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Abstract

The theoretical optimal shape of a small loop an-
tenna within a rectangular area restriction is derived.
Approaches with cut-off corners and rounded cor-
ners are proposed and optimal parameters (such as
cut-off radius) are calculated. In a second part, by
means of calculus of variation, a proof is given that
the rounded-corner approach is indeed the optimal
shape in terms of antenna efficiency if a simple model
is assumed; the result is valid for any convex shape
constraint.

1 Introduction

Small loop antennas, despite their inefficiency, have
found wide application in personal communication
devices where space is tight, e.g. pagers. They are
mostly built as rectangular metal strip loops or as
printed circuits. The problem of finding an optimal
shape within a certain space equally applies to ei-
ther form. A loop antenna is considered small, if the
loop diameter is small enough with respect to the
wavelength for the current to be assumed constant
around its circumference. In this paper we assume
such a simple model for the small loop antenna with
a uniform current around the loop. Furthermore,
the antenna loop strip is treated as an infinitesimally
thin wire.

The efficiency of an antenna is usually given [1] by

ne g )
rad + Rloss
with R;aq being the radiation resistance and Riess
the loss resistance, respectively.
The radiation resistance is proportional to the
squared aperture of the loop antenna

A 2
Rrag = 31171 Q- (F) = kl . A2’ (2)

where A denotes the aperture or area of the loop an-
tenna and A is the wavelength of the frequency under

0-7803-5977-1/00/$10.00 © 2000 IEEE LT3

consideration. The loss resistance is the Ohmic re-
sistance of the metal and therefore proportional to
the circumference ¢ of the loop

Rioss = k2 - c. (3)

Thus, (1) can be written as (with k = k2 /k1)

A? c\-!
”‘A2+k-c“(1+’“'ﬁ) : (4)

k1, ko, and k are constants. In the following, different
loop shapes will be investigated with the constraint
that the antenna must not use more space than a
rectangular reference antenna with the longer side
denoted by ! and the shorter side denoted by h (see
Figs. 1 and 2).

2 Comparison of different
shapes

2.1 Rectangular shape

The efficiency of the rectangular shape antenna with
circumference ¢ = 2(h + l) can be calculated in a
straightforward manner using (4)

2(h+ 1)\
Threct = (1+k‘ —L(;LI_;T)) . (5)

2.2 Rectangular shape with cut-off
corners

Intuitively it is clear, that the ratio of area contri-
bution to circumference is particularly small at the
corners of the antenna. Cutting the corners (for an
illustration see Fig. 1) seems to help up to a cer-
tain length aopt which can be found in the following
way. The efficiency of the loop antenna with cut-off
corners is

2(h+1) —a(8 - 4\/5)) - )
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Tlcutoff ( (hl _ 202)2
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Figure 1: Drawing of rectangular loop antenna shape
with cut-off corners.

The optimal length to cut off at each of the four
corners, which can be found by differentiating (6)
with respect to a and setting it equal to zero, is

(h+1) = /b2 + 12 + (6v2 = T)hl
3(2-v2) '
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2.3 Rectangular shape with rounded
corners
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Figure 2: Drawing of rectangular loop antenna shape
with rounded corners.

Another means to improve the efficiency is round-
ing off the corners (see Fig. 2) of the rectangular
shape with a resulting efficiency of

-1
2(h+1) - 2r(4 —m)

=|1+k- . (8
Tlround ( (Rl — 7‘2(4 — 7[_))2 (8)
There is an optimal radius r of the quarter circles,
which can be found by differentiating (8) with re-
spect to r and setting it equal to zero. The optimal

radius 7opt is thus

Fopt = 2(h+1) - \/43121-_|-_47lrl)2 + (37 — 4)hl ©)

As is shown in Section 3 this is the overall optimal
solution.

3 Calculus of variations

The problem can be generalized. We introduce a
Cartesian coordinate system and assume that the
center of the rectangle is in the origin and the longer
side is parallel to the z-direction and the shorter side
is parallel to the y-direction (as drawn in Fig. 2). The
loop is described by a parametric curve, i.e. = z(t)
and y = y(¢), which turns anticlockwise. So, the area
A and the circumference ¢ are functions of z(.) and
y(.) and become

A= ?{ —#(t)y(t)dt, (10)
c=Clz(),u() = ?{\/:ﬁ(t) TR (11)

In (10) and (11) the limits of the integration have to
be taken such that the integral is calculated around
the whole loop in the mathematical positive sense,
which is indicated by the o in §. The maximization
can be reformulated as

c -1
Topt = MmMax (1 +k- -—)
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(12)

The problem has now been separated into two
parts. In a first step, the area A under the constraint
of constant circumference ¢ has to be maximized. In
the second step, we minimize over all possible cir-
cumferences. The first problem is attacked with the
help of calculus of variations [2]. The function to be
maximized is

74 F@(), &), (), 5(2), £)dt, (13)



with the Lagrangian function f(z,%,v,9,t) (subse-
quently, for the sake of simplicity we will omit para-
meter ¢ in z(t), z(t) etc.)

f= f(z1iayyy7t) = _I'g(xay)+)‘ Vi'2+ ‘27

(14)
with
y (-3<z<g-f<y<y)
_ ) +E (Fi<z<iy> )
g=9(z,y) = h 1 i h
-3 (-3<z<5y<-3)
0 (elsewhere),

(15)

and X € R denoting a Lagrange multiplier. In the
following, we will need the partial derivative of g with
respect to y

7}
9y = gy(z,y) = —g(x )
_Jn (-§<z<§—g—<y<g) (16)
0 (elsewhere).

