Symbolwise GC Decoding: Connecting SPA Decoding and BFE Minimization

Pascal O. Vontobel Information Theory Research Group Hewlett-Packard Laboratories Palo Alto

46th Allerton Conference, Monticello, IL, September 26, 2008

© 2008 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice

Overview of Talk

Bethe free energy and ...

- symbolwise graph-cover decoding,
- EXIT charts,
- asymptotic growth rate of the average Hamming weight distribution for code ensembles.

Symbolwise graph-cover decoding

Communication Model (Part 1)

Information word: Sent codeword: Received word: $\mathbf{u} = (u_1, \dots, u_k) \in \mathcal{U}^k$ $\mathbf{x} = (x_1, \dots, x_n) \in \mathcal{C} \subseteq \mathcal{X}^n$ $\mathbf{y} = (y_1, \dots, y_n) \in \mathcal{Y}^n$

Communication Model (Part 1)

Information word: $\mathbf{u} = (u_1, \dots, u_k) \in \mathcal{U}^k$ Sent codeword: $\mathbf{x} = (x_1, \dots, x_n) \in \mathcal{C} \subseteq \mathcal{X}^n$ Received word: $\mathbf{y} = (y_1, \dots, y_n) \in \mathcal{Y}^n$

Decoding: Based on y we would like to estimate the transmitted codeword $\hat{\mathbf{x}}$ or the information word $\hat{\mathbf{u}}$.

Communication Model (Part 1)

Information word: $\mathbf{u} = (u_1, \dots, u_k) \in \mathcal{U}^k$ Sent codeword: $\mathbf{x} = (x_1, \dots, x_n) \in \mathcal{C} \subseteq \mathcal{X}^n$ Received word: $\mathbf{y} = (y_1, \dots, y_n) \in \mathcal{Y}^n$

Decoding: Based on y we would like to estimate the transmitted codeword $\hat{\mathbf{x}}$ or the information word $\hat{\mathbf{u}}$.

Depending on what criterion we optimize, we obtain different decoding algorithms.

Minimizing the symbol error probability (for each i = 1, ..., k) results in symbol-wise MAP decoding.

For each i = 1, ..., k: $\hat{u}_i^{\text{symbol}}(\mathbf{y}) = \underset{u_i \in \mathcal{U}}{\operatorname{argmax}} P_{U_i | \mathbf{Y}}(u_i | \mathbf{y}) = \underset{u_i \in \mathcal{U}}{\operatorname{argmax}} P_{U_i, \mathbf{Y}}(u_i, \mathbf{y})$

Minimizing the symbol error probability (for each i = 1, ..., k) results in symbol-wise MAP decoding.

For each
$$i = 1, ..., k$$
:
 $\hat{u}_i^{\text{symbol}}(\mathbf{y}) = \underset{u_i \in \mathcal{U}}{\operatorname{argmax}} P_{U_i | \mathbf{Y}}(u_i | \mathbf{y}) = \underset{u_i \in \mathcal{U}}{\operatorname{argmax}} P_{U_i, \mathbf{Y}}(u_i, \mathbf{y})$

$$= \underset{u_i \in \mathcal{U}}{\operatorname{argmax}} \sum_{\substack{\mathbf{u} \in \mathcal{U}^k, \ \mathbf{x} \in \mathcal{X}^n \\ u_i \ \text{fixed}}} P_{\mathbf{U}\mathbf{X}\mathbf{Y}}(\mathbf{u}, \mathbf{x}, \mathbf{y}) .$$

For simplicity,

For simplicity,

• the encoding will be systematic, i.e.,

$$x_i = u_i$$
 (for $i = 1, ..., k$);

For simplicity,

• the encoding will be systematic, i.e.,

$$x_i = u_i$$
 (for $i = 1, ..., k$);

• the channel input alphabet is $\mathcal{X} = \{0, 1\};$

For simplicity,

• the encoding will be systematic, i.e.,

$$x_i = u_i$$
 (for $i = 1, ..., k$);

- the channel input alphabet is $\mathcal{X} = \{0, 1\}$;
- and all codewords in the code C are assumed to be equally likely a priori, i.e.,

$$P_{\mathbf{X}}(\mathbf{x}) = \frac{1}{2^k} \cdot [\mathbf{x} \in \mathcal{C}] .$$

Therefore, computing for each $i = 1, \ldots, n$ the marginals

$$\eta_i(0) \triangleq \sum_{\substack{\mathbf{x} \in \mathcal{C} \\ x_i = 0}} P_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x}) ,$$
$$\eta_i(1) \triangleq \sum_{\substack{\mathbf{x} \in \mathcal{C} \\ x_i = 1}} P_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x}) ,$$

Therefore, computing for each $i = 1, \ldots, n$ the marginals

$$\eta_i(0) \triangleq \sum_{\substack{\mathbf{x} \in \mathcal{C} \\ x_i = 0}} P_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x}) ,$$
$$\eta_i(1) \triangleq \sum_{\substack{\mathbf{x} \in \mathcal{C} \\ x_i = 1}} P_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x}) ,$$

we obtain

$$\hat{x}_i^{\text{symbol}}(\mathbf{y}) = \underset{x_i \in \mathcal{X}}{\operatorname{argmax}} \eta_i(x_i) .$$

Therefore, computing for each $i = 1, \ldots, n$ the marginals

$$\eta_i(0) \triangleq \sum_{\substack{\mathbf{x} \in \mathcal{C} \\ x_i = 0}} P_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x}) ,$$
$$\eta_i(1) \triangleq \sum P_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x}) .$$

$$\gamma_i(1) = \sum_{\substack{\mathbf{x} \in \mathcal{C} \\ x_i = 1}} P_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{X}) ,$$

we obtain

$$\hat{x}_i^{\text{symbol}}(\mathbf{y}) = \operatorname*{argmax}_{x_i \in \mathcal{X}} \eta_i(x_i) .$$

Assume that the joint pmf of X and Y = y is given by the following factor graph:

LABShp

Computing these marginals is computationally intractable in general, therefore we can try to use sub-optimal algorithms like the sum-product algorithm (SPA) to obtain approximations to these marginals.

i-th iteration

i.5-th iteration

Computing these marginals is computationally intractable in general, therefore we can try to use sub-optimal algorithms like the sum-product algorithm (SPA) to obtain approximations to these marginals.

i-th iteration

i.5-th iteration

The SPA is an algorithm that operates locally on a factor graph:

- it sends messages along the edges,
- combines local messages to produce new local messages at the vertices.

