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Abstract— Iterative message-passing decoders for low-density
parity-check (LDPC) block codes are known to be subject
to decoding failures due to so-called pseudo-codewords. These
failures can cause the large signal-to-noise ratio performance of
message-passing decoding to be worse than that predicted by the
maximum-likelihood decoding union bound.

In this paper we study the pseudo-codeword problem for the
class of LDPC convolutional codes decoded continuously using an
iterative, sliding window, message-passing decoder. In particular,
for an LDPC convolutional code derived by unwrapping a quasi-
cyclic LDPC block code, we show that the free pseudo-weight of
the convolutional code is at least as large as the minimum pseudo-
weight of the underlying quasi-cyclic code. This result parallels
the well-known relationship between the free Hamming distance
of convolutional codes and the minimum Hamming distance of
their quasi-cyclic counterparts.

Finally, simulation results are included that show improved
performance for unwrapped LDPC convolutional codes com-
pared to their underlying quasi-cyclic codes.

I. INTRODUCTION

In this paper we discuss a class of low-density parity-check
(LDPC) convolutional codes derived by unwrapping quasi-
cyclic LDPC block codes. The idea of unwrapping a quasi-
cyclic (QC) block code to obtain a convolutional code was
first introduced in a paper by Tanner in [1], where it was
shown that the free distance of the unwrapped convolutional
code is lower bounded by the minimum distance of the
underlying QC code. This idea was later extended in [2], [3].
More recently, a construction for LDPC convolutional codes
based on QC-LDPC block codes was introduced by Tanner
et al. [4], [5], and an iterative, sliding window, message-
passing decoder was described. In that paper it was noted
that the convolutional versions of these codes significantly
outperformed their block code counterparts in the waterfall
region of the bit error rate (BER) curve, even though the
graphical representations of the message-passing decoders
were essentially equivalent. Extensions of this construction
have been given in [6], [7]. In this paper, we provide a possible
explanation for this performance difference. Based on the
results of [8] that relate code performance to the existence of
pseudo-codewords, we examine the iterative decoding related
pseudo-codeword weight spectra of QC-LDPC block codes
and their associated convolutional codes. We take the approach
of [8]–[10] which connects the presence of pseudo-codewords
in message-passing iterative decoding and linear programming
(LP) decoding.

LP decoding was introduced by Feldman, Wainwright, and
Karger [11], [12] (see also [13], [14]) and consists of relaxing
the optimization over the set of codewords that describes
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the maximum likelihood decoding problem into a computa-
tionally easier optimization over an associated “fundamental
polytope”.

In order to analyze the behavior of unwrapped LDPC
convolutional codes under LP decoding, we therefore need
to examine the fundamental polytope/cone [8], [9] of the
underlying QC-LDPC block codes. Our goal is to formulate
analytical results (or at least efficient procedures) that will
allow us to bound the minimum pseudo-weight of the pseudo-
codewords of the block and convolutional codes.

The paper aims at addressing this question and related
issues. In the following sections, we will study the connections
that exist between pseudo-codewords in QC codes and pseudo-
codewords in the associated convolutional codes and show that
this connection mimics the connection between the codewords
in QC codes and their associated convolutional codes.

The paper is structured as follows. In Sec. II we briefly dis-
cuss the well-known connection between convolutional codes
and their associated QC codes, especially how codewords in
the former can be used to construct codewords in the latter.
In Sec. III we define the fundamental polytope/cone and the
various pseudo-weights of a binary linear code. The main
part of the paper is Sec. V, where we show how pseudo-
codewords in unwrapped LDPC convolutional codes yield
pseudo-codewords in the associated QC-LDPC codes and how
this can be used to bound the minimum pseudo-weight of an
LDPC convolutional code in relation to the minimum pseudo-
weight of the QC-LDPC code. In Sec. VI we present some
simulation results comparing LDPC convolutional codes to
their associated QC-LDPC codes, and in Sec. VII we offer
some conclusions. Proofs of lemmas and theorems have been
sketched in the Appendix.