The function g{z,y) was chosen in such a way as to
find the maximal area which is inside the specified
rectangle. In other words, any part of the shape
that is outside this rectangle does only contribute to
the circumference but not to the area. In order to
maximize (13) we have to find the solutions of the
two Euler-Lagrange equations

d

fomgfe = =0 (17
fy— %f’y = 0. (18)

(fz denotes the partial derivative of the function f
with respect to z and similarly for the other para-
meters &, y and y.) We introduce the curvature x of
a line [2]

&ij — &y

@

&= K(%,2,9,§) =

The partial derivatives in (17) and (18) are given by

fﬂ': = —Z'ng, (20)
fe=—-g+A- —;\/-72—7;, (21)
fy = ‘igya (22)
ARy pp—— (23)
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Total derivation of (21) and (23) with respect to ¢

and using (19) leads to
. o "+ Uy

4 ETT -
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= —gz% — gy¥ — AY - K, (24)
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=i —
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=\i - k. (25)

With this, (17) and (18) can be reformulated

—&9z — (~gz& — gy¥ — M -K) = gy + M £ =0,

(26)
—dg, — i -k = 0.
@7)
Finally, reordering both (26) and (27) leads to
g (n+g/\9)=0, (28)
i (s -";‘ )=0. (29)

We must separate two cases:
Case 1: k # —g,/). The solution of (28) and (29)
is

=0, g=0, (30)

in other words, a stationary point.

Case 2: Kk = —gy/A. The solution is a curve
consisting of arcs whose curvature equals —g,/\.
Straight lines are thereby just arcs with curvature
zero. Note, that the different arcs must be con-
nected in a smooth way. To check this, we repa-
rameterize :c(t) and y(t) to z(s) and y(s) where

= s(t) = [5 /32(7) + g2(7)dr is the parameter
correspondmg to the actual curve length. Thus, we

get (2]
x| = 1 [ + yu2 (31)
where
d2 gy = &
2" =3"(s) = 752(s), ¥ =9"(s) = T5v(s)-

(32)

As k is a piecewise continuous and bounded function
of s, by Eq. (31) z"" and y" are piecewise continuous



and bounded, too. Thus, the continuity of =’ and 3’
follows immediately, which in turn means that the
arcs are connected in a smooth way, indeed.

Inspection of (16) reveals the existence of two dif-
ferent regions. In the first region (-1/2 < z < /2,
—h/2 <y < h/2), the curvature is —1/)X and in the
second region (everywhere else), the curvature is 0.
So in the second region we have straight lines. Sum-
marizing this, the shape of our area is as described
in Section 2.3 (see Fig. 2).

Until now, we have solved the inner maximization
of (12). The next step is the minimization over all
possible circumferences of the rectangular shape with
rounded corners. But instead of varying the circum-
ference ¢, we can vary the radius r of the quarter
circles. This is exactly what we have done in Sec-
tion 2.3, and thus the overall optimal solution is the
one given in (8) and (9).

4 A practical example

Suppose an antenna with the dimensions | = 4cm
and h = 1cm, as typically used in UHF pagers. For
small, inefficient loop antennas the exact value of k
is not important for the evaluation of the efficiency
improvement, because the term with & in Eqgs. (8)
and (5), respectively, is much larger than {3, so that
k cancels out in the efficiency ratio. With (9) we
get Topy = 2.05 mm. Fig. 3, where ZL;,:;::. is shown in
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Figure 3: Antenna efficiency improvement for

rounded and cut-off corners.

dB, reveals that the potential improvement is within
a fraction of a dB. However, this marginal improve-
ment comes without a prize. On the contrary, bend-
ing tools for the metal strip are easier to manufacture
for a finite radius.
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- The improvement does not depend on the absolute
values of I and h but rather on the ratio of the two
dimensions. As might be expected, it is maximal for
! = h, where an improvement of 0.12dB is achieved.

5 Conclusions

It has been shown that the efficiency-optimal shape
of a small loop antenna as used in personal communi-
cation devices is of a rectangular shape with rounded
corners, given an area restriction of a certain rectan-
gle. The optimal radius of the quarter circles has
been derived. The solution can easily be general-
ized to any convex shape in the way that corners are
rounded with circle segments. We conjecture that
this shape is optimal for single-turn loops as well as
for multi-turn loops if the same simple model for the
efficiency of a small loop antenna is applied.
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