Therefore, computing for each $i = 1, \ldots, n$ the marginals

$$\eta_i(0) \triangleq \sum_{\substack{\mathbf{x} \in \mathcal{C} \\ x_i = 0}} P_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x}) ,$$
$$\eta_i(1) \triangleq \sum P_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x}) .$$

$$\gamma_i(1) = \sum_{\substack{\mathbf{x} \in \mathcal{C} \\ x_i = 1}} P_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{X}) ,$$

we obtain

$$\hat{x}_i^{\text{symbol}}(\mathbf{y}) = \operatorname*{argmax}_{x_i \in \mathcal{X}} \eta_i(x_i) .$$

Assume that the joint pmf of X and Y = y is given by the following factor graph:

Let us computer these marginal

 ${\cal M}$ times in parallel with repeated received

vector y. (Here M = 3.)

Let us computer these marginal M times in parallel with repeated received vector **y**. (Here M = 3.)

Let us computer these marginal M times in parallel with repeated received vector **y**. (Here M = 3.)

Therefore, for each $i = 1, \ldots, n$ and each $m = 1, \ldots, M$ we compute the marginals

$$\eta_{i,m}(\tilde{x}_{i,m}) \triangleq \sum_{\substack{\widetilde{\mathbf{x}} \in \widetilde{\mathsf{T}}\\ \tilde{x}_{i,m} \text{ fixed}}} P_{\widetilde{\mathbf{Y}}|\widetilde{\mathbf{X}}}(\mathbf{y}^{\uparrow M}|\widetilde{\mathbf{x}})$$

Let us computer these marginal M times in parallel with repeated received vector **y**. (Here M = 3.)

Therefore, for each $i = 1, \ldots, n$ and each $m = 1, \ldots, M$ we compute the marginals

$$\eta_{i,m}(\tilde{x}_{i,m}) \triangleq \sum_{\substack{\widetilde{\mathbf{x}} \in \widetilde{\mathsf{T}}\\\tilde{x}_{i,m} \text{ fixed}}} P_{\widetilde{\mathbf{Y}}|\widetilde{\mathbf{X}}}(\mathbf{y}^{\uparrow M}|\widetilde{\mathbf{x}})$$

and we obtain

$$\hat{x}_{i,m}^{\text{symbol}}(\mathbf{y}) = \operatorname*{argmax}_{\tilde{x}_{i,m} \in \mathcal{X}} \eta_{i,m}(\tilde{x}_{i,m}) .$$

Because the processing is done locally, the SPA cannot distinguish if it is decoding

• this overall factor graph,

Because the processing is done locally, the SPA cannot distinguish if it is decoding

• this overall factor graph,

Because the processing is done locally, the SPA cannot distinguish if it is decoding

• this overall factor graph,

- this overall factor graph,
- or this overall factor graph,

- this overall factor graph,
- or this overall factor graph,
- or this overall factor graph,

- this overall factor graph,
- or this overall factor graph,
- or this overall factor graph,
- or, in fact, any *M*-fold cover of the original factor graph.

Symbolwise Graph-Cover Decoding

For an *M*-fold cover $\widetilde{\mathsf{T}}$ we define

$$\eta_{i,m,\widetilde{\mathsf{T}}}(\widetilde{x}_{i,m}) \triangleq \sum_{\substack{\widetilde{\mathbf{x}} \in \mathcal{C}(\widetilde{\mathsf{T}})\\\widetilde{x}_{i,m} \text{ fixed}}} P_{\widetilde{\mathbf{Y}}|\widetilde{\mathbf{X}}}(\mathbf{y}^{\uparrow M}|\widetilde{\mathbf{x}}) \ .$$

For an M-fold cover $\widetilde{\mathsf{T}}$ we define

$$\eta_{i,m,\widetilde{\mathsf{T}}}(\widetilde{x}_{i,m}) \triangleq \sum_{\substack{\widetilde{\mathbf{x}} \in \mathcal{C}(\widetilde{\mathsf{T}})\\\widetilde{x}_{i,m} \text{ fixed}}} P_{\widetilde{\mathbf{Y}}|\widetilde{\mathbf{X}}}(\mathbf{y}^{\uparrow M}|\widetilde{\mathbf{x}}) \ .$$

Symbolwise graph-cover decoding is then defined to be the decoding algorithm that bases its decision on the averaged marginals

$$\eta_{i,m,M}(\tilde{x}_{i,m}) \triangleq \frac{1}{|\mathcal{T}_M|} \sum_{\tilde{\mathsf{T}} \in \mathcal{T}_M} \eta_{i,m,\tilde{\mathsf{T}}}(\tilde{x}_{i,m}) ,$$

where the averaging is over the set T_M of all M-fold covers of the base factor graph.

For each $i=1,\ldots,n$ and each $m=1,\ldots,M,$ in the limit $M\to\infty$ we have

$$\lim_{M \to \infty} \frac{\left(\eta_{i,m,M}(0), \eta_{i,m,M}(1)\right)}{\eta_{i,m,M}(0) + \eta_{i,m,M}(1)} = \left(1 - \omega_i^*, \omega_i^*\right),$$

where

$$\boldsymbol{\omega}^* = \arg\min_{\boldsymbol{\omega}} F_{\text{Bethe}}(\boldsymbol{\omega}) .$$

For each $i=1,\ldots,n$ and each $m=1,\ldots,M,$ in the limit $M\to\infty$ we have

$$\lim_{M \to \infty} \frac{\left(\eta_{i,m,M}(0), \eta_{i,m,M}(1)\right)}{\eta_{i,m,M}(0) + \eta_{i,m,M}(1)} = \left(1 - \omega_i^*, \omega_i^*\right),$$

where

$$\boldsymbol{\omega}^* = \arg\min_{\boldsymbol{\omega}} F_{\text{Bethe}}(\boldsymbol{\omega}) .$$

• Let $\mathcal{P}(\mathbf{H})$ be the fundamental polytope associated with \mathbf{H} .

For each $i=1,\ldots,n$ and each $m=1,\ldots,M,$ in the limit $M\to\infty$ we have

$$\lim_{M \to \infty} \frac{\left(\eta_{i,m,M}(0), \eta_{i,m,M}(1)\right)}{\eta_{i,m,M}(0) + \eta_{i,m,M}(1)} = \left(1 - \omega_i^*, \omega_i^*\right),$$

where

$$\boldsymbol{\omega}^* = \arg\min_{\boldsymbol{\omega}} \ F_{\mathrm{Bethe}}(\boldsymbol{\omega}) \ .$$

• Let $\mathcal{P}(\mathbf{H})$ be the fundamental polytope associated with \mathbf{H} .

