In Memoriam Ralf Koetter

(10/10/1963-02/02/2009)

A Graph-Dynamics Interpretation of the Sum-Product Algorithent
Pascal O. Vontobel Information Theory Reseärch Groúp Hewlett-Packard Laboratories Palo Alto
ITA Workshop, UC San Diego, CA, Februrary 9,2009

(p)

Overview of Talk

- Introductory example
- Review of some basics (factor graphs / SPA / fixed points of the SPA / graph covers)
- Re-interpretation of fixed points of the SPA in terms of graph covers and valid configurations therein
- Re-interpretation of the transient part of the SPA in terms of a graph-dynamical system

Introductory Example

Particles in a Box

Experiment: let us place M particles in a uniformly and independently distributed manner on a very fine lattice bounded by a box.

Particles in a Box

Experiment: let us place M particles in a uniformly and independently distributed manner on a very fine lattice bounded by a box.

This experiment has many possible outcomes. Here are two of them:

Particles in a Box

Experiment: let us place M particles in a uniformly and independently distributed manner on a very fine lattice bounded by a box.

This experiment has many possible outcomes. Here are two of them:

Particles in a Box

Experiment: let us place M particles in a uniformly and independently distributed manner on a very fine lattice bounded by a box.

This experiment has many possible outcomes. Here are two of them:

Particles in a Box

Experiment: let us place M particles in a uniformly and independently distributed manner on a very fine lattice bounded by a box.

This experiment has many possible outcomes. Here are two of them:

Which one of the above two outcomes is more likely to happen?

Particles in a Box

Experiment: let us place M particles in a uniformly and independently distributed manner on a very fine lattice bounded by a box.

This experiment has many possible outcomes. Here are two of them:

Which one of the above two outcomes is more likely to happen?

Particles in a Box

Experiment: let us place M particles in a uniformly and independently distributed manner on a very fine lattice bounded by a box.

This experiment has many possible outcomes. Here are two of them:

Better question: when doing this experiment again, is the outcome more likely "to look nearly like" outcome 1 or like outcome 2 ?

Particles in a Box

The results of the previous experiment:

Particles in a Box

The results of the previous experiment:

microstate $=$ Coordinates of all M particles

Particles in a Box

The results of the previous experiment:

microstate $=$ Coordinates of all M particles

Particles in a Box

The results of the previous experiment:

$\frac{1}{47}$| 2 | 2 | 2 | 1 | 0 | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 2 | 3 | 3 | 0 | 0 | 0 | 0 |
| 1 | 2 | 1 | 2 | 0 | 0 | 0 | 0 |
| 3 | 2 | 2 | 1 | 0 | 0 | 0 | 0 |
| 1 | 3 | 1 | 3 | 0 | 0 | 0 | 0 |
| 2 | 2 | 2 | 1 | 0 | 0 | 0 | 0 |

microstate $=$ Coordinates of all M particles

Particles in a Box

The results of the previous experiment:

$\frac{1}{47}$| 2 | 1 | 1 | 1 | 1 | 1 | 2 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 2 | 0 | 1 | 1 |
| 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 0 | 1 | 0 | 2 | 1 | 1 | 0 | 1 |
| 0 | | | 1 | | | | |

$\frac{1}{47}$| 2 | 2 | 2 | 1 | 0 | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 2 | 3 | 3 | 0 | 0 | 0 | 0 |
| 1 | 2 | 1 | 2 | 0 | 0 | 0 | 0 |
| 3 | 2 | 2 | 1 | 0 | 0 | 0 | 0 |
| 1 | 3 | 1 | 3 | 0 | 0 | 0 | 0 |
| 2 | 2 | 2 | 1 | 0 | 0 | 0 | 0 |
| 2 | | | | | | | |

$$
\begin{aligned}
\text { microstate } & =\text { Coordinates of all } M \text { particles } \\
\text { macrostate } & =\text { "Summary" of a microstate }
\end{aligned}
$$

Particles in a Box

microstate
$\varphi \downarrow$
macrostate

Particles in a Box

Note: φ is usually a many-to-one mapping.

Particles in a Box

microstate
macrostate

If $P($ microstate $)=$ const. for all microstates then
$P($ macrostate $) \propto \#\{$ microstate $: \varphi($ microstate $)=$ macrostate $\}$

$$
=\# \varphi^{-1} \text { (macrostate) }
$$

Particles in a Box

microstate
$\varphi \downarrow$
macrostate

Here: $\# \varphi^{-1}$ (macrostate 1) $\gg \varphi^{-1}$ (macrostate 2)

Particles in a Box

microstate
$\varphi \downarrow$
macrostate

Here: $\# \varphi^{-1}$ (macrostate 1) $\gg \# \varphi^{-1}$ (macrostate 2)

$$
\Rightarrow P(\text { macrostate } 1) \gg P(\text { macrostate } 2)
$$

Particles in a Box with Gradient Field

Particles in a Box with Gradient Field

Particles in a Box with Gradient Field

Particles in a Box with Gradient Field

$\left.\frac{1}{47} \begin{array}{|c|c|c|c|c|c:c|c|}\hline 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ \hdashline 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ \hdashline 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ \hdashline 1 & 2 & 2 & 1 & 1 & 1 & 1 & 1 \\ \hdashline 2 & 1 & 1 & 2 & 2 & 1 & 1 & 1 \\ \hdashline 1 & 2 & 3 & 2 & 1 & 1 & 3 & 1 \\ \hline\end{array}\right] \Downarrow g$

