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Abstract—Channel coding linear programming decoding (CC- measurement matrices where every entry is equal to either

H;Bg and ?Ompfetssedtﬁetnsmgf|ineglf|prtf?gr:ammiln? (éeclgdingt(lcs- zero or one to complex measurement matrices where the
are two setups that areformally tightly related. Recently, i i

a connection between CC-LPD and CS-LPD was exhibited that absolute value of every entry IS equal to elt_her ZEro or one.
goes beyond this formal relationship. The main ingredient was a In that process yve also generalize the mapping that is abpll_e
lemma that allowed one to map vectors in the nullspace of some t0 the vectors in the nullspace of the measurement matrix.
zero-one measurement matrix into vectors of the fundamental Secondly, this lemma is generalized to hold also for complex
cone defined by that matrix. _ _ measurement matrices where the absolute value of every entr

The aim of the present paper is to extend this connection along is a non-negative integer. Finally, the third generalmatof
several directions. In particular, the above-mentioned lemma is _, . ' . .
extended from real measurement matrices where every entry is this lemma ex_tends the types of mappings that can be_appl_led
equal to either zero or one to complex measurement matrices t0 the vectors in the nullspace of the measurement matrith Wi
where the absolute value of every entry is a non-negative integer this, Section Il translates performance guarantees f&@a
Moreover, this lemma and its generalizations are used to translate | PD to CS-LPD. Afterwards, Section IV tightens the already

performance guarantees from CC-LPD to CS-LPD.  ~ ~ (j5g6 formal relationship betwe@C-LPD andCS-LPD with
In addition, the present paper extends the formal relationship the help of h i f Its that i i di
between CC-LPD and CS-LPD with the help of graph covers. € Nelp of graph covers, a liné of results that Is continued |

First, this graph-cover viewpoint is used to obtain new connec- Section V, which present€S-LPD for certain measurement
tions between, on the one hand, CC-LPD for binary parity- matrices not only as the well-known relaxation of some zero-
check matrices, and, on the other hand, CS-LPD for complex norm minimization problem but also as the relaxation of some

measurement matrices. Secondly, this graph-cover viewpoint i oher minimization problem. Finally, some conclusions are
used to see CS-LPD not only as a well-known relaxation of some . .
presented in Section VI.

zero-norm minimization problem but (at least in the case of real . . . . .
measurement matrices with only zeros, ones, and minus ones) also  Besides the notation defined in [1], we will also use the
as a relaxation of a problem we call the zero-infinity operator following conventions and extensions of notions previgusl

minimization problem. introduced. For amyM € Zo, we let [M] £ {1,... M}
We remind the reader that in [1] we extended the use of the
) ) ) ) ) absolute value operatdr | from scalars to vectors. Namely,
This paper is a direct extension of a line of work thagt , — (a;); is a complex vector then we definie| to be the
was started in [1] and that connects channel coding Iine&gmmex vector’ = (a!); of the same length aswith entries
programming decoding [2], [3] and compressed sensinginga _ |, | for all 4. Similarly, in this paper we extend the use
programming decoding [4]. Because the motivation and g the absolute value operatpr| from scalars to matrices.
aim for the results presented here are very much the same age let| - |, be an arbitrary norm for the complex numbers.
they were in [1], we refer to that paper for an introductionag gych| - | satisfies for any:, b, ¢ € C the triangle inequality
We remind the reader“ tha(tC-MLD., CC-LED, CS-OI?T, la+b|, < |al,+|b|, and the equalityc - a|, = |c|-|a|,. In the
and CS-LPD stand for “channel coding maximum likelihoodsame way the absolute value operatorwas extended from
decoding,” “channel coding linear programming decodinggca|ars to vectors and matrices, we extend the norm operator
compressed sensing (sparsity) optimal decoding,” andri:co ||, from scalars to vectors and matrices.
pressed sensing linear programming decoding,” respéctivé \we jet||- ||, be an arbitrary vector norm for complex vectors
Moreover, all vectors are column vectors. that reduces to- |, for vectors of length one. As such, ||,

The present paper is structured as follows. Section dhyisfies for any: € C and any complex vectors and b of
presents threeT generghzatlc_)ns of [1, Lemma 1_1], which Wa§ual length the triangle inequalitys + b||, < |lall, + [|b],
the key result in [1]. First, this lemma is generalized fraalr 5.4 the equality

I. INTRODUCTION

c-al, =l |al,.
— ) For any complex vectora we define the zero-infinit
* Due to space limitations, some of the proofs and some of theossctiave Y P y

~ .
been omitted. A complete version will be posted on arxiv. operator to bel|allo,oc = [lallo - [|al[~, i.e., the pI’OQU_Ct_ of
t Supported by NSF Grants DMS-0708033 and TF-0830608. the zero norml|lallo = #supp(a) of a and of the infinity




norm |lal|.c = max; |a;| of a. Note that for anyc € C and
any complex vector it holds that||c- aljo,.c = || - ||a@]]0,00-

Finally, for anyn, M € Z-, and any lengtls vector a
we define theM-fold lifting of a to be the vectora™ =

(agﬁl))(i,m) € CM" with components given by

™

a(i,m) = Qi, (va) S [n] X [M]

Moreover, for any vectoi = (G(;,m))@i,m) Of length M - n
over C or F; we define the projection of to the spaceC"
to be the vectom = ¢,/ (a) with components given by

1
a; S Z &(i,m)a xS [n]
me[M]

(In the case wherea is overF,, the summation is ovef and
we use the the standard embedding{0f1} into C.)