II. QUASI-CYCLIC AND CONVOLUTIONAL CODES

In this section we introduce the background needed for the
later development of the paper. Note that all codes will be
binary linear codes.

It is well known that the set of binary circulant matrices of
size r × r forms a ring isomorphic to the ring of polynomials
of degree less than r, F2[X]/〈Xr − 1〉: to each circulant
matrix M we can associate uniquely a polynomial M(X)
with nonzero coefficients corresponding to the nonzero entries
of the first row of M. Adding and multiplying two circulant
matrices is equivalent to adding and multiplying their asso-
ciated polynomials modulo Xr − 1. Multiplying a circulant
matrix M from the left with a vector v , (v0, v1, . . . , vr−1)
corresponds to multiplying the associated polynomial v(X) ,
v0 + v1X + · · · + vr−1X

r−1 by the polynomial M(X), i.e.,
M(X) · v(X)mod (Xr − 1). Multiplying M from the right
with a vector v is equivalent to multiplying v(X) by the
reciprocal polynomial (XrM(1/X)) mod (Xr − 1).



Let H be the parity-check matrix of a binary linear code C.
A linear code C of length n , r · L is called a quasi-cyclic
(QC) code with period L if the right-shift by L positions
of any codeword is again a codeword. Such a code can
be represented by an rJ × rL parity-check block matrix
H

(r)
QC that consists of circulant matrices of size r × r. By

the isomorphism mentioned above, we can associate to the
matrix H

(r)
QC ∈ F

rJ×rL
2 the polynomial parity-check matrix

H
(r)
QC(X) ∈

(

F2[X]/〈Xr − 1〉
)J×L

. The entry in the i-th

row and j-th column of H
(r)
QC(X) will be denoted by hij(X).

Due to the existence of this isomorphism, we can identify two
descriptions, scalar and polynomial, and use either of the two
depending on their usefulness.

Given the polynomial description of a QC-code, it is easy
to see the natural connection that exists between quasi-cyclic
codes and convolutional codes (see, e.g., [1]–[4], [6]). To any
QC block code CQC , C

(r)
QC of length r · L, given by a

J × L polynomial matrix parity-check matrix H
(r)
QC(X) =

[

hij(X)
]

ij
, we can associate a (designed) rate (L − J)/L

convolutional code Cconv given by the polynomial parity-check
matrix Hconv(D) =

[

hij(D)
]

ij
. An important parameter that

determines the encoding and decoding complexity of Cconv is
the syndrome former memory ms. If we let m

(i)
s be the differ-

ence between the maximum degree and the minimum delay of
the L polynomials in row i of Hconv(D), then the syndrome
former memory is given by ms = max16i6J m

(i)
s (see [5]

for details). Finally, the delay decomposition Hconv(D) =
H0 + H1D + H2D

2 + . . . + Hms
Dms ∈ F

J×L
2 [D] of the

polynomial parity-check matrix Hconv(D) leads to a scalar
description of the convolutional code by a semi-infinite parity-
check matrix that we denote H∞ (see, e.g., [15]). We note
that H∞ can be obtained from H

(r)
QC (and vice versa) by

unwrapping, (respectively, wrapping), the last ms columns,
and repeating the shifted rows indefinitely of a scalar rJ ×rL

parity-check matrix H
(r)
QC of the QC code mod(Xr − 1), r >

ms + 1.
For any codeword c(D) with finite support in the con-

volutional code, its r wrap-around, defined as the vector
c(X)mod(Xr − 1) ∈

(

F2[X]/〈Xr − 1〉
)L

, is a codeword
in the associated QC-code, since H

(r)
QC(X) · c(X)T = 0

T in

the algebra
(

F2[X]/〈Xr − 1〉
)L

. In addition, the Hamming
weight of the two codewords is linked through the following
inequality: wH

(

c(X)mod(Xr − 1)
)

6 wH(c(D)), which
gives the inequality [1], [2]

dmin(C
(r)
QC) 6 dfree(Cconv), for all r > 1.