Particles in a Box with Gradient Field

If $P($ microstate $) \propto \exp (-M \cdot E(\varphi($ microstate $)))$

Particles in a Box with Gradient Field

If $P($ microstate $) \propto \exp (-M \cdot E(\varphi($ microstate $)))$ then $P($ macrostate $) \propto \exp (-M \cdot E($ macrostate $))$

- $\#\{$ microstate $: ~ \varphi($ microstate $)=$ macrostate $\}$

Particles in a Box with Gradient Field

If $P($ microstate $) \propto \exp (-M \cdot E(\varphi($ microstate $)))$ then $P($ macrostate $) \propto \exp (-M \cdot E($ macrostate $))$

- \#\{microstate : $\varphi($ microstate $)=$ macrostate $\}$
$=\exp (-M \cdot E($ macrostate $)) \cdot \# \varphi^{-1}($ macrostate $)$

Particles in a Box with Gradient Field

$\frac{1}{47}$| 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 |
| 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 |
| 1 | 2 | 2 | 1 | 1 | 1 | 1 | 1 |
| 2 | 1 | 1 | 2 | 2 | 1 | 1 | 1 |
| 1 | 2 | 3 | 2 | 1 | 1 | 3 | 1 |

Particles in a Box with Gradient Field

Let

$$
H_{M}(\text { macrostate }) \triangleq \frac{1}{M} \log \left(\# \varphi^{-1}(\text { macrostate })\right)
$$

Particles in a Box with Gradient Field

$$
H_{M}(\text { macrostate }) \triangleq \frac{1}{M} \log \left(\# \varphi^{-1}(\text { macrostate })\right)
$$

$\Rightarrow P($ macrostate $) \propto \exp (-M \cdot E($ macrostate $)) \cdot \# \varphi^{-1}($ macrostate $)$

Particles in a Box with Gradient Field

Let

$$
H_{M}(\text { macrostate }) \triangleq \frac{1}{M} \log \left(\# \varphi^{-1}(\text { macrostate })\right)
$$

$\Rightarrow P($ macrostate $) \propto \exp (-M \cdot E($ macrostate $)) \cdot \# \varphi^{-1}($ macrostate $)$

$$
=\exp \left(M \cdot\left(-E(\text { macrostate })+H_{M}(\text { macrostate })\right)\right)
$$

Static vs. Dynamic Setup

Static setup:

Static vs. Dynamic Setup

Static setup:

$$
P(\mathrm{M}) \propto \exp (-M \cdot E(\mathrm{M})) \cdot \# \varphi^{-1}(\mathrm{M})
$$

Static vs. Dynamic Setup

Static setup:

$$
P(\mathrm{M}) \propto \exp (-M \cdot E(\mathrm{M})) \cdot \# \varphi^{-1}(\mathrm{M})
$$

Dynamic setup:

$$
\begin{aligned}
& P(\mathrm{M}(t+\Delta t) \mid \mathrm{m}(t)) \\
& \quad \propto \exp (-M \cdot E(\mathrm{M}(t+\Delta t) \mid \mathrm{m}(t))) \cdot \# \varphi^{-1}(\mathrm{M}(t+\Delta t) \mid \mathrm{m}(t))
\end{aligned}
$$

Static vs. Dynamic Setup

Static setup:

$$
P(\mathrm{M}) \propto \exp (-M \cdot E(\mathrm{M})) \cdot \# \varphi^{-1}(\mathrm{M})
$$

Dynamic setup:

$$
\begin{aligned}
& P(\mathrm{M}(t+\Delta t) \mid \mathrm{m}(t)) \\
& \quad \propto \exp (-M \cdot E(\mathrm{M}(t+\Delta t) \mid \mathrm{m}(t))) \cdot \# \varphi^{-1}(\mathrm{M}(t+\Delta t) \mid \mathrm{m}(t))
\end{aligned}
$$

"Better" dynamic setup:

$$
\begin{aligned}
& P(\mathrm{M}(t+\Delta t) \mid \mathrm{M}(t)) \\
& \quad \propto \exp (-M \cdot E(\mathrm{M}(t+\Delta t) \mid \mathrm{M}(t))) \cdot \# \varphi^{-1}(\mathrm{M}(t+\Delta t) \mid \mathrm{M}(t))
\end{aligned}
$$

Static vs. Dynamic Setup

Static setup: will model fix points of the SPA

$$
P(\mathrm{M}) \propto \exp (-M \cdot E(\mathrm{M})) \cdot \# \varphi^{-1}(\mathrm{M})
$$

