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Abstract—We discuss how interleavers for parallel concatenated turbo

codes with good minimum distance can be derived from graphs having

large girth, i.e. graphs whose length of the shortest cycle is large.

Index Terms—Turbo codes, interleaver design, graphs with large girth.

I. I NTRODUCTION AND MOTIVATION

In [1] it is shown for parallel concatenated turbo codes that
the minimum distance has an upper bound which is propor-
tional to the logarithm of the interleaver length and therefore
also proportional to the logarithm of the block length (see [1]
for the exact expressions). In this statement it is tacitely as-
sumed that we consider a class of turbo codes where the com-
ponent convolutional codes are fixed and only the interleaver
changes with the interleaver length. The idea of the proof is es-
sentially that certain non-zero low-weight codewords can eas-
ily be shown to exist and one can give an upper bound on their
weight. Our approach in this paper is to construct interleavers
which try to avoid all these low-weight codewords as far as pos-
sible. We will derive the interleavers from graphs which have
large girth (the girth of an undirected graph is the length of the
smallest cycle).

Graphs (especially Cayley graphs) with large girth have been
used for the construction of regular low-density parity-check
(LDPC) codes in [2] [3] [4], irregular LDPC codes in [5] and
regular LDPC codes with more complicated subcodes in [6].
For other algebraic constructions of interleavers based on other
principles, see e.g. [7] or [8] and the references therein. See
also [9] for some extensions of the results of [1].

The paper is structured as follows. In Sec. II we introduce
different graphs representing parallel concatenated turbo codes
and Sec. III discusses which low-weight codewords should be
avoided. In Sec. IV we describe a class of graphs that will be
used as building blocks for the interleaver construction. Sec. V
presents different approaches for constructing interleavers and
finally in Sec. VI we make some conclusions and state some
open problems.
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Fig. 1. Factor graph of a parallel concatenated turbo code with interleaver
length9.

Fig. 2. Interleaver graph (IG) of a parallel concatenated turbo code with
interleaver length9.

II. D IFFERENTGRAPHS REPRESENTINGTURBO CODES

In this section we discuss different representations of paral-
lel concatenated turbo codes with the help of graphs. Parallel
concatenated turbo codes consist of two systematic recursive
convolutional codes (RCCs) whereby the input bits of the sec-
ond RCC are the permuted input bits of the first RCC. A first
possible representation is by factor graphs [10] [11] as given
in Fig. 1. The empty simple circles represent input and out-
put bits, the empty double circles represent states and the filled
squares represent the constraints (trellis sections). The upper
part represents the first RCC, the lower part the second RCC
and inbetween is the interleaver which permutes the input bits.
A typical constraint node (trellis section) of the first RCC has at
time indexk the states(1)

k−1 on the left hand side, the states
(1)
k

on the right hand side, the information bituk as input and the
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parity bitx(1)
k as output. A typical trellis section of the second

RCC has at time indexk the states(2)
k−1 on the left hand side,

the states(2)
k on the right hand side, the information bituπ−1(k)

as input and the parity bitx(2)
k as output; the functionπ(.) rep-

resents the permutation of the input bits of the first RCC to the
input bits of the second RCC. We assume to have no punctur-
ing and so at timek one transmits the three bitsuk, x

(1)
k and

x
(2)
k which results in a designed rate-1/3 code. One can use

termination of the turbo code as e.g. proposed in [12].
For guaranteeing that the sum-product algorithm works well

on a specific factor graph, it is advisable that there are no small
cycles so that the factor graphs looks locally tree-like in order
that the messages are as independent as possible [10]. To see
better what cycles are involved in the factor graph of Fig. 1
we omit all nodes having degree1 and2. (Note that in Fig. 1
the function nodes representing the channel have been omitted;
but as we assume to transmit over an additive white Gaussian
noise (AWGN) channel, no new loops would be created if we
appended these channel function nodes and the corresponding
edges.) In this way, we obtain a graph which looks like the
one in Fig. 2; we call such a graph an interleaver graph (IG).
Afterwards, we will see that having no small cycles helps not
only the sum-product algorithm but it also helps to avoid low-
weight codewords.

III. L OW-WEIGHT CODEWORDS

L2 · P

L1 · P

Fig. 3. Pattern in an interleaver graph with2 input bits being “1” leading
to a low-weight codeword ifL1 + L2 is small (P is the period length of the
component convolutional codes).

L3 · P

L1 · P L2 · P

L4 · P

Fig. 4. Pattern in an interleaver graph with4 input bits being “1” leading to a
low-weight codeword ifL1 + L2 + L3 + L4 is small (P is the period length
of the component convolutional codes).