• Then $F_{\text{Bethe}}(\boldsymbol{\omega}) = +\infty$ for $\boldsymbol{\omega} \notin \mathcal{P}(\mathbf{H})$.

For each $i=1,\ldots,n$ and each $m=1,\ldots,M,$ in the limit $M\to\infty$ we have

$$\lim_{M \to \infty} \frac{\left(\eta_{i,m,M}(0), \eta_{i,m,M}(1)\right)}{\eta_{i,m,M}(0) + \eta_{i,m,M}(1)} = \left(1 - \omega_i^*, \omega_i^*\right),$$

where

$$\boldsymbol{\omega}^* = \arg\min_{\boldsymbol{\omega}} F_{\text{Bethe}}(\boldsymbol{\omega}) \ .$$

• Let $\mathcal{P}(\mathbf{H})$ be the fundamental polytope associated with \mathbf{H} .

- Then $F_{\text{Bethe}}(\boldsymbol{\omega}) = +\infty$ for $\boldsymbol{\omega} \notin \mathcal{P}(\mathbf{H})$.
- In the degenerate case where F_{Bethe}(ω) has multiple global minima, ω^{*} ∈ conv(arg min_ω F_{Bethe}(ω)).

symbolwise graph-cover decoding

SPA decoding

BFE minimization

SPA decoding SPA decoding

Theorem (Yedidia/Freeman/Weiss): Fixed points of the sum-product algorithm correspond to stationary points of the Bethe free energy.

$$F_{\text{Bethe}}(\boldsymbol{\omega}) = U_{\text{Bethe}}(\boldsymbol{\omega}) - H_{\text{Bethe}}(\boldsymbol{\omega})$$
.

$$F_{\text{Bethe}}(\boldsymbol{\omega}) = U_{\text{Bethe}}(\boldsymbol{\omega}) - H_{\text{Bethe}}(\boldsymbol{\omega})$$
.

Therefore,

$$\boldsymbol{\omega}^* = \arg\min_{\boldsymbol{\omega}} + F_{\text{Bethe}}(\boldsymbol{\omega})$$

$$F_{\text{Bethe}}(\boldsymbol{\omega}) = U_{\text{Bethe}}(\boldsymbol{\omega}) - H_{\text{Bethe}}(\boldsymbol{\omega})$$

Therefore,

$$\boldsymbol{\omega}^* = \arg\min_{\boldsymbol{\omega}} + F_{\text{Bethe}}(\boldsymbol{\omega})$$
$$= \arg\max_{\boldsymbol{\omega}} - F_{\text{Bethe}}(\boldsymbol{\omega})$$

$$F_{\text{Bethe}}(\boldsymbol{\omega}) = U_{\text{Bethe}}(\boldsymbol{\omega}) - H_{\text{Bethe}}(\boldsymbol{\omega})$$

Therefore,

$$\boldsymbol{\omega}^* = \arg\min_{\boldsymbol{\omega}} + F_{\text{Bethe}}(\boldsymbol{\omega})$$

= $\arg\max_{\boldsymbol{\omega}} - F_{\text{Bethe}}(\boldsymbol{\omega})$
= $\arg\max_{\boldsymbol{\omega}} - U_{\text{Bethe}}(\boldsymbol{\omega}) + H_{\text{Bethe}}(\boldsymbol{\omega})$.

$$F_{\text{Bethe}}(\boldsymbol{\omega}) = U_{\text{Bethe}}(\boldsymbol{\omega}) - H_{\text{Bethe}}(\boldsymbol{\omega})$$
.

Therefore,

$$\boldsymbol{\omega}^* = \arg\min_{\boldsymbol{\omega}} + F_{\text{Bethe}}(\boldsymbol{\omega})$$

= $\arg\max_{\boldsymbol{\omega}} - F_{\text{Bethe}}(\boldsymbol{\omega})$
= $\arg\max_{\boldsymbol{\omega}} - U_{\text{Bethe}}(\boldsymbol{\omega}) + H_{\text{Bethe}}(\boldsymbol{\omega})$.

So, apart from the biasing $-U_{\text{Bethe}}(\boldsymbol{\omega})$ term based on the observed channel output, we take the maximum-entropy solution, i.e., the pseudo-codeword $\boldsymbol{\omega}$ whose associated set of codewords in the graph covers has maximum Bethe entropy.

LABShp

This maximum-entropy result has to be understood as follows.

This maximum-entropy result has to be understood as follows.

 To any length-Mn codeword c in an M-cover T we can associate the length-n pseudo-codeword ω where

$$\omega_{i} \triangleq \frac{1}{M} \sum_{m=1}^{M} \tilde{c}_{i,m} \; .$$

This maximum-entropy result has to be understood as follows.

 To any length-Mn codeword c in an M-cover T we can associate the length-n pseudo-codeword ω where

$$\omega_{i} \triangleq \frac{1}{M} \sum_{m=1}^{M} \tilde{c}_{i,m} \; .$$

With this, H_{Bethe}(ω) is the asymptotic growth rate of the number of codewords in all M-covers with pseudo-codeword ω, M → ∞.

Some comments:

Some comments:

- Strictly speaking, the Bethe free energy is a function not only ω, but also of other variables, namely of
 - the variables $\{\beta_j\}_j$ associated with the check nodes of T,
 - the variables $\{\gamma_e\}_e$ associated with the edges of T.

Some comments:

- Strictly speaking, the Bethe free energy is a function not only ω, but also of other variables, namely of
 - the variables $\{\beta_j\}_j$ associated with the check nodes of T,
 - the variables $\{\gamma_e\}_e$ associated with the edges of T.
- For computing $H_{\text{Bethe}}(\boldsymbol{\omega})$ we can leverage results on the asymptotic growth rate of the average Hamming weight of protograph-based LDPC codes. Cf.
 - [Fogal/McEliece/Thorpe, 2005],
 - papers by Divsalar, Ryan, et al. (2005–).

