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Abstract—Channel coding linear programming decoding (CC-
LPD) and compressed sensing linear programming decoding (CS-
LPD) are two setups that are formally tightly related. Recently,
a connection between CC-LPD and CS-LPD was exhibited that
goes beyond this formal relationship. The main ingredient was a
lemma that allowed one to map vectors in the nullspace of some
zero-one measurement matrix into vectors of the fundamental
cone defined by that matrix.

The aim of the present paper is to extend this connection along
several directions. In particular, the above-mentioned lemma is
extended from real measurement matrices where every entry is
equal to either zero or one to complex measurement matrices
where the absolute value of every entry is a non-negative integer.
Moreover, this lemma and its generalizations are used to translate
performance guarantees from CC-LPD to CS-LPD.

In addition, the present paper extends the formal relationship
between CC-LPD and CS-LPD with the help of graph covers.
First, this graph-cover viewpoint is used to obtain new connec-
tions between, on the one hand, CC-LPD for binary parity-
check matrices, and, on the other hand, CS-LPD for complex
measurement matrices. Secondly, this graph-cover viewpoint is
used to see CS-LPD not only as a well-known relaxation of some
zero-norm minimization problem but (at least in the case of real
measurement matrices with only zeros, ones, and minus ones) also
as a relaxation of a problem we call the zero-infinity operator
minimization problem.

I. I NTRODUCTION

This paper is a direct extension of a line of work that
was started in [1] and that connects channel coding linear
programming decoding [2], [3] and compressed sensing linear
programming decoding [4]. Because the motivation and the
aim for the results presented here are very much the same as
they were in [1], we refer to that paper for an introduction.
We remind the reader thatCC-MLD , CC-LPD, CS-OPT,
andCS-LPD stand for “channel coding maximum likelihood
decoding,” “channel coding linear programming decoding,”
“compressed sensing (sparsity) optimal decoding,” and “com-
pressed sensing linear programming decoding,” respectively.
Moreover, all vectors are column vectors.

The present paper is structured as follows. Section II
presents three generalizations of [1, Lemma 11], which was
the key result in [1]. First, this lemma is generalized from real
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measurement matrices where every entry is equal to either
zero or one to complex measurement matrices where the
absolute value of every entry is equal to either zero or one.
In that process we also generalize the mapping that is applied
to the vectors in the nullspace of the measurement matrix.
Secondly, this lemma is generalized to hold also for complex
measurement matrices where the absolute value of every entry
is a non-negative integer. Finally, the third generalization of
this lemma extends the types of mappings that can be applied
to the vectors in the nullspace of the measurement matrix. With
this, Section III translates performance guarantees fromCC-
LPD to CS-LPD. Afterwards, Section IV tightens the already
close formal relationship betweenCC-LPD andCS-LPD with
the help of graph covers, a line of results that is continued in
Section V, which presentsCS-LPD for certain measurement
matrices not only as the well-known relaxation of some zero-
norm minimization problem but also as the relaxation of some
other minimization problem. Finally, some conclusions are
presented in Section VI.

Besides the notation defined in [1], we will also use the
following conventions and extensions of notions previously
introduced. For anyM ∈ Z>0, we let [M ] , {1, . . . ,M}.
We remind the reader that in [1] we extended the use of the
absolute value operator| · | from scalars to vectors. Namely,
if a = (ai)i is a complex vector then we define|a| to be the
complex vectora′ = (a′

i)i of the same length asa with entries
a′

i = |ai| for all i. Similarly, in this paper we extend the use
of the absolute value operator| · | from scalars to matrices.

We let | · |∗ be an arbitrary norm for the complex numbers.
As such,| · |∗ satisfies for anya, b, c ∈ C the triangle inequality
|a + b|∗ 6 |a|∗+|b|∗ and the equality|c · a|∗ = |c|·|a|∗. In the
same way the absolute value operator| · | was extended from
scalars to vectors and matrices, we extend the norm operator
| · |∗ from scalars to vectors and matrices.

We let‖ · ‖∗ be an arbitrary vector norm for complex vectors
that reduces to| · |∗ for vectors of length one. As such,‖ · ‖∗
satisfies for anyc ∈ C and any complex vectorsa and b of
equal length the triangle inequality‖a + b‖∗ 6 ‖a‖∗ + ‖b‖∗
and the equality‖c · a‖∗ = |c| · ‖a‖∗.

