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I Overview of Talk

Bethe free energy and ...

symbolwise graph-cover decoding,
EXIT charts,

asymptotic growth rate of the average Hamming
weight distribution for code ensembles.
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I Communication Model (part 1)
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Received word: y= (Y1, Yn) €EY"
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I Communication Model (part 1)

U X Y X U
DMS = Channel |~ gl Channel |———| Channel L_— o gipk
Coding Decoding
Information word: u=(ug,...,ug) €U"
Sent codeword: X =(r1,...,0,) €ECC A"
Received word: y= (Y1, Yn) €EY"

Decoding: Based on y we would like to estimate the transmitted

codeword x or the information word 1.

Depending on what criterion we optimize, we obtain different decoding

algorithms. [LABShP)
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I Symbolwise MAP /ML Decoding

U X Y X U
BSS |—— Channel | af Channel —{ Channel Lol gipi
Coding Decoding

Minimizing the symbol error probability (for each ¢ = 1,... k) results
in symbol-wise MAP decoding.

Foreachi=1,... k:

afymbOI(Y) = argmax P,y (u;|y) = argmax Py, y(u;,y)
u; EU u; €U
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U X Y X U
BSS |—— Channel | af Channel —{ Channel Lol gipi
Coding Decoding

Minimizing the symbol error probability (for each ¢ = 1,... k) results
in symbol-wise MAP decoding.

Foreachi=1,... k:

afymbOI(Y) = argmax P,y (u;|y) = argmax Py, y(u;,y)
u; EU u; €U

— argmax Z Puxy(u,x,y) .

u; €U
! ucuk, xexn
U, fixed
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Decoding
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I Symbolwise MAP /ML Decoding

BSS

U

—>

Channel
Coding

For simplicity,

the encoding will be systematic, i.e.,

- »! Channel ——w»| Channel

Decoding

—  Sink

v, =u; (fori=1,...,k);

the channel input alphabet is X' = {0, 1};

and all codewords in the code C are assumed to be equally likely a

priori, 1.€.,

1
PX(X) — % .

x € (].
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I Symbolwise MAP /ML Decoding
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—>

Channel

Therefore, computing for each

v = 1,...,n the marginals

n:(0) £ > Pyix(ylx) |

xeC

xeC
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Therefore, computing for each

v = 1,...,n the marginals

n:(0) £ > Pyix(ylx) |

xeC

1;

(1) =

Ly

xeC

XT,=
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we obtain

A bol
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I Symbolwise MAP /ML Decoding

U X

BSS Channel

— — |

Coding

Channel

Y

|~ | Channel

Decoding Sink

Therefore, computing for each

v = 1,...,n the marginals
n:(0) £ > Pyix(ylx) |
xeC
x;=0
ni(1) £ Pyix(ylx)
xeC
:cz-zl
we obtain

~symbol

# (y) = argmax i(x)

T, €EX

Assume that the joint pmf of
X and Y = y is given by the
following factor graph:

(1 X1
O B

Y2 X9
O B

Y3 X3
O B
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I Sum-Product Algorithm Decoding

Computing these marginals is computationally intractable in general,
therefore we can try to use sub-optimal algorithms like the sum-product

algorithm (SPA) to obtain approximations to these marginals.
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I Sum-Product Algorithm Decoding

i-th iteration

1.5-th iteration

O O O
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Computing these marginals is computationally intractable in general,

therefore we can try to use sub-optimal algorithms like the sum-product

algorithm (SPA) to obtain approximations to these marginals.
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I Sum-Product Algorithm Decoding

i-th iteration

1.5-th iteration

U1 . X1
Y2 . X > —
O H
~—=
Y3 X3 .
O—N -

The SPA is an algorithm that operates
locally on a factor graph:

it sends messages along the edges,

combines local messages to produce new local messages at the

vertices.
[LaBs™]
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Let us computer these marginal
M times in parallel with repeated received
vector y. (Here M = 3.)
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I Towards
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Let us computer these marginal Ve g
M times in parallel with repeated received vy g X
vector y. (Here M = 3.) 3 .
y O - X3,
Therefore, for each ¢ = 1,...,n and each ) .
m =1,..., M we compute the marginals =
Y2 X2
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I Towards
Symbolwise Graph-Cover Decoding

