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Abstract

This post-diploma project highlights connections between Kalman filters, factor graphs, and
electrical networks.
Generally speaking, we are interested in the blockwise maximum a-posteriori estimation of
random variables based on measurements of some related random variables. Such problems
can very conveniently be stated using factor graphs that represent the joint probability density
of all occuring random variables. Having found a factor graph, one usually uses the max-
product algorithm to get estimates.
When one devises an electrical network that solves the same estimation problem, then one
realizes that there is a topological one-to-one relationship between the factor graph and the
electrical network. As a key example we consider the factor graph of the Kalman filter and
the electrical network which solves the Kalman filter problem. It must be emphasized that
the electrical networks always find the correct solution (in the context of convex problems
as studied in this report) whereas the max-product algorithm guarantees to give the correct
results only when the factor graph is a tree.
It turns out, that results from electrical network theory like Tellegen’s theorem, Green’s reci-
procity theorem, and dualization have corresponding results in estimation and optimization
theory. Within our framework it is possible to switch back and forth between factor graphs
and electrical networks. This approach is much more related to the results in the book
by Dennis [1] and the diode decoder by Davis and Loeliger [2] than to the analog decoder
by Loeliger et al. [3]. Whereas the latter is an implementation of an algorithm (the sum-
product algorithm) using analog electrical circuits, the former two implement the problem
itself, “leaving it to nature” to solve the problem.1

Other topics included in this report range from the fact that simplifying an electrical network
corresponding to a factor tree is the max-product algorithm, a matrix-based approach for
updating the messages in a factor graph of jointly Gaussian random variables, a probabilistic
interpretation of electrical networks given in the book by Mead [4], and several duality results.

1Therefore also the title of [2]: “A Nonalgorithmic Maximum Likelihood Decoder for Trellis Codes” (em-
phasis added).
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Chapter 1

Introduction and Basics

1.1 Introduction

Our research started with the question: “How does an electrical network look like which solves
the Kalman filter problem?” One motivation for this question was the book by Dennis [1],
which gives the general solution of how to obtain an electrical network which solves a quadratic
minimization problem using voltage and current sources, resistors, and DC-transformers.
Dennis also considered problems with inequality constraints which in the resulting electrical
networks turned out to be ideal diodes. But the main point in [1] was not to get the circuits
themselves, but, based on the intuition of finding the voltages and currents of electrical
networks, to come up with algorithms for solving the underlying abstract problem.

In this work one main aspect is the topology of the electrical networks that solve certain con-
vex minimization problems. It turns out that not only for jointly Gaussian random variables
(which corresponds to the quadratic minimization problem), there is a one-to-one correspon-
dence between a Forney-style factor graph (FFG) and an electrical network.

Two other motivating subjects were on the one hand the electrical circuits that one can find
in the book by Mead [4] and on the other hand the diode decoder as in the paper by Davis
and Loeliger [2]. The concepts studied in this report can be applied to some of the circuits
in [4] in order to give them a meaning in a probabilistic sense. We also try to reformulate
the diode decoder in our present framework.

After having found the main results of this project, we saw that related work had been done
by Carter [5] and Lippuner [6]. Carter and Lippuner realized that the calculation of the total
resistance of serially and parallelly connected resistors are akin to the update rules for scalar
Kalman filters. Lippuner also saw that the DC-transformer corresponds to the update rules
for the estimate and variance in the case of a scaling-function node.

We finish this introduction by giving a brief overview over the report. The remaining sections
of this chapter contain a short introduction into Forney-style Factor graphs (FFGs), the sum-
product algorithm and the max-product algorithm, and discusses the electrical elements that
will be used afterwards. Ch. 2 gives several examples how an electrical network can be devised
that solves a blockwise maximum a-posteriori (MAP) problem that was stated using an FFG;
from there it is not far anymore to the general rules as stated in Ch. 3. Then, Ch. 4 highlights
the relation between the max-product/sum-product algorithms and network simplifications,
whereas Ch. 5 discusses various topics in the realm of this project. In Ch. 6 we introduce a
primal-dual FFG, which tries to unify a primal and its dual optimization problem, and relate

1



2 Forney-style Factor Graphs (FFGs)

U X Y

W Z

fA

fC

fB

Figure 1.1: A Forney-style factor graph (FFG).

X Y
pX pY |X Z

pZ|Y

Figure 1.2: FFG of a Markov chain.

it to a multiport representation of the electrical networks obtained in Ch. 3. The main part
closes with some conclusions and an outlook in Ch. 7.

Appendices A and B review the most important facts about estimation theory and about the
node-potentials method, respectively. Appendices C, D, and E collect results from different
types of duality: Lagrange duality, Fourier duality, planar graph duality, and planar electrical
network duality. Finally, App. F deals with the singular value decomposition and the Moore-
Penrose generalized inverse of a matrix, and App. G gives some tables summarizing some of
the results of this report.

1.2 Forney-style Factor Graphs (FFGs)

A Forney-style factor graph (FFG) or “normal graph” [7] represents a factorization of a
function of several variables1. For example, assume that some function f(u,w, x, y, z) can be
factored as

f(u,w, x, y, z) = fA(u,w, x) · fB(x, y, z) · fC(z). (1.1)

This factorization is expressed by the graph of Fig. 1.1. In general, an FFG consists of nodes,
edges, and “half edges”, where “half edges” are connected to only one node. The rules are as
follows:

• There is a node for every factor.

• There is an edge (or half edge) for every variable.2

• The node representing some factor g is connected with the edge (or half edge) repre-
senting some variable X if and only if X is an argument of g.

Implicit in these rules is the assumption that no variable appears in more than two factors.
We will se below that this condition is far less restrictive than might appear at first sight.

1This exposition follows closely [8].
2Note that upper case letters are used for edge labels, whereas lower case letters are used for configurations.

This notation is inspired by the notation used in probability theory where upper case letters denote random
variables and lower case letters denote realizations.
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g(.) h(.)
Y

WV

U X

Figure 1.3: A block diagram.

The factors of the factorization expressed by the FFG are also called local functions; the
overall function (i.e., the product of all local functions) is called the global function.
We will now rephrase some basic facts about factor graphs for FFGs; for more details, see [9]
and [7]. We will first assume that all variables take values in finite sets; the modifications for
continuous variables are given in Sec. 1.5.
In probability theory, factorizations of joint probability measures are expressions of inde-
pendence. E.g., let X, Y , and Z be discrete random variables with joint probability mass
function p(x, y, z). Then X,Y,Z form a Markov chain if and only p(x, y, z) can be factored
as

p(x, y, z) = p(x) · p(y|x) · p(z|y). (1.2)

This factorization is shown in Fig. 1.2. Upon removal of the edge Y , the graph falls into
two disconnected components, with X and Z in different components, which expresses the
conditional independence of X and Z given Y . It is easy to see that this generalizes to any
FFG of a joint probability mass function: conditioned on the variables in any cut set of the
graph, the variables in the two resulting components are independent.
A block diagram as in Fig. 1.3 may also be viewed as an FFG. A function block x = g(u, v)
in the block diagram is then interpreted as representing the factor δ(x − g(u, v)), where δ is
the Kronecker-delta function. When viewed as an FFG, the block diagram of Fig. 1.3 thus
represents the function

δ
(
x − g(u, v)

)
· δ
(
y − h(x,w)

)
=

{

1, if x = g(u, v) AND y = h(x,w),

0, else.
(1.3)

In other words, the global function evaluates to 1 if and only if the values of all variables
are consistent with the equations of the block diagram. Note that the arrows in the block
diagram have no influence on its interpretation as an FFG.
As illustated by these examples, an FFG can be used to express the structure of a “system”
or “model”. In this context, the domain of the global function f is called the configuration
space. A configuration is an element of the configuration space, i.e., a particular assignment
of values to all variables. A configuration ω is valid if f(ω) 6= 0.
In a block diagram, we usually find also branching points as in Fig. 1.4(a). In an FFG, such
branching points must be treated as factor nodes on their own, as is illustrated in Fig. 1.4(b).
In doing so, there arise new variables (x1 and x2 in Fig. 1.4(b)) and a new factor

f=(x, x1, x2) := δ(x − x1) · δ(x − x2). (1.4)

Note that, in every valid configuration, the new auxiliary variables have the same value as
the original variable. By this device of variable “cloning”, it is always possible to enforce the
condition that a variable may appear in at most two factors (local function).



4 The Sum-Product Algorithm (SPA)

X

(a)

=
X1X

X2

f=

(b)

Figure 1.4: A branching node in (a) becomes a replication node in (b).

One of the advantages of FFGs over factor graphs as defined in [9] is the clear distinction
between external (“visible”) variables and internal (“latent” or “state”) variables: the former
are represented by half edges, the latter by normal edges. Moreover, the operations of dividing
a system into subsystems (“tearing”) and of “zooming” into the interior of some subsystem –
both central to Willem’s system theory [10] – are naturally expressed in an FFG (cf. Figs. 2.9
and 2.10).

1.3 The Sum-Product Algorithm (SPA)

Another attraction of FFGs is that the sum-product algorithm (SPA) [9] [11] takes on a par-
ticularly simple form. Two messages are transmitted along each edge, one in each direction.
(In practice, it often happens that only a subset of all these messages is actually needed.)
Each message is, or represents, a function of the variable associated with that edge. Consider
a node that represents some factor f(x1, . . . , xn). The message µf→Xk

out of this node along
the edge Xk is the function

µf→Xk
(xk) =

∑

x1

· · ·
∑

xk−1

∑

xk+1

· · ·
∑

xn

f(x1, . . . , xn) ·

µX1→f (x1) · · · µXk−1→f (xk−1)µXk+1→f (xk+1) · · · µXn→f (xn), (1.5)

where µXj→f is the message incoming on edge Xj. In words, the message µf→Xk
is the

product of the local function and all messages towards f along all edges except xk, summed
over all variables except Xk. In practice, the update rule (1.5) is often modified to include a
scale factor.
The messages in the graph are computed, or iteratively recomputed, according to some sched-
ule. As is well known, if the graph is cycle free, the (final) message out of some half edge
representing some variable X is the marginal function

µ(x) :=
∑

ω:x fixed

f(ω), (1.6)

where the sum goes over all configurations ω with fixed x; for details see [9]. Adopting the
language from coding theory, we will call a decision (in the case of a discrete alphabet) or
estimation (in the case of a continuous alphabet)

x̂ = arg max
x

µ(x) (1.7)

a symbolwise maximum a-posteriori (symbolwise MAP) decision/estimation. If the graph
is not a tree then the decision/estimation based on µ(x) is not guaranteed to be the MAP
symbolwise decision/estimation.
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1.4 The Max-Product Algorithm (MPA)

Closely related to the sum-product algorithm is the max-product algorithm (MPA) [9] [11].
As for the SPA, two messages are transmitted along each edge, one in each direction, and
each message is, or represents, a function of the variable associated with that edge. Consider
a node that represents some factor f(x1, . . . , xn). The message µf→Xk

out of this node along
the edge Xk is the function

µf→Xk
(xk) = max

x1,...,xk−1,xk+1,...,xn

f(x1, . . . , xn) ·

µX1→f (x1) · · ·µXk−1→f (xk−1)µXk+1→f (xk+1) · · · µXn→f (xn), (1.8)

where µXj→f is the message incoming on edge Xj . In words, the message µf→Xk
is the

maximized product of the local function and all messages towards f along all edges except
Xk, where the maximization is over all variables except Xk. In practice, the update rule (1.8)
is often modified to include a scale factor.

The messages in the graph are computed, or iteratively recomputed, according to some sched-
ule. As is well known, if the graph is cycle free, the (final) message out of some half edge
representing some variable X is the summary function3

µ(x) := max
ω: x fixed

f(ω), (1.9)

where the maximization goes over all configurations ω with fixed x; for details see [9]. Adopt-
ing the language from coding theory, we will call a decision (in the case of a discrete alphabet)
or estimation (in the case of a continuous alphabet)

x̂ = arg max
x

µ(x) (1.10)

a blockwise maximum a-posteriori (blockwise MAP) decision/estimation. This terminology
stems from the fact that the x-component of ω̂, where

ω̂ = max
ω

f(ω), (1.11)

equals x̂ in Eq. (1.10) If the graph is not a tree then the decision/estimation based on µ(x)
is usually not the a MAP blockwise decision/estimation. Appendix A lists some well-known
facts from estimation theory and gives conditions when the symbolwise (see Sec. 1.3) and the
blockwise estimates are equal. Note that for jointly Gaussian random variables, the SPA and
MPA are equivalent (for more details, see e.g. [8]).

1.5 Other Alphabets

In this report, we will be primarily interested in real or complex variables, or variables that
are real or complex vectors. In this case, the Kronecker-delta in equations such as (1.3) and
(1.4) should be replaced by the Dirac-delta distribution and the summations in (1.5) and
(1.6) should be replaced by integrations.

3The term summary function is used in general for any message-passing algorithm, which all in a certain
sense summarize some information contained in the graph.
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1.6 Dirac-Delta Distributions as Limiting Distributions

It is often convenient to view Dirac-delta distribution as limits of Gaussian distributions.4

• Real case:

δ(x) = lim
β→0

1

(2πβ)n/2
exp

(

− 1

2β
||x||22

)

, (1.12)

• Complex case:

δ(x) = lim
β→0

1

(πβ)n
exp

(

− 1

β
||x||22

)

. (1.13)

The advantage of this representation is that it allows to rewrite densities that are products of
a jointly Gaussian part and of Dirac-delta distribution terms as a single jointly Gaussian dis-
tribution. This simplifies sometimes the analysis (see e.g. Sec. 5.3). More detailed comments
about this “unifying” approach can be found e.g. in [8].

1.7 The Characteristics of the Electrical Network Elements

That Are Used

We now give a list of the electrical network elements that we will use. Such elements have a
current I through them and a voltage U across them where the current arrow and the voltage
arrow have the same direction. Only the last two elements are time-dependent, the others
are all time-independent.

• Ideal voltage source: An ideal voltage source with parameter Uq has voltage-current
characteristic U(I) = Uq independent of the current flowing through it. Fig. 1.5(left)
shows the element and Fig. 1.5(right) the current-voltage characteristic.

U

I

Uq
Uq

I

U

Figure 1.5: Left: ideal voltage source with parameter Uq. Right: its current-voltage charac-
teristic.

• Real voltage source: A real voltage source with parameters (Uq, Rq) has voltage-
current characteristic U(I) = Uq + RqI, or equivalently, the current-voltage character-
istic I(U) = −Uq/Rq + U/Rq. Fig. 1.6(left) shows the element and Fig. 1.6(right) the
current-voltage characteristic.

• Ideal current source: An ideal current source with parameter Iq has current-voltage
characteristic I(U) = Iq independent of the voltage across it. Fig. 1.7(left) shows the
element and Fig. 1.7(right) the current-voltage characteristic.

4Compared with [8] we have changed β to 1/β.
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U

I

Uq
Uq

I

U
Rq

Figure 1.6: Left: real voltage source with parameters (Uq, Rq). Right: its current-voltage
characteristic (the slope is 1/Rq).

U

I

I

UIq

Iq

Figure 1.7: Left: ideal current source with parameter Iq. Right: its current-voltage charac-
teristic.

• Real current source: A real current source with parameters (Iq, Rq) has current-
voltage characteristic I(U) = Iq + U/Rq, or equivalently, the voltage-current charac-
teristic U(I) = −RqIq + RqI. Fig. 1.8(left) shows the element and Fig. 1.8(right) the
current-voltage characteristic.

U

I
I

IqIq URq

Figure 1.8: Left: real current source with parameters (Iq, Rq). Right: its current-voltage
characteristic (the slope is 1/Rq).

• Linear resistor: A linear resistor with parameter R has current-voltage characteristic
I(U) = U/R, or equivalently, the voltage-current characteristic U(I) = RI (we allow
the restistances to be also negative). Fig. 1.9(left) shows the element and Fig. 1.9(right)
the current-voltage characteristic.

• Nonlinear resistor: A nonlinear resistor has current-voltage characteristic I(U), or
equivalently, the voltage-current characteristic U(I). Fig. 1.10(left) shows the element
and Fig. 1.10(right) an exemplary current-voltage characteristic. We assume that the
product of current and voltage is at each operation point non-negative (meaning that
this element is passive, i.e. dissipates energy), or zero (meaning that the element is
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U

I

U

I

R

Figure 1.9: Left: linear resistor with parameter R. Right: its current-voltage characteristic
(the slope is 1/R).

neutral).

U

I

U

I

I(U)

Figure 1.10: Left: nonlinear resistor. Right: exemplary current-voltage characteristic.

• Nonlinear element: A nonlinear element is described in the same way as a nonlinear
resistor, but we allow the product of current and voltage to be positive, zero, or negative
at different operation points meaning that the element can be active, neutral, and
passive. Fig. 1.11(left and middle) show the element and Fig. 1.11(right) an exemplary
current-voltage characteristic. Note that a nonlinear element whose current-voltage
characteristic is monotonically increasing can be replaced by an ideal voltage source
and a nonlinear resistor in series.

U

I

U

I

U(I) UI(U)

I

Figure 1.11: Left: non-linear element with voltage-current characteristic U(I). Middle: non-
linear element with current-voltage characteristic I(U). Right: exemplary current-voltage
characteristic.

• Impedance converter (DC-transformer): If a DC-transformer with parameter
1 : a has at one end the voltage-current pair (U1, I1) and at the other the voltage current
pair (U2, I2), then U2 = aU1 and I2 = −(1/a)I1 independent of time. Fig. 1.12(left)
shows the element and Fig. 1.12(middle and right) the voltage-voltage and current-
current characteristics. In the vector-case the relations are U2 = AU1 and I2 =
−A−T I1. If the label 1 : a is missing then the parameter is 1 : 1 and the slopes are
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+1 and −1, respectively. The DC-transformer is equivalent to the impedance converter
which is shown in Fig. 1.13. Its [ABCD] chain-matrix is5

[ABCD] =

(
a 0
0 1/a

)

(1.14)

where (note that there is a minus in front of I1)
(

U2

+I2

)

= [ABCD] ·
(

U1

−I1

)

(1.15)

I2I1

U1

U2

I1

I2

U2U1

1 : a

Figure 1.12: Left: DC-transformer with parameter 1 : a. Middle: voltage-voltage character-
istic (the slope is a). Right: current-current characteristic (the slope is −1/a). Note: if the
label 1 : a is missing, then the paramter is 1 : 1.

U1

U2

I1

I2

U2U1

I2I1 1 : a

Figure 1.13: Left: Impedance converter with parameter 1 : a (this element is equivalent to a
DC-transformer with parameter 1 : a. Middle: voltage-voltage characteristic (the slope is a).
Right: current-current characteristic (the slope is −1/a). Note: if the label 1 : a is missing,
then the paramter is 1 : 1.

• Impedance inverter (Gyrator): A gyrator with parameter g has at one end the
voltage-current pair (U1, I1) and at the other the voltage-current pair (U2, I2) and is
described by the chain matrix

[ABCD] =

(
0 1/g
g 0

)

, (1.16)

independent of time. Fig. 1.14(left) shows the element and Fig. 1.14(middle and right)
the current(2)-voltage(1) and the voltage(2)-current(1) characteristics. In the vector-
case the relations are I2 = GU1 and U2 = −G−T I1.

• Capacitor: A capacitor with parameter C is a time-dependent electrical element with
current-voltage characteristic I(U(.), t) = C · ∂U(t)/∂t and voltage-current character-
istic U(I(.), t) = (1/C) ·

∫ t
−∞ I(t′) dt′. Fig. 1.15(a) shows the element.

5The A, B, C, D of [ABCD] have nothing to do with the same letters used for the Kalman filter.
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U1

I2

I1

U2

U2U1

I2I1 g

Figure 1.14: Left: Gyrator with parameter g. Middle: current(2)-voltage(1) characteristic
(the slope is g). Right: voltage(2)-current(1) characteristic (the slope is −1/g).

I(t)

C U(t)

(a)

I(t)

U(t)L

(b)

Figure 1.15: (a) Capacitor. (b) Inductor.

• Inductor: An inductor with parameter L is a time-dependent electrical element with
voltage-current characteristic U(I(.), t) = L·∂I(t)/∂t and current-voltage characteristic
I(U(.), t) = (1/L) ·

∫ t
−∞ U(t′) dt′. Fig. 1.15(b) shows the element.



Chapter 2

Simple Motivating Examples

The aim of this section is to give some simple examples which should give the reader a flavor
of the results that will follow in this report.

2.1 Example 1 (Summation Function Node)

Figure 2.1 shows a Forney-type factor graph (FFG) involving the random variables X1, X2

and Y . The global function represents the joint density of X1, X2 and Y and is the product
of local functions:

pX1X2Y (x1, x2, y) = pX1(x1) · pX2(x2) · δ(y − x1 − x2). (2.1)

δ(.) denotes the Dirac-delta distribution. Based on a measurement we would like to find the
blockwise MAP estimate (x̂1, x̂2) of the vector (x1, x2). (Note that we maximize jointly, see
also the comments in Sec. 1.4.) To be specific, we assume X1 ∼ N (0, σ2

1) and X2 ∼ N (0, σ2
2):

pX1X2Y (x1, x2, y) =
1√

2πσ1

exp
(
− x2

1/2σ
2
1

)
· 1√

2πσ2

exp
(
− x2

2/2σ
2
2

)
· δ(y − x1 − x2). (2.2)

Given Y = y, maximizing pX1X2Y (x1, x2, y) is equivalent to minimizing − ln pX1X2Y (x1, x2, y)
or to the minimization of − ln pX1(x1) − ln pX2(x2) under the constraint y = x1 + x2. Using
the technique of Lagrange multipliers we have to minimize

L := − ln pX1(x1) − ln pX2(x2) + λ(y − x1 − x2). (2.3)

+pX1
(x1)

pX2
(x2)

YX1

X2

Figure 2.1: Example 1.

