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Abstract

The aim of this paper is to highlight some connections between factor graphs,
electrical networks, and differential entropy.

1 Introduction

At first sight, the three topics mentioned in the title seem to be unrelated and not to
have too much in common. In this paper we would like to show that this is not so and
that there are indeed connections. We will keep the discussion at a high level; for more
mathematical details we encourage the reader to consult the referenced books and papers.

Some historical background on factor graphs and graphical models in general can
e.g. be found in [1, 2] or [3]. We will, in fact, not use factor graphs as defined in [2],
but a variation introduced by Forney [4] (there called “normal graphs”). The advantages
of these Forney graphs (here called “Forney-style factor graphs” or shortly FFGs) were
discussed in [2] and [5].

The facts we need from the theory of electrical networks can be found e.g. in [6],
and the book by Cover and Thomas [7] contains essentially everything we need to know
about differential entropies as far as concerns this paper. We will only talk about scalar
random variables, but the results can be generalized to vector random variables.

In Sec. 2 we review some possible ways of going from FFGs to electrical networks and
back. Sec. 3 presents some new results connecting results from electrical network theory
with results about differential entropies, and finally in Sec. 4 we give some conclusions.

2 Connections between FFGs and Electrical Networks

There are different ways to derive the various relationships between FFGs and electrical
networks. To give a flavor, we will in the following just point out two of them by giving
specific examples, first going from an FFG to an electrical network, then going from an
electrical network to FFGs. The notation that we use is explained in detail in [6, 3].
Most of the results in this section were originally motivated by the book by Dennis [8].

Example 1 [From an FFG to an electrical network, “voltage-mode derivation”] Fig. 1
shows an FFG involving the random variables X1, X2 and Y . The global function
represents the joint density of X1, X2 and Y and is the product of local functions:

pX1X2Y (x1, x2, y) = pX1
(x1) · pX2

(x2) · δ(y − x1 − x2),
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Figure 1: FFG for Ex. 1.
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Figure 2: Electrical network for Ex. 1.
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Figure 3: FFG versus electrical network in the case of Ex. 1.
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Figure 4: Electrical network for Ex. 2.

where δ(.) denotes the Dirac-delta distribution1. To be specific, we assume X1 ∼ N (0, σ2
1)

and X2 ∼ N (0, σ2
2):

pX1X2Y (x1, x2, y) =
1√

2πσ1

exp
(

− x2
1/2σ2

1

)

· 1√
2πσ2

exp
(

− x2
2/2σ2

2

)

· δ(y − x1 − x2).

Based on a measurement Y = y, we would like to find the blockwise MAP estimate
(x̂1, x̂2) of the vector (x1, x2), i.e.,

(x̂1, x̂2) = arg max
(x1,x2)

pX1X2|Y (x1, x2|y) = arg max
(x1,x2)

pX1X2Y (x1, x2, y).

(Note that we maximize jointly!) Given Y = y, maximizing pX1X2Y (x1, x2, y) is equivalent
to minimizing − ln pX1X2Y (x1, x2, y), or to minimizing − ln pX1

(x1)− ln pX2
(x2) under the

constraint y = x1 + x2. The corresponding Lagrangian is

L := − ln pX1
(x1) − ln pX2

(x2) + λ(y − x1 − x2).

Setting the gradient of L equal to zero we obtain
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!
= 0 (Kirchhoff voltage law)

(1)

The electrical network in Fig. 2 implements the three equations from (1) with R1 = σ2
1

and R2 = σ2
2 . The first two equations correspond to component law equations, giving

current-voltage characteristics of components, whereas the third equation describes a
Kirchhoff voltage law (the sum of the voltages around a loop must be zero). In Fig. 3 the
electrical network is redrawn so as to show its close topological relationship to its FFG.
The Lagrange multiplier λ turns out to be a current and loosely speaking plays the role
of “exchanging information” from one part of the circuit to the other.

Ch. 2 in [6] gives more details about this example, where also other examples are given,
Ch. 3 in[6] discusses the topological equivalence between FFGs and the corresponding
electrical networks more generally, whereas Sec. 5.1 in [6] discusses generalizations to
non-Gaussian distributions. 4

Example 2 [From an electrical network to an FFG] Dennis [8] looked at what opti-
mization problems can be solved with the help of electrical networks. The key idea is
the following. Given an electrical network, the solution (i.e. the branch voltages and

1We consider the Dirac-delta distribution to be the limes of a Gaussian density, see e.g. [3, 6].
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Figure 5: FFG (voltage/current version) corresponding to the electrical network in Fig. 4.
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Figure 6: FFG (voltage version) corresponding to the electrical network in Fig. 4.
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Figure 7: FFG (current version) corresponding to the electrical network in Fig. 4.



the branch currents) is normally found by writing up the Kirchhoff voltage law (KVL)
equations, the Kirchhoff current law (KCL) equations, and the component law equations
and finally solving them2. It is now possible to formulate two optimization problems
(which are duals of each other), whose solution give either the voltages (in the first case)
or the currents (in the second case) of the above electrical network. In the first case, one
optimizes a function whose arguments are voltages which are subject only to the KVL
equations (but not the KCL equations). In the second case, one optimizes a function
whose arguments are currents which are subject only to the KCL equations (but not
the KVL equations). In both cases, the function to be optimized is derived from the
component laws. For details we refer to [8, 6, 3].

