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Abstract

It has recently become feasible to compute information rates of finite-state source/channel models
with not too many states. Such methods can also be used to compute upper and lower bounds on
the information rate of very general (non-finite-state) channels with memory by means of finite-state
approximations. We review these methods and present new reduced-state bounds.

1 Introduction

We consider the problem of computing the information rate

I(X ; Y ) �= lim
n→∞

1
n

I(X1, . . . , Xn; Y1, . . . , Yn) (1)

between the input process X = (X1, X2, . . .) and the output process Y = (Y1, Y2, . . .) of a time-invariant
channel with memory. We will assume that X is Markov or hidden Markov, and we will primarily be
interested in the case where the channel input alphabet X (i.e., the set of possible values of Xk) is finite.

For finite-state channels (to be defined in Section 2), a practical method for the computation of (1)
was presented independently by Arnold and Loeliger [1], by Sharma and Singh [11], and by Pfister et
al. [10]. That method consists essentially of sampling both a long input sequence xn �= (x1, . . . , xn) and
the corresponding output sequence yn �= (y1, . . . , yn), followed by the computation of log p(yn) (and,
if necessary, of log p(yn|xn)) by means of a forward sum-product recursion on the joint source/channel
trellis. We will review this method in Section 2.

Extension of such methods to very general (non-finite state) channels were presented in [2]. These ex-
tensions use finite-state approximations of the actual channel. By simulations of the actual source/channel
and computations using the finite-state model, both an upper bound and a lower bound on the infor-
mation rate of the actual channel are obtained. We will review these bounds in Section 3 and give new
numerical results.

In Section 4, we propose a new upper bound and a generic new lower bound on the information rate,
which complement the bounds of [2].

Related earlier and parallel work includes [6] [12] [13] [5] [7] [14], see [2].

2 Computing I(X; Y ) for Finite-State Channels

In this section, we review the method of [1] [11] [10]. We will assume that X , Y , and S = (S0, S1, S2, . . .)
are stochastic processes such that

p(x1, . . . , xn, y1, . . . , yn, s0, . . . , sn) = p(s0)
n∏

k=1

p(xk, yk, sk|sk−1) (2)
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for all n > 0 and with p(xk, yk, sk|sk−1) not depending on k. We will assume that the state Sk takes
values in a finite set and we will assume that the process S is ergodic; under the stated conditions, a
sufficient condition for ergodicity is p(sk|s0) > 0 for all s0, sk for all sufficiently large k.

For the sake of clarity, we will further assume that the channel input alphabet X is a finite set and
that the channel output Yk takes values in R; none of these assumptions is essential, however. With these
assumptions, the left-hand side of (2) should be understood as a probability mass function in xk and sk,
and as a probability density in yk.

Under the stated assumptions, the limit (1) exists. Moreover, the sequence − 1
n log p(Xn) converges

with probability 1 to the entropy rate H(X), the sequence − 1
n log p(Y n) converges with probability 1 to

the differential entropy rate h(Y ), and − 1
n log p(Xn, Y n) converges with probability 1 to H(X)+h(Y |X),

cf. [4].
From the above remarks, an obvious algorithm for the numerical computation of I(X ; Y ) = h(Y ) −

h(Y |X) is as follows:

1. Sample two “very long” sequences xn and yn.

2. Compute log p(xn), log p(yn), and log p(xn, yn). If h(Y |X) is known analytically, then it suffices to
compute log p(yn).

3. Conclude with the estimate

Î(X ; Y ) =
1
n

log p(xn, yn) − 1
n

log p(xn) − 1
n

log p(yn) (3)

or, if h(Y |X) is known analytically, Î(X ; Y ) = − 1
n log p(yn) − h(Y |X).

The computations in Step 2 can be carried out by forward sum-product message passing through the
factor graph of (2), as illustrated in Fig. 1. Since the graph represents a trellis, this computation is just
the forward sum-product recursion of the BCJR algorithm [3].

Consider, for example, the computation of

p(yn) =
∑

xn,sn

p(xn, yn, sn) (4)

with sn �= (s0, s1, . . . , sn). By straightforward application of the sum-product algorithm [8], we recursively
compute the messages (i.e., state metrics)

µf(sk) =
∑

xk,sk−1

µf(sk−1) p(xk, yk, sk|sk−1) (5)

=
∑

xk,sk−1

p(xk, yk, sk) (6)

for k = 1, 2, 3, . . ., as illustrated in Fig. 1. The desired quantity (4) is then obtained as

p(yn) =
∑
sn

µf(sn), (7)

the sum of all final state metrics.
In practice, the recursion rule (5) is modified to include a suitable scale factor, cf. [2].
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Figure 1: Computation of p(yn) by message passing through the factor graph of (2).
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3 Computing Bounds on I(X; Y ) for General Channels

Let p(xn, yn) be some ergodic source/channel law. Let q(yn|xn) be another ergodic channel and define
qp(yn) �=

∑
xn p(xn)q(yn|xn). As described in [2], we then have

Iq(X ; Y ) ≤ I(X ; Y ) ≤ Iq(X ; Y ) (8)

with

Iq(X ; Y ) �= lim
n→∞Ep(·,·)

[
1
n

log p(Y n|Xn) − 1
n

log qp(Y n)
]

(9)

and

Iq(X ; Y ) �= lim
n→∞ Ep(·,·)

[
1
n

log q(Y n|Xn) − 1
n

log qp(Y n)
]

. (10)

Now assume that p(·|·) is some “difficult” (non-finite-state) ergodic channel. As shown in [2], we can
compute the bounds Iq(X ; Y ) and Iq(X ; Y ) on the information rate I(X ; Y ) by the following algorithm:

1. Choose a finite-state source p(·) and an auxiliary finite-state channel q(·|·) so that their concatena-
tion is a finite-state source/channel model as defined in Section 2.