" X
Let us computer these marginal N g
M times in parallel with repeated received DR ot
vector y. (Here M = 3.) . o
O—il—
Therefore, for each ¢ = 1,...,n and each
_ y1© - X1,2
m =1,..., M we compute the marginals
Y2 Xo9
)2 P (y 1 O—m;
NDigm (Tiim) = (Y [x) .
Y3 3,2
xeT Q .
ji,m fixed
. Y1 X133
and we obtain O—1
Y2 Xo3
~symbol L ~ O |
i (y) = argmax 1, (Tim) - .
ji7m€‘)( y3O . 3,3
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Because the processing is done locally, the ne o
SPA cannot distinguish if it is decoding
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I Towards

Symbolwise Graph-Cover Decoding

Because the processing is done locally, the
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I Towards
Symbolwise Graph-Cover Decoding

?JlQ .

Because the processing is done locally, the
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this overall factor graph,

y1©

or this overall factor graph, "0

930
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Towards

Symbolwise Graph-Cover Decoding

Because the processing is done locally, the
SPA cannot distinguish if it is decoding

this overall factor graph,
or this overall factor graph,
or this overall factor graph,

or, in fact, any M-fold cover of the

original factor graph.

Y1 X1.1
O
Y2 Xa1
O
Y3 X31
O
Y1 X1,2
O
Y2 X292
O
Y3 X329
O
(1 X13
O
Y2 X23
O
X33

ySQ
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I Symbolwise Graph-Cover Decoding
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I Symbolwise Graph-Cover Decoding

3/1C> u X1,1
For an M-fold cover T we define
C'J2© u Xo1
(5 A L TM |
ni,m,T(jSam) _ § : PY|X(y ‘X) . y3Q u X31
xeC(T)
:E'L',m ﬁxed
3/1C> u X1,2
y2© u X292
y3C> - X3,2
y1© X133
920 - Xo3
y3@ u X33
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I Symbolwise Graph-Cover Decoding

For an M-fold cover T we define

D7 (Tim) 2 Y Poz(y™X) .
Séecg')d

Li,m

Symbolwise graph-cover decoding is then
defined to be the decoding algorithm that

bases its decision on the averaged marginals

ni,m,M (jfi,m) é

[ 7/} ~ gj/]/)m ,
T, 1,m, |
| M| .

where the averaging is over the set 7, of all
M -fold covers of the base factor graph.

291C>

X1,1

?JzQ

y3Q

y1©

Y2

O
y3©

y1©

Y2

O

Z/3C>
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I Symbolwise Graph-Cover Decoding

Foreach7=1,...,nandeachm =1,..., M, in the limit M — oo we
have

lim (ni,m,M(O)y ni,m,M(l))

=(1—-w;, w),
M —o0 77z,m,]\4(0) + 77z,m,]\4(1) ( Z )

where

w* = arg IIEII FBethe(w) .
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Foreacht=1,...,nand each m =1,..., M, in the limit M — oo we
have

i (nar(0), 1im (1)
im
M—00 1); 1 11 (0) + 7m0 (1)

:(1_w;<7 w;)a

where
w* = argmin Fpetphe(w) -
w

Let P(H) be the fundamental polytope associated with H.
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where
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w

Let P(H) be the fundamental polytope associated with H.
Then Fgetne(w) = +00 for w ¢ P(H).
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I Symbolwise Graph-Cover Decoding

Foreachi=1,...,nand eachm =1,..., M, in the limit M — oo we

have

lim (ni,m,M(O)7 ni,m,M(l))

=(1—-w;, w),
M —o0 nz,m,M(O) + nz,m,M(l) ( ’L )

where
w* = argmin Fpetphe(w) -
W

Let P(H) be the fundamental polytope associated with H.
Then Fgetne(w) = +00 for w ¢ P(H).

In the degenerate case where Fgene(w) has multiple global

minima, w" € Conv(arg min,, FBethe(w)). [I.ABShp)
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I Symbolwise Graph-Cover Decoding

symbolwise graph-cover decoding

TN

SPA decoding BFE minimization

Theorem (Yedidia/Freeman/Weiss):
Fixed points of the sum-product algorithm correspond to

stationary points of the Bethe free energy.