Assume that both RCCs have memory sizeν and that the
denominator polynomials (which must not necessarily be the
same) are primitive polynomials. LetP = 2ν − 1 and let

Fig. 5. Pattern with one input bit being “1” leading to a low-weight codeword
(see text).

us focus on only one of these RCCs. One can show (see
e.g. [1]) that if there are two ones at a distanceL · P apart
at the input (L ∈ N), only finitely many ones are produced
at the output: the weight is not larger thanα · L + β, where
α and β are constants depending only on the convolutional
encoder. Therefore one should avoid interleaver graphs as
depicted in Fig. 3 having connections such thatL1 + L2 is
small as this produces codewords of weight not larger than
2 + αC1L1 + αC2L2 + βC1 + βC2. (αC1, βC1, αC2 andβC2

are theα’s andβ’s of the first and second RCC, resp.) In the
same manner, situations as in Fig. 4 should be avoided where
L1+L2+L3+L4 is small as this produces codewords of weight
not larger than4+αC1(L1+L2)+αC2(L3+L4)+βC1+βC2. Of
course, this can easily be generalized to longer cycles. Whereas
situations as in Fig. 3 are handled by spread (S-random) inter-
leaver designs as in [13] or related design techniques like [14],
they cannot handle situations like in Fig. 4.

One sees that the codewords of minimum weight are upper
bounded by a constant plus a linear function of the shortest
length of certain special cycles. In [1] a graph similar to our
interleaver graph is derived where one sees these special cy-
cles explicitly. Roughly, as the girth of a graph having degrees
larger than two is upper bounded by a constant times the loga-
rithm of the number of vertices, one finally gets the result that
the minimum distance can at best only grow proportionally to
the logarithm of the interleaver length.

A different situation that should be avoided is depicted in
Fig. 5: a low-weight codeword (generated by a single “1”
among the input bits) is produced because there is an edge con-
necting a vertex near the very end of the upper chain and a
vertex near the very end of the lower chain.

IV. CAYLEY AND RAMANUJAN GRAPHS

In this section we describe the class of graphs which we
will use afterwards1. Graphs in general consist of vertices and
edges whereby each edge connects two vertices; the degree of
a vertex is the number of edges incident on it. A directed (undi-
rected) graph has directed (undirected) edges. The diameter of
a graph is the maximum distance between any two vertices and
the girth is the length of the shortest cycle.

Directed Cayley graphs are defined by specifying a group
〈G, ◦〉 and a subsetS ⊆ G of generators. A directed graph is

1Our proposed constructions can start with any graph having large girth and
regular degree four. If one is interested in asympotitic existence results, the
class of Ramanujan graphs discussed in this section is especially useful.
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Fig. 6. An undirected Cayley graph with〈G, ◦〉 = 〈Z/8Z, +〉, the integers
under addition modulo8, and the (symmetric) setS = {−3,−1, +1, +3}.

then built in the following way: there are|G| vertices and to
each vertex we associate a group elementgi (to make the nota-
tion easy we identify the vertex label and the group element);
there is a directed edge from vertexgi to vertexgj if and only if
there is ans ∈ S such thatgj = gi ◦ s. If the setS is symmet-
ric, i.e. for eachs ∈ S we haves−1 ∈ S, the resulting Cayley
graph has for each directed edge a directed edge in the oppo-
site direction and one defines an undirected Cayley graph in the
following way: one replaces pairs of directed edges by a sin-
gle undirected edge. Fig. 6 gives an example of an undirected
Cayley graph.

Lubotzy, Phillips and Sarnak (LPS) [15] [16] found a spe-
cial class of graphs which have several execeptional proper-
ties, among others they have large girth. Based on other princi-
ples, Margulis [17] independently found nearly the same class
of graphs. While the reasoning, why these graphs have their
special properties, is quite involved, they can quite easily be
described as Cayley graphs. To this end, we need several ma-
trix groups. Let GL2(q) be the general linear group of all in-
vertible 2 × 2-matrices with elements from GF(q) where the
group operation is the usual matrix multiplication. The pro-
jective general linear group PGL2(q) is isomorphic to GL2(q)
modulo non-zero multiples of the identity matrix: PGL2(q) ∼=
GL2(q)/ {aI | a ∈ GF(q)∗}. Representatives of the elements
of PGL2(q) either have a determinant which is a quadratic
residue or a quadratic non-residue (i.e. they can/cannot be writ-
ten as a square in GF(q)). For oddq’s the projective special lin-
ear group PSL2(q) finally is an index-2 subgroup of PGL2(q)
consisting only of those representatives whose determinant is a
quadratic residue.

The class of graphs defined by LPS are Cayley graphs de-
fined by two parametersq andp which must be two different
odd primes. Roughly speaking, the size of the resulting graph
is a function ofq and the graph has uniform degreep + 1. In
[15] [16] they give a construction only forq andp each equal
to 1 modulo4 and they allude to the fact that the construction
is actually not restricted to those cases [16]. In this paper we
give the construction for any odd primesq andp (afterwards,
we will mainly be interested in the casep = 3 which results in
graphs having regular degree4.)

