Constructions of LDPC Codes using
Ramanujan Graphs and Ideas from Margulis*

Joachim Rosenthal Pascal O. Vontobel
Department of Mathematics Signal and Information Processing Laboratory
University of Notre Dame ETH Ziirich
Notre Dame, Indiana 46556-5683, USA CH-8092 Ziirich, Switzerland
e-mail: Rosenthal.1@nd.edu e-mail: vontobel@isi.ee.ethz.ch

October 3, 2000

Abstract

Some twenty years ago G.A. Margulis [8] proposed an algebraic construction
of LDPC codes. In this paper we analyze the performance of the codes proposed
by Margulis. Mimicking the construction of Margulis we describe a new powerful
regular LDPC code whose construction is based on a Ramanujan graph.

1 Introduction

Low-Density Parity-Check (LDPC) codes were introduced by Gallager [3] and they have
been the focus of intense research in recent years. Roughly speaking, an LDPC code is a
binary linear block code having an m X n parity-check matrix H whose nonzero entries
are sparse. LDPC codes are typically described by a bipartite graph. The n left-vertices
{v1,...,v,} represent the code symbols and the m right-vertices {ci,...,cn,} represent
the code constraints. There is an edge between vertex v; on the left and vertex c; on the
right whenever the entry h;; of the matrix H is 1. With this the matrix H represents
the adjacency matrix of the bipartite graph.

We say that an LDPC code is a (A, p)-regular code if the degree d, of every vertex v
on the left is equal to the integer A and the degree d. of every vertex c¢ on the right is
equal to the integer p. For a (A, p)-regular code the equality nA = mp must necessarily
hold. In terms of the parity-check matrix H, regularity simply means that every row
contains p entries of 1 and every column contains A entries of 1.

Consider now a sequence of randomly chosen (), p) regular codes whose block length
n is increasing. It has already been shown by Gallager [3, 12] that there exist decoding
algorithms whose complexity remains linear in the block length. Moreover, in the limit
the codes can be decoded up to a certain threshold near capacity.
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Since the work of Gallager several authors attempted to construct explicitly LDPC
codes. Probably the first significant work was done by Margulis [8]. In the last year
several papers have appeared and we would like to mention [1, 5, 7, 16].

In order that an LDPC code is good several things are desirable:

1. Tt is desirable that the bipartite graph G has no small cycles. Recall that the
girth of a graph is the length of its smallest cycle. For a given block length n and
given degrees (), p) it is desirable that the girth is as large as possible. This will
guarantee that e.g. the sum-product algorithm (see e.g. [4]) performs best. For
bipartite graphs the girth is always an even number.

2. The graph should be a “good expander” [14]. This means that if one starts from
any subset S of left-vertices whose size satisfies |S| < % then the set J(S) of vertices
on the right connected to the vertices of S should satisfy:

0(S)] > €S|
where ¢ is a ‘large expansion factor’.

3. It is desirable that the code has a good minimum distance. This is particularly
important if the code is used at a high signal-to-noise ratio.

4. Tt is desirable that the code can be compactly described and that the encoding
complexity is low.

The listed items are of course somehow conflicting. Item 4. can be achieved if the
block length is chosen small but this will not result in a large distance nor in a large
girth. Upper bounds for the minimum distance in terms of the rate and block length are
well known. The following lemma provides an upper bound for the girth:

Lemma 1 Consider a (A, p)-regular LDPC' code having block length n = mp/X. Let
a=(A—=1)(p—1). If the girth c = 2mod 4 then one has necessarily the inequality:

c < 4log, m+2 (1)

Proof: We start at a right vertex and count the number of right vertices reached after at
most %2 steps. This results in the inequality:

c—=2

I+pA =1 +pA—1Da+---+pA—-1Da7 ' <m.
From this we deduce the inequality
c—2 OJCZ2+1 - 1
1+O{+"‘+O{T = Sm.
a—1
The result readily follows. O

In the next section we will study the performance of some LDPC codes introduced by
Margulis [8]. In Section 3 we will use some known constructions of Ramanujan graphs [6,
9, 13] to design a remarkable (3, 6)-regular code, whose performance seems to be in a
certain sense better than the performance of a randomly constructed code with the same
design parameters. The code will have block length 4896 and almost optimal girth among
all (3, 6)-regular codes. We have indications by simulations that the code has also a good
minimum distance.