2. Connect the source to the original channel p(·|·) and sample two “very long” sequences xn and yn.

3. Compute log qp(yn) and, if necessary, log p(xn) and log q(yn|xn)p(xn) by the method described in
Section 2.

4. Conclude with the estimates

Îq(X ; Y ) = − 1
n

log qp(yn) − h(Y |X) (11)

and
Îq(X ; Y ) =

1
n

log q(yn|xn)p(xn) − 1
n

log p(xn) − 1
n

log qp(yn). (12)

Note that the term h(Y |X) in the upper bound (11) refers to the original channel and cannot be computed
by means of the auxiliary channel.

4 Reduced-State Bounds

Let S′
k be a subset of the time-k states. If the sum in the recursion rule (5) is modified to

µf(sk) =
∑

xk,sk−1∈S′
k−1

µf(sk−1) p(xk, yk, sk|sk−1), (13)

the sum of the final state metrics will be a lower bound on p(yn) and the corresponding estimate of h(Y )
will be increased. We have proved:

Theorem 1. Omitting states from the computation (5) yields an upper bound on h(Y ). �
The sets S′

k may be chosen arbitrarily. An obvious strategy is to keep only a fixed number of states with
the largest metrics.

By a similar argument, one may obtain

Theorem 2. Merging states in the computation (5) yields a lower bound on h(Y ). �
So far, however, only the upper bound has proved useful.

The upper bound of Theorem 1 can also be applied to non-finite state channels as follows. Consider,
e.g., the autoregressive channel of Fig. 2 and assume that, at time zero, the channel is in some fixed
initial state. At time one, there will be two states; at time two, there will be four states, etc. We track all
these states according to (5) until there are too many of them, and then we switch to the reduced-state
recursion (13).
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5 Numerical Examples

We consider binary-input linear intersymbol interference channels with

Yk =
∑

i

giXk−i + Zk, (14)

with Xi ∈ {+1,−1}, and where Z = (Z1, Z2, . . .) is white Gaussian noise with variance σ2. The fixed
channel coefficients gi ∈ R, i ∈ Z, will be specified by their D transform G(D) �=

∑
i giD

i, and we will
assume ∑

i

g2
i = 1. (15)

The signal-to-noise ratio (SNR) in the plots is defined as 1/σ2 (i.e., the noise power is normalized with
respect to the channel input). The source process X = (X1, X2, . . .) will be a sequence of independent
and uniformly distributed (i.u.d.) random variables taking values in {+1,−1}.
Channel 1: Memory 10 FIR filter with G(D) = γ

∑10
i=0

1
1+(i−5)2 Di where γ ∈ R is the scale factor

required by (15). Fig. 4 shows the following curves. Bottom: The exact information rate, computed as
described in Section 2 (with sampled sequences of length n = 106). Top: The reduced-state upper bound
(RSUB) of Section 4, using the 100 “best” (out of 1024) states. Middle: The reduced-state upper bound
applied to the equivalent minimum-phase channel.

The trick behind the middle curve in Fig. 4 is as follows. Let

G(D) = β
∏

i

(1 − ζiD). (16)

Assuming that G(D) has no zeros on the unit circle, the equivalent minimum-phase filter is

G′(D) = β
∏

i:|ζi|<1

(1 − ζiD) ·
∏

i:|ζi|>1

(D − ζi), (17)

which has all zeros outside the unit circle. It is easy to see that

H(D) �= G′(D)/G(D) (18)

=

∏
i:|ζi|>1(D − ζi)∏

i:|ζi|>1(1 − ζiD)
(19)

is an all-pass filter with a stable inverse. Therefore, replacing G(D) by G(D)H(D) = G′(D) does not
change the information rate of the channel.

Minimum-phase polynomials concentrate the signal energy into the leading tap weights [9], which
makes the reduced-state bound tighter.

Channel 2: First order IIR filter as in Fig. 2 with G(D) = γ/(1 − αD) = γ(1 + αD + α2D2 + . . .),
where γ ∈ R is the scale factor required by (15).

Fig. 5 shows the following curves. Rightmost: The (indistinguishable) upper and lower bounds (AUB
and ALB) of Section 3, computed using the finite-state model of Fig. 3 with 512 states, with an optimized
uniform quantizer, and with optimized σ′. Very close to the left: The reduced-state upper bound (RSUB)
of Section 4 using only 4 (!) states. Leftmost: The memoryless binary-input (BPSK) channel.

Fig. 6 shows information rates vs. the number of trellis states used in the computation (for σ2 = 1).
Top and bottom: the upper and lower bounds of Section 3 (AUB and ALB). Middle: the reduced-state
upper bound (RSUB).

Channel 3: IIR filter of order 6 with

G(D) = γ/(1.0000 + 0.3642·D + 0.0842·D2 + 0.2316·D3 − 0.2842·D4 + 0.2084·D5 + 0.2000·D6).

Fig. 7 shows the following curves. Leftmost: BPSK. Middle: Reduced-state upper bound using only 2 (!)
states. Rightmost: Reduced-state upper bound using 128 states.
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Figure 2: IIR filter channel.
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Figure 3: A quantized version of Fig. 2.
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Figure 4: Memory 10 FIR filter.
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Figure 5: Bounds for Fig. 2 vs. SNR.
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Figure 6: Bounds for Fig. 2 vs. # states.
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Figure 7: Order 6 IIR filter: upper bounds.
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6 Conclusions

It has recently become feasible to compute information rates of finite-state source/channel models with
not too many states. By new extensions of such methods, we can compute upper and lower bounds on
the information rate of very general non-finite state channels. Bounds from channel approximations and
bounds from reduced-state trellis computations can be combined in several ways.
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