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Abstract — In the past, several authors have con-

sidered quasi-cyclic LDPC codes whose circulant ma-

trices in the parity-check matrix are cyclically shifted

identity matrices. By composing a parity-check ma-

trix not only with such matrices but also with sums

of two cyclically shifted identity matrices and with

zero matrices, one can increase the minimum dis-

tance while keeping the same regularity. Specifically,

whereas for (3, 4)-regular codes in the first class the

best minimum distance is 24, the best minimum dis-

tance in the second class is 32. We give examples of

codes that achieve these bounds.

Any quasi-cyclic (QC) linear code C of length n
4
= r ·P and

period P is equivalent to a code whose parity-check matrix
H consists of circulant matrices of size r × r. By the well-
known isomorphism between the ring of circulant matrices of
size r × r and the ring of polynomials of degree less than r,
F2[X]/〈Xr − 1〉, we can associate a polynomial parity-check

matrix matrix H(X) ∈
(

F2[X]/〈Xr − 1〉
)(m/n)P×P

to such
an H-matrix. In the following we will use polynomial parity-
check matrices to describe the codes.

Definition 1. We say that a QC code is of type I if it is given
by a matrix H(X) with all entries either monomials or zero
and we say that a QC code is of type II if it is given by a
matrix H(X) with all entries either binomials, monomials, or
zero.

Subsequently, we will mainly focus on type-I and type-
II QC LDPC given by parity-check matrices H(X) of size
J × L that are also (J, L)-regular, J < L. For a polynomial
parity-check matrix H(X) we let Awt

4
= Awt(H(X))

4
= [aij ]ij

4
=

[

wt (hij(X))
]

ij
be the matrix of the Hamming weights of

the H(X) matrix. We have the following extension of an upper
bound by MacKay and Davey [1] on the minimum distance.

Theorem 2. Let C be a QC code with a J × L polynomial
parity-check matrix H(X) with weight matrix Awt

4
= [aij ]ij .

dmin 6 min
S⊆{1,...,L}
|S|=J+1

∑

S′⊂S
S′={i1,...,iJ}

∑

σ∈P

aσ(1),i1 · · · aσ(J),iJ
,

where P is the set of all permutations of {1, . . . , J}.

Corollary 3. A (3, 4)-regular QC LDPC code C with a 3× 4
polynomial parity-check matrix H(X) has dmin 6 24 if the
code is of type I, and dmin 6 32 if the code is of type II.

Example 4. Let r
4
= 31. The (3, 4)-regular QC LDPC code

given by the polynomial parity-check matrix
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



X X
2

X
4

X
8

X
5

X
10

X
20

X
9

X
25

X
19

X
7

X
14





1Supported by NSF Grants CCR 99-84515 and CCR 01-05719.

has parameters [124, 33, 24], so the upper bound of 24 in Th. 2
can indeed be achieved. This code was inspired by a code
presented in [2].

Using type-II codes we can go beyond the upper bound
dmin 6 24 for type-I codes as shown in the following example.

Example 5. Let r
4
= 46. The (3, 4)-regular QC LDPC code

given by the polynomial parity-check matrix

H(X) =





X + X
2 0 X
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

has parameters [184, 47, 32] and was obtained from Ex. 4 by
pairing together some monomials, careful to keep the (3, 4)-
regularity unchanged. The Tanner graph of the code has girth
8 and diameter 8, the same values as the Tanner graph of the
[124, 33, 24] code in Ex. 4 had.

Using the [184, 47, 32] code for transmission over a binary-
input AWGNC and decoding using the standard sum-product
algorithm, we observed no error floor down to a word-error
rate (WER) of 3 · 10−7 and an improvement of ca. 0.3 dB (at
WER 10−6) compared to a randomly generated (3, 4)-regular
[184, 46]-code. Looking at the minimum AWGNC pseudo-
weight of these codes, we got upper bounds of 27.6 and 21.0
for the QC LDPC code and the randomly generated code,
respectively.

It is possible to establish the following connections (which
can be seen as extensions of observations made e.g. in [3]) be-
tween the existence of cycles in the Tanner graph and minors
of the polynomial parity-check matrix of a type-I QC LDPC
code. (Similar statements can also be made about type-II QC
LDPC codes.)

Theorem 6. Let H(X) be the polynomial parity-check matrix
of a QC LDPC code C of type I. The code C is four-cycle free
if and only if all 2 × 2 minors of H(X) have no weight loss
(no cancellation of the monomials in the determinant sum).
(Note that the worthwhile conditions are the ones imposed on
the 2 × 2 submatrices with all entries non-zero.) The code C

is four- and six-cycle free if and only if the all 3× 3 minors of
H(X) have no weight loss. Moreover, if the girth of a code C

is larger than 2J then all full-size minors have no weight loss.
(The converse of this last statement is not necessarily true.)
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