Fig. 4 shows an electrical network containing an ideal voltage source, an ideal current
source, and two resistors. The factor graph that would correspond to the KVL equations,
the KCL equations, and the component law equations is shown in Fig. 5: the global
function is non-zero if the voltages and currents correspond to a solution of the KVL,
KCL, and component law equations, otherwise it is zero.

Fig. 6 shows the FFG corresponding to the first optimization problem mentioned
above. Here, the global function is a non-negative function and attains its maximum
for the branch voltages that correspond to the branch voltages of the solution to the
original electrical network problem. Similarly, Fig. 7 shows the FFG corresponding to
the second optimization problem where the global function attains its maximum for the
branch currents that correspond to the branch currents of the solution to the original
electrical network problem. In the last two cases, the non-negative global function can
be interpreted as (scaled) probability density functions of the occuring variables. More
details about this example can be found in [3]. 4

To conclude this section, we would like to point out additional topics.

• As already mentioned above, the two optimization problems are duals of each
other [8, 3]. Additionally, it turns out that results from electrical network the-
ory, like Tellegen’s theorem, Green’s reciprocity theorem, and dualization have
corresponding results in estimation and optimization theory. For more details, see
e.g. [3, 6].

• One can derive an electrical network corresponding to the Kalman filtering problem,
see e.g. [9, 6].

• The simplification of electrical network corresponds to performing the max-product
algorithm. In the case of jointly Gaussian random variables, this is equivalent to the
sum-product algorithm. Simplifying e.g. the electrical network which corresponds
to the Kalman filtering problem results in the Kalman filtering algorithm. For more
details, see e.g. [6, 5], but also Carter [10].

3 Connections between FFGs, Electrical Networks,

and Entropies

In this section we will only be interested in jointly Gaussian random variables. First we
review some results about differential entropies; then we will relate entropies (involving

2For the discusssion here we assume that the electrical network has a solution which is unique.



random variables appearing in an FFGs) to some effective resistances in an electrical
network (where the electrical network was derived from that FFG).

Let Z ∼ N (m, σ2) have a Gaussian distribution with mean m and variance σ2. The
differential entropy is then (see e.g. Ch. 9 in [7])3

h(Z) = −
+∞
∫

−∞

p(z) log p(z) dz =
1

2
log(2πeσ2).

In general, if Z ∼ N (m,K) has an n-dimensional multivariate Gaussian distribution with
mean m and covariance matrix K, the (differential) entropy is 1

2
log((2πe)n|K|). A key

ingredient will be the following fact (mentioned e.g. in Ch. 16.9 in [7]). If Z1, Z2, . . . , Zn

are jointly Gaussian distributed, then

h(Zn|Z1, Z2, . . . , Zn−1) =
1

2
log(2πeσ̂2

n),

where σ̂2
n is the minimum mean squared error E[(Zn − Ẑn)2] over all linear estimators Ẑn

based on Z1, Z2, . . . , Zn−1 (note that the linear estimator is optimal in the case of jointly
Gaussian random variables). We even have the result that

h(Zn|Z1, Z2, . . . , Zn−1) = h(Zn|Z1 = z1, Z2 = z2, . . . , Zn−1 = zn−1) =
1

2
log(2πeσ̂2

n),

which holds independently of the values of the measurements Z1 = z1, . . . , Zn−1 = zn−1

as long as they do not contradict each other.
Combining these properties of Gaussian random variables with the result of Sec. 5.3 in

[6] (about the relation of certain effective resistances and elements of the error covariance
matrix)4, we claim the following procedure for obtaining certain differential entropies
from effective resistances.

Procedure 3 (Determination of h(Zn|Z1, . . . , Zn−1)) We make the following assump-
tions.

• We have an FFG (possibly with loops!) whose global function is proportional to a
jointly Gaussian density.

• We are interested in the differential entropy h(Zn|Z1, . . . , Zn−1), where Z1, . . . , Zn

are some of the branch labels in the FFG.

• An electrical network (containing linear resistors, ideal voltage sources, and DC
transformers) has been derived from the FFG as was done in Ex. 1 (“voltage-mode
derivation”).

To determine h(Zn|Z1, . . . , Zn−1), we can apply the following steps.

• Replace all voltage sources by an open circuit.

3The base of the logarithm is chosen to be 2.
4In this text, we use the term effective resistance; it is equivalent to the term input resistance as used

in [6]. Note that by “measuring the effective resistance at a branch” we will mean that we measure the
effective resistance between the two end nodes of that branch.



Electrical Network Effective Resistance Entropy

R1

R2

R
eff

Y Reff
Y = R1 + R2 h(Y ) = 1

2
log(2πeReff

Y )

R1

R2

R
eff

Y |X1 Reff
Y |X1

= R2 h(Y |X1) = 1
2
log(2πeReff

Y |X1
)

Table 1: Entropies h(Y ) and h(Y |X1). Here R1 = σ2
1 and R2 = σ2

2 .