2 Cayley graphs and a construction of Margulis

One way of constructing k-regular graphs is by means of Cayley graphs. For this consider
a finite group G. Let A C G be a subset of G satisfying A = A~!. The Cayley graph
X (G, A) is the graph having as vertices the elements g € G. The vertices g,h € G are
connected by an edge whenever there is an a € A such that h = ga. X(G,.A) is an
undirected k-regular graph with k& = |A|.

Example 2 Assume the set A consists of A = {1, 0], a, 5!, a3, a3 }. Then one can
think of the undirected graph as having the form:

Assume that the edges

(gla 92)1 (g2a 93)5 R (gn—la gn)a (gna In+1 = gl)

form an n-cycle. By definition it follows that g; = ¢1a, - --a, or a; - - - a, = e, the identity
element of the group G. This reasoning shows that a Cayley graph X(G, A) has girth
at least t if there are no non-trivial relations among the elements of A of length smaller
than t.

One way of constructing a Cayley graph with good girth was given by Margulis [8].
For this let ¢ be an odd prime. Let I, be the finite field of ¢ elements and consider the

set SLy(IF,) consisting of all 2 x 2 matrices [ Z Z } with entries in F, and having

determinant ad — bc = 1. One readily verifies that SLy(F,) is a group of order ¢* — q.
Consider the subset

o A P ) P PR SR KA

Theorem 3 (Margulis [8]) Let G = SLy(F,) and let A be as above. Then the Cayley
graph X (G, A) is a 4-regular graph with ¢* — q vertices and girth

c>2log,(q/2) — 1, where a=1++/2=2.4142. ..



In [8] Margulis showed how it is possible to construct from the graph X (G, A) a (3,6)-
regular LDPC code whose girth is at least as large as half the girth of the original graph.
In the sequel we describe this construction and we investigate thereafter the performance
of these codes for certain parameters.

As left vertices we will take two copies of G, say G and (. The right vertices of the
bipartite graph will consist of the set G. An element g € G on the left will be connected
with the right vertices

gA?, gABA™! ¢B.
An element § € G on the left will be connected with the right vertices
GgA™2 GABtA™! gBL

If the smallest non-trivial relation among the elements {A, A~!, B, B='} has length c

then one verifies that the elements

{A% A7 ABA™',AB™'A™' B,B™'}
have no nontrivial relations of length smaller than ¢/2 — 1. It therefore follows:

Lemma 4 The bipartite graph described above describes a (3,6)-reqular LDPC code of
block length 2(¢® — q) and girth

¢ >log,(q/2) — 1, wherea=1++2=24142...

For small numbers of ¢ the lower bound of the girth is of course not very impressive.
Important is however the fact that the lower bound increases linearly in terms of log, n,
where n is the block length of the code. This is the best one can expect.

We found it interesting to simulate the performance of these codes for different pa-
rameters. We did simulations in the case when ¢ = 7 and ¢ = 13. When ¢ = 7 we deal
with a (3,6) code of length n = 672 and dimension 336. When ¢ = 13 we deal with
a (3,6) code of length n = 4368 and dimension 2184. We did perform the simulations
using the sum-product algorithm (see e.g. [4])).

0 Margulis—Code with q=7 and parameters [672,336]
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0 Margulis—Code with g=13 and parameters [4368,2184]
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In the simulations the decoding process is terminated if the syndrome of the decoded
codeword is zero or if the maximum number of iterations is reached.

3 A rate-1/2 code constructed from a Ramanujan
graph

Ramanujan graphs are k-regular graphs which are in a certain sense optimal in their
expansion behavior. Formally, a Ramanujan graph is defined through the property that
the second largest eigenvalue of the adjacency matrix is not larger than 2y/k — 1. Note
that in the limit the second largest eigenvalue is always at least 2v/k — 1.