Moreover, dmin(C
(r)
QC) 6 dmin(C

(2r)
QC ) 6 dmin(C

(4r)
QC ) 6 . . . ,

for all r > 1, and limr→∞ dmin(C
(r)
QC) = dfree(Cconv). It is

well known that to each matrix H we can associate a Tanner
graph with H its incidence matrix. The Tanner graphs of this
tower of QC codes are also related, as the larger graphs are
finite covers of the smaller graphs. The above relationship
between minimum distances of the above codes in the tower is
easily verified in the graph language, since a codeword c(X)

of a larger graph, say C
(4r)
QC , when projected to the graphs

of C
(r)
QC and C

(2r)
QC , by the formula c(X)mod(Xr − 1), resp.

c(X) mod(X2r−1), gives again codewords. Finally, the graph

of the associated convolutional code is an infinite (but usually
not universal2) cover of the graphs in the tower.

III. THE FUNDAMENTAL CONE

In our pseudo-codeword analysis we mainly take the ap-
proach of [8]–[10] which connects the presence of pseudo-
codewords in message-passing iterative decoding and linear
programming (LP) decoding. In this section we repeat the
main definitions concerning pseudo-codewords and pseudo-
weights [8], [9], [12] in a linear programming setting. We let
R, R+, and R++ be the set of real numbers, the set of non-
negative real numbers, and the set of positive real numbers,
respectively.

Definition 3.1 ([8], [9], [11], [12]): Let H be a binary
matrix of size m × n, let J , {0, . . . , n − 1} be the set of
column indices, and let I , {0, . . . ,m− 1} be the set of row
indices of H. For each i ∈ I, we let Ji ,

{

j ∈ J | hij = 1
}

.
The fundamental polytope P , P(H) of H is defined as [8],
[9]

P ,

m
\

i=1

conv(Ci) with Ci ,
n

x ∈ {0, 1}n | rix
T = 0 mod 2

o

,

where ri is the i-th row of H. The fundamental cone K ,
K(H) of H is defined as the conic hull of the fundamental
polytope, i.e., the part of the fundamental polytope P around
the vertex 0 and stretched to infinity. Note that if ω ∈ K(H),
then also α ·ω ∈ K(H) for any real α > 0. Moreover, for any
ω ∈ K(H), there exists an α > 0 (in fact, a whole interval of
α’s) such that α · ω ∈ P(H).

Vectors in P(H) are called pseudo-codewords of H. Actu-
ally, we will call any vector in K(H) a pseudo-codeword and
two pseudo-codewords that are equal up to a positive scaling
constant will be considered to be equivalent. Clearly, pseudo-
codewords are not codewords in general, but codewords are
pseudo-codewords. ¤

A computationally useful description of the fundamental
cone is given by the following sets of linear inequalities [9],
[12]:

K =



ω ∈ R
n

˛

˛

˛

˛

∀j ∈ J : 0 6 ωj and
∀i ∈ I,∀j′ ∈ Ji : ωj′ −

P

j∈(Ji\{j′}) ωj 6 0

ff

.

In other words, there exists a matrix K such that ω ∈ K if
and only if Kω

T > 0
T.

For a convolutional code defined by Hconv(D), this
can be translated into polynomial terms: there is a matrix
Kconv(D) such that ω(D) ∈ K(Hconv(D)) if and only if
Kconv(D)ω(D)T > 0

T.3

Example 3.2: Let

Hconv(D) ,





1 1 1 1
1 D D2 D3

1 D4 D3 D2



 .

be a polynomial parity-check matrix of a rate-1/4 convolu-
tional code. The matrix Kconv(D) can be chosen to be a
16 × 4 polynomial matrix and can be easily derived from
Hconv(D). With this, one can e.g. check that the vector
ω(D) , (3D2+D3, 4D+D2, 3+D+4D2+D3, 3+4D+D2)