11
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R1

R2

x̂1

x̂2
λ

y

Figure 2.2: Electrical network for Example 1.

X1
+pX1

(x1)

pX2
(x2)

Y
+-Block

X2

x̂2

y

R2

x̂1R
1

Figure 2.3: FFG versus electrical network in the case of Example 1.

In order to minimize L, we set the gradient equal to zero.







∂
∂x1

L = x1

σ2
1
− λ

!
= 0 (component law)

∂
∂x2

L = x2

σ2
2
− λ

!
= 0 (component law)

∂
∂λL = y − x1 − x2

!
= 0 (Kirchhoff voltage law)

(2.4)

The electrical network in Fig. 2.2 implements the three equations from Eq. (2.4) with R1 = σ2
1

and R2 = σ2
2 . The first two equations correspond to component equations, giving current-

voltage characteristics of components, whereas the third equation describes a Kirchhoff volt-
age law (the sum of the voltages around a loop must be zero). In Fig. 2.3 the electrical
network is redrawn so as to show its close topological relationship to its FFG. The Lagrange
multiplier λ turns out to be a current and loosely speaking plays the role of “exchanging
information” from one part of the circuit to the other.

Assume that we are only interested in the estimate x̂1. We can modify as long as we do not
touch (i.e. we do not remove) the nodes between which we have the voltage x̂1. Fig. 2.4 shows
possible modifications that can be performed. After these modifications we obtain a network

IqR2x̂1R1

R2

R1x̂1

x̂2
λ

y

R1||R2

Uq

x̂1

Figure 2.4: Modifications of the electrical network of Example 1 leaving the highlighted
nodes untouched. (R1||R2) = R1R2

R1+R2
, Iq = 1

R2
y, and Uq = (R1||R2)Iq = R1

R1+R2
y have been

introduced.
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+

Z1 Z2

W1 W2

=

+pX1
(x1) pX2

(x2)
X1 X2

Y

Y1 Y2

pW2
(w2)

+

pW1
(w1)

Figure 2.5: Example 2.

ŵ1 ŵ2

z1 z2

x̂2

x̂1

R′
1 R′

2R2

R1

λW2,Y2,Z2
λW1,Y1,Z1
= λY,Y1

= λY,Y2

λX1,X2,Y

ŷ = ŷ1 = ŷ2

Figure 2.6: Example 2.

in which no current can flow anymore, so we can directly read off the estimate x̂1. In Ch. 4
we will see that these operations basically correspond to performing the MPA (see Sec. 1.4).

In the case of jointly Gaussian random variables two special things happen: the MPA is
equivalent to the SPA (see Sec. 1.3) and we can also directly read off the entries of the error
covariance matrix (see Sec. 5.3).

2.2 Example 2 (Summation-Function and Equality-Function
Nodes)

Figure 2.5 shows an FFG involving the random variables X1, X2, W1, W2, Y , Y1, Y2, Z1,
and Z2. The global function represents the joint density of these random variables and is the
product of local functions:

pX1X2W1W2Y Y1Y2Z1Z2(x1, x2, w1, w2, y, y1, y2, z1, z2)

= pX1(x1) · pX2(x2) · pW1(w1) · pW2(w2) ·
δ(y − x1 − x2) · δ(y1 − y) · δ(y2 − y) · δ(z1 − y1 − w1) · δ(z2 − y2 − w2). (2.5)

Note that the equality-function node is described by a product of two terms (generally, an
equality-function node of degree d is described by a product of d − 1 terms). Given the
measurements Z1 = z1 and Z2 = z2 we want to make a blockwise MAP estimate of the
vector (x1, x2, w1, w2, y, y1, y2). But maximizing p(x1, x2, w1, w2, y, y1, y2, z1, z2) is equivalent
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to minimizing the Lagrangian

L := − ln pX1(x1) − ln pX2(x2) − ln pW1(w1) − ln pW2(w2)

+ λX1,X2,Y (y − x1 − x2) + λY,Y1(y1 − y) + λY,Y2(y2 − y)

+ λY1,W1,Z1(z1 − w1 − y1) + λY2,W2,Z2(z2 − w2 − y2) (2.6)

In order to minimize L we set the gradient equal to zero.






∂
∂x1

L = −p′
X1

(x1)

pX1
(x1) − λX1,X2,Y

!
= 0 (component law)

∂
∂x2

L = −p′
X2

(x2)

pX2
(x2) − λX1,X2,Y

!
= 0 (component law)

∂
∂w1

L = −p′W1
(w1)

pW1
(w1)

− λY1,W1,Z1

!
= 0 (component law)

∂
∂w2

L = −p′
W2

(w2)

pW2
(w2)

− λY2,W2,Z2

!
= 0 (component law)

∂
∂y L = λX1,X2,Y − λY,Y1 − λY,Y2

!
= 0 (Kirchhoff current law)

∂
∂y1

L = λY,Y1 − λY1,W1,Z1

!
= 0 (current equivalence)

∂
∂y2

L = λY,Y2 − λY2,W2,Z2

!
= 0 (current equivalence)

∂
∂λX1,X2,Y

L = y − x1 − x2
!
= 0 (Kirchhoff voltage law)

∂
∂λY,Y1

L = y1 − y
!
= 0 (Kirchhoff voltage law)

∂
∂λY,Y2

L = y2 − y
!
= 0 (Kirchhoff voltage law)

∂
∂λY1,W1,Z1

L = z1 − w1 − y1
!
= 0 (Kirchhoff voltage law)

∂
∂λY1,W2,Z2

L = z2 − w2 − z2
!
= 0 (Kirchhoff voltage law)

(2.7)

Assuming X1 ∼ N (0, σ2
1), X2 ∼ N (0, σ2

2), W1 ∼ N (0, σ′21), and W1 ∼ N (0, σ′22) and defining
R1 := σ2

1, R2 := σ2
2, R′1 := σ′21, and R′2 := σ′22, the system of equations in Eq. (2.7) is

equivalent to the electrical network in Fig. 2.6. The first four equations describe component
current-voltage laws, the next one a Kirchhoff current law, the next two equivalences of
certain currents, and the last five describe Kirchhoff voltage laws. Note again, that there is
a tight topological relationship between the FFG and the electrical network.
As we did for the example in Sec. 2.1, we can modify the electrical network in this example
so that we can directly read off a desired estimate. Assume that we are interested in the
estimate x̂2. We can modify the network as we like under the condition that the two nodes
between which x̂2 is measured are left untouched: we can transform the real voltage sources
(z1, R

′
1) and (z2, R

′
2) into real current sources, combine these two real current sources to one

real current source and replace it again by a real voltage source, and so on. Again, this is
nothing else that performing the max-product algorithm (MPA, see Ch. 4).

2.3 Example 3 (Non-Gaussian Random Variables)

Let us now consider a slightly modified version of Example 1 in Sec. 2.1. X1 is still Gaussian
with X1 ∼ N (0, σ2

1), but X2 is now distributed according to1

pX2(x2) = k21
1

cosh(k22x2)
= k21 exp

(
− ln(cosh(k22x2))

)
, (2.8)

1Note that ln(cosh(k22x2)) is a convex function in x2.
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yR1x̂1

x̂2 = U2

I2

I2(U2)

Figure 2.7: Example 3. The nonlinear resistor has characteristic I2 = I2(U2) =
k22 tanh(k22U2).

R1

R2

yx̂1 R1

x̂1
x̂1

U4(I4)U3(I3)x̂1=⇒ =⇒ x̂1

Figure 2.8: Example 3. The nonlinear resistor has characteristic I2 = I2(U2) =
k22 tanh(k22U2).

where k21 and k22 are chosen so that the mean is zero and the variance is σ2
2 . As before

Y = X1 + X2 and based on a measurement Y = y we want to get a blockwise MAP estimate
(X̂1, X̂2) of (X1,X2). The joint density of X1, X2, and Y is

pX1X2Y (x1, x2, y) = pX1(x1) · pX2(x2) · δ(y − x1 − x2) (2.9)

=
1√

2πσ1

exp
(
− x2

1/2σ
2
1

)
· k21 cosh

(
k22(x2)

)
· δ(y − x1 − x2) (2.10)

=
k21√
2πσ1

exp
(
− x2

1/2σ
2
1 − ln(cosh(k22x2))

)
· δ(y − x1 − x2). (2.11)

We proceed as in Example 1 of Sec. 2.1 and get the Lagrangian

L := − ln pX1(x1) − ln pX2(x2) + λ(y − x1 − x2), (2.12)

In order to minimize L we set the gradient equal to zero.






∂
∂x1

L = x1

σ2
1
− λ

!
= 0 (component law)

∂
∂x2

L = k22 tanh
(
k22(x2)

)
− λ

!
= 0 (component law)

∂
∂λL = y − x1 + x2

!
= 0 (Kirchhoff voltage law)

(2.13)

which can be interpreted as the system of equation of the electrical network shown in Fig. 2.7.
We would like to comment on different points.

• It is a convex optimization problem.

• It is not possible to solve algebraically for x̂1 and x̂2.

• Resistor R1 is a “standard resistor” with current-voltage characterisic I1 = I1(U1) =
U1/σ

2
1 . But the current-voltage characteristic of the nonlinear resistor is

I2 = I2(U2) = k22 tanh(k22U2). (2.14)

More about generalized resistors can be found in Secs. 5.1 and 5.4.
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Z[k] Z[k + 1]

Y[k] Y[k + 1]

X[k − 1] X[k + 1]X[k]

U[k] U[k + 1]

Figure 2.9: State space model.

A
X[k − 1]

+

B

=

C

X[k]

U[k]

Z[k]

Z[k]

Y[k]

W[k]
+

Figure 2.10: Details of linear state space model.

• This simple example shows that it is possible to get MAP estimates with the help
of electrical networks also for problems where not all densities are Gaussian. But
topologically the solution is the same as for Example 1 (see Fig. 2.3).

• Again, we can modify the circuit so that we can directly read off the solution. Fig-
ure 2.8 shows how this is done. Thereby we introduced the real voltage source with
characteristic U3(I) = y + artanh(I3/k22)/k22 and the real voltage source with charac-
teristic U4(I4). U4(I4) can easily be generated graphically by adding the U3(I) and the
U = R1I characteristics along the I−axis. The solution is then given by x̂1 = U4(0),
because the current through in Fig. 2.8(right) must be zero. For more about this, see
Ch. 4.

2.4 Example 4 (A Simple Kalman Filter)

In Kalman filtering (for a general reference, see e.g. [12]) we assume to have the following
state-space model

x[k] = A[k]x[k − 1] + B[k]u[k] (2.15)

y[k] = C[k]x[k] + w[k], (2.16)

where u[k] and w[k] are stochastic processes. To get the intuition of the results, we mainly
consider the scalar Kalman filter (SKF), meaning that u[k], w[k], x[k], y[k], a[k], b[k], and
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x̂[k]x̂[k − 1]x̂[k − 2] x̂[k + 1] x̂[k + 2]

y[k]y[k − 1] y[k + 1]

Figure 2.11: Several Sections of an electrical circuit implementing an SKF. The resistors have
the values Rk,k, Rk,k−1, Rk,k+1, R′k,k, respectively.

X̂[k − 1]
1 : a[k]

A-Block

b
[k

]
:
1

B-Block

+-Block

mU[k]

A
X[k − 1]

+

B

=

C

X[k]

+

Z[k]

U [k]

Y [k]

x̂[k]

=-Block

C-Block

1
:

c
[k

]

y[k]

+-Block

m
W

[k
]

σ
2 W

[k
]

W [k]

σ2
U[k]

Figure 2.12: Left: FFG of one section of a Kalman filter. Right: Electrical network of a
section of a Kalman filter highlighting the topological equivalence with the FFG.
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c[k] are all scalars. So we assume to have the state-space model

x[k] = a[k]x[k − 1] + u[k] (2.17)

y[k] = c[k]x[k] + w[k], (2.18)

where we replaced without loss of generality b[k]u[k] by u[k]. Furthermore, let u[k] ∼
N (0, σ2

U [k]) and w[k] ∼ N (0, σ2
W [k]). FFGs depicting a Kalman filter are shown in Figs. 2.9

and 2.10.

The task in Kalman filtering is to get an estimate x̂[k] about x[k] based on a measurement
of Y [k] = y[k] for N1 ≤ k ≤ N2. Let x be the vector (x[N1], . . . , x[N2]), y be the vector
(y[N1], . . . , y[N2]). (We do not worry about “border effects” in this report as we are mainly
interested in the case N1 → −∞ and N2 → +∞). To get the blockwise2 MAP estimate we
calculate the joint density

pUWXY(u,w,x,y) =
1

(2π)N
∏

k σU [k]

∏

k σW [k]
exp

(

−
∑

k

1

2σ2
U [k]

u[k]2 −
∑

k

1

2σ2
W [k]

w[k]2

)

· δ
(
x[k] − a[k]x[k − 1] − u[k]

)
· δ
(
y[k] − c[k]x[k] − w[k]

)
. (2.19)

This time we follow a slightly different approach. We recognize that maximizing pUWXY(u,w,x,y)
is equivalent to maximizing pXY(x,y), which is3

pXY(x,y) =
1

(2π)N
∏

k σU [k]

∏

k σW [k]

· exp

(

−
∑

k

1

2σ2
U [k]

(
x[k] − a[k]x[k − 1]

)2 −
∑

k

1

2σ2
W [k]

(
y[k] − c[k]x[k]

)2

)

.

(2.20)

Note that the exponent consists of local terms only, i.e. a summand which contains variables
and constants of time step k, constains at most also variables and constants from time steps
k − 1 and k + 1. This is key to getting finally a simply wired electrical circuit. We solve

− ∂

∂x
ln pXY(x,y)

!
= 0. (2.21)

which amounts to the system of equations

x[k] − a[k]x[k − 1]

σ2
U [k]

− (x[k + 1] − a[k + 1]x[k])a[k + 1]

σ2
U [k+1]

− (y[k] − c[k]x[k])c[k]

σ2
W [k]

!
= 0, (2.22)

for all k, or, equivalently

(

1

σ2
U [k]

+
a[k + 1]2

σ2
U [k+1]

+
c[k]2

σ2
W [k]

)

x[k] − a[k]

σ2
U [k]

x[k − 1] − a[k + 1]

σ2
U [k+1]

x[k + 1] − c[k]

σ2
W [k]

y[k]
!
= 0,

(2.23)

2Blockwise means that we estimate the x[k] for all k of interest at the same time.
3This “elimination” of U and W does not change the solution x̂ because the random vectors U and W

can be determined from the remaining random vectors.
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or,

(

1 − a[k]

σ2
U [k]

+
a[k + 1]2 − a[k + 1]

σ2
U [k+1]

+
c[k]2 − c[k]

σ2
W [k]

)

x[k] (2.24)

+
a[k]

σ2
U [k]

(
x[k] − x[k − 1]

)
+

a[k + 1]

σ2
U [k+1]

(
x[k] − x[k + 1]

)
+

c[k]

σ2
W [k]

(
x[k] − y[k]

)
= 0, (2.25)

which can be written as

R−1
k,kx[k] + R−1

k,k−1

(
x[k] − x[k − 1]

)
+ R−1

k,k+1

(
x[k] − x[k + 1]

)
+ R′

−1
k,k

(
x[k] − y[k]

)
= 0.

(2.26)

But again, interpreting Eq. (2.26) as Kirchhoffs current law for node x̂[k], we obtain an
electrical circuit as shown in Figure 2.11 where several sections of an SKF are shown.
Had we proceeded as in the example of Sec. 2.1, we would have got a circuit as in Fig. 2.12(right).
Using network transformation rules it is possible to convert the electrical network in Fig. 2.11
into the electrical network in Fig. 2.12(right) and vice-versa.
A more systematic approach to get the electrical network would be to write − ln pXY(x,y)
as

1

2
xT Gx− xT j + const., (2.27)

where G has the diagonal entries

Gk,k =
a[k + 1]2

σ2
U [k+1]

+
1

σ2
U [k]

+
c[k]2

σ2
W [k]

, (2.28)

and the non-diagonal entries

Gk−1,k = Gk,k−1 = − a[k]

σ2
U [k]

. (2.29)

All other entries of G are zero. The vector j has the entries

jk = −a[k + 1]mU [k+1]

σ2
U [k+1]

+
mU [k]

σ2
U [k]

+
c[k](y[k] − mW [k])

σ2
W [k]

, (2.30)

or

jk =
c[k]y[k]

σ2
W [k]

(2.31)

in case all means are zero. Solving Eq. (2.21) gives the system of linear equations

G · x̂ = j. (2.32)

Using the techniques from App. B we get the same electrical network as before (in fact, the
steps we performed in Eqs. (2.22)–(2.26) are equivalent to the steps performed in App. B.





Chapter 3

From a Forney-style Factor Graph
to an Electrical Network

After having studied some examples in Chapter 2, we give now the general derivation to
derive an electrical network solving a blockwise MAP problem stated with the help of an
FFG. The characteristics of the electrical networks used in this chapter are given in Sec. 1.7.

3.1 The Overall Lagrangian

We assume that we have an FFG which describes the joint density of the random variables
X = (X1, . . . ,Xn)T . The vector X consists of two parts X = (XestT ,XmeasT )T :

• Xest: random variables that have to be estimated,

• Xmeas: random variables that are measured.

Based on the measurement of Xmeas = xmeas we want to get the (blockwise) MAP estimate
X̂est of Xest. We assume that the FFG involves four types of function nodes: leaf-function
nodes1, summation-function nodes, equality-function nodes, and scaling-function nodes (see
Fig. 3.1)2.

pX(x) =
∏

t∈F1

ft(xt) ·
∏

t∈F2

ft(xt) ·
∏

t∈F3

ft(xt) ·
∏

t∈F4

ft(xt,1, xt,2), (3.1)

1By a leaf-function node ft(.) we mean a function node of degree one. We assume that − ln ft(.) is a convex
function.

2Note that here the summation-function node is defined in a symmetric way.

ft(x)
X X1

+

X2

=
X1 X3

X2

a
X1 X2X3

Figure 3.1: Different function nodes in an FFG: function node discribing a distribution
function, summation-function node (the only purpose of the arrows is to indicate the direction
of the summation), equality-function node, and scaling-function node.
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X
=⇒ x x

λ λ′

λ′λ

Figure 3.2: From FFG to electrical network: edge (case 1).

where F1, F2, F3, F4, are the sets of indices of the one-degree function nodes, of summation-
function nodes, of equality-function nodes, and of scaling-function nodes, respectively. xt

denotes the arguments of the function ft(.).

Given the measurement Xmeas = xmeas, we want to maximize pX(x), which is equivalent to
minimizing − ln pX(x). But this is equivalent to minimizing the Lagrangian

L̃ := −
∑

t∈F1

ln ft(xt) +
∑

t∈F2

λt

(
∑

s

xt,s

)

+
∑

t∈F3

∑

s>1

λt,s(xt,s − xt,1) (3.2)

+
∑

t∈F4

λt(xt,2 − atxt,1) +
∑

e∈E5

λe(xe − xmeas
e ), (3.3)

where E5 denotes the set of edges whose value is measured and xmeas
e the value of the measured

edge Xe. For deriving the general result it is convenient to symmetrize the expressions
involving the equality-function nodes and the scaling function nodes: for each such node we
introduce a help variable3 xh

t and obtain the new Lagrangian

L :=
∑

t∈F1

ln ft(xt) +
∑

t∈F2

λt

(
∑

s

xt,s

)

+
∑

t∈F3

∑

s

λt,s(xt,s − xh
t ) (3.4)

+
∑

t∈F4

(

λt,1(xt,1 − xh
t ) + λt,2(xt,2 − atx

h
t )
)

+
∑

e∈E5

λe(xe − xmeas
e ), (3.5)

The Lagrangian has been symmetrized so that for the help and measurement variables the
typical term are −λxh and −λxmeas, respectively, whereas for the other variables it is +λx.
In order to minimize L we set the gradient of L equal to zero. This is done in the next
sections.

3.2 Edges

3.2.1 Edges Between Two Constraint Function Nodes

Let X be the name of the edge variable that is connected to two function nodes. The
Lagrangian looks like

L = · · · + λx + · · · + λ′x + · · · (3.6)

3Introducing a help variable in a blockwise MAP problem does not change the solution as long as the help
variable is completely determined by the other random variables.
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X
x

λ′

=⇒ I = I(U)|U=xf(x) U

I

Figure 3.3: From FFG to electrical network: edge (case 2).

Deriving with respect to x and setting equal zero gives

λ + λ′
!
= 0 (3.7)

(3.8)

which can be interpreted as DC-transformer current law. The partial electrical network
representing this equation is shown in Fig. 3.2. In general, a DC-transformer is necessary as
the two sides may be on different potentials. Sometimes, DC-transformers can be removed
(see also Sec. 3.7). Important is however that the current λ flowing out on the left top
terminal flows in at the left bottom terminal; similarly for λ′. This will allow the multiport
representation in Ch. 6.

3.2.2 Edges Between a Leaf-Function Node and a Constraint-Function
Node

Let X be a variable edge that is connected to a one-degree function node f(.) and a constraint
function node. The Lagrangian looks like

L = · · · − ln f(x) + · · · + λ′x + · · · (3.9)

Deriving with respect to x and setting equal zero gives

− ∂

∂x
ln(f(x)) + λ′

!
= 0. (3.10)

which can be interpreted as a component current-voltage characteristic

I = I(U) = − ∂

∂x
ln f(x)

∣
∣
∣
∣
x=U

. (3.11)

The partial electrical network representing the above equation is shown in Fig. 3.3.

