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Overview of Talk

Introductory example

Review of some basics

(factor graphs / SPA / fixed points of the SPA / graph covers)

Re-interpretation of fixed points of the SPA

in terms of graph covers and valid configurations therein

Re-interpretation of the transient part of the SPA

in terms of a graph-dynamical system
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Particles in a Box

Experiment: let us place M particles in a uniformly and independently

distributed manner on a very fine lattice bounded by a box.

This experiment has many possible outcomes. Here are two of them:

Which one of the above two outcomes is more likely to happen?

Both scenarios are equally likely!



Particles in a Box

Experiment: let us place M particles in a uniformly and independently

distributed manner on a very fine lattice bounded by a box.

This experiment has many possible outcomes. Here are two of them:

Better question: when doing this experiment again, is the outcome

more likely “to look nearly like” outcome 1 or like outcome 2?
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The results of the previous experiment:
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microstate = Coordinates of all M particles

macrostate = "Summary" of a microstate
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Note: ϕ is usually a many-to-one mapping.
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If P (microstate) = const. for all microstates then

P (macrostate) ∝ #
{
microstate : ϕ(microstate)=macrostate

}

= #ϕ−1(macrostate)
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Here: #ϕ−1(macrostate 1) ≫ #ϕ−1(macrostate 2)

⇒ P (macrostate 1) ≫ P (macrostate 2)
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Static setup: will model fix points of the SPA

P (M) ∝ exp
(
− M · E(M)

)
· #ϕ−1(M)

Dynamic setup:

P
(
M(t + ∆t)

∣∣ m(t)
)

∝ exp
(
−M ·E

(
M(t + ∆t)

∣∣ m(t)
))

· #ϕ−1
(
M(t + ∆t)

∣∣ m(t)
)

“Better” dynamic setup: will model the transient part of the SPA

P
(
M(t + ∆t)
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)

∝ exp
(
−M ·E

(
M(t + ∆t)
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W Z

fA

fC
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U X Y

Factor graphs were defined in [Kschischang:Frey:Loeliger:01].

Normal (factor) graphs were defined in [Forney:01].

⇒ We will call them Forney-style Factor graphs (FFGs).
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W Z

fA

fC

fB

U X Y

The above FFG has

the local functions fA, fB, and fC,

the edges corresponding to the variables X and Z,

the half edges corresponding to the variables U , W , and Y ,

and finally the global function fA(u,w, x) · fB(x, y, z) · fC(z).
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Forney-style Factor Graphs (FFGs)

W Z

fA

fC

fB

U X Y

A configuration is a particular assignment of values to all variables.

The configuration space Ω is the set of all configurations.

A configuration ω ∈ Ω is called valid if f(ω) 6= 0.

System variable: X : Ω → AX : ω 7→ x = X(ω).
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Fixed Points of the SPA

Theorem (Yedidia/Freeman/Weiss, 2000)

Fixed points of the SPA correspond to stationary points of the

Variational Bethe free energy (VBFE).

Note that the VBFE is an approximation of the Var. Gibbs free energy:

If it is an approximation, how is it possible that we obtain an exact

result like in the above theorem?

What is the meaning of the VBFE?
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Graph Covers

original graph
(possible)

M -fold cover of
original graph

· · ·

· · · · · ·

· · ·

M

π2 π3

π1

π5

π4

An M -fold cover is also called a cover of degree M . Do not confuse

this degree with the degree of a vertex!

Note: there are many possible M -fold covers of a graph.
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Graph Covers

original graph
sample of possible
double covers of

the original graph

Note: the above graph has 2! · 2! · 2! · 2! · 2! = 32 double covers.

In general: #G̃M = #(M -covers of G) = (M !)#Edges(G).
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Using the language of the first part of this talk, let us consider the

following setup.

Fix some positive integer M .

(Finally, we are mostly interested in the limit M → ∞.)

Set of microstates , set of microstatesM

,

((
G̃, x̃

) ∣∣∣ G̃ ∈ G̃M , x̃ is a valid configuration in G̃M

)

Mapping ϕM

maps
(
G̃, x̃

)
to ω(x̃)

Set of macrostates , set of macrostatesM

, ϕM(set of microstates)
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Note:

#(set of macrostates) = poly(M)

Note:

closure
(

lim
M→∞

(set of macrostates)
)

= fundamental polytope
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Theorem (Yedidia/Freeman/Weiss, 2000)

Fixed points of the SPA correspond to stationary points of the

Variational Bethe free energy (VBFE).

Re-interpretation in terms of graph covers:

Let

P (microstate) , exp
(
− M ·

〈
ϕM(microstate),λ

〉)

Then

P (macrostate) = exp
(
− M ·

〈
macrostate,λ

〉)

· #ϕ−1(macrostate)
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Fixed Points of the SPA

Theorem (Yedidia/Freeman/Weiss, 2000)

Fixed points of the SPA correspond to local minima of the

Variational Bethe free energy (VBFE).