Bethe Free Energy and Its Lagrange Dual

Lagrangian for the Bethe Free Energy

Lagrangian for the Bethe Free Energy

 $L_{\text{Bethe}}(\boldsymbol{\omega},\boldsymbol{\beta},\boldsymbol{\gamma},\boldsymbol{\mu},\boldsymbol{\mu},\boldsymbol{\mu}) \triangleq F_{\text{Bethe}}(\boldsymbol{\omega},\boldsymbol{\beta},\boldsymbol{\gamma})$

$$\begin{split} &+ \sum_{e \in \mathcal{E}} \overrightarrow{\mu}_{e,0} \left(\gamma_{e,0} - \sum_{\mathbf{b}_{j}: \ b_{j,e}=0} \beta_{j} \right) \\ &+ \sum_{e \in \mathcal{E}} \overrightarrow{\mu}_{e,1} \left(\gamma_{e,1} - \sum_{\mathbf{b}_{j}: \ b_{j,e}=1} \beta_{j} \right) \\ &+ \sum_{e \in \mathcal{E}} \overleftarrow{\mu}_{e,0} \left(\gamma_{e,0} - \omega_{e,0} \right) \\ &+ \sum_{e \in \mathcal{E}} \overleftarrow{\mu}_{e,1} \left(\gamma_{e,1} - \omega_{e,1} \right) \,. \end{split}$$

LAB

Lagrangian for the Bethe Free Energy

 $L_{\text{Bethe}}(\boldsymbol{\omega},\boldsymbol{\beta},\boldsymbol{\gamma},\boldsymbol{\mu},\boldsymbol{\mu},\boldsymbol{\mu}) \triangleq F_{\text{Bethe}}(\boldsymbol{\omega},\boldsymbol{\beta},\boldsymbol{\gamma})$

$$+ \sum_{e \in \mathcal{E}} \overrightarrow{\mu}_{e,0} \left(\gamma_{e,0} - \sum_{\mathbf{b}_{j}: \ b_{j,e}=0} \beta_{j} \right)$$

$$+ \sum_{e \in \mathcal{E}} \overrightarrow{\mu}_{e,1} \left(\gamma_{e,1} - \sum_{\mathbf{b}_{j}: \ b_{j,e}=1} \beta_{j} \right)$$

$$+ \sum_{e \in \mathcal{E}} \overleftarrow{\mu}_{e,0} \left(\gamma_{e,0} - \omega_{e,0} \right)$$

$$+ \sum_{e \in \mathcal{E}} \overleftarrow{\mu}_{e,1} \left(\gamma_{e,1} - \omega_{e,1} \right) .$$

Lagrange Dual of Bethe Free Energy:

$$F'_{\text{Bethe}}(\overrightarrow{\mu}, \overleftarrow{\mu}) \triangleq \min_{\boldsymbol{\omega}} \min_{\boldsymbol{\beta}} \min_{\boldsymbol{\gamma}} L_{\text{Bethe}}(\boldsymbol{\omega}, \boldsymbol{\beta}, \boldsymbol{\gamma}, \overrightarrow{\mu}, \overleftarrow{\mu})$$

Lagrange Dual of Bethe Free Energy:

$$F'_{\text{Bethe}}(\overrightarrow{\mu}, \overleftarrow{\mu}) \triangleq \min_{\boldsymbol{\omega}} \min_{\boldsymbol{\beta}} \min_{\boldsymbol{\gamma}} L_{\text{Bethe}}(\boldsymbol{\omega}, \boldsymbol{\beta}, \boldsymbol{\gamma}, \overrightarrow{\mu}, \overleftarrow{\mu})$$

Lagrange Dual of Bethe Free Energy:

$$F'_{\text{Bethe}}(\overrightarrow{\mu}, \overleftarrow{\mu}) \triangleq \min_{\boldsymbol{\omega}} \min_{\boldsymbol{\beta}} \min_{\boldsymbol{\gamma}} L_{\text{Bethe}}(\boldsymbol{\omega}, \boldsymbol{\beta}, \boldsymbol{\gamma}, \overrightarrow{\mu}, \overleftarrow{\mu})$$

Lagrange Pseudo-Dual of Bethe Free Energy:

$$F_{\text{Bethe}}^{\#}(\overrightarrow{\mu}, \overleftarrow{\mu}) \triangleq \min_{\boldsymbol{\omega}} \min_{\boldsymbol{\beta}} \max_{\boldsymbol{\gamma}} L_{\text{Bethe}}(\boldsymbol{\omega}, \boldsymbol{\beta}, \boldsymbol{\gamma}, \overrightarrow{\mu}, \overleftarrow{\mu})$$

[Regalia and Walsh, 2007]

Bethe Free Energy for the BEC

• For the BEC, it is sufficient to consider only pairs $(\overrightarrow{\mu}_{e,0}, \overrightarrow{\mu}_{e,1})$ and $(\overleftarrow{\mu}_{e,0}, \overleftarrow{\mu}_{e,0})$ that take on the values

(0,0), $(0,-\infty)$, $(-\infty,0)$.

• For the BEC, it is sufficient to consider only pairs $(\overrightarrow{\mu}_{e,0}, \overrightarrow{\mu}_{e,1})$ and $(\overleftarrow{\mu}_{e,0}, \overleftarrow{\mu}_{e,0})$ that take on the values

$$(0,0)$$
, $(0,-\infty)$, $(-\infty,0)$.

• Assuming that the all-zeros codeword was sent, it is sufficient to consider only pairs $(\overrightarrow{\mu}_{e,0}, \overrightarrow{\mu}_{e,1})$ and $(\overleftarrow{\mu}_{e,0}, \overleftarrow{\mu}_{e,0})$ that take on the values

$$(0,0)$$
 and $(0,-\infty)$

• For the BEC, it is sufficient to consider only pairs $(\overrightarrow{\mu}_{e,0}, \overrightarrow{\mu}_{e,1})$ and $(\overleftarrow{\mu}_{e,0}, \overleftarrow{\mu}_{e,0})$ that take on the values

$$(0,0)$$
, $(0,-\infty)$, $(-\infty,0)$.

• Assuming that the all-zeros codeword was sent, it is sufficient to consider only pairs $(\overrightarrow{\mu}_{e,0}, \overrightarrow{\mu}_{e,1})$ and $(\overleftarrow{\mu}_{e,0}, \overleftarrow{\mu}_{e,0})$ that take on the values

$$(0,0)$$
 and $(0,-\infty)$

• Let \overrightarrow{x} count the fraction of $(\overrightarrow{\mu}_{e,0}, \overrightarrow{\mu}_{e,1}) = (0,0)$ messages.

• For the BEC, it is sufficient to consider only pairs $(\overrightarrow{\mu}_{e,0}, \overrightarrow{\mu}_{e,1})$ and $(\overleftarrow{\mu}_{e,0}, \overleftarrow{\mu}_{e,0})$ that take on the values

$$(0,0)$$
, $(0,-\infty)$, $(-\infty,0)$.