Il. BEYOND MEASUREMENTMATRICES
WITH ZEROS ANDONES

The aim of this section is to extend [1, Lemma 11], which
is a reformulation of [5, Lemma 6], to matrices beyond zero-

The second generalization of [1, Lemma 11] generalizes
that lemma to hold also for complex measurement matrices
where the absolute value of every entry is an integer. Inrorde
to present this lemma, we need the following definition, whic
will be illustrated by Example 4.

Definition 3 Let Hcs = (hy,:)jeg,icz D€ SOme measurement

matrix overC such thath; ;| € Z>, forall (j,i) € J xZ, and

let M € Z be such thatVl > max; ;e 7 xz|h;,i|. We define

an M-fold cover ofH s of Hcg as follows: for(j,i) € JxZ,

hj. is replaced byh; ;/|h; ;| times the sum of; ;| arbitrary

M x M permutation matrices with non-overlapping support.
(Il

Note that the entries of the matrid s in Definition 3 all
have absolute value equal to either zero or one.

Example 4 Let

Hes 2 (12 0 \/§<1+¢)>_

) 3

one measurement matrices. In that vein we will present thregearly

generalizations in Lemmas 2, 5, and 6. For ease of reference,

let us restate [1, Lemma 11].

A (1 0 2
|HCS|<2 1 3)7

Lemma 1 ([1, Lemma 11]) Let Hcs be a measurementand so, choosing/ = 3,

matrix that contains only zeros and ones. Then

v € nullspaceg (Hes) = |v| € K(Hcs).

Because in the proofs of the upcoming lemmas we will
have to show that certain vectors lie in the fundamental cone
K & K(Hcc) [2], [3], [6], [7] of the parity-check matrix
H¢c of some binary linear code, for convenience let us li

here a set of inequalities that characterkZze Namely, KC is
the set of all vectorss € R” that satisfy

w; =0 (forallie ),

wi< Y wy (foralljeg, forallicZ).
i'€T;\i

@)
)

With this, we are ready to discuss our first generalizati

1+i 144
0 1 00001—\%%1&
1 0 0000%121_17&
Ae2| 0 0 1]j000]0 75 7
0 -1 -1+ 0 0] 1 1 1
-1 -1 010 ¢ O] 1 1 1
-1 0 -1/0 0 4] 1 1 1

d$ a possible matrix obtained by the procedure defined in
Definition 3. O

Lemma 5 Let Hos = (hj,i)jer,icz be some measurement
matrix overC such that|h; ;| € Z>, for all (j,7) € J x Z.
With this, letM € Z-.o be such that\l > max(; ;)e 7 xz|hj,il,
and let Hcs be a matrix obtained by the procedure in
Definition 3. Moreover, let/-|, be an arbitrary norm for

cHbmplex numbers. Then

of [1, Lemma 11], which generalizes [1, Lemma 11] from real

measurement matrices where every entry is equal to either ze v € nullspacec(Hcs)
or one to complex measurement matrices where the absolute

™ ¢ nullspacec (Hcs)
|I/T]”‘>|< S K(|ﬁcs‘)

=
=

value of every entry is equal to either zero or one. Note that t N _ T _
upcoming lemma also generalizes the mapping that is appligdditionally, with respect to the flrst]:/[mphcatlon sign wave
to the vectors in the nullspace of the measurement matrix.the following converse: for any € C*" we have

(D) € nullspacec(Hcg) < & € nullspacec(Hcs).

Lemma 2 Let Hcs = (hj,i)jer,icz be some measurement

matrix overC such that|h, ;| € {0,1} for all (j,7) € J x I,

Proof: Omitted. [ |

and let|- |, be an arbitrary norm for complex humbers. Then

v € nullspacec(Hes) = |v|, € K(|Hcs)).
Remark:Note thatsupp(v) = supp(|v|,).

Proof: Omitted.

Finally, we present our third generalization of [1,
Lemma 11], which generalizes the mapping that is applied
to the vectors in the nullspace of the measurement matrix.