3.2.3 Edges Between Two One-Degree Function Nodes

This can be handled similarly to the case in Sec. 3.2.2.

3.3 Half-Edges

Let X be a variable edge that is connected to only one function node and assume that this
variable is measured: x = xmeas. The Lagrangian looks like

L = · · · + λ(x − xmeas) + · · · + λ′x + · · · (3.12)
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X
=⇒ xmeas x

λ λ′

Figure 3.4: From FFG to electrical network: half-edge.

X3X1

X2

+

x3

x2

x1

=⇒

λ

λ

λ

Figure 3.5: From FFG to electrical network: summation-function node.

Deriving L with respect to λ and x, respectively, and setting equal zero gives
{

x − xmeas !
= 0

λ + λ′
!
= 0

(3.13)

which can be interpreted as Kirchhoff voltage law and Kirchhoff current law, respectively.
The partial electrical network representing this equation is shown in Fig. 3.4.
If X is not measured, then one gets the same partial electric network as in Fig. 3.4 with the
voltage source removed.

3.4 Summation-Function Node

Let X1,X2, . . . ,Xn be the variable edges attached to a summation-function node. To see the
general principle, it is sufficient to consider the case n = 3. Then the Lagrangian looks like

L = · · · + λ(x1 + x2 + x3) + · · · (3.14)

Deriving L with respect to λ and setting equal zero gives

x1 + x2 + x3
!
= 0, (3.15)

which can be interpreted as Kirchhoff voltage law. The partial electrical network representing
this equation is shown in Fig. 3.5. Note that λ is the current going out at one branch of a
port and coming in at the other branch of the same port.4

4All ports of a summation function node are connected to partial electrical networks representing edges
and half-edges. The above statement then follows from the properties of the partial electrical networks that
replace edges and half-edges, see Secs. 3.2 and 3.3.
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X3
=

X1

X2

λ′
1 λ′

2 λ′
3

x1 x2 x3
x(h)

=⇒

λ′
1 λ′

2 λ′
3

Figure 3.6: From FFG to electrical network: equality-function node.

X2
a

X1

1 : aλ′
1

x1 x2xh axh=⇒

λ′
2

Figure 3.7: From FFG to electrical network: scaling-function node.

3.5 Equality-Function Node

Let X1,X2, . . . ,Xn be the variable edges attached to an equality-function node. To see the
general principle, it is sufficient to consider the case n = 3. Then the Lagrangian looks like

L = · · · + λ′1(x1 − xh) + λ′2(x2 − xh) + λ′3(x3 − xh) + · · · (3.16)

Deriving L with respect to λ′1, λ′2, λ′3, and xh respectively, and setting equal zero gives






x1 − xh !
= 0

x2 − xh !
= 0

x3 − xh !
= 0

−λ′1 − λ′2 − λ′3
!
= 0,

(3.17)

where the first three equations can be interpreted as Kirchhoff voltage law and the last one
as Kirchhoff current law. The partial electrical network representing this set of equations is
shown in Fig. 3.6.

3.6 Scaling-Function Node

Let X1 and X2 be the variable edges attached to the scaling-function node which enforces
X2 = aX1. The Lagrangian looks like

L = · · · + λ′1(x1 − xh) + λ′2(x2 − axh) + · · · (3.18)

Deriving L with respect to λ′1, λ′2, and xh, respectively, and setting equal zero gives






x1 − xh !
= 0

x2 − axh !
= 0

−λ′1 − aλ′2
!
= 0

(3.19)
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x3

x2

x1x1 x1

=⇒ =⇒

x3

x2

x1 x1

x3

x2

x1x1

Figure 3.8: From FFG to electrical network: stitching two partial electrical networks together.

=⇒
X1 X2

f(x1, x2) = g(x2 − x1)

g

X1 X2

X(h)

+

Figure 3.9: If a degree-two function node has a special form, i.e., f(x1, x2) = g(x2 − x1)
for some g(.) then this FFG replacement rules gives an FFG using elements that have been
treated in this report.

where the first two equations can be interpreted as Kirchhoff voltage law and the last one as
DC-transformer current law. The partial electrical network representing this set of equations
is shown in Fig. 3.7.

3.7 Putting It All Together

In the preceding sections we have derived the Lagrangian L with respect to all the different
variables and derived various partial electrical networks. To get the overall electrical network
one simple has to stitch these partial solutions together such that the filled triangles match.
Then the filled triangles can be taken away as shown in Fig. 3.8 for a partial electrical network
for an edge and a partial electrical network for a summation node. It is not difficult to see
that the currents are the same on the wires that were joined together. We conclude with the
following remarks:

• One can try to eliminate the 1 : 1 DC-transformers. (One is usually able to take away
quite a few.)

• One can also try to to eliminate the DC-transformers that are not 1 : 1 (see e.g. Sec. 2.4).

• The derived electrical networks are not unique in the following sense: if one elimi-
nates random variables that are determined by the remaining random variables (see
e.g. Sec. 2.4), then different electrical networks will result.

• The unit of the Lagrangian itself is power (or voltage squared divided by a resistor, or
voltage times current). We have chosen the estimated and measured random variables
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to be voltages. In this case the Lagrange multipliers turn out to be currents. Very
loosely speaking, they give the amount that must be “exchanged” between different
parts of an electrical network so that it is in a stationary condition.

• Note that the electrical networks derived in this chapter always give the correct block-
wise MAP solution, independent of the fact if the underlying FFG is a tree or not.
Important however is that the problem is convex and there exists only one optimum.
More about this can be found in Chs. 4 and 7) and e.g. in [13].

• It is possible to allow functions of the form f(x1, x2) = g(x2 − x1) or f(x1, x2) =
g(x2 − ax1). In the first case, the idea is to introduce the help variable x(h) = x2 − x1

and replace the function node f(x1, x2) by a summation node δ(x2 − x1 − x(h)), a leaf
function node g(x(h)) and the edge X(h) inbetween, see Fig. 3.9. Essentially, this type
of function node will result in a (generally nonlinear) element in the electrical network.
The second case is treated similarly, using in addition a DC-transformer.

• Function nodes as discussed in the previous point occur especially in FFGs which are
not trees. The overall function of the FFG is usually not a probability density or pmf
anymore, but simply a non-negative function that could be turned into a probability
density or pmf using proper normalization.





Chapter 4

The Max-Product Algorithm and
the Sum-Product Algorithm

As mentioned in Sec. 1.4, the max-product algorithm (MPA) can be used to solve blockwise
MAP problems in an exact way in the cases where the FFG is a tree. In the case of loopy
FFGs, this is not anymore the case (but Freeman and Weiss give cases where the estimate
is correct [13]). Similar things can be said about the sum-product algorithm (SPA). As
already mentioned in Sec. 1.4, the case of jointly Gaussian random variables is very special:
the blockwise MAP estimation problem is equivalent to the symbolwise MAP estimation
problem, and the MPA and SPA are equivalent (see also [8]).
In the previous chapter we started with an FFG and derived an electrical network which
solves the blockwise MAP estimation problem of the FFG. The purpose of this chapter is to
show that network simplification (when the underlying FFG is a tree) corresponds one-to-one
to the MPA (we saw two examples in Fig. 2.4 of Example 1 in Sec. 2.1 and in Fig. 2.8 of
Example 3 in Sec. 2.3).
Note however that the electrical networks given in Ch. 3 always give the correct blockwise
MAP solution, independent of the fact if the underlying FFG is a tree or not. Important
however is that the problem is convex and there exists only one optimum (see also Ch. 7).
We have already seen in Ch. 3, that the negative derivative of the exponent of a density is an
important function. We will see that it is a very handy function when performing the MPA.
We therefore introduce the score function s(x) of a message µ(x)

s(x) = − ∂

∂x
ln(µ(x)). (4.1)

From the score function s(x) we can get back to the message µ(x) by the formula

µ(x) ∝ exp

(

−
∫ x

0
s(x′) dx′

)

. (4.2)

The proportionality constant (stemming basically from the integration constant) can be cho-
sen so that µ(x) fulfills a certain normalization, e.g.

∫ +∞
−∞ µ(x) dx = 1. More about score

functions can be found e.g. in [14].1, see also Sec. 5.1. An important special case is a Gaus-
sian distributed message µ(x) ∝ exp(−(x − m)2/2σ2), whose score function and the inverse

1Note that in the book by Cover and Thomas the score function is defined as the positive derivative of the
exponent of a density.
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=pX1
(x1)

pX2
(x2)

X3X1
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m3(x3)

µ2(x2)

µ1(x1)

(a)

=⇒ =⇒ =⇒
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U3
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R1 R2
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I3
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Uq3
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Figure 4.1: (a) Part of an FFG (the dotted box indicates the rest of the FFG. (b) Partial
electrical network. Simplifying this part of the electrical network corresponds to calculating
the message µ3(x3). We used the definitions Iq1 := Uq1/R1, Iq2 := Uq1/R2, R3 := (R1||R2) =
R1R2/(R1 + R2), Iq12 := Iq1 + Iq2.

score functions are, respectively,

s(x) =
(x − m)

σ2
=

1

σ2
x − m

σ2
, (4.3)

s−1(y) = σ2y + m. (4.4)

In this case, the score function graph is a straight line2 with slope 1/σ2, i.e. the more confident
the message is (the smaller σ2 is), the steeper is the score function.
In this chapter we will assume that the negative exponents of the messages are strictly convex,
meaning that the score function is strictly monotonically increasing; this simplifies the proofs.
But assuming only convexity would be enough to prove the same statements.

4.1 Examples

4.1.1 Equality-Function Node (Example)

We start with the simple example given in Fig. 4.1(a). We assume pX1(x1) and pX2(x2) are
Gaussian distributions, so that the partial electrical network corresponding to them can be
represented by a real voltage source (i.e. an ideal voltage source and a linear resistor in series),
see Fig. 4.1(b). As we will see in this chapter, simplifying this part of the electrical network by
following the steps indicated in Fig. 4.1 is then equivalent to calculating the message µ3(x3).

4.1.2 Summation-Function Node (Example)

This example is akin to the example given in Sec. 4.1.1, in the part of the FFG under
consideration the equality-node function has been exchanged by a summation-function node
(see Fig. 4.2(a)). This is yet another instance of the general fact that we will see later on,
namely that calculating the message µ3(x3) in the MPA corresponds to the electrical network
simplifications shown in Fig. 4.2(b).

4.2 The General Case

We assume that the underlying FFG is a tree and that we are interested in the estimate of
a specific variable X. Then the MPA starts sending messages at the the leaf function nodes

2This fact will be used in Sec. 4.3.
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Figure 4.2: Same as Fig. 4.1, but now a summation-function node is under consideration.
We used the definitions Uq3 := Uq1 + Uq2, R3 = R1 + R2.

U = x̂U = x̂ =⇒

Figure 4.3: Left: the desired estimate is the voltage across a (possibly) complicated electrical
network. Right: after the electrical network simplifications, which correspond to the MPA.
Electrically, the two-terminal is not changed in the whole process.

and processes the messages in the interior according to the MPA rules until the edge X has
received messages from both sides.

The aim of this section is to show that if the blockwise MAP problem is translated into an
electrical network, the message passing necessary to get the estimate for X corresponds to
simplifying the electrical network until the network consists only of a simple electrical element
between the two nodes where the voltage corresponding to the estimate of X is measured.
This is depicted in Fig. 4.3(left) where the desired estimate can be measured between the
two nodes; inbetween is a (possibly) complicated electrical network. Simplifying the network
between the two nodes the gives the electrical network in Fig. 4.3(right). Note that in the
whole process we did not change the two nodes related to X, so as a two-terminal it behaves
the same before and after the simplification. In the simplified electrical network it is trivial
to read off the estimate from the remaining component between the two nodes, but nature
gives us the possility to read off the voltage already across the unsimplified network.
The following subsections discuss step by step how the electrical network simplification pro-
cess works, and they show its relation to the MPA.

4.2.1 Leaf Function Node (The General Case)

Fig. 4.4(left) shows the FFG of a leaf function node f1(x1). According to the MPA, the
message µ1(x1) out of a leaf function node is the function itself f1(x1) itself. The score
function s1(x1) of µ1(x1) is calculated according to Eq. (4.1).
Fig. 4.4(right) shows the corresponding electrical network. We have seen in Sec. 3.2.2 that
the current-voltage characteristic of a network element corresponds to the negative derivative
of the logarithm of the exponent of the function f1(.), i.e. I1(U1) = s1(U1), where s1(.) is the
score function corresponding to f1(.) as in the paragraph above. So the score function of the
message and the current-voltage characteristic coincide and this will remain like this in the
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Figure 4.4: Leaf function node f1(x1): FFG and electrical network.
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Figure 4.5: Left: MPA message-passing in the case of a equality-function node. Right:
Equivalent simplification of parallelly connected partial electrical networks.

following steps.

As there is a one-to-one correspondence between messages and their score functions we can
go back and forth between the two descriptions. In this case it is simple but important to
note that the current-voltage characteristic describes (similar to the message) all we need to
now about this part of the electrical network.

4.2.2 Equality-Function Node (The General Case)

Consider the FFG shown in Fig. 4.5(left). From the messages µ1(x1) and µ2(x2) we would
like to calculate the message µ3(x3) according to the MPA. By definition of the MPA, we
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get3

µ3(x3) :∝ max
x1,x2

f(x1, x2, x3) · µ1(x1) · µ2(x2) (4.5)

= max
x1,x2

δ(x3 − x1) · δ(x3 − x2) · µ1(x1) · µ2(x2) (4.6)

∝ max
x1,x2

[x3 − x1 = 0] · [x3 − x2 = 0] · µ1(x1) · µ2(x2) (4.7)

= µ1(x3) · µ2(x3). (4.8)

Using the score functions (see Eq. 4.1) we obtain (letting k be the appropriate constant)

s3(x3) := − ∂

∂x3
ln µ3(x3) (4.9)

= − ∂

∂x3
ln
(
k · µ1(x3) · µ2(x3)

)
(4.10)

= − ∂

∂x3
ln
(
µ2(x3)

)
− ∂

∂x3
ln
(
µ2(x3)

)
(4.11)

= s1(x3) + s2(x3), (4.12)

which is a simple addition of the score functions.
We switch the perspective now and look at the the electrical network equivalent in Fig. 4.5(right)
of the FFG in Fig. 4.5(left). In the way we started in Sec. 4.2.1 and by induction in Secs. 4.2.2,
4.2.3, and 4.2.4, we see that the score function s1(x1) of the message µ1(.) corresponds to
the current-voltage characteristic of the “electrical network part 1” and the score function
s2(x2) of the message µ2(.) corresponds to the current-voltage characteristic of the “electrical
network part 2”. But combining two parallel electrical network parts whose current-voltage
characteristic is known is very simple, namely

I3(U3) = I1(U3) + I2(U3). (4.13)

(Eq. (4.13) is obviously equivalent to Eq. (4.12).) Therefore, we can replace the two parallel
electrical networks by one electrical network with current-voltage characteristic I3(U3).

4.2.3 Summation-Function Node (The General Case)

Consider the FFG shown in Fig. 4.6(left). From the messages µ1(x1) and µ2(x2) we would
like to calculate the message µ3(x3) according to the MPA. By definition of the MPA, we get

µ3(x3) :∝ max
x1,x2

f(x1, x2, x3) · µ1(x1) · µ2(x2) (4.14)

= max
x1,x2

δ(x3 − x1 − x2) · µ1(x1) · µ2(x2) (4.15)

∝ max
x1,x2

[x3 − x1 − x2 = 0] · µ1(x1) · µ2(x2) (4.16)

= max
x1

µ1(x1) · µ2(x3 − x1). (4.17)

This is obviously equivalent to

− ln µ3(x3) = − ln
(
max

x1

(
µ1(x1) · µ2(x3 − x1)

))
= min

x1

(
− ln µ1(x1) − ln µ2(x3 − x1)

)
.

(4.18)

3When S is a statement, then [S] equals 1 if the statement is true, otherwise [S] equals 0.
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Figure 4.6: Left: MPA message-passing in the case of a summation-function node. Right:
Equivalent simplification of serially connected partial electrical networks.

Assuming that both − ln µ1(.) and − lnµ2(.) are (strictly) convex functions, i.e., that both
s1(.) and s2(.) are (strictly) increasing functions, we introduce the function4

x∗1(x3) := arg min
x1

(
− ln µ1(x1) − ln µ2(x3 − x1)

)
, (4.19)

which gives the x1 that minimizes − lnµ1(x1) − ln µ2(x3 − x1) for a given x3.
5 On the other

hand, to find the minimizing x1 of − ln µ1(x1) − ln µ2(x3 − x1) for a given a x3, we derive
with respect to x1 and set equal to zero.

0
!
=

∂

∂x1

(
− ln µ1(x1) − ln µ2(x3 − x1)

)
= s1(x1) − s2(x3 − x1). (4.20)

Combining Eqs. (4.19), and (4.20) we have

s1(x
∗
1(x3)) = s2(x3 − x∗1(x3)), (4.21)

and combining Eqs. (4.18) and (4.19) we get

− lnµ3(x3) = − ln µ1(x
∗
1(x3)) − ln µ2(x3 − x∗1(x3)). (4.22)

To find µ3(.) and s3(.) we differentiate Eq. (4.22) with respect to x3:

s3(x3) =
∂

∂x3

(
− ln µ3(x3)

)
(4.23)

=
∂

∂x3

(
− ln µ1(x

∗
1(x3)) − ln µ2(x3 − x∗1(x3))

)
(4.24)

= s1(x
∗
1(x3)) · x∗

′

1 (x3) + s2(x3 − x∗1(x3)) ·
(
1 − x∗

′

1 (x3)
)

(4.25)

= s2(x3 − x∗1(x3)). (4.26)

4The notation x∗
1(.) has nothing to do with Lagrange duality as in App. C.

5See the comment about convexity and strict convexity in the introductory part to this chapter. If we have
“only” convexity, then arg minx1

would give back a set.



The Max-Product Algorithm and the Sum-Product Algorithm 35

a
x2x1

µ1(x1)

EN EN
Part 2

I1

U1

I2

U2

Part 1

=⇒

=⇒

µ2(x2)µ1(x1) µ2(x2)

I1(U1) = s1(U1) I2(U2) = s2(U2)

µ2(x2)

1 : a

Figure 4.7: Left: MPA message-passing in the case of a scaling-function node. Right: Equiv-
alent simplification of a partial electrical network and a DC-transformer (a = 0.5 here).

With Eqs. (4.21) and (4.26) we conclude that

s1(x
∗
1(x3)) = s2(x3 − x∗1(x3)) = s3(x3). (4.27)

Going back to electrical networks we see that the electrical network equivalent of the FFG
in Fig. 4.6(left) is the one in Fig. 4.6(right). In the way we started in Sec. 4.2.1, and by
induction in Secs. 4.2.2, 4.2.3, and 4.2.4, we see that the score function s1(x1) of the message
µ1(.) corresponds to the current-voltage characteristic of the “electrical network part 1” and
the score function s2(x2) of the message µ2(.) corresponds to the current-voltage characteristic
of the “electrical network part 2”. But combining two serially connected electrical network
parts whose voltage-current characteristic6 is known is very simple, namely

U3(I3) = U1(I3) + U2(I3), (4.28)

(Eq. (4.28) is obviously equivalent to Eq. (4.27), but was derived with much more ease.)
Therefore, we can replace the two serial electrical networks by one electrical network with
current-voltage characteristic U3(I3).

4.2.4 Scaling-Function Node (The General Case)

Consider the FFG shown in Fig. 4.7(left). From the message µ1(x1) we would like to calculate
the message µ2(x2) according to the MPA. By definition of the MPA, we get

µ2(x2) :∝ max
x1

f(x1, x2) · µ1(x1) (4.29)

= max
x1

δ(x2 − ax1) · µ1(x1) (4.30)

∝ max
x1

[x2 − ax1 = 0] · µ1(x1) (4.31)

= µ1(x2/a), (4.32)

and therefore,

s2(x2) = − ∂

∂x2

(
ln µ2(x2)

)
= − ∂

∂x2

(
ln µ1(x2/a)

)
=

1

a
· s1(x2/a). (4.33)

6Note that inverting the current-voltage characteristic I(U) gives the voltage-current characteristic U(I).
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Figure 4.8: Left: In a FFG that is a tree, cutting any edge separates the FFG into two
parts. The message µ(.) (or equivalently the score function) represents what part 2 has to
know about part 1. Right: In an electrical network derived from an FFG which is a tree, the
current-voltage characteristic I1(U1) represents what part 2 has to know about part 1.

In the context of electrical networks we see that the electrical network equivalent of the FFG
in Fig. 4.7(left) is the one in Fig. 4.7(right). In the way we started in Sec. 4.2.1, and by
induction in Secs. 4.2.2, 4.2.3, and 4.2.4, we see that the score function s1(x1) of the message
µ1(.) corresponds to the current-voltage characteristic of the “electrical network part 1”. But
combining the partial electrical network, whose current-voltage characteristic is known, and
the DC-transformer is very simple, namely

I2(U2) =
1

a
· I1(U2/a), (4.34)

(Eq. (4.34) is obviously the same as Eq. (4.33).) Therefore, we can replace the a partial elec-
trical networks and a DC-transformer by one electrical network with current-voltage charac-
teristic I2(U2).

4.2.5 Concluding Remarks (The General Case)

The update rules presented in the previous subsections clearly show the advantage of the
score function associated to a message. The update rules are very simple geometrically:

• At an equality-function node the score functions have to be added vertically.

• At a summary-function node the score functions have to be added horizontally.

• At a scaling-function node the score function has to be scaled horizontally and vertically.

Summarizing, the message function (or equivalently the score function or the current-voltage
characteristic) represents the influence of one part of an FFG (network) on the other part of
the FFG (network), see Fig. 4.8.