For any complex vectora we define the zero-infinity
operator to be‖a‖0,∞ , ‖a‖0 · ‖a‖∞, i.e., the product of
the zero norm‖a‖0 = #supp(a) of a and of the infinity



norm ‖a‖∞ = maxi |ai| of a. Note that for anyc ∈ C and
any complex vectora it holds that‖c · a‖0,∞ = |c| · ‖a‖0,∞.

Finally, for any n,M ∈ Z>0 and any length-n vector a

we define theM -fold lifting of a to be the vectora↑M =
(a↑M

(i,m))(i,m) ∈ C
Mn with components given by

a↑M

(i,m) , ai, (i,m) ∈ [n] × [M ].

Moreover, for any vector̃a = (ã(i,m))(i,m) of length M · n
over C or F2 we define the projection of̃a to the spaceCn

to be the vectora , ϕM (ã) with components given by

ai ,
1

M

∑

m∈[M ]

ã(i,m), i ∈ [n].

(In the case wherẽa is overF2, the summation is overC and
we use the the standard embedding of{0, 1} into C.)

II. B EYOND MEASUREMENTMATRICES

WITH ZEROS ANDONES

The aim of this section is to extend [1, Lemma 11], which
is a reformulation of [5, Lemma 6], to matrices beyond zero-
one measurement matrices. In that vein we will present three
generalizations in Lemmas 2, 5, and 6. For ease of reference,
let us restate [1, Lemma 11].

Lemma 1 ([1, Lemma 11]) Let HCS be a measurement
matrix that contains only zeros and ones. Then

ν ∈ nullspaceR(HCS) ⇒ |ν| ∈ K(HCS).

Because in the proofs of the upcoming lemmas we will
have to show that certain vectors lie in the fundamental cone
K , K(HCC) [2], [3], [6], [7] of the parity-check matrix
HCC of some binary linear code, for convenience let us list
here a set of inequalities that characterizeK. Namely,K is
the set of all vectorsω ∈ R

n that satisfy

ωi > 0 (for all i ∈ I) , (1)

ωi 6
∑

i′∈Ij\i

ωi′ (for all j ∈ J , for all i ∈ Ij) . (2)

With this, we are ready to discuss our first generalization
of [1, Lemma 11], which generalizes [1, Lemma 11] from real
measurement matrices where every entry is equal to either zero
or one to complex measurement matrices where the absolute
value of every entry is equal to either zero or one. Note that the
upcoming lemma also generalizes the mapping that is applied
to the vectors in the nullspace of the measurement matrix.

Lemma 2 Let HCS = (hj,i)j∈J ,i∈I be some measurement
matrix overC such that|hj,i| ∈ {0, 1} for all (j, i) ∈ J × I,
and let | · |∗ be an arbitrary norm for complex numbers. Then

ν ∈ nullspaceC(HCS) ⇒ |ν|∗ ∈ K
(

|HCS|
)

.

Remark:Note thatsupp(ν) = supp(|ν|∗).
Proof: Omitted.

The second generalization of [1, Lemma 11] generalizes
that lemma to hold also for complex measurement matrices
where the absolute value of every entry is an integer. In order
to present this lemma, we need the following definition, which
will be illustrated by Example 4.

Definition 3 Let HCS = (hj,i)j∈J ,i∈I be some measurement
matrix overC such that|hj,i| ∈ Z>0 for all (j, i) ∈ J×I, and
let M ∈ Z>0 be such thatM > max(j,i)∈J×I |hj,i|. We define
anM -fold cover ofH̃CS of HCS as follows: for(j, i) ∈ J×I,
hj,i is replaced byhj,i/|hj,i| times the sum of|hj,i| arbitrary
M × M permutation matrices with non-overlapping support.

�

Note that the entries of the matrix̃HCS in Definition 3 all
have absolute value equal to either zero or one.

Example 4 Let

HCS ,

(

1 0
√

2(1 + i)
−2 i 3

)

.

Clearly

|HCS| ,

(

1 0 2
2 1 3

)

,

and so, choosingM = 3,

H̃CS ,
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.

is a possible matrix obtained by the procedure defined in
Definition 3. �

Lemma 5 Let HCS = (hj,i)j∈J ,i∈I be some measurement
matrix overC such that|hj,i| ∈ Z>0 for all (j, i) ∈ J × I.
With this, letM ∈ Z>0 be such thatM > max(j,i)∈J×I |hj,i|,
and let H̃CS be a matrix obtained by the procedure in
Definition 3. Moreover, let| · |∗ be an arbitrary norm for
complex numbers. Then

ν ∈ nullspaceC(HCS) ⇒ ν↑M ∈ nullspaceC(H̃CS)

⇒
∣

∣ν↑M
∣

∣

∗ ∈ K
(

|H̃CS|
)

.