2Note that the universal cover of a graph is a tree.
3An inequality of the form a(D) > 0 is to be understood as follows: every

coefficient of each polynomial component of a(D) is non-negative.



is a pseudo-codeword for the convolutional code because
Kconv(D)ω(D)T > 0

T holds.
Similarly, for a QC code defined by H

(r)
QC(X), there is a

polynomial matrix K
(r)
QC(X) such that ω(X) ∈ K

(

H
(r)
QC(X)

)

if and only if K
(r)
QC(X)ω(X)T mod(Xr − 1) > 0

T.4

Lemma 3.3: Let ω(D) be a pseudo-codeword in the
convolutional code defined by Hconv(D), i.e., ω(D) ∈
K(Hconv(D)). Assuming that the largest degree in Hconv(D)
is smaller than some non-negative integer r, then the
r wrap-around polynomial vector of ω(D) is a pseudo-
codeword in the associated QC-code defined by H

(r)
QC(X), i.e.,

ω(X)mod(Xr − 1) ∈ K
(

H
(r)
QC(X)

)

.
PROOF: For any r that fulfills the assumption we have

H
(r)
QC(X) = Hconv(X). Moreover, it can be verified that

K
(r)
QC(X) = Kconv(X) holds. We know that ω(D) fulfills

Kconv(D)ω(D)T > 0
T and therefore

(∗)
⇒ Kconv(D)ω(D)T mod(Dr − 1) > 0

T,

⇒ Kconv(X)ω(X)T mod(Xr − 1) > 0
T,

⇒ K
(r)
QC(X)ω(X)T mod(Xr − 1) > 0

T,

⇒ K
(r)
QC(X)

(

ω(X)T mod(Xr − 1)
)

mod(Xr − 1) > 0
T,

which is the desired result.5 ¤
Example 3.4: Let r , 5 and let H

(5)
QC(X) be obtained

from Hconv(D) in Ex. 3.2: H
(5)
QC(X) = Hconv(X). It can

be verified that the QC block code of length n = 20 defined
by H

(5)
QC(X) has ω(X) , (3X2 + X3, 4X + X2, 3 + X +

4X2 + X3, 3 + 4X + X2) as a pseudo-codeword.

IV. MINIMUM PSEUDO-WEIGHTS

The fundamental cone is independent of the specific memo-
ryless binary-input channel through which we are transmitting;
however, the influence of a pseudo-codeword on LP or iter-
ative decoding behavior is measured by a channel-dependent
pseudo-weight defined in the following.

Definition 4.1 ([8], [9], [11], [12], [16], [17]): Let ω =
(ω0, . . . , ωn−1) be a nonzero vector in R

n
+. The AWGNC-

pseudo-weight and the BEC-pseudo-weight of the vector ω

are defined to be, respectively,

wAWGNC
p (ω) ,

‖ω‖2
1

‖ω‖2
2

, wBEC
p (ω) = | supp(ω)|,

where ‖ω‖1 and ‖ω‖2 are the 1-norm, resp. 2-norm, of ω. In
order to define the BSC-pseudo-weight wBSC

p (ω), we let ω
′

be the vector of length n with the same components as ω but
in decreasing order. Now let

f(ξ) , ω′
i (i < ξ 6 i + 1, 0 < ξ 6 n),

F (ξ) ,

∫ ξ

0

f(ξ′) d ξ′, and e , F−1

(

F (n)

2

)

.

4In the following, an expression of the form a(X) mod(Xr
−1) will be un-

derstood as follows: a(X) mod(Xr
−1) is a reduced vector such that all com-

ponents are polynomials where only the coefficients of X0, X1, . . . Xr−1

are allowed to be non-zero.
5Note that step (∗) depends on special properties of Dr

− 1, i.e. this step
does in general not work when the modulo-operation is with respect to an
arbitrary polynomial.