[LaBs™]
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Therefore,

w* = argmin + Fpetne(w)

= arg max — Fpethe(Ww)
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= argmax —UBethe(w) + HBethe(w) -



I Maximum-Entropy Interpretation of
Symbolwise Graph-Cover Decoding

FBethe(w) — UBethe(‘u) — HBethe(w) .
Therefore,

w* = argmin + Fpetne(w)

= arg max — Fpethe(Ww)
3

(
= argmax —Ugethe(w) + HBethe (W) -

So, apart from the biasing —Ugene(w) term based on the observed
channel output, we take the maximum-entropy solution, i.e., the
pseudo-codeword w whose associated set of codewords in the graph

[LaBs™]
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This maximum-entropy result has to be understood as follows.

To any length-Mn codeword ¢ in an M-cover T we can associate

the length-n pseudo-codeword w where

M
s 1 ZN
u}z:M Ci,m-

m=1
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I Symbolwise Graph-Cover Decoding

This maximum-entropy result has to be understood as follows.

To any length-Mn codeword ¢ in an M-cover T we can associate

the length-n pseudo-codeword w where

M
s 1 ZN
WZ:M Ci,m-

m=1

With this, Hgetne(w) is the asymptotic growth rate of the number
of codewords in all M-covers with pseudo-codeword w, M — oc.

[LaBs™]
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Some comments:

Strictly speaking, the Bethe free energy is a function not only w,

but also of other variables, namely of
* the variables {3, }, associated with the check nodes of T,
* the variables {~.}. associated with the edges of T.
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I Symbolwise Graph-Cover Decoding
Some comments:

Strictly speaking, the Bethe free energy is a function not only w,
but also of other variables, namely of

* the variables {3, }, associated with the check nodes of T,
* the variables {~.}. associated with the edges of T.

For computing Hpetne(w) we can leverage results on the

asymptotic growth rate of the average Hamming weight of
protograph-based LDPC codes. Cf.

* [Fogal /McEliece/Thorpe, 2005],
* papers by Divsalar, Ryan, et al. (2005-).

[LaBs™]
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I Lagrangian for the Bethe Free Energy

LBethe(wa /37 Y ﬁa H) = FBethe(w, /87 7)

T Z I e (%,o — Z 5;‘)

ec& bj: bj,eZO

T Z ﬁ)e,l (7@,1 — Z ﬁ])

ec& bj: bj,e:1
H
+ § % e,0 (/YG,O I we,O)
ec&
H
+ § % e,l (76,1 - we,l) .
ec&
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Lagrange Dual of Bethe Free Energy:

/ —_— é . . . —
FBethe(“’a H) — 11111 1111 111111 LBethe(walgaﬁ)/a L,

w 8 v

n)



I Lagrange Dual of Bethe Free Energy

Lagrange Dual of Bethe Free Energy:
F]/Bethe(ﬁa H) = min mﬁin min LBethe(wa /67 s ﬁ? H)
w 2

Lagrange Pseudo-Dual of Bethe Free Energy:

F];%ethe(ﬁa H) = m‘jn mﬁin m3X LBethe(wa /37 s ﬁa ﬁ)

[Regalia and Walsh, 2007]
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For the BEC, it is sufficient to consider only pairs (77, /{c1) and

—

("t e.0, M epo) that take on the values

(0,0), (0,—00), (—00,0).

[LaBs™]



I Lagrange Pseudo-Dual for BEC

For the BEC, it is sufficient to consider only pairs (77, /{c1) and
(% <

[eo, [beo) that take on the values
(0,0), (0,—00), (—00,0).

Assuming that the all-zeros codeword was sent, it is sufficient to
H

consider only pairs (17 e, [l 1) and (Jieo, Tt eo) that take on the
values

(0,0) and (0, —o0) .

[LaBs™]



I Lagrange Pseudo-Dual for BEC

For the BEC, it is sufficient to consider only pairs (77, /{c1) and
(% <

[eo, [beo) that take on the values
(0,0), (0,—00), (—00,0).

Assuming that the all-zeros codeword was sent, it is sufficient to
H

consider only pairs (17 e, [l 1) and (Jieo, Tt eo) that take on the
values

(0,0) and (0, —o0) .