Additionally, with respect to the first implication sign we have
the following converse: for anỹν ∈ C

Mn we have

ϕM (ν̃) ∈ nullspaceC(HCS) ⇐ ν̃ ∈ nullspaceC(H̃CS).

Proof: Omitted.

Finally, we present our third generalization of [1,
Lemma 11], which generalizes the mapping that is applied
to the vectors in the nullspace of the measurement matrix.



Lemma 6 Let HCS = (hj,i)j∈J ,i∈I be some measurement
matrix overC such that|hj,i| ∈ {0, 1} for all (j, i) ∈ J × I.
Moreover, letL ∈ Z>0, and let‖ · ‖∗ be an arbitrary vector
norm for complex numbers. Then

ν(1), . . . ,ν(L) ∈ nullspaceC(HCS) ⇒ ω ∈ K
(

|HCS|
)

,

whereω ∈ R
n is defined such that for alli ∈ I,

ωi =
∥

∥

∥

(

ν
(1)
i , . . . , ν

(L)
i

)∥

∥

∥

∗
.

Proof: Omitted.

We conclude this section with two remarks. First, it is clear
that Lemma 6 can be extended in the same way as Lemma 5
extends Lemma 2. Secondly, similarly to the approach in [1]
where [1, Lemma 11] was used to translate “positive results”
aboutCC-LPD to “positive results” aboutCS-LPD, the new
Lemmas 2, 5, and 6 can be the basis for translating results
from CC-LPD to CS-LPD.

III. T RANSLATING PERFORMANCEGUARANTEES

In this section we use [1, Lemma 11] to transfer “positive
performance results” forCC-LPD of low-density parity-check
(LDPC) codes to “positive performance results” forCS-LPD
of zero-one measurement matrices. In particular, three positive
threshold results forCC-LPD are used to obtain three results
that are, to the best of our knowledge, novel for compressed
sensing. At the end of the section we will also use Lemma 2
with | · |∗ = | · | to study dense measurement matrices with
entries in{−1, 0,+1}.

We will need the notion of anexpander graph.

Definition 7 Let G be a bipartite graph where the nodes in
the two node classes are called left-nodes and right-nodes,
respectively. IfS is some subset of left-nodes, we letN (S) be
the subset of right-nodes that are adjacent toS. Then, given
parametersdv ∈ Z>0, γ ∈ (0, 1), δ ∈ (0, 1), we say thatG
is a (dv, γ, δ)-expander if all left-nodes ofG have degreedv

and if for all left-node subsetsS with #S 6 γn it holds that
#N (S) > δdv · #S. �

Expander graphs have been studied extensively in past work
on channel coding and compressed sensing (see, e.g., [8],
[9]). It is well-known that randomly constructed left-regular
bipartite graphs are expanders with high probability (see,e.g.,
[10]).

In the following, similar to the way a Tanner graph is
associated with a parity-check matrix [11], we will associate
a Tanner graph with a measurement matrix. Note that the
variable and constraint nodes of a Tanner graph will be called
left-nodes and right-nodes, respectively.

Corollary 8 Let dv ∈ Z>0, let γ ∈ (0, 1), and let HCS ∈
{0, 1}n′×n be a measurement matrix. Moreover, assume that

the Tanner graph ofHCS is a (dv, γ, δ)-expander with suffi-
cient expansion, more precisely, with

δ >
2

3
+

1

3dv

(along with the technical conditionδdv ∈ Z>0). Then CS-
LPD based on the measurement matrixHCS can recover all
k-sparse vectors, i.e., all vectors whose support size is at most
k, for

k <
3δ − 2

2δ − 1
· (γn − 1).

Proof: This result is obtained by combining the results
in [1] with [10, Theorem 1].

Interestingly, forδ = 3/4 the recoverable sparsityk matches
exactly the performance of the fast compressed sensing algo-
rithm in [9] and the performance of the simple bit-flipping
channel decoder of Sipser an Spielman [8], but our result holds
for the basis pursuit LP relaxationCS-LPD. Expansion has
been shown to suffice forCS-LPD in [12] but with a different
proof and yielding different constants. Forn′/n = 1/2 and
dv = 32, the result of [10] establishes that sparse expander-
based zero-one measurement matrices will recover allk = αn
sparse vectors forα 6 0.000175.