• Assuming that the all-zeros codeword was sent, it is sufficient to consider only pairs $(\overrightarrow{\mu}_{e,0}, \overrightarrow{\mu}_{e,1})$ and $(\overleftarrow{\mu}_{e,0}, \overleftarrow{\mu}_{e,0})$ that take on the values

$$(0,0)$$
 and $(0,-\infty)$

- Let \overrightarrow{x} count the fraction of $(\overrightarrow{\mu}_{e,0}, \overrightarrow{\mu}_{e,1}) = (0,0)$ messages.
- Let \overleftarrow{x} count the fraction of $(\overleftarrow{\mu}_{e,0}, \overleftarrow{\mu}_{e,1}) = (0,0)$ messages.

- Consider an LDPC code whose Tanner graph has
 - length-n variable nodes,
 - E edges,
 - vertex-perspective degree distributions L(x) and R(x),
 - edge-perspective degree distributions $\lambda(x)$ and $\rho(x)$.

- Consider an LDPC code whose Tanner graph has
 - length-n variable nodes,
 - *E* edges,
 - vertex-perspective degree distributions L(x) and R(x),
 - edge-perspective degree distributions $\lambda(x)$ and $\rho(x)$.
- Let ε be the erasure probability of the BEC.

- Consider an LDPC code whose Tanner graph has
 - length-*n* variable nodes,
 - *E* edges,
 - vertex-perspective degree distributions L(x) and R(x),
 - edge-perspective degree distributions $\lambda(x)$ and $\rho(x)$.
- Let ε be the erasure probability of the BEC.
- Let $\tilde{\varepsilon}$ be the actual fraction of errors that was introduced by the channel.

- Consider an LDPC code whose Tanner graph has
 - length-n variable nodes,
 - *E* edges,
 - vertex-perspective degree distributions L(x) and R(x),
 - edge-perspective degree distributions $\lambda(x)$ and $\rho(x)$.
- Let ε be the erasure probability of the BEC.
- Let $\tilde{\varepsilon}$ be the actual fraction of errors that was introduced by the channel.
- Locally tree-like (LTL) assumption: the number of iterations does not exceed girth/4.

With these definitions,

$$F_{\text{Bethe}}^{\#}(\overrightarrow{\mu},\overleftarrow{\mu}) = \overline{F}_{\text{Bethe}}^{\#}(\overrightarrow{x},\overleftarrow{x}) = \overline{U}_{\text{Bethe}}^{\#}(\overrightarrow{x},\overleftarrow{x}) - \overline{H}_{\text{Bethe}}^{\#}(\overrightarrow{x},\overleftarrow{x}) ,$$

with

$$\overline{U}_{\text{Bethe}}^{\#}(\overrightarrow{x},\overleftarrow{x}) = E \cdot \frac{h(\widetilde{\varepsilon}) + D(\widetilde{\varepsilon}||\varepsilon)}{L'(1)}$$
$$\overline{H}_{\text{Bethe}}^{\#}(\overrightarrow{x},\overleftarrow{x}) = E \cdot \left(\frac{\widetilde{\varepsilon}L(\overleftarrow{x})}{L'(1)} + \frac{R(1-\overrightarrow{x})}{R'(1)} + \overrightarrow{x}(1-\overleftarrow{x}) - \frac{1}{R'(1)}\right).$$

With these definitions,

$$F_{\text{Bethe}}^{\#}(\overrightarrow{\mu},\overleftarrow{\mu}) = \overline{F}_{\text{Bethe}}^{\#}(\overrightarrow{x},\overleftarrow{x}) = \overline{U}_{\text{Bethe}}^{\#}(\overrightarrow{x},\overleftarrow{x}) - \overline{H}_{\text{Bethe}}^{\#}(\overrightarrow{x},\overleftarrow{x}) ,$$

with

$$\overline{U}_{\text{Bethe}}^{\#}(\overrightarrow{x},\overleftarrow{x}) = E \cdot \frac{h(\widetilde{\varepsilon}) + D(\widetilde{\varepsilon}||\varepsilon)}{L'(1)}$$
$$\overline{H}_{\text{Bethe}}^{\#}(\overrightarrow{x},\overleftarrow{x}) = E \cdot \left(\frac{\widetilde{\varepsilon}L(\overleftarrow{x})}{L'(1)} + \frac{R(1-\overrightarrow{x})}{R'(1)} + \overrightarrow{x}(1-\overleftarrow{x}) - \frac{1}{R'(1)}\right).$$

Remark: $\overline{H}_{Bethe}^{\#}(\overrightarrow{x}, \overleftarrow{x})$ is also known as trial entropy, cf. [Méasson/Montanari/Urbanke, 2005].

If LTL assumption is fulfilled, it can be shown that at each iteration of the peeling decoder, $F_{\text{Bethe}}^{\#}(\overrightarrow{\mu}, \overleftarrow{\mu})$ stays constant or decreases by 1.

If LTL assumption is fulfilled, it can be shown that at each iteration of the peeling decoder, $F_{\text{Bethe}}^{\#}(\overrightarrow{\mu}, \overleftarrow{\mu})$ stays constant or decreases by 1.

 $\Rightarrow F_{\text{Bethe}}^{\#}(\overrightarrow{\mu}, \overleftarrow{\mu})$ can serve as a Lyapunov function for the BEC.

• Choose a (3, 6)-regular LDPC code of length n.

- Choose a (3, 6)-regular LDPC code of length n.
- Plot $\frac{1}{E}\overline{F}_{\text{Bethe}}^{\#}(\overrightarrow{x},\overleftarrow{x})$ for $\varepsilon = \widetilde{\varepsilon} = 0.3$.

- Choose a (3, 6)-regular LDPC code of length n.
- Plot $\frac{1}{E}\overline{F}_{\text{Bethe}}^{\#}(\overrightarrow{x},\overleftarrow{x})$ for $\varepsilon = \widetilde{\varepsilon} = 0.3$.
- Trajectory under LTL assumption.

• Choose a (3, 6)-regular LDPC code of length n.

• Plot
$$\frac{1}{E}\overline{F}_{Bethe}^{\#}(\overrightarrow{x},\overleftarrow{x})$$
 for $\varepsilon = \tilde{\varepsilon} = 0.3$.

- Trajectory under LTL assumption.
- Left boundary of trajectory:

$$\overrightarrow{x} = \varepsilon \lambda(\overleftarrow{x}).$$

• Choose a (3, 6)-regular LDPC code of length n.

