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Abstract: Codewords in finite covers of a Tan-
ner graph G are characterized. Since iterative, locally
operating decoding algorithms cannot distinguish the
underlying graph G from any covering graph, these
codewords, dubbed pseudo-codewords are directly re-
sponible for sub-optimal behavior of iterative decod-
ing algorithms. We give a simple characterization
of pseudocodewords from finite covers and show that,
for the additive, white Gaussian noise channel, their
impact is captured in a finite set of “minimal” pseudo-
codewords. We also show that any (j, k)-regular graph
possesses asymptotically vanishing relative minimal
pseudo-weight. This stands in sharp contrast to the
observation that for j > 2 the minimum Hamming
distance of a (j,k)-reqular low-density parity-check
code typically grows linearly with the length of the
code.

1. Introduction

While iterative, message-passing decoding algo-
rithms have had unparalleled success, it is fair to
say that their behavior for the case of finite length
codes is, at present, not well understood. Neverthe-
less, in some cases specialized techniques give some
insight into the problem. The case of iterative de-
coding for the erasure channel was investigated by
Di et al. [8] utilizing the notion of stopping sets. On
the other hand, the computation tree and pseudo-
codewords were the basis of a finite length analysis
introduced by Wiberg [3] developed in [5,6]. Finally,
the idea of near-codewords was used by MacKay and
Postol [10] to empirically characterize problematic
situations for iterative decoding.

The goal of this paper is to continue the study of
iterative decoding algorithms for finite length codes.
It turns out that finite graph covers (in contrast to
the universal cover) provide a powerful tool to char-
acterize the behavior of locally operating, message-
passing decoding algorithms. Not only does our analy-
sis give a crisp and quantifiable design criterion for
iteratively decodable codes but it also elegantly re-
flects and unifies the notions of stopping sets, pseudo-
codewords and near-codewords.

We show that the performance of iterative de-
coding schemes is, even in the high SNR regime,
largely dominated not by minimum distance consid-

erations but by the notion of pseudo-weight which,
loosely speaking, measures the minimum weight of
an error pattern that will cause nonconvergence in
the iterative decoder. This minimum pseudo-weight
is shown to grow sublinearly for sequences of reg-
ular low-density parity-check (LDPC) codes, which
stands in sharp contrast to the fact that their ex-
pected minimum distance grows as a linear function
of the code length.

This paper is organized as follows: In Section
2 we give some basic notation relating to iterative
decoding and we give an illustrative example. Sec-
tions 3 and 4 lay out the basic theory behind our
analysis. Section 5 gives bounds on the effective
pseudo-weight of any LDPC code. Section 6 sketches
algorithmic approaches to computing the minimum
pseudo-weight of a code. While many facts are stated
as theorems, propositions etc. in this paper, proofs
are generally omitted due to lack of space. For proofs
of the claims we refer to a forthcoming paper on these
issues [12].

2. Basics and an Example

Let F, denote the binary field. A binary, linear
code C of type [n,k] is a k-dimensional subspace of
the binary Hamming space Fj'. Any code of type
[n, k] may be specified as the nullspace of an n x
(n — k) parity-check matrix H, i.e. C = {c € F} :
Hc! = 0}.

We can associate a bipartite graph Gy, the so-
called Tanner graph [1,2,4], with a given parity-check
matrix H in the following way: a vertex f;, i =
0,1,...,n—k—11is created for each row in the parity-
check matrix and a vertex ¢;, j = 0,1,...,n —1is
created for each codeword position. Moreover, we
create an (undirected) edge {f;,c;} between f; and
¢; if and only if the entry H; ; of the parity-check
matrix is nonzero. The set of parity-check vertices
fiisdenoted as Vy = {f; : i =0,1,...,n—k—1} and
the set of codeword position vertices ¢; is denoted as
Ve={e¢; :i=0,1,...,n—1}. We will simultane-
ously refer to codeword position, codeword position
vertices and the value of a codeword position by c;.
The edge set of Gy is denoted as E C {{v,u} :v €
Vi, u € V.}. The set of neighbors of a vertex v is
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Fig. 1 a) Tanner graph of a trivial code of length 3
consisting of only the zero codeword. b) Convergence

regions for the code illustrated in a). The value of Ag
is fixed to 0.013.

defined as I'(v) = {u : {v,u} € E} and the degree
d(v) of a vertex v is defined as §(v) = |T'(v)].