Then the BSC-pseudo-weight wBSC
p (ω) is wBSC

p (ω) , 2e if
ω 6= 0. Finally, the fractional and max-fractional weight of a
vector ω ∈ R

n
+ are defined to be, respectively,

wfrac(ω) = ‖ω‖1, wmax−frac(ω) ,
‖ω‖1

‖ω‖∞
.

For ω = 0 we define all of the above pseudo-weights,
fractional weights, and max-fractional weights to be zero. (For
a motivation of these definitions, see the above references.) ¤

Definition 4.2 ([8], [9], [11], [12]): Important quantities
in characterizing the LP decoding performance are the min-
imum AWGNC, BSC, and BEC pseudo-weights, and the
minimum fractional and max-fractional weights, which are,
respectively,

wmin
p (H) , min

ω∈V(P(H))\{0}
wp(ω)

where V(P(H))\{0} is the set of all non-zero vertices of the
fundamental polytope P(H), and the pseudo-weights are the
appropriate ones for each channel. ¤

Computing these values can be quite challenging, since the
task of finding the set of vertices of P(H) can be very com-
plex. However in the case of four of the above pseudo-weights,
the minimum AWGNC, BSC, and BEC pseudo-weights and
minimum max-fractional weights, there is a computationally
easier description as:

wmin
p (H) = min

ω∈K(H)\{0}
wp(ω),

with the appropriate pseudo-weight of each of the above
channels, see, e.g. [9]. (Note that there is no such statement
for the minimum fractional weight.)

A complete characterization of LP decoding is given by so-
called minimal pseudo-codewords. However, for longer codes
it is usually computationally too demanding to obtain the
whole list of minimal pseudo-codewords; therefore, one often
restricts oneself to looking for minimal pseudo-codewords
with low pseudo-weight [18]–[20].

In what follows, we compare the minimum pseudo-weight
and minimum max-fractional weight of a QC block code to
those of its corresponding convolutional code.

V. PSEUDO-WEIGHTS IN LDPC-QC AND LDPC
CONVOLUTIONAL CODES

We saw in the last section that in order to analyze the
minimum pseudo-weight and minimum max-fractional weight,
it is sufficient to analyze the weights of the non-zero vectors
in the fundamental cone. Throughout this section w.l.o.g. all
pseudo-codewords ω(D) under investigation are assumed to
have finite support.

Theorem 5.1: For the AWGNC, BEC, and BSC pseudo-
weights, if ω(D) ∈ K(Hconv(D)), then

wp

(

ω(X)mod(Xr − 1)
)

6 wp(ω(D)).

Therefore,

wmin
p (H

(r)
QC(X)) 6 wmin

p (Hconv(D)).

PROOF: See App. A. ¤
Th. 5.1 implies that low pseudo-weight vectors in the block

code may correspond to higher pseudo-weight vectors in the
convolutional code, but the opposite is not possible. This
suggests that the pseudo-codewords in the block code that



result in decoding failures may not cause such failures in the
convolutional code, thereby resulting in improved performance
for the convolutional code at low-to-moderate signal-to-noise
ratios (SNRs). Further, it is not difficult to adapt Th. 5.1 such
that similar conclusions can be drawn with respect to a QC
block code with the same polynomial parity-check matrix, but
with larger circulant size r′ multiple of r. In fact, most QC
block codes with the same structure but a larger circulant size
r′, even if not a multiple of r, behave according to Th. 5.1.

A similar bound also holds for the max-fractional weight,
as shown in the next theorem:

Theorem 5.2: If ω(D) ∈ K(Hconv(D)), then

wmax−frac

(

ω(X)mod(Xr − 1)
)

6 wmax−frac(ω(D)).

Therefore,

wmin
max−frac(H

(r)
QC(X)) 6 wmin

max−frac(Hconv(D)).