If p is a quadratic non-residue moduloq then the underlying
group of the Cayley graph isG = PGL2(q) and the number
of vertices is|G| = q(q2 − 1), otherwise it isG = PSL2(q)
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Fig. 7. An example graph with uniform degree4.
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Fig. 8. A first IG derived from the graph in Fig. 7.

and the number of vertices is|G| = q(q2 − 1)/2. The setS is
constructed in the following way. One can show that−1 can
always be written as a sum of two squares moduloq, i.e.−1 =
u2 + v2 (modq) for someu, v ∈ Z (if q = 1 (mod4) then
v can be chosen to be zero). The setS consists of thep + 1

matrices of the form2
(

a + bu + dv c + du− bv
−c + du− bv a− bu− dv

)
, where

a, b, c, d ∈ Z are the solutions of the following diophantine
equations. In the casep equals1 modulo4 they must fulfill
p = a2 + b2 + c2 + d2 (in Z), a odd and greater than zero and
b, c, d even. In the casep equals3 modulo4 they must fulfill
p = a2 + b2 + c2 + d2 (in Z), a odd and greater than zero and
b, c odd andd even.

The resulting graphs are called Ramanujan graphs because
the second largest eigenvalue of the adjacency matrix is below
a certain threshold. Among other special properties their girth
is lower bounded by4 logp(q) − logp(4) (which is above the
Erdős-Sachs bound [18]) in the case wherep is a quadratic non-
residue moduloq and by2 logp(q) in the other case. The diam-
eter is in both cases upper bounded by2 logp(n)+2 logp(2)+1,
wheren is the number of vertices of the graph.

V. CONSTRUCTION OFINTERLEAVER GRAPHS

As the weight of low-weight codewords is related to the
girth of the IG (see Sec. III), we will try to construct IGs
whose girth is large. The idea is to derive from the Ramanujan
graphs (RGs) descibed in Sec. IV (see also Footnote 1) an IG
as e.g. shown in Fig. 2 where we are able to give a lower bound
on the girth. A possible way to do this is as follows.

In a first step we start with an RG with arbitrary odd prime
q 6= 3 andp = 3, i.e., the graph has uniform degree3 + 1 = 4.

2The entries of these matrices are given as elements ofZ; they have to be
mapped to GF(q) in the usual way (by the canonical homomorphism) so that
one obtains a2 × 2-matrix with entries in GF(q).
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Fig. 9. A second IG derived from the graph in Fig. 7.
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Fig. 10. A third IG derived from the graph in Fig. 7.

We take an arbitrary Eulerian walk (EW) in it. (Remember
that an EW is a walk in a graph which visits every edge ex-
actly once and starts and ends in the same vertex. Such EWs
exist if and only if the degree of all the vertices is even; an
EW can be found in time linear in the number of edges.) As
the RG has uniform degree4, each vertex gets visited twice.
E.g., Fig. 7 shows a graph with6 vertices and uniform degree4
(this is not an RG as defined above, this graph was chosen for
demonstration purposes only). A possible EW visits the ver-
tices1 − 2 − 3− 4 −5 − 3 − 6 −1 − 4 − 6 −2 − 5 − (1).

In a second step we define the labeling of the upper chain
of the IG. (We call the subgraph consisting of the vertices and
horizontal edges of the upper part of the IG the upper chain;
the subgraph consisting of the vertices and horizontal edges of
the lower part is called the lower chain.) We take an upper
chain that has twice the number of vertices of the RG and the
labeling is done according to the EW chosen before. (Actually,
we get a long closed chain, but we cut it at an arbitrary edge.)
The lower chain is labeled in the same manner. Continuing the
example we started in Fig. 7 we get the upper and lower chain
as in Fig. 8.

In a third step we finally define which vertex in the upper
chain is connected to which vertex in the lower chain. E.g. for
the first vertex of the upper chain with label “1”, this can be
done in the following way: determine the right neighbor of the
second “1” in the lower chain, which in this case is “4”. The
first vertex of the upper chain with label “1” is finally connected
to the other occurence of “4” in the lower chain. The other
vertices are connected in the same manner and we obtain the
IG as shown if Fig. 8.

It is not difficult to see that every path in the IG can be
mapped back to a path in the original graph, especially every
cycle can be mapped back to a closed path. Therefore, the girth
of the interleaver graph is at least as large as in the original
graph and we can use the same lower bound on the girth as
for the RG. If, as in our case, the original graph is an RG with

Fig. 11. Out ofP small IGs of length4 a large IG of length12 is constructed
(hereP = 3).

parametersq andp = 3, then the girth grows proportional to
the logarithm ofq or equivalently proportional to the logarithm
of the interleaver length. Finally, also the resulting minimum
distance will grow proportionally to the logarithm of the inter-
leaver length.