Let a codword ¢ € C be transmitted over a noisy,
memoryless channel and let a vector y be received.
We can summarize y in form of a vector A = (Ag, A1,

.y An—1) of log-likelihood ratios A; = In %.
The decoding problem consists of finding the most
likely codeword c given the vector A.

The Tanner graph of a code is the appropriate
framework to describe message-passing decoding al-
gorithms. By now, a variety of such algorithms is
known, all of which may be seen as instances of the
same underlying principle [2,3,9]. Most of the de-
velopment in subsequent sections applies to any lo-
cally operating algorithm and is, thus, independent of
the particular choice of message-passing algorithm.
However, whenever we give experimental results we
will usually use the so-called min-sum algorithm [3].
The difference between this algorithm and the more
common sum-product algorithm is relatively small
and the min-sum algorithm is more amenable to anal-
ysis.

Before we develop the theory of our approach in
the next section, the following example sheds some
light on some basic concepts involved:

Example 1 We consider a trivial code C of length
n = 3 and dimension k = 0 with parity-check matrix

H =

O = =

1 0
1 1
1 1

and Tanner graph depicted in Figure 1a. While it, at
first, may seem strange to consider a zero-rate code,
it 1s indeed an ideal candidate to investigate prob-
lematic behavior of iterative decoding. Under an op-
timal decision rule the decoding algorithm must out-
put the all-zero word independently of the received
log-likelihood vector A. On the other hand, a simple
experiment reveals that the behavior of the decoding
algorithm is dependent of the received vector X. Fig-
ure 1b depicts the convergence behavior of an itera-
tive decoding algorithm for a fived value of Ao = 0.013
as both A1 and Ao range from —5 to 5. The algorithm
fails to converge after 100 iterations in the black re-
gion of the image while it converges to the zero code-

Fig. 2 A cubic cover of the graph in Figure 1a.

word in the gray colored areas. The speed of conver-
gence is indicated by the shade of gray. Moreover,
we note that this behavior is independent of the algo-
rithm in question (min-sum, sum-product, etc.) and
it is found for wvirtually any locally operating decod-
ing method. A closer study shows that the region of
convergence to the zero word is empirically well de-
scribed (up to numerical accuracy) by the condition
Ao+ A1+ A2 = 0. In other words, a message-passing
algorithm realizes the decoding region of a repetition
code of length 3. In order to understand this behavior
we consider the graph in Figure 2.

Figure 2 depicts a so-called cubic cover of the
graph Gm in Figure 1. The graph is obtained by
replicating every node in Gu three times and intro-
ducing edges so that the local adjacency relationships
between replicated nodes is preserved. (A concise def-
inition of a finite graph cover is given shortly). We
emphasize two crucial observations:

e In principle, locally operating decoding algorithms
cannot distinguish if they are operating on a
Tanner graph Gy or any finite cover of this
graph as, for example, the cubic cover depicted
in Figure 2.

e The binary codes in finite covers support code-
words that do mot have an equivalent in the
original graph. Such a codeword is indicated
in Figure 2 for the cubic cover of Gp.