Note that in the case of jointly Gaussian random variables the score functions are linear
functions where

• the value where the voltage crosses the (horizontal) voltage-axis corresponds to the
mean,

• the slope corresponds to the inverse variance, i.e., the steeper the slope the higher the
certainty of the message is.
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Figure 4.9: Left: The straight line L3 is the vertical addition of the straight lines L1 and L2.
Right: interpreting the vertical addition of the line L2 to the the line L1 as an affine mapping
from L1 to L3.

4.3 Matrix-Method for Updating Messages

The method we present in this section works only for the case of jointly Gaussian random
variables. We take advantage of the fact that the score function of all initial messages are
linear functions and that the update rules modify linear functions in an affine way. Therefore
all messages are linear functions.

4.3.1 Example (Equality-Function Node)

Consider an equality-function node of an FFG as given in Fig. 4.5(left). From the messages
µ1(x1) and µ2(x2) we would like to calculate µ3(x3). As we have seen in Sec. 4.2.2, the update
rule is

s3(x3) = s1(x3) + s2(x3), (4.35)

where s1(.), s2(.), and s3(.) are the score functions of the messages µ1(.), µ2(.), and µ3(.),
respectively. In terms of current-voltage characteriscs this is

I3(U3) = I1(U3) + I2(U3). (4.36)

Geometrically speaking, we have to add the two curves I1(.) and I2(.) (or s1(.) and s2(.))
vertically. As mentioned above, in the case of jointly Gaussian random variables, all current-
voltage characteristics (all score functions) are linear functions. The graph of I1(.), i.e. the
point set L1 := {(U, I) : U ∈ R, I = I1(U)}, is a straight line and can be described in
a parametrized way as L1 = {(U1(τ), I1(τ)) = (k11τ + k12, k21τ + k22) : τ ∈ R} for some
constants k11, k12, k21, k22. Assume that I2(U2) is given in the form I2(U2) = G2U2 + Iq2.
The addition in Eq. (4.36) is then in geometrical terms a modification of the straight line L1

to the straight line

L3 := {(U, I) : U ∈ R, I = I3(U)} = {(U3(τ), I3(τ) : τ ∈ R}, (4.37)

where

U3(τ) := U1(τ), (4.38)

I3(τ) := I1(τ) + G2U1(τ) + Iq2, (4.39)
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or, rewritten,

(
U3(τ)
I3(τ)

)

=

(
1 0

G2 1

)

·
(

U1(τ)
I1(τ)

)

+

(
0

Iq2

)

. (4.40)

For an illustration, see Fig. 4.9. The matrix multiplication describes a scaling operation,
whereas the vector addition is a translation.7 But instead of having a matrix multiplication
and a vector addition we would prefer to have only a matrix multiplication in order to simplify
the concatenation of several such operations. To achieve this goal we use a well-known trick:
we embed this two-dimensional real space in a three dimensional real space. If the the former
space does not go through the origin of the latter, the operations of scaling and translation
can both be expressed as scalings. To be specific, we embed the (U, I)–plane in a three-
dimensional space (x, y, z) so that the (U, I)–plane is parallel to the (x, y)–plane with z = 1.8

The reformulated Eq. (4.40) reads then





U3(τ)
I3(τ)

1



 =





1 0 0
G2 1 Iq

0 0 1



 ·





U1(τ)
I1(τ)

1



 . (4.41)

To conclude this subsection we remark that there are also other possibilities to describe a
straight line; e.g. every straight line in the (U, I)–plane is the solution of AU + BI + C = 0
for some constants A, B, and C. One would then have to consider how to update these three
constants in the different function nodes.

4.3.2 The General Case

Applying the principle we introduced in Sec. 4.3.1 to the different function nodes, we obtain
the following list.

• (Equality-Function Node) Assume that I2(U2) = G2U2 + Iq. We reformulate
Eq. (4.13) to





U3(τ)
I3(τ)

1



 =





1 0 0
G2 1 Iq

0 0 1



 ·





U1(τ)
I1(τ)

1



 . (4.42)

• (Summation-Function Node) Assume that U2(I2) = R2I2 + Uq. We reformulate
Eq. (4.28) to





U3(τ)
I3(τ)

1



 =





1 R2 Uq

0 1 0
0 0 1



 ·





U1(τ)
I1(τ)

1



 . (4.43)

7Note that U1(τ ) and I1(τ ) actually need not to be linear, only L2 has to be a straight line. But we are
not pursuing this point further.

8Instead of this embedding of a two-dimensional space in a three-dimensional space we could have embedded
the (affine) two-dimensional space in the projective two-dimensional space: the resulting equations would have
been the same.
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• (Scaling-Function Node) We reformulate Eq. (4.34) to




U2(τ)
I2(τ)

1



 =





a 0 0
0 a−1 0
0 0 1



 ·





U1(τ)
I1(τ)

1



 . (4.44)

The next subsection shows how these rules can be used repeatedly.

4.3.3 The Matrix-Method for Updating Messages of the Scalar Kalman
Filter

To examplify these calculations, we consider the messages on the main horizontal processing
edges of the Kalman filter FFG, see Fig. 2.9 with details in Fig. 2.10. Assume the message
at edge X[k − 1] is given by the straight line L1 := {(U1(τ), I1(τ)) : τ ∈ R}. Then9





U2(τ)
I2(τ)

1



 = T2←1 ·





U1(τ)
I1(τ)

1



 =





a[k] 0 0
0 a[k]−1 0
0 0 1



 ·





U1(τ)
I1(τ)

1



 . (4.45)

The message coming from the b[k]-scaling function node to the summation-function node is
U(I) = b[k]2σ2

U [k]I + b[k]mU [k]:





U3(τ)
I3(τ)

1



 = T3←2 ·





U2(τ)
I2(τ)

1



 =





1 b[k]2σ2
U [k] b[k]mU [k]

0 1 0
0 0 1



 ·





U2(τ)
I2(τ)

1



 . (4.46)

The message coming from the c[k]-scaling function node to the summation-function node is
I(U) = c[k]2σ−2

W [k]U + c[k]σ−2
W [k](mW [k] − y[k]):





U4(τ)
I4(τ)

1



 = T4←3 ·





U3(τ)
I3(τ)

1



 =





1 0 0

c[k]2σ−2
W [k] 1 c[k]σ−2

W [k](mW [k] − y[k])

0 0 1



 ·





U3(τ)
I3(τ)

1



 .

(4.47)

The whole iteration through a Kalman filter section thus can be summarized as




U4(τ)
I4(τ)

1



 = T4←3 ·T3←2 ·T2←1 ·





U1(τ)
I1(τ)

1



 . (4.48)

4.3.4 The Higher-Dimensional Case

Until now we assumed the edge variable X to be a scalar, so U and I were scalars. But the
method can be carried over to the vector case.10 Assume that the characteristic I1(U1) is
described by the plane L1 := {(U1(τ ), I1(τ )) : τ ∈ R

n} The rules of Sec. 4.3.2 get modified
to11

9Note that U or U(τ ) are voltages whereas U [k] is the random variable denoting the SKF input.
10We use I to denote the current vector and 1 to denote the identity matrix. Additionally, note that U or

U(τ ) are voltage vectors (voltage vector function), whereas U[k] is the random vector of denoting the Kalman
filter input and the edge in the FFG.

11If the matrix is not square or not invertible, one takes the Moore-Penrose generalized inverse as defined
in App. F.
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• (Equality-Function Node) Assume that I2(U2) = G2U2 + iq. Then




U3(τ )
I3(τ )

1



 =





1 0 0
G2 1 iq
0 0 1



 ·





U1(τ )
I1(τ )

1



 . (4.49)

• (Summation-Function Node) Assume that U2(I2) = R2I2 + Uq. Then




U3(τ )
I3(τ )

1



 =





1 R2 Uq

0 1 0
0 0 1



 ·





U1(τ )
I1(τ )

1



 . (4.50)

• (Scaling-Function Node) We consider scaling by A. Then




U2(τ )
I2(τ )

1



 =





A 0 0
0 A−T 0
0 0 1



 ·





U1(τ )
I1(τ )

1



 . (4.51)

4.3.5 The Matrix-Method for Updating Messages of the Vector Kalman
Filter

The update rules for the scalar Kalman filter in Sec. 4.3.3 can be reformulated to get the
vector Kalman filter. Assume the message at edge X[k − 1] is given by the plane L1 :=
{(U1(τ ), I1(τ )) : τ ∈ R

n}, where n is the dimension of X[k − 1]. Then




U2(τ )
I2(τ )

1



 = T2←1 ·





U1(τ )
I1(τ )

1



 =





A[k] 0 0
0 A[k]−T 0
0 0 1



 ·





U1(τ )
I1(τ )

1



 . (4.52)

The message coming from the B[k]-scaling function node to the summation-function node is
U(I) = B[k]KU[k]B[k]T I + B[k]mU[k]:





U3(τ )
I3(τ )

1



 = T3←2 ·





U2(τ )
I2(τ )

1



 =





1 B[k]KU[k]B[k]T B[k]mU[k]

0 1 0
0 0 1



 ·





U2(τ )
I2(τ )

1



 . (4.53)

The message coming from the C[k]-scaling function node to the summation-function node is
I(U) = C[k]TK−1

W[k]C[k]U + C[k]TK−1
W[k](mW[k] − y[k]):





U4(τ )
I4(τ )

1



 = T4←3 ·





U3(τ )
I3(τ )

1



 (4.54)

=





1 0 0

C[k]TK−1
W[k]C[k]U 1 C[k]TK−1

W[k](mW[k] − y[k])

0 0 1



 ·





U3(τ )
I3(τ )

1



 . (4.55)

The whole iteration through a Kalman filter section thus can be summarized as




U4(τ )
I4(τ )

1



 = T4←3 ·T3←2 · T2←1 ·





U1(τ )
I1(τ )

1



 . (4.56)
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4.3.6 Renormalization

What remains to consider is how to start the whole process and how to extract at the end
the desired information.

There are two practical ways to start the process. If the first function node is an equality-
function node, the plane L1 should be the U-axis.12 Parametrized with τ , the vector case
reads

U(τ ) := k · τ , (4.57)

I(τ ) := 0. (4.58)

for an arbitrary scalar constant k (with correct dimension). If the first function node is a
summation function node, the plane L1 should be the I-axis.13 Parametrized with τ , the
vector case reads

U(τ ) := 0, (4.59)

I(τ ) := k · τ . (4.60)

for an arbitrary scalar constant k (with correct dimension).

Suppose now that at some point we get





U′(τ )
I′(τ )

1



 =





M1 M2 m3

M4 M5 m6

0 0 1









U(τ )
I(τ )

1



 , (4.61)

and that the initialization was U(τ ) := 0, I(τ ) := k · τ as in Eq. (4.58) so that





U′

I′

1



 =





M1 M2 m3

M4 M5 m6

0 0 1









0
k · τ

1



 , (4.62)

which is equivalent to

U′ = kM2τ + m3, (4.63)

I′ = kM5τ + m6. (4.64)

We would like to eliminate the parameters τ . From Eq. (4.64) we get14

U′(I′) = M2M
−1
5 I′ + m3 − M2M

−1
5 m6, (4.65)

I′(U′) = M5M
−1
2 U′ + m6 −M5M

−1
2 m3. (4.66)

To find the estimate we simple have to evaluate U′(0) (the “zero-crossing point” of the in-
verted score function) and the error covariance matrix is M2M

−1
5 (the “slope” of the inverted

score function).15

12This plane guarantees that I3(U3) = I2(U3).
13This plane guarantees that U3(I3) = U2(I3).
14Note that by eliminating τ , the parameter k disappears also. This must be so, as it was anyway arbitrary.
15This procedure is also useful in bringing the plane description into the “standard forms” required in

Sec. 4.3.4 for the description of I2(U2) and U2(I2), respectively.
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In general, to find the matrices and vectors in Eq. (4.65) we need to compute M2M
−1
5 ;

whereas to evaluate the matrices and vectors in Eq. (4.66) we need to compute M5M
−1
2 . We

now focus on the former case and show how the value of M2M
−1
5 can be propagated so that

inverting large matrices can sometimes be avoided. This is e.g. the case in Kalman filtering
when the measured output has a lower dimension than the state space. Let M := M2M

−1
5

and see how this matrix has to be updated in the various function nodes.

• (Equality-Function Node)




× M′
2 ×

× M′
5 ×

× × ×



 :=





1 0 0
G 1 iq
0 0 1



 ·





× M2 ×
× M5 ×
× 0 ×



 =





× M2 ×
× GM2 + M5 ×
× × ×



 . (4.67)

We conclude that

M′ := M′
2M
′
5
−1

= M2(GM2 + M5)
−1 = M2M

−1
5 (GM2M

−1
5 + 1)−1 (4.68)

= M(1+ GM)−1. (4.69)

Assume that G := CTK−1C as in Kalman filtering. Using the Matrix-Inversion Lemma
(see e.g. p. 656 of [15])

(H1 + H2H3H4)
−1 = H−1

1 − H−1
1 H2

(
H4H

−1
1 H2 + H−1

3

)
H4H

−1
1 , (4.70)

where H1 and H2 must be non-singular square matrices (not necessarily of the same
size), we get (with H1 := 1, H2 := CT , H3 := K−1, and H4 := CM)

M′ = M(1+ CTK−1CM)−1 = M
[1− 1CT

(
CM1CT + K

)−1
CM1] (4.71)

= M− MCT
(
CMCT + K

)−1
CM, (4.72)

a formula which is especially easy in the case of scalar measurements as then the
inversion turns out to be a scalar inversion.

• (Summation-Function Node)




× M′
2 ×

× M′
5 ×

× × ×



 =





1 R Uq

0 1 0
0 0 1



 ·





× M2 ×
× M5 ×
× 0 ×



 =





× M2 + RM5 ×
× M5 ×
× × ×



 . (4.73)

We conclude that

M′ := M′
2M
′
5
−1

=
(
M2 + RM5

)
M−1

5 = M2M
−1
5 + R = M + R. (4.74)

• (Scaling-Function Node) We consider scaling by A. Then




× M′
2 ×

× M′
5 ×

× × ×



 =





A 0 0
0 A−T 0
0 0 1



 ·





× M2 ×
× M5 ×
× 0 ×



 =





× AM2 ×
× A−TM5 ×
× × ×



 . (4.75)

We conclude that

M′ := M′
2M
′
5
−1

= AM2

(
A−TM5

)−1
= AM2M

−1
5 AT = AMAT . (4.76)

We remark that the update of M to M′ is only complicated in the first case whereas it is
very straightforward in the second and third cases. The update rules for M5M

−1
2 would be

derived similarly, but now the summation-function node gives the “complicated rule”.



The Max-Product Algorithm and the Sum-Product Algorithm 43

4.4 Some Conclusions About the Score Function

It seems that the score function is very suitable for updating the messages of the MPA (for
any random variables!). The proof with the help of electrical networks was especially simple.
And the resulting rules are very simple geometrically and can be used to get some intuition
about what is going on e.g. in a Kalman filter (see also the comments about the score function
in the scalar case after Eq. (4.4)).
It is important that we have always assumed that the messages have a convex negative
exponent, meaning that the score function is monotonically increasing. What happens in
more general contexts, is one of the questions raised in Sec. 7.





Chapter 5

Miscellaneous Topics

This chapter discusses various topics related to the derivation of electrical networks from
FFGs as shown in Ch. 3.

5.1 Nonlinear Resistors and a Dictionary between Probability
Density Functions and I(U)–characteristics

We have seen that a function node f(.) as in Fig. 3.3 corresponds to a generalized resistor
with characteristic

I = I(U) = s(U). (5.1)

with the score function1

s(x) =
∂

∂x
(− ln f(x)) = −

∂
∂xf(x)

f(x)
. (5.2)

The I(U)–characteristic equals the score function of the pdf. On the other hand, given an
I(U)–characteristic, the corresponding function is

f(x) ∝ exp

(

−
∫ U

0
I(U ′) dU ′

)∣
∣
∣
∣
U=x

. (5.3)

If f(.) is a density then the proportionality constant (which comes from the integration
constant) can be chosen so as to guarantee

∫ +∞
−∞ f(x) dx = 1.

In general, s(.) is non-linear. Then − ln f(.) is a (strictly) convex function if and only if s(.)
is a (strictly) increasing function. If f(.) is a Gaussian distribution function, then s(.) is a
linear function and − ln f(.) is a quadratic function.
Tab. G.3 lists different distribution functions and their corresponding current-voltage char-
acteristics.

5.2 The Vector Case

The vector case basically does not pose any additional problems compared to the scalar
case. This is because the blockwise MAP estimate of the joint density maximizes over all

1See also Footnote 1 on page 29.
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Figure 5.1: Measurement of the estimate x̂1 in (a) and measurement of the error variance
E[(X1 − X̂1)

2] in (b) in the electrical network of Example 1 of Sec. 2.1 (see Fig. 2.2).
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Figure 5.2: Measurement of the estimate x̂1 in (a) and measurement of the expected squared
error E[(X1 − X̂1)

2] in (b) of the modified electrical network of Example 1 of Sec. 2.1 (see
Fig. 2.4). Note that in the electrical network in part (a) no current flows.

arguments jointly. So, e.g. maximizing with respect to x =
(
x1, x2, x3, . . . , xn) is equivalent

to maximizing with respect to
(
(x1, x2), (x3), (x4, x5, x6), . . . , (xn)

)
.

In the case of jointly Gaussian random variables, the scalar MPA is equivalent to the scalar
MSA and the vector MPA is equivalent to the vector MSA.

5.3 The Error Covariance Matrix in the Case of Jointly Gaus-
sian Random Variables

In the case of jointly Gaussian random variables, not only the blockwise MAP estimates
can be measured in the network, but also the the entries of the error covariance matrix can
be measured. Because in the case of jointly Gaussian random variables the estimates are
bias-free, i.e. E

[
X − X̂

]
= 0 (see e.g. App. A), we have

E
[
{(X1 − X̂1) − E[X1 − X̂1]}{(X2 − X̂2) − E[X2 − X̂2]}

]
= E

[
(X1 − X̂1)(X2 − X̂2)

]
. (5.4)

5.3.1 Introductory Example

To start, we consider again the example from Sec. 2.1 where we had the estimation vector
(

x̂1

x̂2

)

=

(
R1

R1+R2
y

R2
R1+R2

y

)

(5.5)

and error covariance matrix
(

E
[
(X1 − X̂1)

2
]

E
[
(X1 − X̂1)(X2 − X̂2)

]

E
[
(X2 − X̂2)(X1 − X̂1)

]
E
[
(X2 − X̂2)

2
]

)

=

(
+ R1R1

R1+R2
− R1R1

R1+R2

− R1R1
R1+R2

+ R1R1
R1+R2

)

. (5.6)
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Figure 5.3: (a) Alternative way (compared to Fig. 2.2(b)) of doing the measurement needed
for getting the expected squared error E[(X1−X̂1)

2]. (b) Measurement of the error covariance
E[(X1 − X̂1)(X2 − X̂2)].

Fig. 5.1(a) shows what measurements have to be performed to get the estimate x̂1, whereas
Fig. 5.1(b) shows the measurements needed to get E[(X1 − X̂1)

2]. The first result follows
from the way we set up the electrical network whereas the second result has to be proven
additionally; this is the aim of this section. Note that for the second measurements all voltage
sources have to be short-circuited and all current sources have to be opened. As long as we
do not remove the nodes between which we have x̂1, we can modify2 the network as we did
at the end of Sec. 2.1. Performing then the measurements is nearly trivial as can be seen
in Fig. 5.2. Finally, Fig. 5.3(a) shows how to apply a current source and a voltagemeter to
measure E[(X1 − X̂1)

2] and E[(X1 − X̂1)(X2 − X̂2)]: the ratio of measured voltage divided
by the applied current gives the desired value.

5.3.2 The General Case

After this introductory example we are ready to look at the general case. Assume that X
and Y have the joint Gaussian density and can be written as3

pXY(x,y) ∝ exp

(

−1

2

(
x −mX

y − mY

)T (
KXX KXY

KT
XY KYY

)−1(
x− mX

y − mY

))

. (5.7)

We define

(
DXX DXY

DT
XY DYY

)

:=

(
KXX KXY

KT
XY KYY

)−1

, (5.8)

and, as shown on p. 656 of [15], one has

DXX =
(
KXX − KXYK−1

YYKT
XY

)−1
, (5.9)

DXY = −DXXKXYK−1
YY. (5.10)

2The statement about what modifications are allowed in the case of the measurement of diagonal entries of
the error covariance matrix can be extended to what modifications are allowed in the case of the measurement
of non-diagonal entries.

3Applying the results of Sec. 1.6 one can transform a distribution containing a jointly Gaussian density
and some Dirac-delta terms into a jointly Gaussian density. The two densities are equal in the limit β → 0.
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xj =⇒ xj I0xj xj

Figure 5.4: Changes that have to be applied to the partial electrical network corresponding
to the variable edge Xj , where I0 := 1. (Although it looks at first sight asymmetric, it is
indeed symmetric.)