• Measure the effective resistance Reff
Zn|Z1...Zn−1

at the branch corresponding to Zn,
while short circuiting the elements corresponding to Z1, . . . , Zn−1.

• The desired differential entropy is

h(Zn|Z1, . . . , Zn−1) =
1

2
log
(

2πeReff
Zn|Z1...Zn−1

)

Example 4 [From effective resistances to differential entropies] We consider the FFG
and its corresponding electrical network in Ex. 1. Applying Proc. 3, we start with the
electrical network in Fig. 2 and replace the voltage source by an open circuit.

• The entropy h(Y ) is now related to the effective resistance Reff
Y measured at the

branch in the electrical network corresponding to Y (see Tab. 1).

• The entropy h(Y |X1) is related to the effective resistance Reff
Y |X1

measured at the

same place but now with short circuiting the element corresponding to X1 (see
Tab. 1).

• Based on these two results, we can e.g. calculate the mutual information between
X1 and Y .

I(X1; Y ) = h(Y ) − h(Y |X1) =
1

2
log

(

2πeReff
Y

2πeReff
Y |X1

)

=
1

2
log

(

Reff
Y

Reff
Y |X1

)

=
1

2
log

(

σ2
1 + σ2

2

σ2
2

)

.

• From Rayleigh’s Monotonicity Law5 we must have Reff
Y ≥ Reff

Y |X1
. Therefore I(X1; Y ) ≥

0, a well-know result from information theory (see e.g. [7]).

4

5Rayleigh’s Monotonicity Law (see e.g. [11]) states that if the resitances of a circuit are increased, the
effective resistance between any two points can only increase. If they are decreased, it can only decrease.



Electrical Network Effective Resistance Entropy

R1

R2

R
eff

X1 Reff
X1

= R1 h(X1) = 1
2
log(2πeReff

X1
)

R1

R2

R
eff

X1|Y Reff
X1|Y

= (R1||R2) = 1
1

R1
+ 1

R2

h(X1|Y ) = 1
2
log(2πeReff

X1|Y
)

Table 2: Entropies h(X1) and h(X1|Y ). Here R1 = σ2
1 and R2 = σ2

2 .

Example 5 [From effective resistances to differential entropies] We consider the FFG
and its corresponding electrical network in Ex. 1. Applying Proc. 3, we start with the
electrical network in Fig. 2 and replace the voltage source by an open circuit.

• The entropy h(X1) is now related to the effective resistance Reff
X1

measured at the
branch in the electrical network corresponding to X1 (see Tab. 2).

• The entropy h(X1|Y ) is related to the effective resistance Reff
X1|Y

measured at the

same place but now with short circuiting the element corresponding to Y (see
Tab. 2).

• Based on these two results, we can e.g. calculate the mutual information between
X1 and Y .

I(X1; Y ) = h(X1) − h(X1|Y ) =
1

2
log

(

2πeReff
X1

2πeReff
X1|Y

)

=
1

2
log

(

Reff
X1

Reff
X1|Y

)

=
1

2
log





σ2
1

σ2

1
σ2

2

σ2

1
+σ2

2



 =
1

2
log

(

σ2
1 + σ2

2

σ2
2

)

.

The final result is of course the same as in Ex. 4.

4

Other relationships between results in electrical network theory and about entropies
can be found. Let us mention two of them.

• (From electrical networks to entropies.) Shannon and Hagelbarger [12] gave some
concavity result of effective resistances; their result can be stated as follows. We
are interested in the effective resistance between two nodes in some given electrical
network topology where we vary the resistances in the branches. Let Reff

1 be the
effective resistance for a first resistance configuration, and let Reff

2 be the effective
resistance for a second resistance configuration. Finally, let Reff be the effective
resistance where each resistance is the sum of the corresponding resistances in the
first two configurations. Then,



Reff ≥ Reff
1 + Reff

2 .

(When slightly reformulating the setup, one gets a concavity result.) Let h =
(1/2) log(2πeReff), h1 = (1/2) log(2πeReff

1 ), and h2 = (1/2) log(2πeReff
2 ). Then

22h ≥ 22h1 + 22h2 ,

which can be considered as sort of an extension of the entropy power inequality
(see e.g. p.496 in [7]) in the jointly Gaussian case.

• (From entropies to electrical networks.) Entropy inequalities in Ch. 16 of [7] can
be translated to network theory results.

We would like to conclude this section by pointing out that these entropy considera-
tions were originally motivated and inspired by the results of Arnold and Loeliger [13] and
Pfister et al. [14] who used the sum-product algorithm on a loopless FFG (representing
a finite-state time-invariant system) to determine some entropies and information rates.

4 Conclusions

We hope that we could convince the reader that there are indeed connections between
factor graphs, electrical networks, and entropies. As an open problem, we would like
to mention that we wonder whether one can derive similar results as in Sec. 3 also in
the non-Gaussian case; or if at least one can give lower or upper bounds on differential
entropies and mutual informations.
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