Dynamic setup:

$$
\begin{aligned}
& P(\mathrm{M}(t+\Delta t) \mid \mathrm{m}(t)) \\
& \quad \propto \exp (-M \cdot E(\mathrm{M}(t+\Delta t) \mid \mathrm{m}(t))) \cdot \# \varphi^{-1}(\mathrm{M}(t+\Delta t) \mid \mathrm{m}(t))
\end{aligned}
$$

"Better" dynamic setup:

$$
\begin{aligned}
& P(\mathrm{M}(t+\Delta t) \mid \mathrm{M}(t)) \\
& \quad \propto \exp (-M \cdot E(\mathrm{M}(t+\Delta t) \mid \mathrm{M}(t))) \cdot \# \varphi^{-1}(\mathrm{M}(t+\Delta t) \mid \mathrm{M}(t))
\end{aligned}
$$

Static vs. Dynamic Setup

Static setup: will model fix points of the SPA

$$
P(\mathrm{M}) \propto \exp (-M \cdot E(\mathrm{M})) \cdot \# \varphi^{-1}(\mathrm{M})
$$

Dynamic setup:

$$
\begin{aligned}
& P(\mathrm{M}(t+\Delta t) \mid \mathrm{m}(t)) \\
& \quad \propto \exp (-M \cdot E(\mathrm{M}(t+\Delta t) \mid \mathrm{m}(t))) \cdot \# \varphi^{-1}(\mathrm{M}(t+\Delta t) \mid \mathrm{m}(t))
\end{aligned}
$$

"Better" dynamic setup: will model the transient part of the SPA

$$
\begin{aligned}
& P(\mathrm{M}(t+\Delta t) \mid \mathrm{M}(t)) \\
& \quad \propto \exp (-M \cdot E(\mathrm{M}(t+\Delta t) \mid \mathrm{M}(t))) \cdot \# \varphi^{-1}(\mathrm{M}(t+\Delta t) \mid \mathrm{M}(t))
\end{aligned}
$$

Forney-style Factor Graphs (FFGs)
$\left[\right.$ Labs $\left.^{\text {hp }}\right]$

Forney-style Factor Graphs (FFGs)

Forney-style Factor Graphs (FFGs)

- Factor graphs were defined in [Kschischang:Frey:Loeliger:01].

Forney-style Factor Graphs (FFGs)

- Factor graphs were defined in [Kschischang:Frey:Loeliger:01].
- Normal (factor) graphs were defined in [Forney:01].

Forney-style Factor Graphs (FFGs)

- Factor graphs were defined in [Kschischang:Frey:Loeliger:01].
- Normal (factor) graphs were defined in [Forney:01].
\Rightarrow We will call them Forney-style Factor graphs (FFGs).

Forney-style Factor Graphs (FFGs)

The above FFG has

Forney-style Factor Graphs (FFGs)

The above FFG has

- the local functions $f_{\mathrm{A}}, f_{\mathrm{B}}$, and f_{C},

Forney-style Factor Graphs (FFGs)

The above FFG has

- the local functions $f_{\mathrm{A}}, f_{\mathrm{B}}$, and f_{C},
- the edges corresponding to the variables X and Z,

Forney-style Factor Graphs (FFGs)

The above FFG has

- the local functions $f_{\mathrm{A}}, f_{\mathrm{B}}$, and f_{C},
- the edges corresponding to the variables X and Z,
- the half edges corresponding to the variables U, W, and Y,

Forney-style Factor Graphs (FFGs)

The above FFG has

- the local functions $f_{\mathrm{A}}, f_{\mathrm{B}}$, and f_{C},
- the edges corresponding to the variables X and Z,
- the half edges corresponding to the variables U, W, and Y,
- and finally the global function $f_{\mathrm{A}}(u, w, x) \cdot f_{\mathrm{B}}(x, y, z) \cdot f_{\mathrm{C}}(z)$.

Forney-style Factor Graphs (FFGs)

Forney-style Factor Graphs (FFGs)

- A configuration is a particular assignment of values to all variables.

Forney-style Factor Graphs (FFGs)

- A configuration is a particular assignment of values to all variables.
- The configuration space Ω is the set of all configurations.

Forney-style Factor Graphs (FFGs)

- A configuration is a particular assignment of values to all variables.
- The configuration space Ω is the set of all configurations.
- A configuration $\boldsymbol{\omega} \in \Omega$ is called valid if $f(\boldsymbol{\omega}) \neq 0$.

Forney-style Factor Graphs (FFGs)

- A configuration is a particular assignment of values to all variables.
- The configuration space Ω is the set of all configurations.
- A configuration $\boldsymbol{\omega} \in \Omega$ is called valid if $f(\boldsymbol{\omega}) \neq 0$.
- System variable: $X: \Omega \rightarrow A_{X}: \boldsymbol{\omega} \mapsto x=X(\boldsymbol{\omega})$.