A different possibility is to connect the first vertex with la-
bel “1” in the upper chain to the right neighbor of the second
“1” in the lower chain, i.e. to the vertex with label “4” that
lies between the vertices with labels “1” and “6”. The other
connections are done in a completely analogue manner and we
obtain the IG as shown in Fig. 9. Again, the girth can be shown
to be at least as good as in the original RG.

Of course, instead to connecting to the right neighbor in the
last construction one can also connnect to the left neighbor and
still make the same conclusions. In fact, one can also connect
the first vertex with label “1” in the upper chain with the sec-
ond vertex with label “1” in the lower chain and do the other
connections analogously (see Fig. 10).

The problem in the above constructions is though in the
small constant in front of the logarithm. It is advisable to have
a good girth but it is also equally important to avoid certain
pattern leading to codewords having low weight as shown in
Sec. III. One can resolve this problem with the following con-
struction. For a givenP (whereP is defined in Sec. III), one
constructs in the first stepP (small) IGs of the same size using
one of the above constructions. In the next step one combines
them as shown in Fig. 11 to a new (large) IG. It is not difficult to
see that the weight of every low-weight codeword of the form
as discussed in Sec. III is a function of the girth of the small IGs
and for this girth we can give a lower bound by construction.

Additionally, we can shift the lower chain relatively to the
upper chain to avoid unlucky connections at the end of the IG
as pointed out at the end of Sec. III (Fig. 5).

As a specific construction we consider the caseq = 5,
p = 3. As p is a quadratic non-residue moduloq, the RG
hasq(q2 − 1) = 120 vertices of degree4. An EW of such an
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RG must be of length2 ·120 = 240 and therefore the small IGs
have upper and lower chain lengths of240 (we used different
possibilities to get from the EW to the small IG). As compo-
nent RCCs we choose systematic RCCs of memory sizeν = 3
with transfer functionsn1(D)/d1(D) andn2(D)/d2(D), re-
spectively, wheren1(D) = n2(D) = 1 + D + D2 + D3,
d1(D) = 1 + D + D3 andd2(D) = 1 + D2 + D3; there-
fore P = 7. The large IG of length7 · 240 = 1680 consists
of 7 copies of the small IG (each of them individually shifted
cyclically by a certain offset). As we do no puncturing of the
code, we get a designed rate of1/3. We use termination of the
turbo code, so the final code has length3 · (1680 + 3) = 5049
and1680 information bits. Using the algorithms as proposed in
[19] to compute the minimum distance we obtained a minimum
distance of30. This compares favorably with results shown
in [20] and [19]: Table 2 of [20] shows that a random inter-
leaver construction of turbo codes with the same interleaver
length and memory sizeν = 3 (P = 7) gives an average min-
imum distance of roughly14 and a best minimum distance of
22. Table IV and Fig. 7 of [19] show that random interleaver
construction of turbo codes with interleaver length1280 and
memory sizeν = 4 (P = 15) gives an average minimum dis-
tance of19.7 and a best minimum distance of30. In Table II
of [19] the CCSDS rate-1/3 code with interleaver length1784
andν = 4 (P = 15) is shown to have minimum distance32.
(Note that our construction has onlyν = 3 andP = 7.)

VI. CONCLUSIONS ANDOUTLOOK

We have considered different ways of deriving IGs that try
to avoid certain low-weight codewords. The starting point were
graphs where one can give a lower bound on the girth (we es-
pecially focused on RGs). We would like to comment different
points.

• Hamiltonian cycle: instead of an EW one can take a
Hamiltonian cycle. (Remember that a Hamiltonian cycle
is a cycle which visits each vertex exactly once; for gen-
eral graphs it is very hard to find such a cycle if there is
one at all.) In this case, instead of starting with a graph
with uniform degree four one can of course also start with
a graph with uniform degree three.

• Interleaver length: the algorithms presented in [19] work
in resonable time for small and medium interleaver
lengths. The minimum distance of turbo codes with ran-
dom interleavers of these sizes can therefore be checked
by these algorithms. This is not anymore possible for long
interleaver lengths.

• The presented method works especially well for medium
sized to long sized interleavers. An important step will be
to find good possibilities to derive IGs with more possible
choices of interleaver length.

• Description size: if the large IG concists of several copies
of the same small IG, one needs only to save the inter-
leaver of the small IG and the offsets (therefore one needs
roughlyP times less space to save the interleaver).

• In [21] so-called unifilar turbo codes were discussed. It
is possible to derive interleavers for such turbo codes in
similar ways as proposed in this paper for the derivation
of IGs for classical turbo codes.
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