Let 2" count the fraction of (17 c0, 1{c1) = (0,0) messages.

[LaBs™]



I Lagrange Pseudo-Dual for BEC

For the BEC, it is sufficient to consider only pairs (77, /{c1) and
(% <

[eo, [beo) that take on the values
(0,0), (0,—00), (—00,0).

Assuming that the all-zeros codeword was sent, it is sufficient to
H

consider only pairs (17 c0, fe1) and (e, 11 eo) that take on the

values

(0,0) and (0,—00) .
Let 2" count the fraction of (17 c0, 1{c1) = (0,0) messages.
Let = count the fraction of (7.0, 1t e1) = (0,0) messages.
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Consider an LDPC code whose Tanner graph has
* length-n variable nodes,
* I edges,
* vertex-perspective degree distributions L(x) and R(x),
* edge-perspective degree distributions A(x) and p(x).
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I Lagrange Pseudo-Dual for BEC

Consider an LDPC code whose Tanner graph has
* length-n variable nodes,
* I edges,
* vertex-perspective degree distributions L(x) and R(x),
* edge-perspective degree distributions A(x) and p(x).

Let ¢ be the erasure probability of the BEC.

Let £ be the actual fraction of errors that was introduced

by the channel.

Locally tree-like (LTL) assumption: the number of iterations

[LaBs™]
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With these definitions,

A
F]_zféethe(ﬁv ﬁ) — FBethe(?7 <E) — UBethe(?7 ?) o
with
T — = h(é‘) + D(éH&“)
UBethe( L ) L ) E L/(l)
777 — — 5[,(?) R(l _ ?) —
HBethe( 'CC? :C) E ( L/(].) R/(l) —l_ £z




I Lagrange Pseudo-Dual for BEC

With these definitions,

T T
F]_iféethe(ﬁv ﬁ) — FBethe(?7 <E) — UBethe(?7 ?) o HBethe(?7 ?) )

with

Uhoe @ T)=E h(g);(lf)(éug)

—5# — — 5])(?) R(l - ?) o T !
Hpepne (7, 7) = B ( L'(1) " R(1) tall-w)- R’(1)>

Remark: It (7, 7) is also known as trial entropy,
cf. [Méasson/Montanari/Urbanke, 2005].

[LaBs™]
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If LTL assumption is fulfilled, it can be shown that at each iteration of

the peeling decoder, F]_iithe(ﬁ, 1) stays constant or decreases by 1.
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I Lagrange Pseudo-Dual for BEC

If LTL assumption is fulfilled, it can be shown that at each iteration of

the peeling decoder, F]_iithe(ﬁ, 1) stays constant or decreases by 1.

= F]ithe(ﬁ, 1) can serve as a Lyapunov function for the BEC.

[LaBs™]
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Trajectory under LTL assumption. %/
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Choose a (3,6)-regular LDPC code of length n.

Plot %Fﬁeme(?, 7)) for e =& =0.3.

Trajectory under LTL assumption.

Left boundary of trajectory:

7T =eMT).




I Lagrange Pseudo-Dual for BEC

Choose a (3,6)-regular LDPC code of length n.

Plot %Fﬁethe(?, 7)) for e =& =0.3.

Trajectory under LTL assumption.

Left boundary of trajectory:
7T =eMT).
Right boundary of trajectory:

T =1-p(1-"72).

X(+)




I Lagrange Pseudo-Dual for BEC
— [ VP75 (;)

7

Enkia
FBethe(?v ?)

o FBethe(?v ?)
end

begin Path

X(+)




I Lagrange Pseudo-Dual for BEC
— [ VP75 (;)

7 7
FBethe(?7 ?) end o FBethe(?7 ?)
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end

begin Path
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Integral along red path: // |

=7
AFg . =7 (rate—capBEC(e)) :

0.7H

0.