It is clear, that any locally operating message-pas-
sing algorithm will automatically take into account
all possible codewords in all possible covers of the
original graph. In other words, the binary configu-
ration indicated in Figure 2 will compete for the best
solution along with all other valid configurations in
the union of all covers. In the case of our example
code, the existence of nonzero codewords in finite cov-
ers of the original graph explains the behavior of iter-
ative decoding algorithms since it acts with respect to
a received word as the all-one configuration. In other
words, the codeword indicated in Figure 2 is “closer”
than the all-zero word to a received word in a region
that would correspond to a virtually present all-one
word. Moreover, it can be shown that any nonzero
codeword in a finite cover of Gu has the same effect
as a virtually present, all-one codeword. O



Example 1 shows how codewords in graph cov-
ers impact the performance of message-passing algo-
rithms. At first glance it seems a formidable task to
characterize all possible codewords being introduced
by the union of finite covers of any degree. (The
number of finite covers of a graph grows faster than
exponential with the covering degree). However, it
turns out that this becomes an object that itself is
elegantly described and compactly represented in the
original factor graph of Fig. 1.

3. Finite Graph Covers

Let a graph G = (V, E) be given with vertex set
V = {vo,v1,...,v¢—1} and edge set E.

Definition 1 A finite degree m cover of G=(V,E)
s a gmph G with vertex set V = Ul 0 V; where each
set V; = {0i,0,0i1,- -
vertices. The edge set E of G is chosen as a subset
of {{0is, 0} : {vs,v;} € E;s,r€{0,1,...,m—1}}
such that, for each vertex v;s € v, 0(0i;) equals
d(vi) and T'(0;s) contains precisely one vertex 0.,
for all j such that v; € T'(v;) holds. O

vzm 1} contains exactly m

If a graph G is a Tanner graph for a code C of
length n, a degree m cover G is a Tanner graph
of a code C of length mn. (Any object relating
to a finite cover of an underlying graph is distin-
guished by a " symbol). Vertices in V; are denoted
as ¢;0,Ci1,.-.,Cim—1 for lifted nodes ¢; € V. or
fi70, fi,l, ey fim_l for lifted nodes in f; € V;. Any
codeword in C can be lifted to a codeword in C by
assigning the value of ¢; to all ¢; ;. In particular, the
all-zero word in C will be lifted to the all-zero word in
C. In order to characterize the effect of any nonzero
word in C we replicate the received values and log-
likelihood ratios to obtain ¢;; = y; and ;\i,l = \; for
l=0,1,...,m — 1, thus obtaining vectors y and A
Let & be a codeword in C and let w;(¢) be defined as

déf|{l DGy = 1}|

m

w;(€)

i.e. the fraction of times a variable in ‘A/Z assumes the
value 1. The vector w(¢) = (wp(€),w1(€),...,wn(€))
plays a crucial role in characterizing the behavior of
codewords in C.

Let the inner product of two vectors a,b be de-

fined as (a, b>d§'z a;ib;.

Proposition 1 Let a vector of log-likelihood values
A and its lifting X be gwen. Moreover let two words
¢ and & in C be given. We have Pr{¢|A} > Pr{c/|A}
if and only if (w(€), ) < (w(c'),\) holds. O

The most important property of Proposition 1 is
that codewords in C can be effectively characterized
by the vectors w(¢). Assume that ¢ € C and its
lifted version ¢ are the all-zero codeword in Propo-
sition 1. It follows that pairwise decisions between
c and a competing nonzero codeword ¢ e C will
partition the space of A into two regions separated
by the hyperplane (w(c’),A) = 0. For any partic-
ular channel model we can compute the distance of
this hyperplane from the transmitted signal point in
signal space, thus effectively characterizing a type
of minimum distance, the so-called pseudo-distance
[3,5,6].