The Sum-Product Algorithm (SPA)

SPA: Update Rule

$$
\begin{aligned}
& \mu_{f_{4} \rightarrow f_{5}}\left(x_{5}\right) \\
& \quad=\frac{1}{Z_{f_{4} \rightarrow f_{5}}} \sum_{x_{1}} \sum_{x_{2}} \sum_{x_{3}} f_{4}\left(x_{1}, x_{2}, x_{3}, x_{5}\right) \cdot \mu_{f_{1} \rightarrow f_{4}}\left(x_{1}\right) \cdot \mu_{f_{2} \rightarrow f_{4}}\left(x_{2}\right) \cdot \mu_{f_{3} \rightarrow f_{4}}\left(x_{3}\right)
\end{aligned}
$$

SPA: Update Rule

$$
\begin{aligned}
& \mu_{f_{4} \rightarrow f_{5}}\left(x_{5}\right) \\
& \quad=\frac{1}{Z_{f_{4} \rightarrow f_{5}}} \sum_{x_{1}} \sum_{x_{2}} \sum_{x_{3}} f_{4}\left(x_{1}, x_{2}, x_{3}, x_{5}\right) \cdot \mu_{f_{1} \rightarrow f_{4}}\left(x_{1}\right) \cdot \mu_{f_{2} \rightarrow f_{4}}\left(x_{2}\right) \cdot \mu_{f_{3} \rightarrow f_{4}}\left(x_{3}\right)
\end{aligned}
$$

Note: $\frac{1}{Z_{f_{4} \rightarrow f_{5}}}$ is suitably chosen depending on the setup.

SPA: Computing Marginals

$$
\begin{aligned}
& \eta_{f_{4}}\left(x_{1}, x_{2}, x_{3}, x_{5}\right) \\
& \quad=\frac{1}{Z_{f_{4}}} f_{4}\left(x_{1}, x_{2}, x_{3}, x_{5}\right) \cdot \mu_{f_{1} \rightarrow f_{4}}\left(x_{1}\right) \cdot \mu_{f_{2} \rightarrow f_{4}}\left(x_{2}\right) \cdot \mu_{f_{3} \rightarrow f_{4}}\left(x_{3}\right) \cdot \mu_{f_{5} \rightarrow f_{4}}\left(x_{5}\right)
\end{aligned}
$$

SPA: Computing Marginals

$$
\begin{aligned}
& \eta_{f_{4}}\left(x_{1}, x_{2}, x_{3}, x_{5}\right) \\
& \quad=\frac{1}{Z_{f_{4}}} f_{4}\left(x_{1}, x_{2}, x_{3}, x_{5}\right) \cdot \mu_{f_{1} \rightarrow f_{4}}\left(x_{1}\right) \cdot \mu_{f_{2} \rightarrow f_{4}}\left(x_{2}\right) \cdot \mu_{f_{3} \rightarrow f_{4}}\left(x_{3}\right) \cdot \mu_{f_{5} \rightarrow f_{4}}\left(x_{5}\right)
\end{aligned}
$$

Note: $\frac{1}{Z_{f_{4}}}$ is suitably chosen depending on the setup.

Fixed Points of the SPA

Theorem (Yedidia/Freeman/Weiss, 2000)
Fixed points of the SPA correspond to stationary points of the Variational Bethe free energy (VBFE).

Fixed Points of the SPA

Theorem (Yedidia/Freeman/Weiss, 2000)
Fixed points of the SPA correspond to stationary points of the Variational Bethe free energy (VBFE).

Fixed Points of the SPA

Theorem (Yedidia/Freeman/Weiss, 2000)
Fixed points of the SPA correspond to stationary points of the Variational Bethe free energy (VBFE).

Fixed Points of the SPA

Theorem (Yedidia/Freeman/Weiss, 2000)
Fixed points of the SPA correspond to stationary points of the Variational Bethe free energy (VBFE).

Note that the VBFE is an approximation of the Var. Gibbs free energy:

Fixed Points of the SPA

Theorem (Yedidia/Freeman/Weiss, 2000)
Fixed points of the SPA correspond to stationary points of the Variational Bethe free energy (VBFE).

Note that the VBFE is an approximation of the Var. Gibbs free energy:

- If it is an approximation, how is it possible that we obtain an exact result like in the above theorem?

Fixed Points of the SPA

Theorem (Yedidia/Freeman/Weiss, 2000)
Fixed points of the SPA correspond to stationary points of the Variational Bethe free energy (VBFE).

Note that the VBFE is an approximation of the Var. Gibbs free energy:

- If it is an approximation, how is it possible that we obtain an exact result like in the above theorem?
- What is the meaning of the VBFE?

Graph Covers and

Counting Valid Configurations Therein

Graph Covers

original graph

(a possible)
double cover of the original graph

.. -

Graph Covers

original graph

(possible)
M-fold cover of original graph

An M-fold cover is also called a cover of degree M. Do not confuse this degree with the degree of a vertex!
Note: there are many possible M-fold covers of a graph.

Graph Covers

$\left(\right.$ LABS $\left.^{\text {hp }}\right)$

Graph Covers

Note: the above graph has $2!\cdot 2!\cdot 2!\cdot 2!\cdot 2!=32$ double covers.

Graph Covers

Note: the above graph has $2!\cdot 2!\cdot 2!\cdot 2!\cdot 2!=32$ double covers.
In general: $\# \widetilde{\mathcal{G}}_{M}=\#(M$-covers of G$)=(M!)^{\# \operatorname{Edges}(\mathrm{G})}$.