The blockwise MAP estimate x̂ based on the measurement Y = y is

x̂(y) = arg max
x

pXY(x,y) = arg max
x

pX|Y(x|y). (5.11)

Assuming the joint density pXY(x,y) of Eq. (5.7), the conditional density pX|Y(x|y) is again
jointly Gaussian4

pX|Y(x|y) ∝ exp

(

−1

2
(x − mX|Y(y))T K−1

XX|Y(x − mX|Y(y))

)

(5.12)

with

mX|Y(y) = mX + KXYK−1
YY(y − mY), (5.13)

KXX|Y = D−1
XX = KXX − KXYK−1

YYKT
XY. (5.14)

From this and the second arg max of Eq. (5.11) it is easily seen that the MAP estimate x̂ is

x̂(y) = mX|Y(y), (5.15)

and the error covariance matrix is5

E
[
(X− X̂)(X − X̂)T

]
= E

[

E
[

(X − X̂)(X − X̂)T
∣
∣
∣Y
]]

= E
[
KXX|Y

]
= KXX|Y. (5.16)

Now we would like to relate these results to the measurements as shown at the beginning
of this section. Because the correctness of the measurement of the estimate is clear from
the problem statement, we can focus on the measurement of the error covariance matrix. To
analyze our networks we use the first arg max expression of Eq. (5.11). Maximizing pXY(x,y)
is equivalent to minimizing − ln

(
pXY(x,y)

)
and setting its gradient with respect to x equal

to 0

− ∂

∂x
ln
(
pXY(x,y)

)
= DXX(x −mX) + DXY(y − mY)

!
= 0. (5.17)

This vector equation can be represented by an electrical network where every line corresponds
to a Kirchhoff current law with voltage sources mX, y, and mY. We introduce now the
following twist:

• we set the gradient not equal to zero but equal to e(j), a vector that has a one at
position j and is zero otherwise, and

4To emphasize that mX|Y(y) is a function of y, whereas KXX|Y is not, we added y as an argument in the
former case.

5See also Eq. (5.4) and the comments preceding it.
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• set all sources (i.e. mX, y, and mY) equal to zero.

We get

DXX · x !
= e(j), (5.18)

or equivalently,

x = D−1
XX · e(j) = KXX|Y · e(j). (5.19)

The voltage xi is therefore the value [KXX|Y]i,j the entry in row i and column j of KXX|Y.
The next step is to find out what this twist means for the electrical networks derived in
Ch. 3. We assume that the edge Xj in the FFG is connected to two constraint function
nodes (see Sec. 3.2.1). The other cases follow in the same style. We must reformulate the
whole problem by writing a joint density of all involved variables instead of a density plus
constraints. This can be done as pointed out in Sec. 1.6. δ(x − x′)-terms are replaced by
const · exp

(
− 1

2β (x − x′)2
)
-terms and the Lagrangian L = − ln pXY(x,y) contains terms of

the form + 1
2β (x−x′)2. The development in Ch. 3 can be parallelized in this new formulation.

In the limit β → 0 one obtains the same partial electrical networks. The above twist in this
context now means the following.

• Setting the gradient of the Lagrangian L not equal to zero but equal to e(j) does only
change the partial electrical related to the edge Xj : this part has to be changed as
shown in Fig. 5.4.

• Setting mX, y, and mY equal to zero, means to set all other sources equal to zero.

Measuring the voltage corresponding to edge Xi then gives the desired entry [KXX|Y]i,j of
KXX|Y. We conclude with three remarks.

• For any error covariance matrix we have [KXX|Y]i,j = [KXX|Y]j,i for any i and j.
But this is nothing else that an expression of Green’s reciprocity theorem for networks
of linear resistors (see e.g. Ch. 13.3 of [16]): applying a current at a first place and
measuring the voltage at a second place gives the same voltage-current ratio as applying
the current at the second place and measuring the voltage at the first place.

• Assume that the electrical network contains only ideal voltage sources and no ideal
current sources. For the estimates, the absolute values of the resistors do not matter as
long as the ratios between the different resistors remains the same. This is so because
the estimates are voltages and are only functions of the ideal voltage sources and the
ratios of the resistors. But for the measurement of the entries of the covariance matrix
one considers voltages divided by currents; so here the absolute values of the resistors
matter. Therefore, the electrical networks as derived in Ch. 3 are in this sense canonical
and to be preferred to other “equivalent” networks where the resisors have been rescaled.

• Note that for the above measurements we did not have to change the electrical network.
Earlier we stated that for measuring entries of the error covariance matrix we have to
set the sources to zero. This is not necessary: we could have let the voltage sources
on and the desired ratio would have been the measured voltage change divided by the
applied current change.
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U0

U1 U2 U3 U4 U5

R1 R2 R3 R4 R5

Figure 5.5: Electrical network for weighted averaging: the potential U0 is the weighted average
of U1 to U5 weighted according to 1/Ri, i = 1, . . . , 5.
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Figure 5.6: FFG to the electrical network in Fig. 5.5.
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Figure 5.7: Chain of resistors.
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Uq1 Uq2 Uqi Uq(i+1)

Figure 5.8: Chain of resistors with voltage sources.
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Figure 5.9: Topology of a hexagonal network. Each node is connected through a resistor and
a voltage source in series to ground (or possibly through a more complicated partial electrial
network).
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Ug2Ug1

U2U1

(a)

Q2Q1
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Q3 Q4
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Uss Uss

Unode1

Unode2

(b)

Figure 5.10: (a) shows a tanh–resistor. (b) shows a network needed twice in part (a) for
generating Ug. (Ug is available between Unode2 and Unode1.)
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5.4 Examples from the Book by Mead

As mentioned in the introduction to this report, one source of inspiration were the electrical
networks in the book by Mead [4] where several simple but efficient electrical networks are
presented that perform specific tasks. The common idea behind all these circuits is to use
the charcteristics of available simple electrical elements (especially in VLSI). Putting together
lots of simple elements results in circuits inspired by nature that operate highly parallelly.
Using the approach taken in this report, these can now be reinterpreted in a probabilistic
and optimizing sense. The aim of this section is to have a quick look at some of the circuits
in [4].

• We start with Fig. 5.5 (see also Fig. 7.2 of [4]), which represents a network for averaging
U1 to U5 with weights 1/Ri, i.e. the potential U0 is

U0 =

∑5
i=1

1
Ri

Ui
∑5

i=1
1
Ri

. (5.20)

The probabilistic interpretation is given by the FFG in Fig. 5.6: given the measurments
X1 = x1, . . . ,X5 = x5, we want to find the (blockwise) MAP estimate of X0. Starting
from this FFG and using the methods of Ch. 3 we would have obtained the electrical
network in Fig. 5.5 with the following densities: Z1 ∼ N (0, R1), . . . , Z5 ∼ N (0, R5), and
X0 ∼ N (0, σ2

0) where σ2
0 → ∞. Changing the different distributions (see e.g. Sec. 5.1

and Tab. G.3), one can obtain other electrical networks.

• We turn now to Figs. 5.7 and 5.8 (see also Figs. 7.3, 7.5, and C.5 of [4]): The first
models some propagation of a wave when a voltage is applied e.g. on the left. The
second models a type of local averaging of the values of the voltage sources Uq,i, which
appears at the nodes Ui. This can now be interpreted as Kalman filters, or, as if they
are space-invariant, as Wiener filters.

• Related to these circuits is the one shown in Fig. 5.9 (see also Figs. 7.6 and 15.2 of
[4]), where additionally each node is connected through a resistor and a voltage source
in series to ground (or possibly through a more complicated electrical network). As
above, this circuit does a type of local averaging of the value of the voltage sources.
This circuit models a two-dimensional filtering as it happens in the retina of an eye.
Again, this circuit can be interpreted as a Kalman filter, or as Wiener filter (if it the
resistors are space-invariant).

• Using resistors whose current-voltage characteristic has a tanh–shape can be advanta-
geous for segmentation tasks as shown in Fig. 7.14 of [4]. As such non-linear resistors are
quite easily implemented (see Fig. 7.9 and 7.10 of [4], or Fig. 5.10 of this report), they
can be used for applications where lots of such elements are needed. In the interpreta-
tion of probabilities, the use of such generalized resistors corresponds to non-Gaussian
random variables.

• Electrical networks modeling a delay line as in Fig. 5.12 (see also Fig. 9.4 of [4]) are
interpreted in Sec. 5.6.
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Figure 5.11: Gradient search electrical network.

5.5 Capacitors and Inductors

Up to now all circuits were time-independent as all component characteristics were static.
When capacitors are introduced, we observe that time-depence can occur in two different
contexts.

5.5.1 Complex Random Variables

A complex jointly Gaussian random vector X has the density6

pX(x) ∝ exp
(
− (x − mX)HK−1

XX(x −mX)
)
, (5.21)

where KXX is Hermitian, i.e., KH
XX = KXX. Such random variables have as properties

e.g. that E
[
ℜ(Xi)

2
]

= E
[
ℑ(Xi)

2
]

= [KXX]i,i/2 and E
[
ℜ(Xi)ℑ(Xi)

]
= 0.

Of course, every complex random variable can be seen as a vector of two real random variables.
The possible densities for complex random variables (vectors) are therefore a subset of the
possible densities for real random variables (vectors).

The theory of Kalman filtering is not changed by considering complex jointly Gaussian ran-
dom variables, the only change necessary is to replace the transposition operator for matrices
by the Hermitian operator for matrices and the inner product of X1 and X2 is not E

[
X1X2

]

but E
[
X1X2

]
(see e.g. [8]). So, basically nothing new happens; but as complex analysis is

“more beautiful” than real analysis, special things can also happen here.

The derivations done in Ch. 3 can be carried over to complex random vectors. In the case of
complex jointly Gaussian random vectors we obtain a system of linear equation in complex
variables. This system of equations can be implemented with a circuit containing resistors,
capacitors, inductors, ideal sinusoidal voltage sources, ideal sinusoiodal current sources, and
impedance converters (or transformers). Fixing a frequency at which all sources operate, we
can deduce the values of the capacitors and inductors representing the complex coefficients. Of
course these values depend on the chosen frequency. The DC-transformers turn into “normal”
transformers; one has to compensate for their self-inductance. Instead of transformers one
can take frequency-independent impedance converters.
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5.6 Gradient Search

In contrast to Sec. 5.5.1, we assume again to have real random variables. We start with the
problem given in Example 1 of Sec. 2.1 where we found the system of equations







∂
∂x1

L = x1

σ2
1
− λ

!
= 0

∂
∂x2

L = x2

σ2
2
− λ

!
= 0

∂
∂λL = y − x1 + x2

!
= 0

(5.22)

Minimizing a function f(x) using a gradient search type method proceeds as follows. One
chooses a starting point x(0) and computes a new point by the update rule

x(k+1) = x(k) − α · ∇xf
(
x(k)

)
, (5.23)

where the step-size α has to be chosen appropriatly. Instead of a discrete-time update, we
can easily derive a continous-time update formula

∂

∂t
x(t) = −α′ · ∇xf

(
x(t)

)
. (5.24)

If the minimization problem includes constraints, then there is the following possibility.
Choose an initial vector x that fulfills all constraints and take an optimization procedure
that guarantees that this constraints remain fulfilled. In terms of Eq. (5.22) this means that
(x1(t), x2(t)) should always fulfill y − x1(t) − x2(t) = 0.

Continuing the above example, we can generalize the equations in Eq. (5.22) to







x1(t)
σ2
1

− λ(t)
!
= −C1

∂
∂tx1(t)

x2(t)
σ2
2

− λ(t)
!
= −C2

∂
∂tx2(t)

y − x1(t) + x2(t)
!
= 0

(5.25)

and derive the electrical network shown in Fig. 5.11 where we introduced R1 = σ2
1 and

R2 = σ2
2 . Rewriting Eq. (5.25) we get





C1 0
0 C2

0 0




∂

∂t

(
x1(t)
x2(t)

)

= −





1/R1 0 −1
0 1/R2 −1
1 1 0









x1(t)
x2(t)
λ(t)



+





0
0
y



 . (5.26)

As mentioned above, the initial voltages over the capacitors, which represents the initial
guess, must sum to y.

Of course, starting from an electrical network like the one in Fig. 5.11, we can derive the
underlying interpretation of gradient search in a minimization problem and relate that to a
blockwise MAP estimation problem. Additional examples of circuits which could be analyzed
in such a way are shown in Figs. 5.12, 5.13, and 5.14 (see also Fig. 9.4 of [4]).

6Note that there is no 1/2–factor in the exponent.
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Figure 5.12: Chain of resistors and capacitors.
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Figure 5.13: SKF with capacitors at estimated voltages.
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Figure 5.15: Left: canonical trellis of binary [3,2] linear code. Right: diode decoder derived
from the canonical trellis of the binary [3,2] linear code.
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Figure 5.16: Left: minimal trellis of binary [3,2] linear code. Right: diode decoder derived
from the minimal trellis of the binary [3,2] linear code.

5.7 Interpretation of the Diode-Decoder

Very much related to the approach taken in this report is the electrical network proposed
by Davis and Loeliger [2] (see also the circuits for finding the shortest path in Dennis [1]).
We start by considering a simple example in Sec. 5.7.1 and give then in Secs. 5.7.2 and 5.7.3
two possible analytical treatments. The idea is to find under what conditions the currents
represent a-posteriori probabilities of the underlying problem.

5.7.1 A Simple Example

We start with a simple [3, 2] binary linear code C represented by the generator matrix

(
1 0 1
0 1 1

)

. (5.27)

Its codewords are (0, 0, 0), (1, 0, 1), (0, 1, 1), and (1, 1, 0), respectively, which can be repre-
sented by the canonical trellis as in Fig. 5.15(left) or a minimal trellis as in Fig. 5.16(left).
Figs. 5.15(right) and 5.16(right) give the corresponding diode decoder of this code [2] which
uses diodes, switches and an ideal current source.
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Let x be a codeword, let y be the received (hard-decision) word, and let dH(x,y) be their
Hamming distance (i.e. the number of different symbols). A diode with a number means that
if yi equals this number then this diode is short-circuited (diode is “inactive”), and if yi does
not equal this number then this diode is not short-circuited (diode is “active”). ML decoding
is the task of finding the codeword x with the smallest Hamming distance to the received
word y. The current will search its way through the electrical network where there are the
smallest numbers of diodes. ML decoding then corresponds to the task of finding where the
largest current flows.

5.7.2 Canonical Trellis: The General Case

We assume that the diodes have the characteristic

I = Is ·
(
exp(U/UT) − 1

)
≈ Is · exp(U/UT). (5.28)

In general, we can consider an [n, k] binary linear code which has length n and dimension k.
Let x be a codeword, let y be the received (hard-decision) word, and let dH(x,y) be their
Hamming distance (i.e. the number of different symbols). We consider the diode decoder of
the canonical trellis. The number of active diodes in branch x is therefore dH(x,y). The
voltage U0(y) is7

U0(y) = dH(x,y) · UT · ln(Ix(y)/Is), (5.29)

for each x ∈ C, from which we get

Ix(y) = Is · exp
(
U0(y)/UT/dH(x,y)

)
. (5.30)

Using the Kirchhoff current law we get

I0 =
∑

x∈C

Ix(y) = Is ·
∑

x∈C

exp
(
U0(y)/UT/dH(x,y)

)
. (5.31)

For a given I0, this gives the relation from which the value of U0(y) can be determined. For a
given y, the right-hand side is a monotonically increasing function in U0(y) as it is the sum of
monotonically increasing functions in U0(y); the equation is thus uniquely solvable for U0(y).
Note that U0(y) is a function of all the different Hamming distances of each codeword to y.
As C is a linear code it follows that U0(y) = U0(y + c) if c ∈ C.

We define the joint pmf

PXY(x,y) :=
exp

(
U0(y)/UT/dH(x,y)

)

2nI0/Is
· [x ∈ C]. (5.32)

The fact
∑

x,y PXY(x,y) = 1 follows from Eq. (5.31). From Eq. (5.31) follows also

PY(y) =
∑

x∈C

PXY(x,y) =
1

2n
. (5.33)

7As U0 depends on the received word y we write U0 = U0(y).
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For c ∈ C we have U0(y
′ + c) = U0(y

′) and so we can observe that

PX(x + c) =
∑

y

PXY(x + c,y) =
∑

y

exp
(
U0(y)/UT/dH(x + c,y)

)

2nI0/Is
· [x + c ∈ C] (5.34)

=
∑

y′

exp
(
U0(y

′ + c)/UT/dH(x + c,y′ + c)
)

2nI0/Is
· [x + c ∈ C] (5.35)

=
∑

y′

exp
(
U0(y

′)/UT/dH(x,y′)
)

2nI0/Is
· [x ∈ C] (5.36)

=
∑

y′

PXY(x,y′) = PX(x), (5.37)

i.e.,

PX(x) =
1

|C| · [x ∈ C] =
1

2k
· [x ∈ C]. (5.38)

We get the conditional and a-posteriori probabilities

PY|X(y|x) =
PXY(x,y)

PX(x)
=

exp
(
U0(y)/UT/dH(x,y)

)

2n−kI0/Is
· [x ∈ C], (5.39)

PX|Y(x|y) =
PXY(x,y)

PY(y)
=

exp
(
U0(y)/UT/dH(x,y)

)

I0/Is
· [x ∈ C]. (5.40)

(5.41)

Therefore, for x ∈ C,

Ix(y)

I0
=

Is · exp
(
U0(y)/UT/dH(x,y)

)

I0
= PX|Y(x|y) = 2n−kPY|X(y|x). (5.42)

Measuring the ratio Ix(y)/I0 gives both PY|X(y|x) and PX|Y(x|y) from which we can make
a blockwise MAP or a blockwise ML decision. These are of course the same, as can also be
seen from the fact that PX(x) is uniform over the codewords.

For c ∈ C one can prove that PY|X(y + c|x + c) = PY|X(y|x) and PX|Y(x + c|y + c) =
PX|Y(x|y) in a similar fashion as we proved PX(x + c) = PX(x).
It is obvious that at most one x can have dH(x,y) = 0, in which case Ix(y) = I0 and Ix′ = 0
for all x′ ∈ C, x′ 6= x.

5.7.3 General Trellis: The General Case

It is straightforward to give the FFGs representing the diode decoders in Figs. 5.15 and 5.16,
see Figs. 5.17 and 5.18. To go from the FFG to the electrical network one can use the rules
of Ch. 3, but this time the Kirchhoff current laws have been interpreted as Kirchhoff voltage
laws and vice-versa.8 Thereby we introduced new function nodes f (0)(., .) and f (1)(., .) in
Fig. 5.17(right). We explain its meaning for the upper case, the lower follows by analogy. If

8So, roughly speaking, an equality-function node corresponds to serial concatenation, whereas a summation-
function node corresponds to parallel concatenation. Moreover, the currents give the estimated values.
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Figure 5.17: Left: FFG interpretation of a diode decoder of a canonical trellis of a binary
[3, 2] linear code. Right: Meaning of function nodes used in the left part (see also text).
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Figure 5.18: FFG interpretation of a diode decode of a minimal trellis of a binary [3, 2] linear
code. (The same function nodes were used as defined in Fig. 5.17(right).)
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yi is 0, then the distribution f (0)(0, ỹi) of Ỹi is a “short circuit” distribution, whereas if yi is
1 then the distribution f (0)(1, ỹi) of Ỹi is the “diode distribution” (as in Tab. G.3, but with
current and voltage interchanged).
The idea is that the currents represent some estimate of the a-posteriori probabilities. Of
course, instead of the above distributions one can take also others, and one can consider its
dual electrical network (see also Ch. 7).



Chapter 6

Primal-Dual FFGs and Multiports

This chapter introduces first a slightly reformulated objective function of the primal problem
compared with Ch. 3 and looks then at the dual problem. The second part reformulates
the results of Ch. 3 using the concept of multiports and then considers the implications of
primal and dual problem to electrical networks. Roughly speaking, we show that when the
voltages solve the primal problem, then the currents solve the dual problem and vice-versa.
An important role will be played by Tellegen’s Theorem. At the end we mention also other
dualities. We will use the nomenclature of variables and functions as defined at the beginning
of App. C.

6.1 The Primal and the Dual Problem

6.1.1 The Primal Problem

We consider the same maximization/minimization problem as in Ch. 3, but we write the
global distribution slightly diffently so that the proofs are easier. The basic idea is to replace
Dirac-delta distributions by Gaussian distributions. But to simplify matters, we do it with a
little twist compared to Sec. 1.6. Assume that we are optimizing over x = (x1, x2, x3), i.e. a
three-dimensional space. We replace now distribution like δ(x1) by

exp

(

− 1

2β
x2

1

)

· exp

(

−β

2
x2

2

)

· exp

(

−β

2
x2

3

)

, (6.1)

which up to scaling factors is a Gaussian distribution with variance β in direction x1 and
variance 1/β in directions x2 and x3.

Accordingly, a distribution like δ(x1 − x2) would be replaced by a Gaussian distribution
(without prefactor) having variance β in direction (1,−1, 0) and variance 1/β in the directions
orthogonal to (1,−1, 0).

In the limit β → 0 of this procedure, the optimizing vectors in the optimization problems we
are interested in are unchanged compared to the optimizing vectors in the earlier formulations.

We apply the following modifications to an FFG.

• All constraint function nodes (equality-function nodes and summation-function nodes)
originally expressed using Dirac-delta distributions are replaced by scaled Gaussian
distributions as just explained.
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• Half-edges Xi where a measurement Xi = x
(M)
i is available are extended to full-edges by

adding a function node δ
(

. − x
(M)
i

)

which is then also expressed by a scaled Gaussian

distribution as explained above.

• Each edge Xi gets replaced by X ′i and X ′′i . (Firstly, it is immaterial which end is
primed and which end is double-primed; secondly it is immaterial which arguments of
a function are primed and which are double-primed.)

• As shown at the beginning of App. C, we introduce φt(xt) := − ln ft(xt) for each leaf-
node function ft(xt) (we assume φt(.) to be convex).