Let ||x|lq = 3, xf)% denote the L, norm of a
vector. For the binary antipodal signaling on an ad-
ditive, white, Gaussian noise (AWGN) channel we
have the following definition [3,5,6]:

Definition 2 (Pseudo-codewords) Let ¢ € C be
a codeword in a cover of the Tanner graph G. We
call w = w(e€) a pseudo-codeword of C. Its pseudo-
weight wy(w) on an additive, white, Gaussian noise
channel is given by

wp(w)d_ef<||w||1)2. W

e

Let wgli“(C) denote the minimum pseudo-weight of
all nonzero pseudo-codewords of C taken over all fi-
nite degree covers of G. |

Remark 1 Note that if ¢ is a codeword with Ham-
ming weight wy(c), then w = ¢, ||c||1 = wu(c) and
llellz = y/wu(c). It follows that wy(c) = [[c[[3/[|c][3

O

= wg(c)?/ wu(c) = wa(c).

The pseudo-weight measures the distance of the
all-zero codeword in signal space to a pairwise deci-
sion boundary caused by a pseudo-codeword w.

Proposition 2 Let a binary code be used on an ad-
ditive, white, Gaussian noise channel with antipodal
signaling with signal alphabet {+1}. Let a nonneg-
ative vector w be given. The squared Euclidean dis-
tance in the signal space between the signal point 1,
corresponding to the all-zero word, and the hyper-
plane (w,y) =0 is given as wp(w). O

Remark 2 Proposition 1 is independent of the par-
ticular channel. In the space of log-likelihood ratios
A the pseudo distance is always proportional to the
pseudo-weight of Definition 2. However, signal space
is, in general, not linearly related to A and we get
different pseudo-distance expression for non-AWGN
channels. Expressions for the pseudo-distance in the
context of nonbinary signaling, the binary symmetric



channel and the binary erasure channel can be found
in [5]. O

Proposition 1, in conjunction with the fact that
locally operating decoding algorithms cannot distin-
guish between G and G motivates our subsequent
task to characterize vectors w(€) for the union of all
possible finite covers. While this, at first, appears to
be a difficult task, we will see in the next section that
it is elegantly solved by the original Tanner graph G.

4. The Fundamental Polytope

We start this section by considering a simple parity-
check code Cs of length ¢ and its Tanner graph con-
sisting of a single parity-check node fy of degree
0 and ¢ variable nodes cg,c1, ...,cs—1. Any finite
cover of degree m of G is simply an m-fold copy of
the original graph G. It is particularly simple to de-
scribe the pseudo-codeword induced by these m-fold
repetitions. We consider a codeword in the original
parity-check code described by G as a codeword over
the real numbers with elements {0, 1}. Since any in-
dividual copy of G can support any codeword from
Cs, the possible set of words w(€) originating from
the m-fold cover can be described as the set of vec-

tors m
.1 C;
{7211 : 1 C; € 65}
m

Let a matrix P be defined as the 29=! x § ma-
trix containing all binary even weight vectors. As we
consider covers over larger and larger degree m, we
have the following proposition:

Proposition 3 Let a Tanner graph G be given con-
sisting of a single parity-check node of degree § and
0 wvariable nodes. Consider the set P of pseudo-
codewords w(€) taken over the union of all covers
of G of all degrees m = 1,2,.... The closure of P in
the real numbers is described by the polytope

def

P(Gs) L w e R" :
w :ng,xeRzéfl,O <2 < 1,2@ =1}

O

Example 2 We consider the Tanner graph of a parity-

check code of length three. The polytope P(C3) of all
possible vectors w(€) is depicted in Figure 3. O

It is actually possible to extend Proposition 3 to
a nontrivial Tanner graph G. To this end, let the
restriction of a vector w to a set V of variable nodes
be denoted as wy .

(11,0

(G5
Fig. 3 The pseudo-codeword polytop for a [3,2] parity-
check code.