Graph Covers
 and Valid Configurations Therein

Graph Covers
 and Valid Configurations Therein

Graph Covers
 and Valid Configurations Therein

Graph Covers
 and Valid Configurations Therein

The components of the pseudo-codeword

$$
\omega=\left(\omega_{1}, \ldots, \omega_{n}\right)
$$

associated to $\tilde{\mathrm{x}}$ are given by

$$
\omega_{i} \triangleq \frac{1}{M} \sum_{m \in[M]} \tilde{x}_{i, m}
$$

Graph Covers
 and Valid Configurations Therein

The components of the pseudo-codeword

$$
\omega=\left(\omega_{1}, \ldots, \omega_{n}\right)
$$

associated to $\tilde{\mathrm{x}}$ are given by

$$
\omega_{i} \triangleq \frac{1}{M} \sum_{m \in[M]} \tilde{x}_{i, m}
$$

$$
\begin{aligned}
& \omega_{1}=\frac{2}{2}\left\{\begin{array}{l}
\frac{y_{1}}{y_{1}} \boldsymbol{\square} \begin{array}{l}
\tilde{X}_{1,1}=1 \\
\tilde{X}_{1,2}=1 \\
\text { 目 }
\end{array} \\
\hline
\end{array}\right. \\
& \omega_{2}=\frac{1}{2}\left\{\begin{array}{l}
y_{2}-\begin{array}{l}
\tilde{X}_{2,1}=0 \\
y_{2} \\
\tilde{X}_{2,2}=1
\end{array} \\
\hline
\end{array}\right. \\
& \begin{array}{l}
\omega_{3}=\frac{1}{2}\left\{\begin{array}{l}
\frac{y_{3}}{y_{3}} \square_{\tilde{X}_{3,2}=1}^{\tilde{X}_{3,2}=1} \\
\omega_{4}=\frac{0}{2}\left\{\begin{array}{l}
y_{4} \square \tilde{X}_{4,1}=0 \\
y_{4} \square
\end{array}\right. \\
\tilde{X}_{4,2}=0
\end{array}\right.
\end{array}
\end{aligned}
$$

Graph Covers and Valid Configurations Therein

Using the language of the first part of this talk, let us consider the following setup.

Graph Covers
 and Valid Configurations Therein

Using the language of the first part of this talk, let us consider the following setup.

- Fix some positive integer M.
(Finally, we are mostly interested in the limit $M \rightarrow \infty$.)

Graph Covers and Valid Configurations Therein

Using the language of the first part of this talk, let us consider the following setup.

- Fix some positive integer M.
(Finally, we are mostly interested in the limit $M \rightarrow \infty$.)
- Set of microstates \triangleq set of microstates ${ }_{M}$

$$
\triangleq\left((\widetilde{\mathrm{G}}, \widetilde{\mathbf{x}}) \mid \widetilde{\mathrm{G}} \in \widetilde{\mathcal{G}}_{M}, \widetilde{\mathbf{x}} \text { is a valid configuration in } \widetilde{\mathcal{G}}_{M}\right)
$$

Graph Covers and Valid Configurations Therein

Using the language of the first part of this talk, let us consider the following setup.

- Fix some positive integer M.
(Finally, we are mostly interested in the limit $M \rightarrow \infty$.)
- Set of microstates \triangleq set of microstates ${ }_{M}$

$$
\triangleq\left((\widetilde{\mathrm{G}}, \widetilde{\mathrm{x}}) \mid \widetilde{\mathrm{G}} \in \widetilde{\mathcal{G}}_{M}, \widetilde{\mathrm{x}} \text { is a valid configuration in } \widetilde{\mathcal{G}}_{M}\right)
$$

- Mapping φ_{M}

$$
\operatorname{maps}(\widetilde{G}, \widetilde{\mathrm{x}}) \text { to } \omega(\widetilde{\mathrm{x}})
$$

Graph Covers and Valid Configurations Therein

Using the language of the first part of this talk, let us consider the following setup.

- Fix some positive integer M.
(Finally, we are mostly interested in the limit $M \rightarrow \infty$.)
- Set of microstates \triangleq set of microstates ${ }_{M}$

$$
\triangleq\left((\widetilde{\mathrm{G}}, \widetilde{\mathbf{x}}) \mid \widetilde{\mathrm{G}} \in \widetilde{\mathcal{G}}_{M}, \widetilde{\mathbf{x}} \text { is a valid configuration in } \widetilde{\mathcal{G}}_{M}\right)
$$

- Mapping φ_{M}

$$
\operatorname{maps}(\widetilde{G}, \widetilde{\mathrm{x}}) \text { to } \omega(\widetilde{\mathrm{x}})
$$

- Set of macrostates \triangleq set of macrostates M_{M}

$$
\triangleq \varphi_{M}(\text { set of microstates })
$$

Graph Covers

and Valid Configurations Therein

Graph Covers
 and Valid Configurations Therein

- Note:
$\#($ set of macrostates $)=\operatorname{poly}(M)$

Graph Covers
 and Valid Configurations Therein

- Note:

$$
\#(\text { set of macrostates })=\operatorname{poly}(M)
$$

- Note:

$$
\operatorname{closure}\left(\lim _{M \rightarrow \infty}(\text { set of macrostates })\right)=\text { fundamental polytope }
$$

Fixed Points of the SPA

Theorem (Yedidia/Freeman/Weiss, 2000)
Fixed points of the SPA correspond to stationary points of the Variational Bethe free energy (VBFE).