• Plot
$$\frac{1}{E}\overline{F}_{Bethe}^{\#}(\overrightarrow{x},\overleftarrow{x})$$
 for $\varepsilon = \tilde{\varepsilon} = 0.3$.

- Trajectory under LTL assumption.
- Left boundary of trajectory:

$$\overrightarrow{x} = \varepsilon \lambda(\overleftarrow{x}).$$

• Right boundary of trajectory:

$$\overleftarrow{x} = 1 - \rho(1 - \overrightarrow{x}).$$

Lagrange Pseudo-Dual for BEC

$$\overline{F}_{Bethe}^{\#}(\overrightarrow{x},\overleftarrow{x})\Big|_{end} - \overline{F}_{Bethe}^{\#}(\overrightarrow{x},\overleftarrow{x})\Big|_{begin} = \int_{Path} \nabla \overline{F}_{Bethe}^{\#}(\overrightarrow{x},\overleftarrow{x}) \cdot \begin{pmatrix} d \overrightarrow{x} \\ d \overleftarrow{x} \end{pmatrix}$$

$$\int_{0}^{0} \int_{0}^{0} \int_{$$

Lagrange Pseudo-Dual for BEC

$$\overline{F}_{\text{Bethe}}^{\#}(\overrightarrow{x},\overleftarrow{x})\Big|_{\text{end}} - \overline{F}_{\text{Bethe}}^{\#}(\overrightarrow{x},\overleftarrow{x})\Big|_{\text{begin}} = \int_{\text{Path}} \nabla \overline{F}_{\text{Bethe}}^{\#}(\overrightarrow{x},\overleftarrow{x}) \cdot \begin{pmatrix} d\overrightarrow{x} \\ d\overleftarrow{x} \end{pmatrix}$$

Integral along red path:

$$\Delta \overline{F}_{\text{Bethe}}^{\#} = n \cdot \left(\text{rate} - \text{cap}_{\text{BEC}(\varepsilon)} \right),$$

Lagrange Pseudo-Dual for BEC

$$\overline{F}_{\text{Bethe}}^{\#}(\overrightarrow{x},\overleftarrow{x})\Big|_{\text{end}} - \overline{F}_{\text{Bethe}}^{\#}(\overrightarrow{x},\overleftarrow{x})\Big|_{\text{begin}} = \int_{\text{Path}} \nabla \overline{F}_{\text{Bethe}}^{\#}(\overrightarrow{x},\overleftarrow{x}) \cdot \begin{pmatrix} d\overrightarrow{x} \\ d\overleftarrow{x} \end{pmatrix}$$

Integral along red path:

$$\Delta \overline{F}_{\text{Bethe}}^{\#} = n \cdot \left(\text{rate} - \text{cap}_{\text{BEC}(\varepsilon)} \right),$$

$$\Delta \overline{F}^{\#}_{
m Bethe} \leq 0$$
 implies the necessary condition

rate $\leq \operatorname{cap}_{\operatorname{BEC}(\varepsilon)}$

Lagrange Pseudo-Dual for BEC

$$\overline{F}_{\text{Bethe}}^{\#}(\overrightarrow{x},\overleftarrow{x})\Big|_{\text{end}} - \overline{F}_{\text{Bethe}}^{\#}(\overrightarrow{x},\overleftarrow{x})\Big|_{\text{begin}} = \int_{\text{Path}} \nabla \overline{F}_{\text{Bethe}}^{\#}(\overrightarrow{x},\overleftarrow{x}) \cdot \begin{pmatrix} d\overrightarrow{x} \\ d\overleftarrow{x} \end{pmatrix}$$

Integral along red path:

$$\Delta \overline{F}_{\text{Bethe}}^{\#} = n \cdot \left(\text{rate-cap}_{\text{BEC}(\varepsilon)} \right),$$

$$\Delta \overline{F}^{\#}_{
m Bethe}~\leq~0$$
 implies the necessary condition

rate $\leq \operatorname{cap}_{\operatorname{BEC}(\varepsilon)}$

Gives also the area between the blue and the cyan curve.

Lagrange Pseudo-Dual for BEC

$$\overline{F}_{Bethe}^{\#}(\overrightarrow{x},\overleftarrow{x})\Big|_{end} - \overline{F}_{Bethe}^{\#}(\overrightarrow{x},\overleftarrow{x})\Big|_{begin} = \int_{Path} \nabla \overline{F}_{Bethe}^{\#}(\overrightarrow{x},\overleftarrow{x}) \cdot \begin{pmatrix} d\overrightarrow{x} \\ d\overleftarrow{x} \end{pmatrix}$$
Integral along red path:

$$\Delta \overline{F}_{Bethe}^{\#} = n \cdot (rate-cap_{BEC(\varepsilon)}),$$

$$\Delta \overline{F}_{Bethe}^{\#} \leq 0 \text{ implies the necessary condition}$$

0.2

0.1

0

0.1

0.2

0.3

0.4 0.5 0.6

 $X(\rightarrow)$

0.7

0.8

0.9

LAB

rate $\leq \operatorname{cap}_{\operatorname{BEC}(\varepsilon)}$

Gives also the area between the blue and the cyan curve. Area theorem [Ashikhmin et al.]

Lagrange Pseudo-Dual for BEC

$$\overline{F}_{Bethe}^{\#}(\overrightarrow{x},\overleftarrow{x})\Big|_{end} - \overline{F}_{Bethe}^{\#}(\overrightarrow{x},\overleftarrow{x})\Big|_{begin} = \int_{Path} \nabla \overline{F}_{Bethe}^{\#}(\overrightarrow{x},\overleftarrow{x}) \cdot \begin{pmatrix} d \overrightarrow{x} \\ d \overleftarrow{x} \end{pmatrix}$$

$$\int_{0}^{0} \int_{0}^{0} \int_{$$

Lagrange Pseudo-Dual for BEC

$$\overline{F}_{Bethe}^{\#}(\overrightarrow{x},\overleftarrow{x})\Big|_{end} - \overline{F}_{Bethe}^{\#}(\overrightarrow{x},\overleftarrow{x})\Big|_{begin} = \int_{Path} \nabla \overline{F}_{Bethe}^{\#}(\overrightarrow{x},\overleftarrow{x}) \cdot \begin{pmatrix} d\overrightarrow{x} \\ d\overleftarrow{x} \end{pmatrix}$$
Necessary condition to reach the point $(\overrightarrow{x},\overleftarrow{x}) = (0,0)$: there is some $(\overrightarrow{x},\overleftarrow{x}) \neq (0,0)$ in the neighborhood of $(0,0)$ such that $\overline{F}_{Bethe}^{\#}(\overrightarrow{x},\overleftarrow{x}) \geq \overline{F}_{Bethe}^{\#}(0,0)$.