Theorem 4 Let a Tanner graph G be given with
parity-check nodes fo, f1,..., fi—1 and variable nodes
€0,Cl,---,Cn_1. Let P be the set of pseudo-codewords
w(¢) taken over the union of all covers of G of all
degrees m = 1,2,.... The closure of P in the real
numbers is described by the polytope

P(G) = {weR":

wr(y) € W(G(;(fi)),i:0,1,...,l—1}. O

Theorem 4 gives a compact and elegant character-
ization of the possible vectors w for any given Tanner
graph G. In fact, the polytope Z(G) is itself com-
pactly representable in G by choosing for variable
nodes the alphabet R and associating with node f;
the indicator functions of the parity-check polytopes
P(Gss,y)- ZP(G) is a convex body entirely inside
the positive orthant and with one corner of #(G) lo-
cated in the origin. To any vector w in #(G) we can
find at least one (in general there are many) code-
words € in some finite cover of G such that w = w(¢).
Moreover, this pseudo-codeword has pseudo-distance
wp (w) from the all-zero codeword. Note that all mul-
tiples of the vector w have the same pseudo-weight.
Hence, provided we relate our future discussion to
the all-zero codeword we can restrict our attention
to the (convex) cone that is generated by £(G). We
call this object the fundamental cone of the graph G.

Definition 3 Let a Tanner graph G be given with
associated polytope P (G). The fundamental cone F(G)
associated with G is defined as

F(G) = {uw €R" : w € P(G), 1 > 0}
O

Assuming that the all-zero word was transmitted,
Proposition 1 motivates the definition of a region %,
in R as

Do ={AeR: (w,A) >0,Vw e F(G)}.



Fig. 4 Decision region in binary on-off keying due to
the corners of the pseudo-codeword polytope for a [3,2]
parity-check code.

D is the region where the all-zero word is more likely
than any competing codeword ¢ in a finite cover.
The pseudo-weight of a vector w may be expressed
as wp(w) = n(cos(£(w,1)))? where Z(w, 1) denotes
the angle between the vector w and the all-one vec-
tor. Hence, the minimum pseudo-weight wgli“(C) is
achieved by a corner of the convex cone that encloses
the maximal angle with the all-one vector. Let U(G)
be the set of corner points in #(G). For the AWGN

channel we have the following theorem:

Theorem 5 Let F(G) be the fundamental cone of a
Tanner graph G. For the AWGN channel, the region
Do may be described by the cornerpoints of F(G)
alone, i.e.

Do={AeR: (w,A) >0,Vw e U(G)}

O

Remark 3 Theorem 5 allows us to compactly rep-
resent the region 9y. Mazximum likelihood decision
regions on an AWGN channel are determined by so-
called minimal codewords which are the subset of code-
words that contribute a face to the maximum likeli-
hood decision region polytope. Here we have a quite
similar situation where for the AWGN channel again
a finite set of minimal pseudocodewords, i.e. the set
U(G), contributes faces to the polytope Dy. O

Remark 4 For the AWGN channel, Theorem 5 trans-
lates directly into a description of the set 9y in signal
space since X depends in an affine way on the received
vector y. For example, the region 9y for binary on-
off signaling and the fundamental cone of Figure 3
is indicated in Figure 4. However, we note that, A
does, for other channels, in general, not depend in
an affine way on a signal space representation of the

received vector. Thus, the shape of Dy for general
channels is not necessarily a polytope. O

Example 3 Theorem 5 gives a crisp characteriza-
tion of the region PDy. We can use this characteriza-
tion to investigate LDPC' codes and their parameters.
A particularly nice LDPC' code was constructed by
Tanner et al. [11]. The code is a regular (3,5)-LDPC
code (all variable nodes in the Tanner graph have de-
gree three and all check nodes have degree five), of
length 155, dimension 64 and minimum Hamming
distance 20. Its parity-check matriz of size 93 x 155
would actually suggest a R = 2/5 code, but because
of rank loss, the actual rate is slightly higher, namely
R =64/155 = 0.4129.