PROOF: See App. B. ¤
Before comparing the minimum fractional weight of the

convolutional and QC codes, we emphasize that these val-
ues must be computed over the set of nonzero pseudo-
codewords that are vertices of the fundamental polytope.
Indeed, although for any ω(D) ∈ V(P(Hconv(D))) \ {0},
we have ‖ω(D)‖1 = ‖ω(X)mod(Xr − 1)‖1, and hence
wfrac(ω(X)mod(Xr − 1)) = wfrac(ω(D)), comparing the
minimum fractional weight of the convolutional and the QC
code is not an easy task, because a vertex pseudo-codeword
in the convolutional code might not map into a vertex pseudo-
codeword in the QC code. The following result, however, can
be established.

Theorem 5.3: Assume that we transmit data over a BSC us-
ing the convolutional code and that bit flips happen at positions
Econv ⊆ {I(Hconv(D))}. If |Econv| < 1

2wmin
frac(H

(r)
QC(X)), then

LP decoding decides for the correct codeword.
PROOF: Omitted. ¤

VI. SIMULATION RESULTS

In the previous sections, we showed that better pseudo-
weight properties result when we unwrap a QC block code
to form a convolutional code. This suggests that an LDPC
convolutional code constructed in this fashion will perform
better than the underlying QC-LDPC block code when de-
coded by local message-passing algorithms. In this section we
use computer simulations on an AWGN channel to examine
the performance of these codes.

We consider a rate R = 2/5 = 0.40 LDPC convolutional
code with syndrome former memory ms = 21, constructed by
unwrapping a [155,64] (3,5)-regular QC-LDPC block code,
i.e., a [155,64] code whose parity-check matrix contains 3
ones per column and 5 ones per row with circulant size r =
31. We also consider two larger QC-LDPC block codes, a
[200,82] code and a [240,98] code, with parity-check matrices
of increasing circulant sizes (r = 40 and r = 48), while
keeping the same structure within each r × r circulant. (Note
that each of the three block codes has rate slightly greater than
0.40.)

A sliding window message-passing decoder was used to
decode the convolutional code (see, e.g., [5]). Conventional
LDPC block code decoders were employed to decode the QC-
LDPC block codes. All decoders were allowed a maximum
of 50 iterations, where the block code decoders employed

a syndrome-check based stopping rule. The resulting BER
performance of these codes is shown in Fig. 1.
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Fig. 1. The performance of a convolutional LDPC code and three associated
(3,5)-regular QC-LDPC block codes.

We note that in the low-to-moderate SNR region, where the
complete pseudo-weight spectrum plays an important role, the
unwrapped LDPC convolutional code performs between 0.5dB
and 1.0dB better than the associated QC-LDPC block codes.
Also, as the circulant size increases, the BER performance of
the block codes approaches that of the convolutional code. (It
has been shown in [5] that similar performance differences
are also observed for much larger QC-LDPC block codes
and their corresponding LDPC convolutional codes.) The BER
performance curves suggest that the pseudo-weight spectrum
of the LDPC convolutional code is “thinner” than that of the
associated QC-LDPC block codes, and that, as the circulant
size becomes larger, the spectra of the block codes approaches
that of the convolutional code. These results are consistent
with the implications drawn from Theorem 5.1 in the previous
section.

VII. CONCLUSIONS

For an LDPC convolutional code derived by unwrapping an
LDPC-QC block code, we have shown that the free pseudo-
weight of the convolutional code is at least as large as the min-
imum pseudo-weight of the underlying QC code. This result
suggests that the pseudo-weight spectrum of the convolutional
code is ”thinner” than that of the block code. This difference in
the weight spectra leads to improved BER performance at low-
to-moderate SNRs for the convolutional code, a conclusion
supported by the simulation results presented in Figure 1.

APPENDIX

A. Proof of Theorem 5.1
In the following, we have to to analyze separately the

AWGNC, BEC, and BSC pseudo-weights of ω(D) and of
its r wrap-around ω(X)mod(Xr − 1). Let t be the length of
the scalar vector ω associated to ω(D).