Lubotzky, Phillips, and Sarnak [6] and independently Margulis [9] constructed an
infinite family of k-regular Ramanujan graphs. These graphs have not only an exceptional
expansion rate but their girth surpasses also the asymptotic Erdés—Sachs bound [2] which
states that a randomly generated k-regular graph with n vertices has girth at least ¢ >
log;,_; n with probability approaching 1 as n — oo.

In the sequel we will describe the construction in [6] and then we will show how these
k-regular graphs give rise to excellent regular LDPC codes.

Consider the group GLy(F,) of 2 x 2 invertible matrices over the Galois field of ¢
elements. The set of diagonal matrices

o-{[s ]

forms a normal subgroup of GLy(IF,). The factor group

xE]F;}

PGL,(F,) := GLy(F,)/D



is called the projective general linear group. Since GLo(F,) has (¢* — 1)(¢* — q) elements
and since D has ¢ — 1 elements it follows that PG Ls(F,) is a group of order ¢* — g.
We can list the elements of PG Ly(F,) in the following simple way:

1. There are ¢>(¢ — 1) matrices having the form

{ i 2 ] , where b, ¢ arbitrary and d # bc.

2. There are ¢(¢ — 1) matrices having the form

[ (c) cli } , where d arbitrary and ¢ # 0.

These (¢% + q)(¢ — 1) = ¢*> — ¢ matrices describe the group PGLy(F,) exactly.
For the rest of the paper we will assume that ¢ is a prime. If z € F, is any nonzero

element we define the Legendre symbol (%) to be equal to 1 if x is a quadratic residue
modulo ¢ and as —1 if x is a quadratic non-residue.

Example 5 If ¢ = 17 the quadratic residues of IF; are:
1,4,9,16,8,2,15,13.
The quadratic non-residues are:
3,5,6,7,10,11,12, 14.
If z,y € F, then it is well known that (%) (%) = (%) As a consequence it follows
that (%) = (%) = (detT(A)) for every A € GLy(F,) and z € F;. It follows
that

0 PGLy(F,) — {—1,1}, A (detq(A))

is a well-defined group homomorphism.

Definition 6 PSLy(F,) := ¢~ '(1) is called the projective special linear group over the
field T, .

One readily verifies that PSLy(F,) has order (¢*> — ¢)/2. The construction in [6] builds
a Cayley graph whose vertices are the elements of PG L4 (F,) respectively PSLo(F,).

For this, let p, ¢ be two unequal primes both congruent to 1 modulo 4. By a theorem
of Jacobi one knows that the equation

p:ag-l-af—f-ag—i-a% (2)

has exactly p + 1 integer solutions with ay odd and greater than zero and a; even for
J=1,2,3. Let i € F; be an element satistying i? = —1. For each of the p + 1 solutions
of (2) define a matrix

ag + a1 as + iag

—a9 + tag ag — a1

and denote by A the set of these p+ 1 matrices. Note that 4 = A~! and for every A € A
one has det(A) = p. Let XP? be the Cayley graph X (PGLy(F,),.A).

6



Theorem 7 ([6, 9]) Let p,q be unequal primes congruent to 1 modulo 4 and satisfying

(}—;) = —1. Note that (% = 1% in our situation. Then XP7 represents a bipartite graph

having q* — q vertices and girth at least
c > 4log, q —log, 4.

The graph X7 is bipartite since we can take as left vertices the elements of PSLy(F,)
and as right vertices the remaining group elements inside PG Ly (F, ). The homomorphism
¢ introduced above decides if an element belongs to left or to the right. Since the
determinant of every element in A is a quadratic non-residue modulo ¢ it follows that
vertices on the left side are only connected to vertices on the right.

