

[8] ——, “Nonprobabilistic mutual information without memory,”Probl.
Contr. Inform. Theory, vol. 4, pp. 97–102, 1975.

[9] I. Csisźar and J. K̈orner, Information Theory. Budapest: Akad́emiai
Kiadó (Publishing House of the Hungarian Academy of Sciences),
1981, coding theorems for discrete memoryless systems.

[10] J. Ziv, “Universal decoding for finite-state channels,” IEEE Trans. on
Inform. Theory, vol. IT–31, no. 4, pp. 453–460, July 1985.

[11] N. Merhav, “Universal decoding for memoryless Gaussian channels
with a deterministic interference,”IEEE Trans. on Inform. Theory,
vol. IT–39, no. 4, pp. 1261–1269, July 1993.

[12] M. Feder and A. Lapidoth, “Universal decoding for channels with

memory,”IEEE Trans. on Inform. Theory, vol. IT–44, no. 5, pp. 1726–
1745, Sept. 1998.

[13] A. Lapidoth and J. Ziv, “On the universality of the LZ-based decoding
algorithm,” IEEE Trans. on Inform. Theory, vol. IT–44, no. 5, pp.
1746–1755, Sept. 1998.

[14] ——, “On the decoding of convolutional codes on an unknown
channel,”IEEE Trans. on Inform. Theory, vol. IT–45, no. 7, pp. 2321–
2332, Nov. 1999.

[15] M. Feder and N. Merhav, “Universal composite hypothesistesting: a
competitive minimax approach,”IEEE Trans. on Inform. Theory, vol.
IT–48, no. 6, pp. 1504–1517, June 2002.

[16] Y. Ephraim and N. Merhav, “Hidden Markov processes,”IEEE Trans.
on Inform. Theory, vol. 48, no. 6, pp. 1518–1569, June 2002.

[17] A. Lapidoth and P. Narayan, “Reliable communication under channel
uncertainty,” IEEE Trans. on Inform. Theory, vol. IT–44, no. 6, pp.
2148–2177, Oct. 1998.

[18] T. P. Coleman, M. Ḿedard, and M. Effros, “Linear complexity univer-
sal decoding with exponential error probability decay,” inProc. 2005
International Conference on Wireless Networks, Communications, and
Mobile Computing (Wirelesscom 2005), Maui, HI, USA, Jun. 13-16
2005.

[19] T. P. Coleman and M. Ḿedard, “On low complexity decodable
universally good linear codes,” inProc. Inaugural Workshop of the
Center for Information Theory and its Applications, UC San Diego,
La Jolla, CA, USA, Feb. 6-10 2006.

[20] G. D. Forney, Jr., “Codes on graphs: normal realizations,” IEEE Trans.
on Inform. Theory, vol. IT–47, no. 2, pp. 520–548, Feb. 2001.

[21] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and
the sum-product algorithm,”IEEE Trans. on Inform. Theory, vol. IT–
47, no. 2, pp. 498–519, Feb. 2001.

[22] H.-A. Loeliger, “An introduction to factor graphs,”IEEE Sig. Proc.
Mag., vol. 21, no. 1, pp. 28–41, Jan. 2004.

[23] J. Feldman, “Decoding error-correcting codes via linear program-
ming,” Ph.D. dissertation, Massachusetts Institute of Technology,
Cambridge, MA, 2003.

[24] J. Feldman, M. J. Wainwright, and D. R. Karger, “Using linear
programming to decode binary linear codes,”IEEE Trans. on Inform.
Theory, vol. IT–51, no. 3, pp. 954–972, May 2005.

[25] R. E. Krichevsky and V. K. Trofimov, “The performance of universal
encoding,”IEEE Trans. on Inform. Theory, vol. IT–27, no. 2, pp. 199–
207, Mar. 1981.

[26] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of
linear codes for minimizing symbol error rate,”IEEE Trans. on Inform.
Theory, vol. IT–20, no. 2, pp. 284–287, Mar. 1974.

[27] C. R. P. Hartmann and L. D. Rudolph, “An optimum symbol-by-
symbol decoding rule for linear codes,”IEEE Trans. on Inform.
Theory, vol. IT–22, no. 5, pp. 514–517, 1976.

[28] T. Johansson and K. Zigangirov, “A simple one-sweep algorithm for
optimal APP symbol decoding of linear block codes,”IEEE Trans. on
Inform. Theory, vol. IT–44, no. 7, pp. 3124–3129, Nov. 1998.

[29] P. O. Vontobel, “Algebraic coding for iterative decoding,” Ph.D.
dissertation, Swiss Federal Institute of Technology (ETH), Zurich,
Switzerland, 2003.

[30] ——, “A factor-graph approach to the context-tree weighting method,”
in Proc. IEEE Data Compression Conference, Snowbird, UT, USA,
2004, p. 571.

[31] A. Vardy and F. R. Kschischang, “Proof of a conjecture ofMcEliece
regarding the expansion index of the minimal trellis,”IEEE Trans. on
Inform. Theory, vol. IT–42, no. 6, pp. 2027–2034, Nov. 1996.