Fixed Points of the SPA

Theorem (Yedidia/Freeman/Weiss, 2000)
Fixed points of the SPA correspond to stationary points of the Variational Bethe free energy (VBFE).

Re-interpretation in terms of graph covers:
Let

$$
P(\text { microstate }) \triangleq \exp \left(-M \cdot\left\langle\boldsymbol{\varphi}_{M}(\text { microstate }), \boldsymbol{\lambda}\right\rangle\right)
$$

Fixed Points of the SPA

Theorem (Yedidia/Freeman/Weiss, 2000)
Fixed points of the SPA correspond to stationary points of the Variational Bethe free energy (VBFE).

Re-interpretation in terms of graph covers:
Let

$$
P(\text { microstate }) \triangleq \exp \left(-M \cdot\left\langle\boldsymbol{\varphi}_{M}(\text { microstate }), \boldsymbol{\lambda}\right\rangle\right)
$$

Then

$$
\begin{aligned}
P(\text { macrostate })= & \exp (-M \cdot\langle\text { macrostate }, \boldsymbol{\lambda}\rangle) \\
& \cdot \# \varphi^{-1}(\text { macrostate })
\end{aligned}
$$

Fixed Points of the SPA

Theorem (Yedidia/Freeman/Weiss, 2000)
Fixed points of the SPA correspond to stationary points of the Variational Bethe free energy (VBFE).

Fixed Points of the SPA

Theorem (Yedidia/Freeman/Weiss, 2000)
Fixed points of the SPA correspond to stationary points of the Variational Bethe free energy (VBFE).

Re-interpretation in terms of graph covers:

A fixed point of the SPA corresponds to a macrostate ω, i.e., a pseudo-codeword ω, that is a stationary point of

$$
P(\boldsymbol{\omega}) \propto \exp (-M \cdot\langle\boldsymbol{\omega}, \boldsymbol{\lambda}\rangle) \cdot \# \varphi^{-1}(\boldsymbol{\omega})
$$

when M goes to infinity.

Fixed Points of the SPA

Theorem (Yedidia/Freeman/Weiss, 2000)
Fixed points of the SPA correspond to local minima of the Variational Bethe free energy (VBFE).

Re-interpretation in terms of graph covers:
A fixed point of the SPA corresponds to a macrostate ω, i.e., a pseudo-codeword ω, that is a local maximimum of

$$
P(\boldsymbol{\omega}) \propto \exp (-M \cdot\langle\boldsymbol{\omega}, \boldsymbol{\lambda}\rangle) \cdot \# \varphi^{-1}(\boldsymbol{\omega})
$$

when M goes to infinity.

Justifying this Result (Ingredient 1)

Justifying this Result (Ingredient 1)

Theorem: For any macrostate ω, i.e., pseudocodeword ω,

$$
\lim _{M \rightarrow \infty} \frac{1}{M} \log \frac{\# \boldsymbol{\varphi}_{M}^{-1}(\boldsymbol{\omega})}{\# \widetilde{\mathcal{G}}_{M}}=H_{\text {Bethe }}(\omega)
$$

Justifying this Result (Ingredient 1)

Theorem: For any macrostate ω, i.e., pseudocodeword $\boldsymbol{\omega}$,

$$
\lim _{M \rightarrow \infty} \frac{1}{M} \log \frac{\# \boldsymbol{\varphi}_{M}^{-1}(\boldsymbol{\omega})}{\# \widetilde{\mathcal{G}}_{M}}=H_{\text {Bethe }}(\omega)
$$

- Similarly to the computation of the asymptotic growth rate of average Hamming spectra one has to be somewhat careful in formulating the above limit; we leave out the details.

Justifying this Result (Ingredient 1)

Theorem: For any macrostate ω, i.e., pseudocodeword $\boldsymbol{\omega}$,

$$
\lim _{M \rightarrow \infty} \frac{1}{M} \log \frac{\# \boldsymbol{\varphi}_{M}^{-1}(\boldsymbol{\omega})}{\# \widetilde{\mathcal{G}}_{M}}=H_{\text {Bethe }}(\boldsymbol{\omega})
$$

- Similarly to the computation of the asymptotic growth rate of average Hamming spectra one has to be somewhat careful in formulating the above limit; we leave out the details.
- Note: The ratio

$$
\frac{\# \varphi_{M}^{-1}(\omega)}{\# \widetilde{\mathcal{G}}_{M}}
$$

represents the average number of valid configurations $\tilde{\mathrm{x}}$ per M-fold cover with associated pseudo-codeword ω. Therefore, $H_{\text {Bethe }}(\omega)$ gives the asymptotic growth rate of that quantity.