The underlying graph G has a girth of 8 and a di-
ameter of 6 which, together with the relatively large
minimum distance of twenty (the best known code
with the the same length and dimension has min-
imum Hamming distance 28), makes this code an
outstanding candidate for iterative decoding. How-
ever, it is relatively easy to find a pseudo-codeword in
U(G) which has pseudo-weight only 16.406. Thus the
large minimum distance of the code is largely irrel-
evant for iterative decoding and does not determine
the performance of the code. In particular, based on
the automorphism group of the graph, the multiplic-
ity of pseudo-codewords of weight 16.406 is, at least,
155. O

We conclude this section with a theorem for the
well understood case that the Tanner graph of a code
C is a tree. In this case iterative decoding realizes the
optimal decoding algorithm. This is nicely reflected
in the shape of the fundamental cone Z(G).

Theorem 6 Let % (G) be the fundamental cone of a
Tanner graph G. Moreover, assume that G is a tree.
Let M be the set of minimal codewords of C. The
fundamental cone F(G) is generated by the set M,
ie.

F(G)={weR:w= Y alc)c,0 < alc) €R}.
ceM

Thus, if G is a tree, Dy is exactly the maximum like-
lihood decision region of the all-zero codeword. (I

5. An Upper Bound on the Minimal
Pseudo-Weight

In this section we investigate the asymptotic be-
havior of the minimum pseudo-weight of a Tanner
graph G. Let ¢g(G) be the girth of G, and let A(G)
be its diameter. Given any variable node v in G let
A, (G) denote the maximal distance from v that any



node in G can have. The code C is called a (j, k)-
regular code if the uniform column weight of parity-
check matrix H is 7 and the uniform row weight of
H is k.

Definition 5 We denote an arbitrary variable node
v of G to be the root. We classify the remaining
variable and check nodes according to their (graph)
distance from the root, i.e. the root is a tier 0, all
nodes at distance 1 from the root will be called nodes
of tier 1, all nodes at distance 2 from the root node
will be called nodes of tier 2, etc.. We call this or-
dering “breadth first spanning tree ordering with root
v.” Because of the bipartiteness of G, it follows eas-
ily that the nodes of the even tiers are variable nodes
whereas the nodes of the odd tiers are check nodes.
Furthermore, a check node at tier 2t + 1 can only
be connected to variable nodes in tier 2t and possibly
to vartable nodes in tier 2t + 2. Note that the last
variable node tier is tier A,(G) and that the symbol
nodes are at tiers 0,2,...,2|A,(G)/2]. O

Remark 6 Let the Tanner graph of a binary (j,k)-
reqular code C be given and let v be an arbitrary bit
node. We perform breadth first spanning tree order-
ing with respect to v according to Def. 5. Let N¢(C) be
the number of nodes at tier t and let Ny"** = N;"%
be the mazimal number of nodes possible at tier t.
1t is not difficult to see that Ny*®* =1, N{"™ = j,
NP — (1), NP = j(k — 1)(j — 1), Np= =
jlk=1)(G = 1)(k—=1). In general, N2> = j(j —
)Yk —1)" fort >0 and N3 = j(j — 1)'(k —1)*
fort > 0. ]

Definition 4 (Canonical completion)

Let the Tanner graph of a binary (j, k)-reqular code C
be given and let v be an arbitrary symbol node. After
performing the breadth first spanning tree ordering
with root v we construct a pseudo-codeword w in the
following way. If bit i corresponds to a variable node
in tier 2t, then

def_ 1

TV @

We call this the canonical completion with root v. [J

Proposition 7 The canonical completion with root
v yields a vector w such that w is in the funda-
mental cone F(G). The vector w has pseudo-weight
wp (w) = [|w[[i/]|wl][3, where

(A4 (G)/2] 1
llw|1 = Z N2t(G)ma (3)
t=0

[A4(G)/2] 2
wlii= 3 wm(ﬁ). (4)

t=0

¢, O

Fig. 5 Tanner graph for the [7,4,3] Hamming code.

O

For a given G, one can calculate the pseudo-weight
of the pseudo-codeword given by the canonical com-
pletion for any given root; this will always yield an
upper bound on wi™(C).