0.2

0.1

0

0

Lagrange Pseudo-Dual for BEC

$$\overline{F}_{Bethe}^{\#}(\overrightarrow{x},\overleftarrow{x})\Big|_{end} - \overline{F}_{Bethe}^{\#}(\overrightarrow{x},\overleftarrow{x})\Big|_{begin} = \int_{Path} \nabla \overline{F}_{Bethe}^{\#}(\overrightarrow{x},\overleftarrow{x}) \cdot \begin{pmatrix} d\overrightarrow{x} \\ d\overleftarrow{x} \end{pmatrix}$$
Necessary condition to reach the point $(\overrightarrow{x},\overleftarrow{x}) = (0,0)$: there is some $(\overrightarrow{x},\overleftarrow{x}) \neq (0,0)$ in the neighborhood of $(0,0)$ such that $\overline{F}_{Bethe}^{\#}(\overrightarrow{x},\overleftarrow{x}) \ge \overline{F}_{Bethe}^{\#}(0,0)$.

Gradient is zero.

Lagrange Pseudo-Dual for BEC

$$\overline{F}_{\text{Bethe}}^{\#}(\overrightarrow{x},\overleftarrow{x})\Big|_{\text{end}} - \overline{F}_{\text{Bethe}}^{\#}(\overrightarrow{x},\overleftarrow{x})\Big|_{\text{begin}} = \int_{\text{Path}} \nabla \overline{F}_{\text{Bethe}}^{\#}(\overrightarrow{x},\overleftarrow{x}) \cdot \begin{pmatrix} d\overrightarrow{x} \\ d\overleftarrow{x} \end{pmatrix}$$

Necessary condition to reach the point $(\vec{x}, \overleftarrow{x}) = (0, 0)$: there is some $(\vec{x}, \overleftarrow{x}) \neq (0, 0)$ in the neighborhood of (0, 0) such that $\overline{F}_{\text{Bethe}}^{\#}(\vec{x}, \overleftarrow{x}) \geq \overline{F}_{\text{Bethe}}^{\#}(0, 0).$

- Gradient is zero.
- Studying the Hessian yields the necessary condition

 $\varepsilon \lambda'(0) \rho(1) \leq 1$.

Lagrange Pseudo-Dual for BEC

$$\overline{F}_{Bethe}^{\#}(\overrightarrow{x},\overleftarrow{x})\Big|_{end} - \overline{F}_{Bethe}^{\#}(\overrightarrow{x},\overleftarrow{x})\Big|_{begin} = \int_{Path} \nabla \overline{F}_{Bethe}^{\#}(\overrightarrow{x},\overleftarrow{x}) \cdot \begin{pmatrix} d\overrightarrow{x} \\ d\overleftarrow{x} \end{pmatrix}$$
Integral along red path:

$$\Delta \overline{F}_{\text{Bethe}}^{\#} = -n \cdot (1 - \text{rate}) \cdot R(1 - \varepsilon)$$

Lagrange Pseudo-Dual for BEC

$$\overline{F}_{Bethe}^{\#}(\overrightarrow{x},\overleftarrow{x})\Big|_{end} - \overline{F}_{Bethe}^{\#}(\overrightarrow{x},\overleftarrow{x})\Big|_{begin} = \int_{Path} \nabla \overline{F}_{Bethe}^{\#}(\overrightarrow{x},\overleftarrow{x}) \cdot \begin{pmatrix} d \overrightarrow{x} \\ d \overleftarrow{x} \end{pmatrix}$$
Integral along red path:

$$\Delta \overline{F}_{Bethe}^{\#} = -n \cdot (1-\text{rate}) \cdot R(1-\varepsilon) .$$

$$\Delta \frac{1}{n} \overline{F}_{Bethe}^{\#} \to 0 \text{ implies the}$$
necessary condition

$$R(1-\varepsilon) \to 0 .$$

Lagrange Pseudo-Dual for BEC

$$\overline{F}_{Bethe}^{\#}(\overrightarrow{x},\overleftarrow{x})\Big|_{end} - \overline{F}_{Bethe}^{\#}(\overrightarrow{x},\overleftarrow{x})\Big|_{begin} = \int_{Path} \nabla \overline{F}_{Bethe}^{\#}(\overrightarrow{x},\overleftarrow{x}) \cdot \begin{pmatrix} d\overrightarrow{x} \\ d\overleftarrow{x} \end{pmatrix}$$
Integral along red path:

$$\Delta \overline{F}_{Bethe}^{\#} = -n \cdot (1-\text{rate}) \cdot R(1-\varepsilon) .$$

$$\Delta \frac{1}{n} \overline{F}_{Bethe}^{\#} \to 0 \text{ implies the}$$
necessary condition

$$R(1-\varepsilon) \to 0 .$$

 \Rightarrow Average right degree has to go to infinity.

Lagrange Pseudo-Dual for BEC

$$\overline{F}_{Bethe}^{\#}(\vec{x}, \overleftarrow{x})\Big|_{end} - \overline{F}_{Bethe}^{\#}(\vec{x}, \overleftarrow{x})\Big|_{begin} = \int_{Path} \nabla \overline{F}_{Bethe}^{\#}(\vec{x}, \overleftarrow{x}) \cdot \begin{pmatrix} d \vec{x} \\ d \overleftarrow{x} \end{pmatrix}$$
Plot $\frac{1}{E}\overline{F}_{Bethe}^{\#}(\vec{x}, \overleftarrow{x})$ for $\varepsilon = \tilde{\varepsilon} = 0.5$.