6.1(a and b) show an example of a modified FFG.1 With the above reformulation, the opti-
mization problem of Ch. 3 turns into the following minimization problem

min
x:Ax=b

φ(x) (6.2)

with

x =
(
x′1 x′′1 x′2 x′′2 · · · x′N x′′N

)T
(6.3)

A =








+1 −1 0 0 · · · 0 0
0 0 +1 −1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · +1 −1








(6.4)

b =
(
0 0 · · · 0

)T
. (6.5)

The objective function thereby is

φ(x) :=
∑

t∈F

φt(xt), (6.6)

where the summation is over all function nodes F : for a t ∈ F , φt(.) is the function with
label t, xt are its arguments. Introducing the primed and double-primed edge labels we have
achieved that the arguments to the different function nodes are all different (i.e. they do not
overlap). But the constraint Ax = b takes care of the fact that the primed and double-
primed edge-labels should be equal. Actually, φ(x) is also a function of β, but we do not
show it explicitely (we are always only interested in the limit β → 0).

6.1.2 The Dual Problem

With the preparations done in the last subsection, it is an easy matter now to formulate the
dual problem. By Sec. C.2 we have (note that b = 0)

min
x:Ax=b

φ(x) = max
ξ,γ:AT γ=ξ

γTb− φ∗(ξ) = max
ξ,γ:AT γ=ξ

−φ∗(ξ) = max
ξ′,ξ′′, ξ′=−ξ′′

−φ∗(ξ′, ξ′′), (6.7)

1Note the slight difference to Example 1 in Sec. 2.1: here we have X3 = −(X1 +X2), i.e. X1 +X2 +X3 = 0.
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with

ξ =
(
ξ′1 ξ′′1 ξ′2 ξ′′2 · · · ξ′N ξ′′N

)T
, (6.8)

ξ′ =
(
ξ′1 ξ′2 · · · ξ′N

)T
, (6.9)

ξ′′ =
(
ξ′′1 ξ′′2 · · · ξ′′N

)T
, (6.10)

γ =
(
γ1 γ2 · · · γN

)T
(6.11)

We mentioned at the end of Sec. 6.1.1 that the arguments of the different function nodes did
not overlap, therefore the conjugate function must have the form

φ∗(ξ) =
∑

t∈F

φ∗t (ξt), (6.12)

i.e., we can conjugate each summand separately.

• Let φt(.) = − ln ft(.) be the objective function of a leaf-function node. The conjugate
φ∗t (.) leads then to the dual generalized distribution f∗t (.) = exp

(
− φ∗(.)

)
.

• The dualization of constraint functions nodes (those where Dirac-delta distributions
have been replaced by jointly Gaussian densities) is shown in Sec. C.5.

We finish this subsection by relating the optimized value of the primal and the optimized
value of the dual problem. From Eq. (6.7) we have2

0 =

(

min
x:Ax=b

φ(x)

)

−
(

max
ξ,γ:AT γ=ξ

−φ∗(ξ)

)

=

(

min
x:Ax=b

φ(x)

)

+

(

min
ξ,γ:AT γ=ξ

φ∗(ξ)

)

(6.13)

= min
x: Ax=b

ξ,γ :AT γ=ξ

φ(x) + φ∗(ξ), (6.14)

i.e., for any x, ξ, γ satisfying Ax = b and AT γ = ξ we have

φ(x) + φ∗(ξ) ≥ 0. (6.15)

Let (x, ξ,γ) minimize the expression in Eq. (6.14), then ξ must be the gradient of φ(.) at the
point x, and x must be the gradient of φ∗(.) at the point ξ. (This follows from the derivations
in Sec. C.2). More on this topic can be found in Sec. 6.2.3.

6.1.3 Primal FFG, Dual FFG, and Primal-Dual FFG

The aim of this subsection is to consider the similarities of the FFGs related to the primal
and the dual problem, respectively. Fig. 6.1(a) shows the FFG related to a primal problem,
and Fig. 6.1(b) a slightly modified version as defined in Sec. 6.1.1. We call such a graph
PFFG for primal FFG.
It is possible to define a dual FFG (called DFFG) that represents a generalized distribution
which leads to the conjugate function as in Eq. (6.12). Because of the structural similarity
of φ(.) in Eq. (6.6) and φ∗(.) in Eq. (6.12), it is not difficult to see that the PFFG and the
DFFG must have the same topology but with the following changes.

2Such an equality was also given on p. 34 of [1] for the quadratic minimization problem.
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Figure 6.4: Illustration of Tellegen’s Theorem: graph representing the topology of an electrical
network. The voltages (between nodes) and currents (on the branches) are measured in the
same direction.

• A leaf function ft(.) (which is a generalized distribution function) is replace by its dual
generalized distribution function f∗(.) where φt(.) = − ln ft(.) and φ∗t (.) = − ln f∗t (.).

• Constraint function nodes are replaced by their dual constraint function nodes (see
Sec. C.5).

• Measurement function nodes δ
(

xt − x
(M)
t

)

(expressed by a scaled Gaussian distribution

as in Sec. 6.1.1) are replaced by the function exp
(

−x
(M)
t ξt

)

.

• Each variable edge Xi (with primal variables X ′i and X ′′i ) has to be replaced by two
edges labelled by the dual variables Ξ′i and Ξ′′i , respectively, connected by an inverter
function node in order to fulfill Ξ′ = −Ξ′′. (The symbol of an inverter-function node
can be seen e.g. in Fig. 6.2; from a function-node point of view it is equivalent to a
summation-function node with both arrows pointing inwards.)

Fig. 6.2 shows the DFFG of the PFFG in Fig. 6.1(b). Because of the topological equivalence,
we can try to unify the PFFG and the DFFG to a primal-dual FFG (PDFFG) as in Fig. 6.3:

• Each edge label has two components: one from the primal problem and ond from the
dual problem.

• Each function node bears two labels: one for the primal function node and one for the
dual function node.

• The inverter-function nodes of the DFFG are expanded to a combination of an equal-
function node (for the PFFG) and an inverter-function node (for the DFFG).

6.2 Tellegen’s Theorem and Multiports

We switch now from primal and dual problems to electrical networks. The results of Ch. 3
can be cast using the concept of multiports.

6.2.1 Tellegen’s Theorem

Theorem 1 (Tellegen’s Theorem) Consider a graph representing the topology of an elec-
trical network (see e.g. Fig. 6.4). Let {Ui} be an assignment of branch voltages that satisfies



66 Tellegen’s Theorem and Multiports

.

..

M
u
lt
ip

o
rt

o
r

n
-p

o
rtU1

Un

I1

I1

In

In
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Figure 6.6: Equality-function node and the voltage-equlity (current-summation) multiport.

the Kirchhoff voltage law, and let {Ii} be an assignment of branch currents that satisfies the
Kirchhoff current law. Then

∑

i

UiIi = 0. (6.16)

(Note that we did not assume any connection between the voltages Ui and the currents Ii.)

Proof: For a proof, see e.g. Ch. 12.3 of [16]. �

One application of Tellegen’s theorem is to realize that all the power that is created by active
elements is exactly used by the passive elements and the overall power sum is zero.

6.2.2 Multiports

We start by giving the definition of a multiport, or n-port.3

Definition 2 (Multiport, n-port) We define a multiport (n–port) (see Fig. 6.5) as an
abstract electrical networks with n pairs of terminals where for each pair the same current
going in at one terminal goes out at the other terminal. The voltage between the two termi-
nals (positive to negative terminal) of a port is denoted by Ui and the current flowing in at
the positive terminal by Ii. It is required that there must be exactly n linearly independent
equations among all voltages {Ui} and currents {Ii}.

3More information can be found e.g. in [17].
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The power consumption of a multiport can be completely characterized by knowing all input
voltages and input currents.

Lemma 3 The power consuption of a multiport is

n∑

i=1

UiIi = P. (6.17)

Especially, if the multiport is neutral (i.e. P = 0) then

n∑

i=1

UiIi = 0. (6.18)

Proof: We connect between each pair of terminal elements with arbitrary current-voltage
characteristic that do not contradict the internal relations of the multiport. Let U ′i and I ′i be
the branch voltages and currents in the whole electrical network. Using Tellegen’s Theorem
(Th. 1) in the first equality we get

0 =
∑

i: all branches

U ′iI
′
i =

∑

i: inside multiport

U ′iI
′
i

︸ ︷︷ ︸

=P

+
∑

i: outside multiport

U ′iI
′
i

︸ ︷︷ ︸

=
Pn

i=1 Ui(−Ii)

, (6.19)

from which the desired equality follows. �

The electrical networks derived in Ch. 3 can be reformulated in the context of multiports.
Figs. 6.6, 6.7, 6.8, and 6.9(a and b) show the multiport for an equality-function node, a
summation-function node, an edge, a general function node and a measurement function
node. Note that in each case it is guaranteed that the current flowing in at one terminal
of a port is the same as the current flowing out of the other terminal (this follows from the
derivations in Ch. 3), therefore we can use the concept of multiports. Fig. 6.10 gives the
multiport representation of the electrical network derived from the PFFG in Fig. 6.1. As
can be seen from the explicit partial electrical networks in Ch. 3, these multiports have the
following properties.

• The equality multiports and summation multiports are both neutral, so that Eq. (6.18)
holds for both of them. This means that the voltage vector and the current vector are
orthogonal to each other. As a consequence for the equality multiport, the sum of all
incoming currents must be zero, and as a consequence for the summation multiport, all
incoming currents must be equal.4

• The edge multiport is also neutral. The special feature is that the voltages U ′X and U ′′X
are equal whereas the currents I ′X and I ′′X are inverses of each other, i.e., I ′X = −I ′′X .
(The direction of the currents have been defined so that they match the directions of
the currents of the function multiports the edge is connected to.)

• General function nodes (and measurement function nodes) are usually active or passive
(i.e. not neutral).

4This theoretically derived last result indeed happens as can be seen from the partial electrical networks
in Ch. 3. .
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Figure 6.11: The active/passive and the neutral parts of a PDFFG.

We would like to argue now that the PDFFG in Fig. 6.3 and the electrical network in Fig. 6.10
are “equivalent”. We only have to see that

• x′i corresponds to UX′
i
, and ξ′i corresponds to IX′

i
(same for x′′i , ξ′′i , UX′′

i
, and IX′′

i
).

• = / ∼ –function nodes correspond to edge multiports: x′i = x′′i corresponds to UX′
i
=

UX′′
i
, and ξ′i = −ξ′′i corresponds to IX′

i
= −IX′′

i
.

• = /+ –function nodes correspond to equal multiports. In an example with n = 3

we would have that x′′1 = x′′2 = x′′3 corresponds to UX′′
1

= UX′′
2

= UX′′
3
, and that

ξ′′1 + ξ′′2 + ξ′′3 = 0 corresponds to IX′′
1

+ IX′′
2

+ IX′′
3

= 0.

• +/ = –function nodes correspond to summation multiports. Using the example in

Fig. 6.10, x′′1 + x′′2 + x′′3 = 0 corresponds to UX′′
1

+ UX′′
2

+ UX′′
3

= 0, and ξ′′1 = ξ′′2 = ξ′′3
corresponds to IX′′

1
= IX′′

2
= IX′′

3
.

• Leaf-function nodes correspond to 1-ports. The score function ξ′i = s(x′i) corresponds to
the current-voltage characteristic IX′

i
= IX′

i
(UX′

i
) = s(UX′

i
), and the dual score function

x′i = s∗(ξ′i) corresponds to the voltage-current characteristic UX′
i
= UX′

i
(IX′

i
) = s(IX′

i
).

6.2.3 Active/Passive Part versus Neutral Part

The nodes of an FFG can be grouped into an “active/passive part” and a “neutral part”, as
shown for a specific example in Fig. 6.11. The idea behind this classification is the following.

• The function nodes in the active/passive part will be represented by active/passive
multiports in an electrical network.

• The function nodes in the neutral part will be represented by neutral multiports in an
electrical network.

As the electrical network has the same topology, the same grouping is possible. We would
like to make the following comments about the neutral part.
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• The dual behaviors studied e.g. in [7] correspond to the neutral part where duality
is defined on the variables that are between the two parts. (In Fig. 6.11 this means
x′1ξ
′
1 + x′2ξ

′
2 + x′3ξ

′
3 + x′4ξ

′
4 = 0, see also Sec. D.3.)

• As long as the primal edge variables are a valid configuration and the dual edge vari-
ables are a valid configuration, they are completely independent (compare this with the
statement for the active/passive part).

• The previous statement means for the electrical networks that voltages and currents
are “treated separately” in the sense that there are no component laws that tie voltages
and currents somehow together.

We would like to make the following comments about the active/passive part.

• When the primal and dual edge variables assume the value corresponding to the block-
wise MAP estimate, they are tied together through the score function.

• The last statement means for electrical networks that in the active/passive part there
are component laws that tie voltages and currents somehow together.

We conclude with some power considerations. We assume to have the multiport represen-
tation of an electrical network derived from an FFG. Then we have equality in Lemma 9 of
Sec. C.6 for all primal and dual variables. Combined with Lemma 3 of Sec. 6.2.2 this means
that the sum of the power consumption of all parts equals (the summation over all i just
means over all ports of all multiports and the summation over all j means over all edges)

Ptotal =
∑

i

UiIi =
∑

j

(
x′jξ
′
j + x′′j ξ

′′
j

)
=
∑

t∈F

(
φt(xt) + φ∗t (ξt)

)
(6.20)

=

(
∑

t∈F

φt(xt)

)

+

(
∑

t∈F

φt(xt)

)

= φ(x) + φ∗(ξ). (6.21)

But from Tellegen’s Theorem we know that Ptotal = 0, so that φ(x)+φ∗(ξ) ≥ 0 with equality
when minimized over x and ξ. This confirms the results at the end of Sec. 6.1.2. Moreover,
if at least some components of x and ξ are not tied together by the score function, then by
Lemma 9 of Sec. C.6 we have φ(x) + φ∗(ξ) > 0.

6.2.4 Dualizing Parts of an Electrical Network

In this section we present some results which are very akin of the statements in Sec. D.3. It
can be shown (we give no proof here) that the two electrical networks in Fig. 6.12 are “from
outside” electrically the same. The gyrators essentially “exchange voltage and current”. In
terms of messages this can be stated as the gyrator switches the voltage and the current axes.
Note that gyrators are neutral multiports.
Assuming the rightness of the network equality in Fig. 6.12, the two electrical networks
in Fig. 6.13 can be shown to be equal “from outside”. First we dualize each summation-
function multiport separately by the procedure in Fig. 6.12 (the intermediary result is shown
in Fig. 6.14). Secondly, we have to realize that a serial concatenation of a gyrator, an edge
multiport, and a gyrator (the gyrators have different directions) are equivalent to a 1 : −1
DC-transformer (we called it dual edge multiport as it is the dual of the edge multiport).
The above procedure not only works for electrical networks stemming from FFGs which are
trees but also for electrical networks stemming from loopy FFGs.
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Figure 6.12: The left and the right partial electrical networks are the same “from out-
side”. Left: voltage-summation current-equality multiport. Right: voltage-equality current-
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6.3 Other Types of Dualities

Besides Lagrange Duality as considered in this chapter there are also other types of dualities.
We quickly discuss the different possibilities, which are sometimes not completely unrelated
to Lagrange duality.

6.3.1 Current-Voltage Duality

The equations we interpreted as Kirchhoff voltage law in Ch. 3 can also be interpreted as
Kirchhoff current laws and vice-versa; the current-voltage characteristics turn into voltage-
current-characteristics and vice-versa. The node-potential method is replaced by the loop-
currents method.

6.3.2 Fourier Duality of FFGs

One of Forney’s motivation to introduce normal factor graphs [7] was the reason that in the
context of Fourier duality one can easily dualize an FFG that consists only of constraint
function nodes (as e.g. in coding theory). Topologically it looks the same, but the constraint
function nodes are replaced by their dual constraint function nodes, and state variable edges
have to be split into two parts and connected by a negator function node (for details, see
[7] and App. D). This type of constraint function node duality also shows up as part of the
Lagrange duality as considered in this chapter and in App. C.
In the context of Fourier duality, general FFGs turn into convolution FFGs as was shown
in [18].

6.3.3 Planar Graph Duality, Planar Electrical Network Duality, and Ma-
troid Duality

As explained in App. E, in the same manner as planar graphs can be dualized, one can
dualize planar electrical networks. Consider an FFG which is a tree and which models a jointly
Gaussian distribution. We can derive two different electrical networks. The first is by choosing
the edge variables to be voltages as in Ch. 3 and derive the electrical network accordingly. The
other is to choose the edge variables to be currents and derive the corresponding electrical
network. These two electrical networks are dual in the above sense of electrical network
duality.
Recski [17] calls the dual electrical networks (as defined e.g. in App. E) “inverse” electrical
networks because he reserved the term dual electrical network for a concept related to ma-
troidal duality (see Sec. 10.1 of [17]). This dualization concept focuses on multiports: it turns
out that the Lagrange dual of a subspace constraint function nodes is also the dual in this
matroidal sense (independent if there is a planar representation or not).



Chapter 7

Conclusions and Outlook

The main aim of this report was to show that there is topologically a one-to-one connection
between FFGs and electrical networks solving a blockwise MAP problem. Considering dif-
ferent types of dualities proved also to be a source of inspiration. We would like to conclude
with a list of open questions.

• We considered only convex problems. But nothing stops us from using probability
densities whose negative exponent is not convex and whose score function therefore
is not a monotonically increasing function anymore. What solution will the electrical
networks find?

• Can the result in Sec. 5.3 about measuring the error covariance matrix also be obtained
by modifying slightly the underlying factor graph?

• The electrical networks as derived in this report give the correct blockwise MAP es-
timates independent of the fact if the FFG is a tree or not and as long as the maxi-
mization problem is convex. So, nature is able to find the correct solutions in electrical
networks. On the other hand, the MPA does not always give the correct estimate back
(see e.g. [13]). The question is if one can learn something from nature, i.e., can one
somehow mimick its behavior?

• As an interesting example to the previous point we propose to study the tail-biting (or
cyclic) Kalman filter of length n: after n sections the new state is not x[n + 1], but
x[1] again (the relationship between the usual Kalman filter and the tail-biting Kalman
filter is the same as between a trellis and a tail-biting trellis in coding theory). What
can be learned from this example?

• A first approach was taken to represent the diode decoder in the present framework,
and we had a quick first look at some time-dependent circuits. More work has to be
done in both directions.
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Appendix A

Some Facts from Estimation Theory

Let X be an n−dimensional random vector and let Y be an m−dimensional random vector.
We assume to know the joint density function pXY(x,y). Based on a measurement Y = y
one wants to give an estimate X̂ = g(Y) on X. We call X̃ = X − X̂ the estimation error.
E[X̃] is the bias of the estimator and Var[X̃] is the error covariance matrix of the estimator.
An estimator which fulfills E[X̃] = 0, is called bias-free.1

A.1 A First Family of Estimators

A.1.1 Conditional Expectation Estimator

This estimator gives the conditional expectation as estimate.

x̂E = gE(y) := E[X|Y = y]. (A.1)

A.1.2 Quadratic Cost Function

Let Q be a symmetric positive-definite matrix and let the cost function be

CS,Q(x̃) := x̃TQx̃. (A.2)

Let

x̂S,Q = gS,Q(y). (A.3)

be the estimator g which minimizes the expected cost

E
[
CS,Q(X − g(Y))

]
. (A.4)

A.1.3 Estimator with Smallest Expected Square Error

The estimator with smallest expected square error is the estimator with cost matrix Q = 1,

x̂S = gS(y) = gS,1(y). (A.5)

1Sometimes the stronger E[X̃|Y = y] = 0 for each y is required for bias-freeness.

75



76 A Second Family of Estimators

A.1.4 Bias-Free Minimum-Variance Estimator

The bias-free minimum-variance estimate

x̂BFMV = gBFMV(y), (A.6)

is the estimate where gBFMV is the bias-free estimator g which minimizes
∑n

i=1 Var
[
Xi −

gi(Y)
]
.

A.1.5 Properties of the First Family of Estimators

All the estimators from the first family are equal

gE = gS,Q = gS = gBFMV (independent of Q), (A.7)

and are bias-free

E[X̃] = 0, E[X̃|Y = y] = 0. (A.8)

Important: if x̂S
i is the symbolwise estimate of xi with the smallest expected square error,

then (x̂S
1 , . . . , x̂

S
n)T = x̂S (where x̂S is the blockwise estimate).

A.2 A Second Family of Estimators

A.2.1 Blockwise MAP Estimator

The blockwise maximum a-posteriori (MAP) estimate

x̂MAP = gMAP(y) (A.9)

is the value of x that maximizes the conditional density

pX|Y(x|y), (A.10)

or, equivalently, that maximizes

pXY(x,y). (A.11)

A.2.2 Symbolwise MAP Estimator

For each i = 1, . . . , n, the symbolwise maximum a-posteriori (MAP) estimate

x̂MAP
i = gMAP

i (y) (A.12)

is the value of xi that maximizes the conditional density

pXi|Y(xi|y) =

∫ +∞

−∞
· · ·
∫ +∞

−∞

∫ +∞

−∞
· · ·
∫ +∞

−∞

pX|Y(x′1, . . . , x
′
i−1, xi, x

′
i+1, . . . , x

′
n|y) dx′1 · · · dx′i−1 dx′i+1 · · · dx′n. (A.13)

This is equivalent to taking that xi which maximizes

pXiY(xi,y). (A.14)
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A.2.3 Uniform Cost Estimator

Let the uniform cost function be defined as

CU,ε(x̃) :=

{

0 (if |x̃i| < ε/2 for i = 1, . . . , n)

1 (otherwise)
(A.15)

Then

x̂U,ε = gU,ε(y), (A.16)

where gU,ε is the estimator g that minimizes

E
[
CU,ε(X − g(Y))

]
. (A.17)

A.2.4 Uniform Cost Function (in the Limit)

This is the uniform cost estimator in the limit as ε tends to zero

x̂U = gU,ε(y) := lim
ε→0

gU,ε(y). (A.18)

A.2.5 Properties of the Second Family of Estimators

Practically, it holds that

gU = gMAP (A.19)

Important: if x̂MAP
i is the symbolwise MAP estimate of xi and x̂MAP is the blockwise MAP

estimate of x, then (x̂MAP
1 , . . . , x̂MAP

n )T 6= x̂MAP in general.