Example 4 We consider the Tanner graph of the
[7,4,3] Hamming code given in Figure 5.

The canonical completion with root ¢y corresponds

to a vector w = (1, %, %, %, %, %, %) It is easy to check

that this pseudo-codeword is indeed inside the funda-
mental polytope for this graph. The 2p&’euda-weight
) , I+l4lylply1

in this case equals §+§+;f%f%f8_lli)% =3.973. We
note that the Tanner graph of Figure 5 also supports
a pseudo-codeword w' of type w’ = (1,0,0, %, %, 0, %)
The pseudo-weight of w' equals only three and is thus
at “minimum distance” for this code. O

The canonical completion with a given root is not
only a generally good candidate in order to find a
pseudo-codeword of low weight but it is also a powe-
ful enough technique to show the asymptotic behav-
ior of the pseudo-weight by properly bounding ||w]|1
and ||w]|3.

Theorem 7 LetC be a (j, k)-reqular LDPC code with
3 < j < k. Then the minimum pseudo-weight is up-
per bounded by

wp™(C) < B, -, (5)
where
;oo (iG=DY 5 s leg(G-17)
ﬂ“’“_( j—2 ) S ey (T ) B
(6)
(]

Corollary 8 Consider a sequence of (j,k)-regular
LDPC codes whose length goes to infinity. The rel-
ative minimum pseudo-weight (i.e. the fraction of
minimum pseudo-weight to code length) must go to
zero. (]



Remark 9 Note that Corollary 8 is in sharp con-
trast to the fact that the relative minimum weight
of a randomly generated (j, k)-reqular LDPC' code is
lower bounded by a monzero number with probability
one for n — oo [7]. O

Remark 10 The different nature of pseudo-weight
with respect to different channels is underlined by the
fact that the canonical completion with respect to any
given root yields a small pseudo-weight in the AWGN
case while its normalized pseudo-weight on the era-
sure channel equals one. Nevertheless, the funda-
mental cone still characterizes the set of pseudo-code-
words — it is the worst case pseudo-codeword within
the fundamental cone that is different. O

6. Relations to Stopping Sets and Near
Codewords

Stopping Sets Stopping sets were introduced in [§]
as a means to understand the suboptimal behavior of
iterative decoding techniques for the erasure channel.
It has been observed later that stopping sets seem to
also reflect, to some degree, the performance of iter-
atively decoded codes for other channels. Let S be a
subset of variable nodes and consider the subgraph
G’ of G induced by S and the neighbors of S. S is
called a stopping set if G’ does not contain any check
nodes of degree one.

Theorem 11 Let x be a vector that equals one in a
stopping set S and which is zero otherwise. There
exists an o with 0 < o < 1 such that w = ax is a
pseudo-codeword of pseudo-weight |S|. O

While the notion of stopping set is well suited
to the erasure channel where the pseudo-weight is
defined as the support of a pseudo-codeword [5], it
is not refined enough to capture the situation for
the AWGN channel. Figure 6 shows two Tanner
graphs that only allow the all-zero word as valid
codeword. Both graphs admit a pseudo-codeword
w = (2/3,2/3,2/3,2/3) in the corresponding funda-
mental cones that has an interpretation as stopping
set. However, in addition to this pseudo-codeword,
the fundamental cone F(G) of one of the two graphs
contains a pseudo-codeword of pseudo-weight only
three.

Near-Codewords MacKay and Postol [10] intro-

duced the notion of near-codewords. These are vec-

tors x with z; = O or x; = 1l foralll < i < n

such that the syndrome s = xH' has low Hamming

weight. Especially interesting are the low-weight near-
codewords.

a)

23 213 213 2/3 0 213 2/13 2/3
Fig. 6 Two stopping sets of size four. Pseudo-
Codewords w are indicated that achieve different min-
imum pseudo-weight on an AWGN.