Re-interpretation in terms of graph covers:

A fixed point of the SPA corresponds to a macrostate ω,

i.e., a pseudo-codeword ω, that is a local maximimum of

P (ω) ∝ exp
(
− M ·

〈
ω,λ

〉)
· #ϕ−1(ω)

when M goes to infinity.
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Theorem: For any macrostate ω, i.e., pseudocodeword ω,

lim
M→∞

1

M
log

#ϕ−1
M (ω)

#G̃M

= HBethe(ω) .

Similarly to the computation of the asymptotic growth rate of average Hamming spectra

one has to be somewhat careful in formulating the above limit; we leave out the details.

Note: The ratio

#ϕ−1
M (ω)

#G̃M

represents the average number of valid configurations x̃ per M -fold

cover with associated pseudo-codeword ω. Therefore, HBethe(ω) gives

the asymptotic growth rate of that quantity.
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1

M
log
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#G̃M

= HBethe(ω) .

The above result is based on similar computations as in the

derivation of the asymptotic growth rate of the average Hamming

weight of protograph-based LDPC codes. Cf.
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Justifying this Result (Ingredient 1)

Theorem: For any macrostate ω, i.e., pseudocodeword ω,

lim
M→∞

1

M
log

#ϕ−1
M (ω)

#G̃M

= HBethe(ω) .

The above result is based on similar computations as in the

derivation of the asymptotic growth rate of the average Hamming

weight of protograph-based LDPC codes. Cf.

[Fogal/McEliece/Thorpe, 2005],

papers by Divsalar, Ryan, et al. (2005–).

To the best of our knowledge, the above interpretation of the

Bethe entropy cannot be found in the literature (besides the talk

that we gave at the 2008 Allerton Conference.)
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Justifying this Result (Ingredient 2)

Remember

FBethe(ω) = UBethe(ω) − HBethe(ω) .

Therefore,

ω∗ = arg min
ω

+FBethe(ω)

= arg max
ω

−FBethe(ω)

= arg max
ω

−UBethe(ω) + HBethe(ω)

with

−UBethe(ω) =
〈
ω,λ

〉

+HBethe(ω) = lim
M→∞

(
1

M
log #ϕ−1

M (ω) −
1

M
log #G̃M

)
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Graph-Dynamical Systems

We want to show that the transient part of the SPA can be expressed in

terms of a graph-dynamical system.

Graph-dynamical system (e.g., [Prisner:95]):

Let Γ be a set of graphs.

Let Ψ be some (possibly random) mapping from Γ to Γ.

Because the domain and the range of Ψ are equal, it makes sense

to study the repeated application of the mapping Ψ:

Γ
Ψ

−→ Γ
Ψ

−→ · · ·
Ψ

−→ Γ



Review
(of the setup used in the re-interpretation of f.p.s of the SPA)

Set of microstates

,

((
G̃, x̃

) ∣∣∣ G̃ ∈ G̃M , x̃ is a valid configuration in G̃M

)

Mapping ϕM

maps
(
G̃, x̃

)
to ω(x̃)

Set of macrostates

, ϕM(set of microstates)
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Corresponding Setup for the
Transient Part of the SPA

Set of microstates

???

Mapping ϕM

???

Set of macrostates

???

Note: Γ = set of M -covers of G and valid configurations therein

is obviously not sufficient.
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Corresponding Setup for the
Transient Part of the SPA

Set of microstates

⇒ Γ = set of what we call colored hypergraph M -cover

or colored twisted M -cover

Mapping ϕM

???

Set of macrostates

set of all possible marginals on the LHS function nodes

× set of all possible marginals on the RHS function nodes



Comment on Microstates
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Comment on Microstates

in FFG

edge corrsponding edges corresponding edges

in some colored 3-cover

LHS and RHS marginals

in colored hypergraph 3-cover

must match

LHS and RHS marginals

do not have to match

+

+

+=

=

=

= +

+

+

+

+

+

+

=

=

=

=

=
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Comment on Macrostates

←−
µ(0) −→

µ(0.5) ←−
µ(1) −→

µ(1.5) ←−
µ(2)

ηleft(0) ηleft(1) ηleft(2)ηleft(0) ηleft(1)

ηright(−.5) ηright(0.5)ηright(0.5) ηright(1.5) ηright(1.5)
.

⇒ This can be considered as a "message-free version of the SPA".

Cf. “Message-free version of belief-propagation”

in [Wainwright/Jaakkola/Willsky, 2003].
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Conclusions

Talked about microstates, macrostates, and their uses.

Given a re-interpretation of fixed points of the SPA

in terms of graph covers and valid configurations therein.

Touched upon a re-interpretation of the transient part of the SPA

in terms of a graph-dynamical system.



Thank you!
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