Lemma 6 Let Hcs = (hj,i)jer,icz be some measurementhe Tanner graph ofcs is a (dy, v, d)-expander with suffi-
matrix overC such that|h, ;| € {0,1} for all (j,i) € J xZ. cient expansion, more precisely, with

Moreover, letL € Z-q, and let]| - ||, be an arbitrary vector 9 1
norm for complex numbers. Then 6> 3 + 34
v e nullspacec(Hcs) = w € /C(IHcsl), (along with the technical conditioid, € Z-(). ThenCS
LPD based on the measurement matfiks can recover all
wherew € R"™ is defined such that for all € Z, k-sparse vectors, i.e., all vectors whose support size isost m
k, for
=)
i SN E 35— 2
k‘ < ﬁ . (’}/Tl — 1)
Proof: Omitted. ]
Proof: This result is obtained by combining the results
We conclude this section with two remarks. First, it is cledP [1] with [10, Theorem 1]. .

that Lemma 6 can be extended in the same way as Lemma 5 ] )

extends Lemma 2. Secondly, similarly to the approach in [1] Interestingly, fors = 3/4 the recoverable sparsitymatches
where [1, Lemma 11] was used to translate “positive result§Xactly the performance of the fast compressed sensing algo
aboutCC-LPD to “positive results” abouCS-LPD, the new rithm in [9] and the performance of the simple bit-flipping

Lemmas 2, 5, and 6 can be the basis for translating resifi@nnel decoder of Sipser an Spielman [8], but our resuttshol
from CC-LPD to CS-LPD. for the basis pursuit LP relaxatioBS-LPD. Expansion has

been shown to suffice faS-LPD in [12] but with a different

proof and yielding different constants. Fof/n = 1/2 and

d, = 32, the result of [10] establishes that sparse expander-
In this section we use [1, Lemma 11] to transfer “positivBased zero-one measurement matrices will recover allan

performance results” fo€C-LPD of low-density parity-check sparse vectors fot < 0.000175.

(LDPC) codes to “positive performance results” f06-LPD Whereas the above result gave a deterministic guarantee,

of zero-one measurement matrices. In particular, threitiy@s the following result is based on a so-called weak bound for

threshold results fo€EC-LPD are used to obtain three resultsCC-LPD and gives a probabilistic guarantee.

that are, to the best of our knowledge, novel for compressed

sensing. At the end of the section we will also use LemmaQCorollary 9 Letd, € Z-o. Consider a random measurement

IIl. TRANSLATING PERFORMANCEGUARANTEES

with |-|, = |-| to study dense measurement matrices withatrix Hcs € {0,1}" %" that is formed by placing,, random
entries in{—1,0, +1}. ones in each column, and zeros elsewhere. This measurement
We will need the notion of aexpander graph matrix succeeds to recover a randomly supported= an

sparse vector with probability — o(1) if « is below some

Definition 7 Let G be a bipartite graph where the nodes inth"eshold functionu, (dy,n’/n).
the two node classes are called left-nodes and right-nodes, prqof: The result is obtained by combining the results

respectively. IfS is some subset of left-nodes, weAétS) be iy [1] with [13, Theorem 1]. The latter paper also contains a

the subset of right-nodes that are adjacentSoThen, given way to compute achievable threshold valags(d,, ' /n). ®
parametersd, € Zsg, v € (0,1), 6 € (0,1), we say thatG

is a (dy,7,d)-expander if all left-nodes of have degreel, Forn//n = 1/2 andd, = 8, a random measurement matrix
and if for all left-node subsets with #S < vn it holds that il recover ak = an sparse vector with random support
#N(S) = ddy - #S. U with high probability if o < 0.002. This is, of course, a much

. . . higher threshold compared to the one presented above but
Expander graphs have been studied exten_swely In past w é;L%nly holds with high probability over the vector support
on channel coding and compressed sensing (see, e.g., erefore it is a so-called weak bound). To the best of our

[9]). It is well-known that randomly constructed |eft-régu knowledge, this is the first weak bound obtained for random

bipartite graphs are expanders with high probability (seg., sparse measurement matrices

[100). ) . . The best thresholds known for LP decoding were recently

In the following, similar to the way a Tanner graph i pained by Arora, Daskalakis, and Steurer [14] but require
associated with a parity-check matrix [11], we will asst&ia y\ayrices that are both left and right regular and also have
a Tanner graph with a measurement matrix. Note that they, ithmically growing girth. A random bipartite matrixiiv
variable and cor_lstramt nodes of a Tanner graph will be dalle i have this latter property but there are explicit deteistic
left-nodes and right-nodes, respectively. constructions that achieve this (for example the constmct

presented in Gallager’s thesis [15, Appendix C]). By trafisl

Corollary 8 Letd, € Zo, lety € (0,1), and let Hcs € ing the results from [14] to the compressed sensing setup we
{0,1}™ *™ be a measurement matrix. Moreover, assume thabtain the following result.



Corollary 10 Let d,,d. € Z-y. Consider a measurement V. MINIMIZING THE ZERO-INFINITY OPERATOR

matrix Hcs € {0,1}" %" whose Tanner graph is &l,dc)-  (This section has been omitted.)

regular bipartite graph with2(log n) girth. This measurement

matrix succeeds to recover a randomly supported= an VI. CONCLUSIONS ANDOUTLOOK

sparse vector with probability — o(1) if « is below some |n this paper we have extended the results of [1] along
threshold functionv,, (dy, dc,n’ /n). various directions. In particular, we have translated querf

mance guarantees fro@C-LPD to performance guarantees
for the recovery ofexactly sparsevectors underCS-LPD.

Rs part of future work we plan to investigate the translation
of performance guarantees fro@C-LPD to performance
guarantees for the recovery approximately sparse&ectors

o nderCS-LPD.
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