Justifying this Result (Ingredient 1)

Theorem: For any macrostate ω, i.e., pseudocodeword ω,

$$
\lim _{M \rightarrow \infty} \frac{1}{M} \log \frac{\# \boldsymbol{\varphi}_{M}^{-1}(\boldsymbol{\omega})}{\# \widetilde{\mathcal{G}}_{M}}=H_{\text {Bethe }}(\omega)
$$

Justifying this Result (Ingredient 1)

Theorem: For any macrostate ω, i.e., pseudocodeword ω,

$$
\lim _{M \rightarrow \infty} \frac{1}{M} \log \frac{\# \boldsymbol{\varphi}_{M}^{-1}(\boldsymbol{\omega})}{\# \widetilde{\mathcal{G}}_{M}}=H_{\text {Bethe }}(\boldsymbol{\omega})
$$

- The above result is based on similar computations as in the derivation of the asymptotic growth rate of the average Hamming weight of protograph-based LDPC codes. Cf.
- [Fogal/McEliece/Thorpe, 2005],
- papers by Divsalar, Ryan, et al. (2005-).

Justifying this Result (Ingredient 1)

Theorem: For any macrostate ω, i.e., pseudocodeword ω,

$$
\lim _{M \rightarrow \infty} \frac{1}{M} \log \frac{\# \boldsymbol{\varphi}_{M}^{-1}(\omega)}{\# \widetilde{\mathcal{G}}_{M}}=H_{\text {Bethe }}(\omega)
$$

- The above result is based on similar computations as in the derivation of the asymptotic growth rate of the average Hamming weight of protograph-based LDPC codes. Cf.
- [Fogal/McEliece/Thorpe, 2005],
- papers by Divsalar, Ryan, et al. (2005-).
- To the best of our knowledge, the above interpretation of the Bethe entropy cannot be found in the literature (besides the talk that we gave at the 2008 Allerton Conference.)

Justifying this Result (Ingredient 2)

Justifying this Result (Ingredient 2)

Remember

$$
F_{\text {Bethe }}(\boldsymbol{\omega})=U_{\text {Bethe }}(\boldsymbol{\omega})-H_{\text {Bethe }}(\boldsymbol{\omega})
$$

Justifying this Result (Ingredient 2)

Remember

$$
F_{\text {Bethe }}(\boldsymbol{\omega})=U_{\text {Bethe }}(\boldsymbol{\omega})-H_{\text {Bethe }}(\boldsymbol{\omega}) .
$$

Therefore,

$$
\boldsymbol{\omega}^{*}=\arg \min _{\omega}+F_{\text {Bethe }}(\boldsymbol{\omega})
$$

Justifying this Result (Ingredient 2)

Remember

$$
F_{\text {Bethe }}(\boldsymbol{\omega})=U_{\text {Bethe }}(\boldsymbol{\omega})-H_{\text {Bethe }}(\boldsymbol{\omega}) .
$$

Therefore,

$$
\begin{aligned}
\boldsymbol{\omega}^{*} & =\arg \min _{\omega}+F_{\text {Bethe }}(\boldsymbol{\omega}) \\
& =\arg \max _{\boldsymbol{\omega}}-F_{\text {Bethe }}(\boldsymbol{\omega})
\end{aligned}
$$

Justifying this Result (Ingredient 2)

Remember

$$
F_{\text {Bethe }}(\boldsymbol{\omega})=U_{\text {Bethe }}(\boldsymbol{\omega})-H_{\text {Bethe }}(\boldsymbol{\omega}) .
$$

Therefore,

$$
\begin{aligned}
\omega^{*} & =\arg \min _{\omega}+F_{\text {Bethe }}(\omega) \\
& =\arg \max _{\omega}-F_{\text {Bethe }}(\omega) \\
& =\arg \max _{\omega}-U_{\text {Bethe }}(\omega)+H_{\text {Bethe }}(\boldsymbol{\omega})
\end{aligned}
$$

Justifying this Result (Ingredient 2)

Remember

$$
F_{\text {Bethe }}(\boldsymbol{\omega})=U_{\text {Bethe }}(\boldsymbol{\omega})-H_{\text {Bethe }}(\boldsymbol{\omega})
$$

Therefore,

$$
\begin{aligned}
\boldsymbol{\omega}^{*} & =\arg \min _{\omega}+F_{\text {Bethe }}(\boldsymbol{\omega}) \\
& =\arg \max _{\omega}-F_{\text {Bethe }}(\boldsymbol{\omega}) \\
& =\arg \max _{\omega}-U_{\text {Bethe }}(\boldsymbol{\omega})+H_{\text {Bethe }}(\boldsymbol{\omega})
\end{aligned}
$$

with

$$
\begin{aligned}
& -U_{\text {Bethe }}(\boldsymbol{\omega})=\langle\boldsymbol{\omega}, \boldsymbol{\lambda}\rangle \\
& +H_{\text {Bethe }}(\boldsymbol{\omega})=\lim _{M \rightarrow \infty}\left(\frac{1}{M} \log \# \boldsymbol{\varphi}_{M}^{-1}(\boldsymbol{\omega})-\frac{1}{M} \log \# \widetilde{\mathcal{G}}_{M}\right)
\end{aligned}
$$

The Transient Part of the SPA

Graph-Dynamical Systems

We want to show that the transient part of the SPA can be expressed in terms of a graph-dynamical system.