©

0.6

AFZ . < 0 implies the necessary

0.5F

X(+)

condition

0.3

0.2

rate < capgc(e)

0.1
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)
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7 7
FBethe(?7 ?) o FBethe(?ﬂ ?)

end

begin

Integral along red path:

ki
AFpegne =1 - (rate_capBEC(e)) :

AFZ . < 0 implies the necessary
condition

rate < capgc(e)

Gives also the area between the blue
and the cyan curve.
Area theorem [Ashikhmin et al ]

ki —
= | VFBene( 7, @
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FBethe(?7 ?) end o FBethe(?ﬂ ?)

begin

Necessary condition to reach the
point (', 7)) = (0,0):  there
is some (7', 7) # (0,0) in the
neighborhood of (0,0) such that
Sl ki

FBethe(?7 ?) 2 FBethe<O7O)'

Gradient is zero.

— | VE (T, T) -
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H
7 — — S niid — — S niii — — d
FBethe(x7I) _FBethe(x7aj) . VFBethe(x7x)' -
end begin Path T
Necessary condition to reach the -
point (', 7)) = (0,0):  there ol

is some (7', 7) # (0,0) in the
neighborhood of (0,0) such that
S niid S niii

FBethe(?7 ?) 2 FBethe(()?O)'

X(+)

Gradient is zero.

Studying the Hessian yields

t h e n ecessa ry CO n d it i O n 6 011 012 013 O.4X(O.5 )0.6 017 018 019 i

=N (0)p(1) < 1. [I_ ABshp]
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necessary condition
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Integral along red path: %

AFE = —n-(1-tate) - R(1—¢) .

A%Fzéethe — 0 implies the oa

necessary condition

R(1—-¢)—0.

= Average right degree has to go
to infinity.
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=77
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i — dz
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X

—7#
— VFBethe(?ﬂ ?) .
end

begin Path

Plot %Fﬁethe(7, 7)) for e = £ =0.5. %

Fixed point corresonds to stationary

0.7F

points of the Bethe free energy.

~—~
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~—
X
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codword (necessarily in the fundamental
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FBethe(?7 ?) o FBethe(?ﬂ ?)

end

begin

Plot %Fﬁeme(7, 7)) fore =&=0.5.

Fixed point corresonds to stationary
points of the Bethe free energy.

= Fixed point corresponds to a pseudo-
codword (necessarily in the fundamental

polytope).

— Stopping set equals support of that
pseudo-codeword.
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Fﬁethe(?7 ?) o Fﬁethe(?? ?) L vFﬁethe(5>7 ?) ) -
end begin Path T
The connection of SPA and MAP de- // ‘

coding is given by

Maxwell construction /

X(+)

Maxwell decoder.

[Méasson /Montanari/Urbanke, 2005].

This connection can also be expressed

: -7 — < ‘ 1 02 4 05 o 7 ‘ 9 1
N terms O'F FBethe(x’ T ) 0 01 02 03 o.X(o._))o.e 07 08 09

[LaBs™)
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I Evaluating the Bethe Free Entropy
Along the Cube Diagonal

Take some finite-length (7, k)-regular LDPC code of length n.

Evaluating + Hpeppe ((w, . ... w)) for w € [0, 1] we obtain:

w))

(1/n) HBethe((oo,

0.05 0.06
w

This function equals the exponent of the asymptotic average
Hamming weight distribution for Gallager's ensemble of

(4, k)-regular LDPC codes! [LABShp)
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I Evaluating the Bethe Free Entropy
Along the Cube Diagonal

Let's look at — X Hpephe ((w, ..., w)).

w))

(1/n) HBethe((w,

0.4 0.5 0.6
w

Remember that Fgeine(w) = Uethe (W) — Hpethe (w).
Remember that Uggne(w) is linear in w.

Therefore, we see that for a finite-length code from an ensemble
with asymptotically linearly growing minimum Hamming distance,

FBethe(w) is not a convex function of w. [LABshp]
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Conclusions

| blockwise graph-cover decoding

MPA decoding LP decoding
symbolwise graph-cover decoding

T

SPA decoding BFE minimization

[LaBs™]
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I Conclusions

We have discussed the relevance of Bethe free energy to EXIT
charts for the BEC.

We have discussed a connection between Bethe free energy for a
finite-length (j, k)-regular LDPC code and the asymptotic growth
rate of the average Hamming weight distribution for Gallager's
ensemble of (7, k)-regular LDPC codes.

[LaBs™]



Thank you!
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