A.3 Cramér-Rao Bound

Define the the so-called Fisher information matrix n × n−matrix J with components

Ji,j := E

[(
∂

∂xi
ln pXY(x,y)

)(
∂

∂xj
ln pXY(x,y)

)]

= E

[

− ∂2

∂xi∂xj
ln pXY(x,y)

]

(A.20)

For estimates for which

lim
x→±∞

E
[
X̂(Y) − X|X = x

]
· pX(x) = 0 (A.21)

holds, the Cramér-Rao bound is

E
[
(X̂ −X)(X̂ − X)T

]
≥ J−1, (A.22)

with equality for jointly Gaussian random variables. (A ≥ B means that A − B is a non-
negative definite matrix.)
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A.4 Jointly Gaussian Random Variables

Assume that X and Y are jointly Gaussian. Then

gE = gS,Q = gS = gBFMV = gU = gMAP (independent of Q). (A.23)

Important: In the jointly Gaussian case, not only (x̂S
1 , . . . , x̂S

n)T = x̂S, but also (x̂MAP
1 , . . . , x̂MAP

n )T =
x̂MAP holds.
As mentioned in Section A.3, the Cramér-Rao bound for jointly Gaussian random variables
is exact (i.e. an equality).



Appendix B

The Node-Potentials Method

B.1 From a Linear Electrical Network to a Linear System of
Equations

We start with the electrical network in Fig. B.1 where the G′i,j ’s are conductances, the Ui’s are
voltages and Iq,i’s are current sources. To simplify notation afterwards, we define G′j,i := G′i,j
when j > i. Writing the equations corresponding to the Kirchhoff current law, we obtain

G′1,1(U1 − 0)+ G′1,2(U1 − U2)+G′1,3(U1 − U3) = Iq,1, (B.1)

G′2,1(U2 − U1)+ G′2,2(U2 − 0)+G′2,3(U2 − U3) = Iq,2, (B.2)

G′3,1(U3 − U1)+G′3,2(U3 − U2)+G′3,3(U3 − 0) = Iq,3. (B.3)

This is equivalent to the system of equation

G · U = Iq, (B.4)

or explicitely,





G1,1 G1,2 G1,3

G2,1 G2,2 G2,3

G3,1 G3,2 G3,3



 ·





U1

U2

U3



 =





Iq,1

Iq,2

Iq,3



 , (B.5)

U1

I1

U2

I2

U3

G′
2,2

G′
1,1 G′

1,3
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2,3 G′

3,3

G′
2,2

I3

Figure B.1: Example 1.
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where we have introduced





G1,1 G1,2 G1,3

G2,1 G2,2 G2,2

G3,1 G3,2 G3,3



 :=





G′1,1 + G′1,2 + G′1,3 −G′1,2 −G′1,3

−G′2,1 G′2,1 + G′2,2 + G′2,3 −G′2,3

−G′3,1 −G′3,2 G′3,1 + G′3,2 + G′3,3



 .

(B.6)

Obviously, G is symmetric, i.e., GT = G.

B.2 From a Linear System of Equations to a Linear Electrical

Network

Inversely, starting from a system of equations as in Eq. (B.4), or equivalently as in Eq. (B.5),
we can derive an electrical network as in Fig. B.1 where the conductances are





G′1,1 G′1,2 G′1,3

G′2,1 G′2,2 G′2,2

G′3,1 G′3,2 G′3,3



 :=





G1,1 + G1,2 + G1,3 −G1,2 −G1,3

−G2,1 G2,1 + G2,2 + G2,3 −G2,3

−G3,1 −G3,2 G3,1 + G3,2 + G3,3



 .

(B.7)

The general case with n equations follows easily from the above example where n = 3. The
resulting electrical network has n nodes plus a ground node. More information about this
method and its dual, the loop-currents method, can be found e.g. [17].



Appendix C

Lagrange Duality

The aim of this appendix is to give a short introduction into Lagrange duality. Some of
the topics can also be found e.g. in [1] and [19]. Instead of using y and z in the context of
conjugate functions as in [1], we used ξ and γ, respectively, to avoid overlapping notation
with the other chapters of this report. Throughout this chapter, by convexity we mean strict
convexity; basically, all results can also be carried over to functions that are convex (but
not strictly convex), although one has to be more careful.1 We follow this simplified path,
because this is enough for getting the main idea of Lagrange duality.

Of course, every statement about a convex function can be – with the appropriate changes –
turned into a statement about a concave function.

We give a list of the variables and functions that will appear in this appendix and in Sec. 6
and state the relations among them. By a generalized distribution we mean a function that
properly scaled could be a distribution.

x variables ξ dual variables

f(.) generalized distribution f∗(.) dual generalized distribution

φ(.) objective function φ∗(.) conjugate function

s(.) score function s∗(.) dual score function

The relation among the different functions is as follows. (The most important is the first one,
the others are defined relative to φ(.) and φ∗(.).)

• φ∗(.) is the conjugate function of φ(.) and vice-versa,

• f(.) := exp(−φ(.)) and φ(.) = − ln f(.),

• f∗(.) := exp(−φ∗(.)) and φ∗(.) = − ln f∗(.),

• s(x) := ∂
∂x

φ(x),

• s∗(ξ) := ∂
∂ξ

φ∗(ξ).
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x
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φ(x)
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y = ξx− φ∗(ξ)

ξx′
− φ(x′)

φ∗(ξ)
x′

(c)

Figure C.1: Left: convex function φ(.). Middle: the function φ(.) as envelope. Right:
deriving the function φ∗(.). (The arrows indicate in which direction the differences are counted
positively.)

C.1 Convex Functions and Their Conjugate Function

This section introduces the conjugate function2 of a convex function. First, the one-dimensional
case is stated and proven, from which the generalization to higher dimensions easily follows.
The main observation is that tangents to convex functions are always below or on the curve,
but never above. The idea is to describe the curve by a family of tangents, i.e. the curve
shall be the envelope of a tangent family. The family parameter will be the slope, and the
negative conjugate function will say for each slope where the corresponding tangent crosses
the vertical axis.

Theorem 4 Let φ : Dφ → R be a convex function (Dφ ⊆ R). This function can be written
as

φ(x) = max
ξ∈Dφ∗

(
ξx − φ∗(ξ)

)
, (C.1)

where φ∗ : Dφ∗ → R is the conjugate function (Dφ∗ ⊆ R)

φ∗(ξ) = max
x∈Dφ

(
ξx − φ(x)

)
, (C.2)

Proof: Fig. C.1(a) depicts a convex function y = φ(x), and Fig. C.1(b) shows that this
function is the envelope of the family of lines y = ξx− φ∗(ξ), where the slope ξ is the family
parameter. Fig. C.1(c) hints at the main idea of the proof.
Assume that a family of of linear functions is defined in such a manner that the envelope is
φ(x) = maxξ∈Dφ∗

(
ξx − φ∗(ξ)

)
. Recognizing the parallelogram in Fig. C.1(c), the conjugate

function φ∗(a) can readily seen to be φ∗(ξ) = maxx∈Dφ

(
ξx − φ(x)

)
. �

Theorem 5 Let φ : Dφ → R be a convex function (Dφ ⊆ R
n, n ≥ 1). This function can be

written as

φ(x) = max
ξ∈Dφ∗

(
ξTx − φ∗(ξ)

)
, (C.3)

1For easiness of exposition, we also assume the functions to be differentiable; the results can be extended
to continuous (but not differentiable) functions.

2What we call the conjugate function is often also called the Legendre transform (sometimes with a minus
in front).
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where φ∗ : Dφ∗ → R is the conjugate function (Dφ∗ ⊆ R
n)

φ∗(ξ) = max
x∈Dφ

(
ξTx− φ(x)

)
, (C.4)

Proof: The idea is similar to the one in the proof of Theorem 4. The slope is generalized to
the gradient of the function φ(.). �

Theorem 6 The conjugate function φ∗(ξ) of a convex function φ(x) is convex. The conju-
gate of the conjugate function is the original function.

Proof: We prove it here for the one-dimensional case. To determine the value of φ∗(ξ) for a
certain ξ one sets the derivative of ξx − φ(x) with respect to x equal to zero.

∂

∂x

(
ξx − φ(x)

)
= ξ − ∂

∂x
φ(x) = ξ − s(x)

!
= 0, (C.5)

where s(x) := ∂
∂xφ(x) is the score function. As φ(.) is convex, s(.) is monotonically increasing.

On the other hand, to determine the value of φ(x) for a certain x one derives ξx−φ∗(ξ) with
respect to ξ and sets this equal to zero.

∂

∂ξ

(
ξx − φ∗(ξ)

)
= x − ∂

∂ξ
φ∗(ξ) = x − s∗(ξ)

!
= 0, (C.6)

where s∗(ξ) := ∂
∂ξφ
∗(ξ) is the dual score function. Combining Eqs. (C.5) and (C.6) we see

that

s(x) = (s∗)−1(x), s∗(ξ) = s−1(ξ), (C.7)

i.e. s(.) and s∗(.) are a pair of inverse functions. Because s(.) is monotonically increasing.
s∗(.) must also be monotonically increasing which implies the convexity of φ∗(.).

Alternatively, contemplating Fig. C.1(b), one can see that this holds for the one-dimensional
case.

From this proof it follows also directly that the conjugate of the conjugate function is the
original function again. �

C.1.1 An Example

We give a little example of calculating the conjugate function (Legendre transformation). We
consider the quadratic function

φ(x) =
1

2β
(x − x0)

2. (C.8)

The score function is

s(x) =
1

β
(x − x0), (C.9)
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i.e. a function with slope 1/β that crosses the x–axis at x0. The conjugate function and the
dual score function are, respectively,

φ∗(ξ) = xξ − φ(x)|x=βξ+x0
=

1

2
βξ2 + x0ξ =

1

2
β

(

ξ +
x0

β

)2

− x2
0

2β
(C.10)

s∗(ξ) = βξ + x0. (C.11)

In the limit β → 0 (important for considerations as in Sec. 1.6) the score function s(.) is a
vertical function that crosses the x–axis at x0, the Lagrange dual is φ∗(ξ) = x0ξ and the dual
score function is s∗(ξ) = x0.

C.2 Duality in Equality Constrained Minimization

C.2.1 The General Convex Minimization Problem

Let φ(x) be a convex function (called the objective function) which we would like to minimize
under the constraint Ax = b, where x is n–dimensional, A is an m × n–matrix and b is an
m × 1–vector, i.e. we are interested in

min
x∈Rn:Ax=b

φ(x). (C.12)

The Lagrangian of this problem is L = φ(x)−λT (Ax−b) and deriving it with respect to x
and λ, respectively, and setting equal to zero, we obtain

∂

∂x
φ(x) − AT λ = 0, (C.13)

−Ax + b = 0. (C.14)

To reformulate Eq. (C.12), we express φ(.) with the help of the conjugate function φ∗(x) as
shown in Theorem 5

min
x∈Rn:Ax=b

φ(x) = min
x∈Rn:Ax=b

max
ξ∈Rn

(
ξTx− φ∗(ξ)

)
. (C.15)

But in Eq. (C.13) we have seen that the “slope” ∂φ(x)/∂x (the gradient of φ(.)) at the
solution point must be AT λ, i.e. in the column-space of AT , or equivalently in the row-space
of A. Therefore, we do not change the solution of Eq. (C.15) by restricting the slope (the
gradient) ξ to lie in the column-space of AT : ξ = AT γ for some m×1–vector γ. We conclude
that

min
x∈Rn:Ax=b

φ(x) = min
x∈Rn:Ax=b

max
γ∈Rm

(
γTAx− φ∗(AT γ)

)
(C.16)

= min
x∈Rn:Ax=b

max
γ∈Rm

(
γTb− φ∗(AT γ)

)
(C.17)

= max
γ∈Rm

(
γTb− φ∗(AT γ)

)
(C.18)

= max
ξ∈Rn, γ∈Rm:AT γ=ξ

(
γTb − φ∗(ξ)

)
. (C.19)

This proves the next theorem (which could also have been derived from Lagrange duality or
Fenchel duality3).

3As has been shown in [20], Fenchel duality and Lagrange duality are equivalent.
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Theorem 7 Let φ(.) be an n–dimensional convex function and let φ∗(.) be its conjugate
function (which is also an n–dimensional convex function). Then we have equality of the
minimization and maximization problems

min
x∈Rn:Ax=b

φ(x) = max
ξ∈Rn, γ∈Rm:AT γ=ξ

(
γTb− φ∗(ξ)

)
= max

γ∈Rm

(
γTb − φ∗(AT γ)

)
. (C.20)

C.2.2 The Quadratic Minimization Problem

(This section is based on [1].) Instead of the general convex function φ(.) in Sec. C.2.1, let us
now consider the specific example φ(x) = 1

2x
TPx + cT x, where we assume that P is positive

definite, so its inverse P−1 exists. Then solving the minimization problem stated as the
“Primal Quadratic Minimum Problem” is equivalent to solving the “Quadratic Lagrangian
Problem”.

• Primal Quadratic Minimum Problem

Minimize (over x)

1

2
xTPx + cTx (C.21)

with

Ax = b. (C.22)

• Quadratic Lagrangian Problem

Solve

AT γ − Px = c (C.23)

Ax = b. (C.24)

• Dual Quadratic Maximum Problem

Maximize (over ξ and γ)

−1

2
ξTP−1ξ + bT γ (C.25)

with

AT γ − ξ = c. (C.26)

• Quadratic Lagrangian Problem

Solve

AT γ − ξ = c (C.27)

x = P−1ξ (C.28)

Ax = b. (C.29)
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Proof: (From the “Primal Quadratic Minimum Problem” to its “Quadratic Lagrangian
Problem”) Let γ be the vector with the Lagrange multipliers. The Lagrangian function
is L = 1

2x
T Px + cTx− γT (Ax − b). Deriving L with respect to x and setting equal to zero

yields Px+c−AT γ
!
= 0 or AT γ−Px = c. Deriving L with respect to γ gives the constraint

Ax = b and we get the quadratic Lagrangian problem stated above. �

Proof: (From the “Dual Quadratic Maximum Problem” to its “Quadratic Lagrangian Prob-
lem”) Let x be the vector with the Lagrange multipliers. The Lagrangian function is
L = −1

2ξTP−1ξ + bT γ − xT (AT γ − ξ − c). Derivation of L firstly with respect to ξ and

setting equal to zero yields −P−1ξ + x
!
= 0 or x = P−1ξ. Derivation of L secondly with

respect to γ and setting equal to zero yields b − Ax
!
= 0 or Ax = b. Finally, deriving L

with respect to x and setting equal to zero, we obtain the equality constraint AT γ − ξ = c;
altogether, we get the quadratic Lagrangian problem. �

The maximization problem was stated so that it yields the same quadratic Lagrangian prob-
lem as for the primal problem. This is of course nothing else than an application of Theorem
7. Indeed, the dual function of

φ(x) =
1

2
xT Px + cT x (C.30)

is

φ∗(ξ) = max
x∈Rn

(
ξTx− φ(x)

)
= ξTx− φ(x)

∣
∣
x=P−1(ξ−c)

(C.31)

=
1

2
(ξ − c)T P−1(ξ − c). (C.32)

Applying Theorem 7 we get

min
x∈Rn:Ax=b

φ(x) = max
ξ∈Rn, γ∈Rm:AT γ=ξ

(
γTb − φ∗(ξ)

)
(C.33)

= max
ξ′∈Rn, γ∈Rm:AT γ=ξ′+c

(
γTb− φ∗(ξ′ + c)

)
(C.34)

= max
ξ∈Rn, γ∈Rm:AT γ=ξ+c

(

γTb− 1

2
ξTP−1ξ

)

, (C.35)

which is the “Dual Quadratic Maximization Problem” in Eqs. (C.25) and (C.26).

C.3 Electrical Networks with Voltage Sources, Current Sources

and Resistors

The book by Dennis [1] shows implementations of electrical networks which solve the quadratic
minimal problem of Sec. C.2.2 using ideal voltage sources, ideal current sources, resistors,
and DC-transformers. Dennis also considers electrical networks solving the dual problem. In
both cases one gets the same electrical network but in the first case one optimizes over the
currents whereas in the second case over the voltages. Whereas the Lagrange multipliers turn
out to be node potentials in the first case, they are branch currents in the second case.
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C.4 Max-Product Algorithm and Lagrange Duality

In this section we would like to find out what Lagrange duality means in the context of the
MPA (max-product algorithm).4

C.4.1 The Summation-Function Node

The MPA update rule for a summation function node as in Fig. 4.6(left), assuming x3 =
x1 + x2 is

µf→X3(x3) :∝ max
x1,x2

f(x1, x2, x3)µX1→f (x1)µX2→f (x2) (C.36)

= max
x1,x2

δ(x3 − x1 − x2)µX1→f (x1)µX2→f (x2) (C.37)

∝ max
x1,x2

[x3 − x1 − x2 = 0]µX1→f (x1)µX2→f (x2) (C.38)

= max
x1+x2=x3

µX1→f (x1)µX2→f (x2) (C.39)

= exp

(

max
x1,x2: x1+x2=x3

(
ln µX1→f (x1) + ln µX2→f (x2)

)
)

(C.40)

= exp

(

− min
x1,x2: x1+x2=x3

(
− ln µX1→f(x1) − ln µX2→f (x2)

)
)

(C.41)

= exp

(

− min
x:Ax=b

g(x)

)

, (C.42)

with

φ(x) = φ1(x1) + φ2(x2), (C.43)

φ(x1) = − ln µX1→f (x1), φ(x2) = − ln µX2→f (x2) (C.44)

A =
(
1 1

)
, x =

(
x1

x2

)

, b =
(
x3

)
. (C.45)

The variable names have been chosen so as to highlight their connection to the minimization
problem in Th. 7. Reformulating the minimization in Eq. (C.42) using the dual problem
according to Th. 7 we obtain

µf→X3(x3) = exp

(

− max
ξ, γ:AT γ=ξ

(
γTb− φ∗(ξ)

)
)

(C.46)

= exp

(

−max
γ

(
γTb − φ∗(AT γ)

)
)

, (C.47)

with

φ∗(ξ) = φ∗1(ξ1) + φ∗2(ξ2) (C.48)

and ξ = (ξ1, ξ2)
T and γ = (γ1). Choosing the formulation of Eq. (C.46), deriving the dual

Lagrangian

L∗ := γ1x3 − φ∗1(ξ1) − φ∗2(ξ2) − λ∗1(γ1 − ξ1) − λ∗2(γ1 − ξ2) (C.49)

4In this section we follow a similar “local” approach as in App. D.
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EN EN
Part 3Part 1

EN
Part 2

µx2→f (x2) µf→x3
(x3)µx1→f (x1)

y2 = z1

y1 = z1

λ∗ = s∗1(y1) = x1

λ∗
2 = s∗2(y2) = x2

=⇒ x3x3

Figure C.2: Electrical network of the dual system of equations.

with respect to ξ, γ, and λ∗, respectively, one gets







∂
∂ξ1

L∗ = − ∂
∂ξ1

φ∗1(ξ1) + λ∗1
!
= 0 (component law)

∂
∂ξ2

L∗ = − ∂
∂ξ2

φ∗2(ξ2) + λ∗2
!
= 0 (component law)

∂
∂γ1

L∗ = x3 − λ∗1 + λ∗2
!
= 0 (Kirchhoff voltage law)

∂
∂λ∗

1
L∗ = −γ1 + ξ1

!
= 0 (Kirchhoff voltage law)

∂
∂λ∗

2
L∗ = −γ1 + ξ2

!
= 0 (Kirchhoff voltage law)

(C.50)

This system of equations can be interpreted as the electrical network shown in Fig. C.2.
Let s1(x1) = ∂

∂x1
φ1(x1) be the score function and let s∗1(ξ1) = ∂

∂ξ1
φ∗1(ξ1) be the dual score

function. In the proof of Th. 6 we have seen that

s1(x1) = (s∗1)
−1(x1), s∗1(ξ1) = s−1

1 (ξ1), (C.51)

i.e. s1(.) and s∗1(.) are a pair of inverse functions. In electrical network language s1(.) is the
current-voltage characteristic I1 = I1(U1), whereas s∗1(.) is the corresponding voltage-current
characteristic U1 = U1(I1).

Note that in the context of electrical networks as in Ch. 3, the function φ1(.) has an argument
of dimension Volt and a result of dimension Volt2/Ohm = Power, so the the dimension of
the slope of the tangents are Volt2/Ohm/Volt = Volt/Ohm = Ampère, the dimension of
the dual variables. Analogously, φ∗1(.) has an argument of dimension Ampère and a result
of dimension Ohm · Ampère2 = Power, so the dimension of the slope of the tangents are
Ohm ·Ampère2/Ampère = Ohm ·Ampère = Volt, the dimension of the original variables. So
the primal variables are voltages and the dual variables are currents. (Dennis [1] has chosen
the primal variables to be currents and the dual variables to be voltages.)

To conclude, when using the techniques of Ch. 3, the electrical network derived from the dual
problem is the same circuit as from the primal problem, but now the components are described
in a in terms of voltage-current characteristics instead of current-voltage characteristics.

C.4.2 The Equality-Function Node and the Scaling-Funtion Node

A similar approach as in Sec. C.4.1 can be taken to analyze an equality-function and a scaling-
function node. Again, the topology remains the same but the parts are interpreted in terms
of voltage-current characteristics and not in terms of current-voltage characteristics.
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C.5 Lagrange Dual of Subspace Constraints

We consider general constraint-function nodes with n edges connected to it. In this section
we derive the dual generalized distribution of such a function for the case that the set of
all valid configurations corresponds to a d–dimensional subspace. Essentially, it is again
a constraint function node and the set of all its valid configurations corresponds to the
orthogonal complement of the above subspace. To simplify matters we use the same scaled
Gaussian distributions as at the beginning of Sec. 6.1.1.