Whereas the above result gave a deterministic guarantee,
the following result is based on a so-called weak bound for
CC-LPD and gives a probabilistic guarantee.

Corollary 9 Let dv ∈ Z>0. Consider a random measurement
matrixHCS ∈ {0, 1}n′×n that is formed by placingdv random
ones in each column, and zeros elsewhere. This measurement
matrix succeeds to recover a randomly supportedk = αn
sparse vector with probability1 − o(1) if α is below some
threshold functionαn′(dv, n

′/n).

Proof: The result is obtained by combining the results
in [1] with [13, Theorem 1]. The latter paper also contains a
way to compute achievable threshold valuesαn′(dv, n

′/n).

For n′/n = 1/2 anddv = 8, a random measurement matrix
will recover a k = αn sparse vector with random support
with high probability ifα 6 0.002. This is, of course, a much
higher threshold compared to the one presented above but
it only holds with high probability over the vector support
(therefore it is a so-called weak bound). To the best of our
knowledge, this is the first weak bound obtained for random
sparse measurement matrices.

The best thresholds known for LP decoding were recently
obtained by Arora, Daskalakis, and Steurer [14] but require
matrices that are both left and right regular and also have
logarithmically growing girth. A random bipartite matrix will
not have this latter property but there are explicit deterministic
constructions that achieve this (for example the construction
presented in Gallager’s thesis [15, Appendix C]). By translat-
ing the results from [14] to the compressed sensing setup we
obtain the following result.



Corollary 10 Let dv, dc ∈ Z>0. Consider a measurement
matrix HCS ∈ {0, 1}n′×n whose Tanner graph is a(dv, dc)-
regular bipartite graph withΩ(log n) girth. This measurement
matrix succeeds to recover a randomly supportedk = αn
sparse vector with probability1 − o(1) if α is below some
threshold functionα′

n′(dv, dc, n
′/n).

Proof: The result is obtained by combining the results
in [1] with [14, Theorem 1]. The latter paper also contains a
way to compute achievable threshold valuesα′

n′(dv, dc, n
′/n).

For n′/n = 1/2, an application of the above result to a
(3, 6)-regular Tanner graph with logarithmic girth (obtained
from the Gallager construction) tells us that sparse vectors
with sparsityk = αn are recoverable with high probability
for α 6 0.05. Therefore, measurement matrices based on Gal-
lager’s deterministic construction (of low-density parity-check
matrices) form the best known class of sparse measurement
matrices for the compressed sensing setup considered here.

We conclude this section with some considerations about
dense measurement matrices, highlighting our current under-
standing that the translation of positive performance guar-
antees fromCC-LPD to CS-LPD displays the following
behavior: the denser a measurement matrix is the weaker are
the translated performance guarantees.

Remark 11 Consider a randomly generatedn′ × n mea-
surement matrixHCS where every entry is generated i.i.d.
according to the distribution











+1 with probability 1/6

0 with probability 2/3

−1 with probability 1/6

.

This matrix, after multiplying it by the scalar
√

3/n, has the
restricted isometry property (RIP). (See [16], which proves
this property based on results in [17], which in turn proves
that this family of matrices has a non-zero threshold.) On
the other hand, one can show that the family of parity-check
matrices where every entry is generated i.i.d. according tothe
distribution

{

1 with probability 1/3

0 with probability 2/3

doesnot have a non-zero threshold underCC-LPD for the
BSC [18]. �

Therefore, we conclude that the connection betweenCS-
LPD and CC-LPD given by Lemma 2 is not tight for dense
matrices in the sense that the performance ofCS-LPD based
on dense measurement matrices can be much better than
predicted by the performance ofCC-LPD based on their
parity-check matrix counterpart.

IV. REFORMULATIONS BASED ONGRAPH COVERS

(This section has been omitted.)

V. M INIMIZING THE ZERO-INFINITY OPERATOR

(This section has been omitted.)

VI. CONCLUSIONS ANDOUTLOOK

In this paper we have extended the results of [1] along
various directions. In particular, we have translated perfor-
mance guarantees fromCC-LPD to performance guarantees
for the recovery ofexactly sparsevectors underCS-LPD.
As part of future work we plan to investigate the translation
of performance guarantees fromCC-LPD to performance
guarantees for the recovery ofapproximately sparsevectors
underCS-LPD.
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