Lagrange Pseudo-Dual for BEC

$$\overline{F}_{Bethe}^{\#}(\vec{x}, \overleftarrow{x})\Big|_{end} - \overline{F}_{Bethe}^{\#}(\vec{x}, \overleftarrow{x})\Big|_{begin} = \int_{Path} \nabla \overline{F}_{Bethe}^{\#}(\vec{x}, \overleftarrow{x}) \cdot \begin{pmatrix} d\vec{x} \\ d\vec{x} \end{pmatrix}$$
Plot $\frac{1}{E}\overline{F}_{Bethe}^{\#}(\vec{x}, \overleftarrow{x})$ for $\varepsilon = \tilde{\varepsilon} = 0.5$.
Fixed point corresonds to stationary
points of the Bethe free energy.

$$\int_{v=0}^{v=0}^{v=0} \int_{v=0}^{v=0} \nabla \overline{F}_{Bethe}^{\#}(\vec{x}, \overleftarrow{x}) \cdot \begin{pmatrix} d\vec{x} \\ d\vec{x} \end{pmatrix}$$

Lagrange Pseudo-Dual for BEC

$$\overline{F}_{Bethe}^{\#}(\overrightarrow{x},\overleftarrow{x})\Big|_{end} - \overline{F}_{Bethe}^{\#}(\overrightarrow{x},\overleftarrow{x})\Big|_{begin} = \int_{Path} \nabla \overline{F}_{Bethe}^{\#}(\overrightarrow{x},\overleftarrow{x}) \cdot \begin{pmatrix} d\overrightarrow{x} \\ d\overleftarrow{x} \end{pmatrix}$$
Plot $\frac{1}{E}\overline{F}_{Bethe}^{\#}(\overrightarrow{x},\overleftarrow{x})$ for $\varepsilon = \tilde{\varepsilon} = 0.5$.
Fixed point corresponds to stationary
points of the Bethe free energy.
 \Rightarrow Fixed point corresponds to a pseudo-
codword (necessarily in the fundamental
polytope).

Lagrange Pseudo-Dual for BEC

$$\overline{F}_{Bethe}^{\#}(\vec{x}, \overleftarrow{x})\Big|_{end} - \overline{F}_{Bethe}^{\#}(\vec{x}, \overleftarrow{x})\Big|_{begin} = \int_{Path} \nabla \overline{F}_{Bethe}^{\#}(\vec{x}, \overleftarrow{x}) \cdot \begin{pmatrix} d \vec{x} \\ d \overleftarrow{x} \end{pmatrix}$$
Plot $\frac{1}{E}\overline{F}_{Bethe}^{\#}(\vec{x}, \overleftarrow{x})$ for $\varepsilon = \tilde{\varepsilon} = 0.5$.
Fixed point corresponds to stationary
points of the Bethe free energy.
 \Rightarrow Fixed point corresponds to a pseudo-
codword (necessarily in the fundamental
polytope).
 \Rightarrow Stopping set equals support of that
pseudo-codeword.

Lagrange Pseudo-Dual for BEC

$$\overline{F}_{\text{Bethe}}^{\#}(\overrightarrow{x},\overleftarrow{x})\Big|_{\text{end}} - \overline{F}_{\text{Bethe}}^{\#}(\overrightarrow{x},\overleftarrow{x})\Big|_{\text{begin}} = \int_{\text{Path}} \nabla \overline{F}_{\text{Bethe}}^{\#}(\overrightarrow{x},\overleftarrow{x}) \cdot \begin{pmatrix} d\overrightarrow{x} \\ d\overleftarrow{x} \end{pmatrix}$$

The connection of SPA and MAP decoding is given by

- Maxwell construction /
- Maxwell decoder.

[Méasson/Montanari/Urbanke, 2005].

This connection can also be expressed in terms of $\overline{F}_{Bethe}^{\#}(\overrightarrow{x},\overleftarrow{x})$.

Bethe Free Energy and Weight Spectra

• Take some finite-length (j, k)-regular LDPC code of length n.

- Take some finite-length (j, k)-regular LDPC code of length n.
- Evaluating $\frac{1}{n}H_{\text{Bethe}}((\omega,\ldots,\omega))$ for $\omega \in [0,1]$ we obtain:

- Take some finite-length (j, k)-regular LDPC code of length n.
- Evaluating $\frac{1}{n}H_{\text{Bethe}}((\omega,\ldots,\omega))$ for $\omega \in [0,1]$ we obtain:

- Take some finite-length (j, k)-regular LDPC code of length n.
- Evaluating $\frac{1}{n}H_{\text{Bethe}}((\omega,\ldots,\omega))$ for $\omega \in [0,1]$ we obtain:

 This function equals the exponent of the asymptotic average Hamming weight distribution for Gallager's ensemble of (j, k)-regular LDPC codes!

- Take some finite-length (j, k)-regular LDPC code of length n.
- Evaluating $\frac{1}{n}H_{\text{Bethe}}((\omega,\ldots,\omega))$ for $\omega \in [0,1]$ we obtain:

 This function equals the exponent of the asymptotic average Hamming weight distribution for Gallager's ensemble of (j, k)-regular LDPC codes!

• Let's look at $-\frac{1}{n}H_{\text{Bethe}}((\omega,\ldots,\omega))$.

• Let's look at $-\frac{1}{n}H_{\text{Bethe}}((\omega,\ldots,\omega))$.

• Let's look at $-\frac{1}{n}H_{\text{Bethe}}((\omega,\ldots,\omega))$.

• Remember that $F_{\text{Bethe}}(\boldsymbol{\omega}) = U_{\text{Bethe}}(\boldsymbol{\omega}) - H_{\text{Bethe}}(\boldsymbol{\omega}).$

• Let's look at $-\frac{1}{n}H_{\text{Bethe}}((\omega,\ldots,\omega))$.

- Remember that $F_{\text{Bethe}}(\boldsymbol{\omega}) = U_{\text{Bethe}}(\boldsymbol{\omega}) H_{\text{Bethe}}(\boldsymbol{\omega}).$
- Remember that $U_{\text{Bethe}}(\boldsymbol{\omega})$ is linear in $\boldsymbol{\omega}$.

• Let's look at $-\frac{1}{n}H_{\text{Bethe}}((\omega,\ldots,\omega))$.

- Remember that $F_{\text{Bethe}}(\boldsymbol{\omega}) = U_{\text{Bethe}}(\boldsymbol{\omega}) H_{\text{Bethe}}(\boldsymbol{\omega}).$
- Remember that $U_{\text{Bethe}}(\boldsymbol{\omega})$ is linear in $\boldsymbol{\omega}$.
- Therefore, we see that for a finite-length code from an ensemble with asymptotically linearly growing minimum Hamming distance, $F_{\text{Bethe}}(\omega)$ is not a convex function of ω .

blockwise graph-cover decoding

blockwise graph-cover decoding

symbolwise graph-cover decoding

SPA decoding

BFE minimization

• We have discussed the relevance of Bethe free energy to EXIT charts for the BEC.

- We have discussed the relevance of Bethe free energy to EXIT charts for the BEC.
- We have discussed a connection between Bethe free energy for a finite-length (j, k)-regular LDPC code and the asymptotic growth rate of the average Hamming weight distribution for Gallager's ensemble of (j, k)-regular LDPC codes.

Thank you!