We give the following examples for n = 3, which are obviously dual to each other.

• The equality-function node is a constraint-function node related to the 1–dimensional
subspace spanned by (1, 1, 1) with orthogonal complement spanned by (1, 0,−1) and
(0, 1,−1). The Lagrange dual is therefore the summation-function node.

• The summation-function node (all arrows are pointing inwards) is a constraint function
related to the 2–dimensional subspace spanned by (1, 0,−1) and (0, 1,−1) with orthog-
onal complement spanned by (1, 1, 1). The Lagrange dual is therefore the equality-
function node.

Lemma 8 Let f(x) be the (generalized) distribution of a constraint-function node of degree n
(of the type introduced at the beginning of Sec. 6.1.1) where the set of all valid configurations
is a d–dimensional subspace of R

n. Then the dual generalized distribution f∗(ξt) is also a
constraint function node where the set of all valid configurations is the n − d–dimensional
orthogonal complement of the above d–dimensional subspace. For any valid configuration x
of the primal function node f(.) and any valid configuration ξ of the dual function node f∗(.)
follows xT · ξ = 0.

Proof: The proof is straightforward, but somewhat technical. Assume that x = (x1, . . . , xn),
i.e. f(x) = f(x1, . . . , xn). If f(x) has the form of a scaled Gaussian distributions as explained
at the beginning of Sec. 6.1.1, then the corresponding φ(x) = − ln f(x) can be described as
follows.

Define in the subspace of all valid configurations an orthonormal basis and combine it with an
orthonormal basis of the n − d–dimensional orthogonal complement. Let the columns of the
n×n–matrix T be the vectors of this basis, first from the subspace, then from the orthogonal
complement. It follows that T must be orthogonal, i.e., T ·TT = 1. Then we have

φ(x) = − ln f(x) =
1

2
xT K−1

X x (C.52)

(C.53)

with KX = TKTT and

K = diag
(
β, . . . , β,
︸ ︷︷ ︸

d times

1/β, . . . , 1/β
︸ ︷︷ ︸

n−d times

)
. (C.54)

The conjugate function of φ(x) is

φ∗(ξ) = xT ξ − φ(x)
∣
∣
x=KXξ

=
1

2
ξTKXξ =

1

2
ξT (K∗X)−1ξ (C.55)
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x

ξ
x = s∗(ξ)

ξ = s(x)

x1

ξ1

x0

x

ξ
x = s∗(ξ)

ξ = s(x)

x1x0

ξ1

Figure C.3: Illustration to Lemma 9 about an upper bound of the shaded area.

with K∗X = TK∗TT and

K∗ = K−1 = diag
(
1/β, . . . , 1/β,
︸ ︷︷ ︸

d times

β, . . . , β
︸ ︷︷ ︸

n−d times

)
. (C.56)

But f∗(ξ) = exp(−φ∗(.)) has the form of a scaled Gaussian distribution as introduced at the
beginning of Sec. 6.1.1 with variance β in the n − d–dimensional orthogonal subspace and
variance 1/β in the d–dimensional subspace. In the limit β → 0 we get the desird result. �

C.6 Fenchel’s Inequality

The next lemma will first be formulated abstractly. Then we will give a more intuitive
geometric proof and interpretation of its content. It is known as Fenchel’s inequality (or
Young’s inequality if φ(.) is differentiable), see [19].

Lemma 9 Let φ(.) be a convex function with score function s(.) and with conjugate function
φ∗(.). For any x1, ξ1,

x1 · ξ1 ≤ φ(x1) + φ∗(ξ1), (C.57)

where equality holds if and only if ξ1 = s(x1).

Proof: If ξ1 = s(x1), we get from the definition of the Lagrange dual φ∗(ξ1) = maxx

(
xξ1 −

φ(x)
)

= x1ξ1 − φ(x1) that x1ξ1 = φ(x1) + φ∗(ξ1).
If ξ1 6= s(x1), then φ∗(ξ1) = maxx

(
xξ1 − φ(x)

)
> x1ξ1 − φ(x1), which implies x1ξ1 <

φ(x1) + φ∗(ξ1). �

We come now to the geometric interpretation of Lemma 9. We remind the reader that
s(x) = ∂

∂xφ(x) and s∗(ξ) = ∂
∂ξφ
∗(ξ), (s∗)−1(x) = s(x), and s−1(ξ) = s∗(ξ). Consider the

plots in Fig. C.3. If ξ = s(x1), i.e., the point (x1, ξ1) lies on the score function graph, then
one has the situation as in Fig. C.3(a); if ξ 6= s(x1), i.e., the point (x1, ξ1) does not lie on the
score function graph, then one has the situation as in Fig. C.3(b). We now give a geometric
proof for the first situation when (x1, ξ1) lies in the first quadrant. We introduce the point
(x0, ξ0) = (x0, 0) which lies on the score function graph. On the one hand the shaded area
is obviously x1 · ξ1. On the other hand, the area between the x–axis and the curve s(x) and
between x0 and x1 is

∫ x1

x0
s(x) dx = φ(x1)− φ(x0); the (signed) are between ξ–axis and s∗(ξ)
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and between ξ0 = 0 and ξ1 is
∫ ξ1
ξ0

s∗(ξ) dξ = φ∗(ξ1)−φ∗(ξ0). Adding these two integrals gives

the shaded area (as the area to the left of the ξ–axis is counted once positively and once
negatively) x1 ·ξ1 = φ(x1)+φ∗(ξ1)+c, with c = −

(
φ(x0)+φ∗(ξ0)

)
. One can show that c = 0.

For the inequality statement one can give a geometric proof along the same lines.





Appendix D

Fourier Duality

In this appendix we consider the SPA and not the MPA; but as stated before, in the case of
jointly Gaussian random variables, SPA and MPA are equal (see e.g. [8]).

In contrast to [7] and [18] which treat the Fourier-type duality of factor graphs and Forney-
style factor graphs (FFGs) in a “top-down” fashion, we will give here a short introduction to
this topic in an “bottom-up” fashion.1

D.1 Dualization of the Summation-Function Node

Consider the summation-function node f(.) as given in Fig. D.1(left). Note that the constraint
here is defined as x1 +x2+x3 = 0. Taking the incoming messages µX1→f (x1) and µX2→f (x2),
the SPA calculates the outgoing message µf→X3(x3) by

µf→X3(x3) :=

∫ +∞

−∞

∫ +∞

−∞
f(x1, x2, x3)µX1→f (x1)µX2→f (x2) dx2 dx1 (D.1)

=

∫ +∞

−∞

∫ +∞

−∞
δ(x1 + x2 + x3)µX1→f (x1)µX2→f (x2) dx2 dx1 (D.2)

=

∫ +∞

−∞
µX1→f (x1)µX2→f (−x3 − x1) dx1. (D.3)

1This approach is similar to the one taken in Sec. C.4.

FT

FT
FT

FT FT
FT+

X1

X2

X3
=

X1 X3

X2

Figure D.1: Left: Summation-Function Node: Right: Calculating the messages in the Fourier
domain.
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FT
FT
FT

FT

FT
FT

=
X1

X2

X3
+

X1

X2

X3

Figure D.2: Left: Equality-Function Node: Right: Calculating the messages in the Fourier
domain.

This is a type of convolution. Introducing the Fourier transform µ(x) of a message µ(x)

µ(x) =

∫ +∞

−∞
µ(x) exp(−jxx) dx (D.4)

µ(x) =
1

2π

∫ +∞

−∞
µ(x) exp(+jxx) dx, (D.5)

one can modify Eq. (D.3) to

µf→X3(x3) =

∫ +∞

−∞

1

2π

∫ +∞

−∞
µX1→f (x1) exp(+jx1x1) dx1µX2→f(−x3 − x1) dx1 (D.6)

=
1

2π

∫ +∞

−∞
µX1→f (x1)

∫ +∞

−∞
µX2→f (−x3 − x1) exp(+jx1x1) dx1 dx1 (D.7)

=
1

2π

∫ +∞

−∞
µX1→f (x1)µX2→f (x1) exp(−jx1x3) dx1. (D.8)

We conclude that

µf→X3(x3) ∝
∫ +∞

−∞
µX1→f (x)µX2→f (x)
︸ ︷︷ ︸

(∗)

exp(−jxx3) dx. (D.9)

Such an equation could have also be derived for the outgoing messages µf→X1 and µf→X2.
Fig. D.1(right)2 tries to capture these calculations: the FT/FT-box means that the messages
going through must be Fourier transformed in each direction.3 As can be seen from the
(∗)-part of Eq. (D.9), the processing of the Fourier transformed messages corresponds to the
update rules for an equality-function node.

D.2 Dualization of the Equality-Function Node

Parallelling the whole derivation for an equality-function node, the analog to Eq. (D.9) would
be

µf→X3(x3) ∝
∫ +∞

−∞

∫ +∞

−∞
µX1→f (x′)µX2→f (−x − x′) dx′

︸ ︷︷ ︸

(∗)

exp(−jxx3) dx. (D.10)

2Note that this is not anymore a proper FFG in the sense that the FT/FT nodes are not terms of a global
function.

3It is indeed a Fourier transform in both direction, and not an FT/IFT pair.
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Figure D.3: Left: FFG with summation-function node and equality-function node. Right:
Fourier dualization of each function node separately.
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S
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Figure D.4: Continuation of the example in Fig. D.3. Two separately Fourier dualized
function nodes are joined together to one large Fourier dualized function node.

The (∗)-part of Eq. (D.10) corresponds to the processing of the Fourier transformed messages
according to the update rules for a summation-function node. This duality is shown in
Fig. D.2.

D.3 Dualization of Several Function Nodes

Consider the FFG shown in Fig. D.3(left). Dualizing them according to Secs. D.1 and D.2
one obtains the FFG in Fig. D.3(right). But Fourier transforming a message m(x) twice,
we obtain the m(−x), i.e., the same message but with the x–axis reversed. So two FG/FG
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+
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Figure D.5: Dualizing a loopy part of an FFG.
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processing units can be replaced by one x–axis revesing unit as shown in Fig. D.4. Between
s′ and s′′ we have the relation: s′ = −s′′. It is obvious how this can be generalized to any
subgraph which is a tree.
But this dualization also works for loopy graphs! Indeed, dualizing a loopy part of the FFG
in Fig. D.5(left) gives Fig. D.5(right). It is dual in the sense that

6∑

i=1

xixi = 0 (D.11)

for all valid x and all valid x configurations. (Note that the “internal” edges labelled sj, s′j,
and s′′j are not included in this sum.) That this indeed holds, can be seen from the following
considerations. By duality of each function node alone we have the relations

x1x1 + s7s
′′
7 + s10s

′
10 = 0, (D.12)

x2x2 + x3x3 + s7s
′
7 + s8s

′
8 = 0, (D.13)

x4x4 + x5x5 + s8s
′′
8 + s9s

′
9 = 0, (D.14)

x6x6 + s9s
′′
9 + s10s

′′
10 = 0. (D.15)

Using these relations together with s′j + s′′j = 0 (j = 7, . . . , 10) we obtain

6∑

i=1

xixi =

6∑

i=1

xixi +

10∑

j=7

sj

(
s′j + s′′j

)
(D.16)

=
(
x1x1 + s7s

′′
7 + s10s

′
10

)
+
(
x2x2 + x3x3 + s7s

′
7 + s8s

′
8

)
(D.17)

+
(
x4x4 + x5x5 + s8s

′′
8 + s9s

′
9

)
+
(
x6x6 + s9s

′′
9 + s10s

′′
10

)
(D.18)

= 0. (D.19)

From this example the principle how to prove the general case follows easily (see e.g. also
[7]).
.



Appendix E

Planar Graph and Electrical
Network Duality

For planar graphs, i.e. graphs that can be drawn on a plane without edges crossing each
other, it is possilbe to define a dual graph. Planar electrical networks can be dualized in a
similar way.1

E.1 Planar Graphs

As stated above, planar graphs are graphs which can be drawn in the plane without having
to cross the edges (see e.g. Fig. E.1(left)). Note that a graph is planar if and only if the graph
can be drawn to the surface of a sphere (see p. 77 in [17]). This fact follows from using a
stereographic projection of the sphere onto the plane. So basically we can identify the planar
graphs with the polyhedrons for which we have Euler’s formula

Nvertices + Nfaces = Nedges + 2, (E.1)

where Nvertices, Nfaces, and Nedges denote the number of vertices, faces, and edges, respectively.
This formula holds also when the graph is drawn in the plane: the number of faces is then

1In this appendix we closely follow [17].

Figure E.1: Dualization of a graph. Left: original graph. Middle: original graph and dual
graph. Right: dual graph. (Example taken from [17].)
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98 Planar Electrical Networks

the number of regions, where a region is either one of the bounded regions within the graph
or the region around the graph. For a planar graph we therefore have

Nvertices + Nregions = Nedges + 2. (E.2)

E.g., for the graph in Fig. E.1(left) we have Nvertices = 5, Nregions = 4, Nedges = 7. The dual
graph of a planar graph is then obtained in the following manner.

• Draw in each region of the graph a new vertex.

• There is a new edge between two new vertices if the regions corresponding to the new
vertices are neighbors.

• The dual graph consists of the new vertices and the new edges.

This procedure is depicted in Figure E.1 for an exemplary planar graph. The dual graph is
obviously again a planar graph and has the parameters

N⊥vertices = Nregions, (E.3)

N⊥regions = Nvertices, (E.4)

N⊥edges = Nedges, (E.5)

which fulfill

N⊥vertices + N⊥faces = N⊥edges + 2. (E.6)

The number of edges stayed the same because every new edge crosses an old edge and vice-
versa. The meaning of vertices and regions have been interchanged in the process of dualiza-
tion.
A word of caution is appropriate at this place. Graphs by themselves are defined abstractly
and one and the same graph can have several graphical representations. Different graphical
representations then of course represent isomorphic graphs. A problem arises when defining
“the” dual of a graph. Dualizing different planar drawings of isomorphic graphs can lead to
non-isomorphic graphs. Therefore, the concept of 2–isomorphism is introduced to basically
identify all the possible dualizations of a graph.2

E.2 Planar Electrical Networks

In the same way as planar graphs were defined, one can say that an electrical network is
planar if it can be drawn without crossing the wires. As an example we consider the electrical
network in Fig. E.2 which can be described by the system of equations (choosing (I3, U4)

T

as state vector and (I5, U5) as outputs)
(

sL3I3

sC4U4

)

=

(
−R2 0

0 0

)(
I3

U4

)

+

(
1 −R2

0 1

)(
U1

I5

)

, (E.7)

(
I1

U5

)

=

(
−1 0
−R2 −1

)(
I3

U4

)

+

(
0 −1
1 −R2

)(
U1

I5

)

. (E.8)

2Recall that two graphs are isomorphic if a one-one correspondence can be given both between their vertex
sets and edge sets, preserving incidence. We call two graphs 2-isomorphic if there is a one-one correspondence
between their edge sets which preserves circuits. More exactly, a subset of edges form a circuit in one of the
graphs if and only if the corresponding edges form a circuit (possibly in a different order) in the other graph.
For more, see p. 72f. in [17].
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R2 C4

L3U1 I5

I1 I3

U4

I⊥1 U⊥
5L⊥

4R⊥
2

C⊥
3

I⊥4 I⊥5

U⊥
3

U5 U⊥
1

Figure E.2: Dualization of an electrical network: original electrical network, dual electrical
network (Example taken from [17]).

Figure E.3: Dualization of a underlying graph of the electrical network in Fig. E.2. Left:
underlying graph of original electrical network. Middle: original graph and its dual. Right:
dual graph (which is the underlying graph of the dual electrical network).

Replacing formally in Eqs. (E.7) and (E.8)

• Ri by 1/R⊥i , where R⊥i = 1/Ri,

• Ci by L⊥i , where L⊥i = Ci,

• Li by C⊥i , where C⊥i = Li,

• Ui by I⊥i , where I⊥i = Ui,

• Ii by U⊥i , where U⊥i = Ii,

we obtain the description

(
sC⊥3 U⊥3
sL⊥4 I⊥4

)

=

(
−1/R⊥2 0

0 0

)(
U⊥3
I⊥4

)

+

(
1 −1/R⊥2
0 1

)(
I⊥1
U⊥5

)

(E.9)

(
U⊥1
I⊥5

)

=

(
−1 0

−1/R⊥2 −1

)(
U⊥3
I⊥4

)

+

(
0 −1
1 −1/R⊥2

)(
I⊥1
U⊥5

)

(E.10)

of the dual electrical network as shown in Fig. E.2(right), see also Fig. E.3. This formal
procedure is equivalent to the following graphical procedure.

• Dualize the underlying graph as done in Sec. E.1.

• There is a one-to-one mapping between old and new edges.

• Replace each resistor with value R on an old edge by a conductor of value R (or a
resistor of value 1/R) on the corresponding new edge.
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Voltage Current
Resistance (impedance) Admittance
Capacitance Inductance

Short circuit Open circuit
Parallel connection Series connection
Voltage source Current source
Capacitor Inductor
Resistor Resistor

Kirchhoff’s Voltage Law Kirchhoff’s Current Law
Method of the “loop currents” Method of the “node potentials”

Table E.1: Correspondence among network concepts related to the classical duality principle
of electrical networks (taken from [17]).

• Replace each capacitor with value C on an old edge by a inductor of value C on the
corresponding new edge.

• Replace each inductor with value L on an old edge by a capacitor of value L on the
corresponding new edge.

• Replace a voltage source by a current source and vice-versa. (Care must be taken in
chosing the correct direction of the voltage and the current.)

The procedure above is called dualizing an electrical network. It has the correspondences
shown in Table E.1.



Appendix F

Singular Value Decomposition

F.1 The Singular Value Decomposition

In this section we follow the resumee given in [8]. A square complex matrix A is unitary if
AAH = 1, i.e., A−1 = AH . Any matrix A (not necessarily square) can be written as

A = USVH , (F.1)

where U and V are unitary matrices, and where the matrix S (not necessarily square) is real
and diagonal with positive diagonal entries only:

S =

(
S′ 0
0 0

)

, (F.2)

with S′ := diag(σ1, . . . , σℓ), σk > 0, k = 1, . . . , ℓ. The decomposition in Eq. (F.1) is called
the singular value decomposition (SVD) of A.

F.2 The Moore-Penrose Generalized Inverse

The Moore-Penrose generalized inverse or pseudo-inverse of a complex matrix A (not neces-
sarily square) with singular value decomposition (F.1) is the matrix

A# := VS#UH (F.3)

with

S# :=

(
diag(σ−1

1 , . . . , σ−1
ℓ ) 0

0 0

)

. (F.4)

Note that S# has the same dimension as SH and A# has the same dimension as AH . It is
easy to see that

AA#A = A, (F.5)

A#AA# = A#, (F.6)

and

A#x = 0 ⇐⇒ xHA = 0. (F.7)
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102 The Moore-Penrose Generalized Inverse

It follows from Eqs. (F.5) and (F.7) that AAH is the projection onto the column-space of A.
If the rank of A equals the number of rows, then AA# = 1 and

A# = AH
(
AAH

)−1
; (F.8)

if the rank of A equals the number of columns, then A#A = 1 and

A# =
(
AAH

)−1
AH . (F.9)

Another useful formula is

(
AAH

)#
=
(
A#
)H

A#. (F.10)



Appendix G

Tables

(Tables are given on the next few pages.)
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1
X

∝ exp(−(x − m)/2σ2) m

σ2

2
X

f(.)
U I(U) = −∂ ln f(x)/∂x|x=U

3

=
ZX

Y

x z

y

4

+
ZX

Y

x z

y

5 a
ZX

x y

1 : a

6
X

x x

Table G.1: Correspondence between the nodes and edges in the factor graph (left) and the
components of the electrical network (right). All variables are scalars.
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1

=

Y

X Z
mZ =

(
wX + wY

)−1
(wXmX + wY mY )

wZ = wX + wY

vZ =
(
vX + vY

)−1
vXvY






1 0 0

wY 1 −mY wY

0 0 1






wx
=⇒

wzwy

mx my mz

2

=

Y

X Z
mZ = mX + mY

vZ = vX + vY

wZ =
(
wX + wY

)−1
wXwY






1 vY mY

0 1 0

0 0 1






wx
=⇒

wz

wy

mx

my

mz

3 a
X Y

my = amx

vy = a2vx






a 0 0

0 a−1 0

0 0 1






wx
=⇒

wy

mx my

1 : a

4 a
X Y my = a−1mx

wy = a2wx






a−1 0 0

0 a 0

0 0 1






wx
=⇒

wy

mx my

a : 1

Table G.2: Computation of messages in the case of jointly Gaussian random variables (first three columns; for interpretation of third
column, see Sec. 4.3) with circuit interpretation (fourth column).
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Distribution function Probability density function Name of Element I–U characteristic

Normal distribution pX(x) ∝ exp(−(x − m)/σ2) Linear resistor I(U) = 1
σ2 · (U − m)

Laplace distribution pX(x) ∝ exp(−λ|x − m|) Sign resistor I(U) = λ sign(U − m)

Generalized logistic distribution pX(x) ∝ cosh(λ1(x − m))−λ2 tanh resistor I(U) = λ1λ2 tanh(λ1(x − m))

“Diode distribution” pX(x) ∝ exp(−I0(UT exp(x/UT) − x)) Diode I(U) = I0 (exp(x/UT) − 1)

Table G.3: Dictionary of corresponding pdfs and I(U)–characteristics
.
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