Case 1 (AWGNC): Since ‖ω(D)‖1 = ‖ω(X)mod(Xr −
1)‖1 and ‖ω(X)mod(Xr − 1)‖2

2 =

r−1
∑

i=0

L−1
∑

k=0





bt/rc
∑

j=0

ωi+jr,k





2

>

r−1
∑

i=0

L−1
∑

k=0

bt/rc
∑

j=0

ω2
i+jr,k = ‖ω(D)‖2

2,



we obtain wAWGNC
p (ω(D)) > wAWGNC

p (ω(X)mod(Xr −
1)).

Case 2 (BEC): Since the components of the vector
ω(X)mod(Xr−1) are obtained by adding in R+ certain non-
negative components of ω(D), it follows that | supp ω(D)| >
| supp (ω(X)mod(Xr − 1)) |. We obtain

wBEC
p (ω(D)) > wBEC

p (ω(X)mod(Xr − 1)).

Case 3 (BSC): In order to compare the BSC-pseudo-
weight of the two vectors, we first need to arrange them
in decreasing order. Let M0 > M1 > . . . > Mt−1, and
m0 > m1 > . . . > mrL−1 be a listing of the components
of ω(D) and ω(X)mod(Xr − 1) respectively, in decreasing
order. Since ‖ω(D)‖1 = ‖ω(X)mod(Xr − 1)‖1, we obtain
that ‖ω(D)‖1

2 = ‖ω(X) mod(Xr−1)‖1

2 . Let M be this quantity
and so

∑t−1
i=0 Mi =

∑rL−1
i=0 mi = 2M . Hence the two

sequences of positive integers form two partitions, λ and µ,
respectively, of 2M . We fill the shorter partition µ with t−rL
zeros in order to have both partitions of the same length
t. It is enough to show that

∑l−1
i=0 Mi 6

∑l−1
i=0 mi, for all

l = 1, 2, . . . , t, i.e., that µ majorizes λ [21].
We show first that m0 > M0. Suppose the contrary,

m0 < M0. Since mi 6 m0 for all i = 0, t − 1, we obtain
that mi < M0 for all i = 0, t − 1. But mi, i = 0, rL − 1
was obtained by adding over R+ a certain subset of the set
{Mj , j = 0, t − 1}. So there should be at least one ml that
has M0 in its composition, and hence ml > M0. This is a
contradiction, from which we obtain m0 >M0.

We finish the proof by induction. Namely, we want to shown
that from

∑j−1
i=0 Mi 6

∑j−1
i=0 mi for some j ∈ {1, t − 1} it

follows that
∑j

i=0 Mi 6
∑j

i=0 mi. If Mj 6 mj then this
induction step clearly holds. So, assume that Mj > mj . Since
mt−1 6 . . . 6 mj < Mj 6 Mj−1 6 . . . 6 M0, we can
deduce that mj , and in fact all mi with j 6 i 6 t− 1, cannot
contain any Mi with 0 6 i 6 j in its composition. Hence all
possible Mi, 0 6 i 6 j, have occurred in the composition of
mi, for 0 6 i 6 j − 1, which gives

∑j
i=0 mi >

∑j−1
i=0 mi >

∑j
i=0 Mi. This proves that µ majorizes λ and we obtain that

wBSC
p (ω(D)) > wBSC

p (ω(X)mod(Xr − 1)).

B. Proof of Theorem 5.2

We have ‖ω(D)‖1 = ‖ω(X)mod(Xr − 1)‖1 and

‖ω(X)mod(Xr − 1)‖∞ =
r−1
max
i=0

L−1
max
k=0

bt/rc
∑

j=0

ωi+jr,k

>
r−1
max
i=0

L−1
max
k=0

bt/rc
max
j=0

ωi+jr,k > ‖ω(D)‖∞,

which leads to wmax−frac(ω(X)mod(Xr − 1)) 6
wmax−frac(ω(D)). It now follows that

wmin
max−frac(H

(r)
QC) 6 wmin

max−frac(Hconv).
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