The asymptotic Erds-Sachs bound [2] for a (p + 1)-regular graph with n = ¢3 — ¢
elements predicts that the girth of a randomly constructed graph will asymptotically
satisfy ¢ > 3log, g. The girth of the graphs X7 surpass the Erds—Sachs bound for every
pair p, g satisfying the assumption of the theorem. It was pointed out by Margulis [9]
that the Erd6s—Sachs bound has a flavor similar to the Gilbert—Varshamov bound as
there exist also codes with a minimum distance which beats the average of randomly
generated ones.

In the rest of the paper we show how the graphs X?¢ give rise to interesting LDPC
codes. We restrict ourselves to one example. During the preparation of this paper we
learned that Lafferty and Rockmore [5] constructed also some LDPC codes starting from
the Ramanujan graphs X?9. The construction approach taken by Lafferty and Rockmore
differs however from the one presented next.

Let p =5 and ¢ = 17. Note that 5 is a quadratic non-residue in F;7, i.e. (1—57) = —1.
The graph XP consists in this case of n = ¢% — ¢ = 4896 vertices.

Let i := 4 have the property that 2 = —1 in F;;. There are exactly p+1 = 6 solutions
(ag, a1, as, az) having the property that

agt+ai+ay+ay=p=>5
with ap odd and positive and the others even, namely:
(1,42,0,0), (1,0,+2,0), and (1,0,0, +2).

This results in 6 matrices:

1438 0 1 +2 1 +8
1 ._ == S 1. __
A= 1;8}’3 "[;2 1}’0 '_[is 1]

forming the set A of the Cayley graph. Note that the determinant is each time 5 mod-
ulo 17.

The graph X?? has in a natural way a bipartite structure. The left node consist of
PSLy(TFy7), these are all elements whose determinant is a quadratic residue modulo 17.
Asright nodes take the elements whose determinant is a quadratic non-residue modulo 17.
Note that a quadratic residue modulo 17 multiplied by 5 results in a quadratic non-residue
modulo 17.

In order to build an LDPC code we take as left vertices two copies of PSLy(IFy7),
say V and V. As right vertices we take the right coset VA C PGLy(Fy7) of PSLy(Fy7).

7



As in the Margulis construction described in the last section we connect every element
v € V on the left with the vertices vA, vB,vC on the right. An element o € V on the
left will be connected with the vertices A1, B!, 9C~! on the right.

The following diagram depicts the situation. The set V' A describes the right coset of
PSLy(Fy7) in PGLy(Fy7). The code bits are represented by the sets V and V. Note that

for convenience the set V has been drawn on the far right.

A

O

\% V.-A \%4

The construction results in a (3, 6)-regular LDPC code having block length n = 4896
and m = 2448 parity-check equations. There are few things we readily can say from
some theoretical considerations. First the girth can be at most 14. Indeed if it were 16
we could start at a right vertex. All the vertices reached after 7 steps would have to
be different. In this way we could predict that there are 6+60+600+6000 different left
vertices when there are actually only 4896. So the girth cannot be more than 14 for these
parameters. We computed the actual girth as 12 using MATLAB.

Similarly one can make a counting argument for the minimum distance. An active
parity check on the right is connected with two nonzero bits on the left. In two further
steps these two bits are connected to 4 more nonzero bits. Completing this argument it
follows that the minimum distance is at least 14. Actually we believe that the distance
is much higher. Indeed during all our simulations, a large number of errors with large
Hamming weight could be corrected.

Note that the resulting parity-check matrix has a significant number of dependent
rows so that the dimension is 2474. (A difference of about 1% to the designed one). In
our simulations we compare this with a randomly constructed (3,6)-regular code with
parameters [4896, 2448] which has the same decoding complexity per iteration.

The following diagram provides some simulation results.



Ramanujan—(Margulis)-Code with g=17, p=5 and parameters [4896, 2474]
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The simulations suggest that the obtained algebraically constructed code performs
superior over a randomly constructed (3, 6)-regular code.

4 Conclusion

In this paper we studied the performance of some algebraically constructed LDPC codes
proposed by Margulis [8]. We adapted the construction using some Ramanujan graphs.
It seems that these codes perform better than the randomly constructed codes of equal
size and equal degrees.
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