Graph-Dynamical Systems

We want to show that the transient part of the SPA can be expressed in terms of a graph-dynamical system.

Graph-dynamical system (e.g., [Prisner:95]):

Graph-Dynamical Systems

We want to show that the transient part of the SPA can be expressed in terms of a graph-dynamical system.

Graph-dynamical system (e.g., [Prisner:95]):

- Let Γ be a set of graphs.

Graph-Dynamical Systems

We want to show that the transient part of the SPA can be expressed in terms of a graph-dynamical system.

Graph-dynamical system (e.g., [Prisner:95]):

- Let Γ be a set of graphs.
- Let Ψ be some (possibly random) mapping from Γ to Γ.

Graph-Dynamical Systems

We want to show that the transient part of the SPA can be expressed in terms of a graph-dynamical system.

Graph-dynamical system (e.g., [Prisner:95]):

- Let Γ be a set of graphs.
- Let Ψ be some (possibly random) mapping from Γ to Γ.
- Because the domain and the range of Ψ are equal, it makes sense to study the repeated application of the mapping Ψ :

$$
\Gamma \xrightarrow{\Psi} \Gamma \quad \xrightarrow{\Psi} \quad \cdots \quad \xrightarrow{\Psi} \quad \Gamma
$$

Review

(of the setup used in the re-interpretation of f.p.s of the SPA)

- Set of microstates

$$
\triangleq\left((\widetilde{\mathrm{G}}, \widetilde{\mathbf{x}}) \mid \widetilde{\mathrm{G}} \in \widetilde{\mathcal{G}}_{M}, \widetilde{\mathbf{x}} \text { is a valid configuration in } \widetilde{\mathcal{G}}_{M}\right)
$$

- Mapping φ_{M}

$$
\text { maps }(\widetilde{G}, \widetilde{\mathrm{x}}) \text { to } \omega(\widetilde{\mathrm{x}})
$$

- Set of macrostates

$$
\triangleq \varphi_{M}(\text { set of microstates })
$$

Corresponding Setup for the
 Transient Part of the SPA

- Set of microstates
???
- Mapping φ_{M}
???
- Set of macrostates
???

Corresponding Setup for the Transient Part of the SPA

- Set of microstates
???
- Mapping φ_{M}
???
- Set of macrostates
???
Note: $\Gamma=$ set of M-covers of G and valid configurations therein is obviously not sufficient.

Corresponding Setup for the Transient Part of the SPA

- Set of microstates
$\Rightarrow \Gamma=$ set of what we call colored hypergraph M-cover
or colored twisted M-cover
- Mapping φ_{M}
- Set of macrostates

Corresponding Setup for the Transient Part of the SPA

- Set of microstates
$\Rightarrow \Gamma=$ set of what we call colored hypergraph M-cover
or colored twisted M-cover
- Mapping φ_{M}
???
- Set of macrostates
set of all possible marginals on the LHS function nodes
\times set of all possible marginals on the RHS function nodes

Comment on Microstates

Comment on Microstates

Comment on Microstates

Comment on Macrostates

Comment on Macrostates

Comment on Macrostates

Comment on Macrostates

Comment on Macrostates

$\boldsymbol{\eta}_{\text {left }}(0)$
$\eta_{\text {right }}(-.5)$$\rightarrow\left[\begin{array}{c}\boldsymbol{\eta}_{\text {left }}(0) \\ \boldsymbol{\eta}_{\text {right }}(0.5)\end{array} \rightarrow \begin{array}{c}\boldsymbol{\eta}_{\text {left }}(1) \\ \boldsymbol{\eta}_{\text {right }}(0.5)\end{array} \rightarrow \begin{array}{c}\begin{array}{c}\boldsymbol{\eta}_{\text {left }}(1) \\ \boldsymbol{\eta}_{\text {right }}(1.5)\end{array}\end{array} \rightarrow \begin{array}{|}\begin{array}{c}\boldsymbol{\eta}_{\text {left }}(2) \\ \boldsymbol{\eta}_{\text {right }}(1.5)\end{array}\end{array}\right.$.

Comment on Macrostates

\Rightarrow This can be considered as a "message-free version of the SPA".

Comment on Macrostates

\Rightarrow This can be considered as a "message-free version of the SPA".

Cf. "Message-free version of belief-propagation" in [Wainwright/Jaakkola/Willsky, 2003].

Conclusions

Conclusions

- Talked about microstates, macrostates, and their uses.

Conclusions

- Talked about microstates, macrostates, and their uses.
- Given a re-interpretation of fixed points of the SPA in terms of graph covers and valid configurations therein.

Conclusions

- Talked about microstates, macrostates, and their uses.
- Given a re-interpretation of fixed points of the SPA in terms of graph covers and valid configurations therein.
- Touched upon a re-interpretation of the transient part of the SPA in terms of a graph-dynamical system.

Thank you!