While the notion of near codewords is helpful
in understanding potential problems in the design
of iteratively decodable codes it suffers from being
quantifiable in a precise sense. For example, a single
one in a (j, k)-regular code may be considered as a
near codeword with syndrome weight j. In order to
make a precise statement on how problematic this
near codeword is, one can find a corner in the fun-
damental cone that is close to the vector containing
a single one. Note that any near codeword can be
completed into a pseudo-codeword with a procedure
similar to the canonical completion (now rooted at
the near codeword). This gives a precise measure of
the effect of a near codeword.

7. Algorithmic Issues

Theorem 5 gives a crisp characterization of the
minimal pseudo-codewords, i.e. the set of pseudo-
codewords that determine the shape of the region
9. In this section we investigate algorithmic issues
to find pseudo-codewords of small pseudo-weight. In
this context it is interesting to note that the fun-
damental cone is readily represented in the original
Tanner graph by re-interpreting the function nodes
and the variable nodes. To this end let a matrix P
be defined as the g ) X 0 matrix contining all binary

weight two vectors. For a real valued vector of length
d, let an indicator function I5(w) be defined as

Iy(z) = 1 HXGR(;:Z:XP(;,ZCZ'ZO
%) =91 0 otherwise.

Membership in the fundamental cone #(G) can
thus be tested by checking the indicator function

l
Ie(w) = [ ZLs(s) (wr(s)-
1=0

The factor graph [2] that is obtained by assigning
the indicator functions Iy, (wr(y,)) to the individ-
ual function nodes f; and by letting the variable al-
phabets be R gives, in fact, a suitable framework for
an iterative algororithm to find pseudo-codewords.
While there is some conceptual appeal to this ap-
proach it is essentially similar to a gradient descent
algorithm.
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Fig. 7 The permutation in an LDPC code

In the sequel we describe a linear programming
approach to finding pseudo-codewords of small pseudo-
weight. For simplicity we restrict the subsequent de-
scription to (j, k)-regular LDPC codes. The general-
ization to irregular codes is straightforward.

LDPC codes may be described by a permuta-
tion that maps edges in G = (V, E) which are in-
cident with variable nodes to edges that are inci-
dent to function nodes (see Fig. 7). Let II be the
corresponding |E| x |E| permutation matrix. Let a
(j — 1) x j matrix F; be defined as F; = [-1 : I;_4]
where I;_1 isa j —1 x j — 1 identity matrix. F; is
defined as the empty matrix.

Let A be a m X n matrix and let the Kronecker
product of two matrices A, B be defined as

a11B  a12B a; ,B

a27lB a27gB a27nB
AoB= . .

am1B  am2B Qm,nB

We have the following proposition characterizing
the fundamantal cone:

Proposition 8 Let a length n, (j, k)-regular LDPC
code be given with associated graph G and permu-
tation matriz II. Let matrices W,Z be defined as
W = Lo 0 Py and Z = WII(I.e o F;). Moreover,
let for a given vector x, X.; denz)te the sub-sampled
vector (xo, Tj, T2j, .- .)

The fundamental cone may be described as

F(G) ={weR":w= (xWII),;,xZ =0,z; >0}

O

While the description of the fundamental cone in
Proposition 8 seems cumbersome at first, it is well
suited to formulate a linear program to find pseudo-
codewords of small pseudo-weight:

Linear Program: Given v and the graph G
Minimize (v, (xWII),;)
Subject to: xZ =0, (x,1) =1, 2; > 0.

The above linear program can be used to check a
given graph G for pseudo-codewords in the set U(G).
For a random choice of the vector v we will typ-
ically get a pseudo-codeword in U(G) of relatively

high weight. However, choosing a vector v which
contains a single one in a position and is zero other-
wise will yield pseudo-codewords of smaller weight.
The same is true in general if the support of v is
chosen according to a near-codeword.
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