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Design and Analysis of Vector Color Error Diffusion
Halftoning Systems

Niranjan Damera-Venkatdlember, IEEEand Brian L. EvansSenior Member, IEEE

Abstract—Traditional error diffusion halftoning is a high Kite et al. [3], [7] quantify the sharpening and noise in-
quality method for producing binary images from digital troduced by grayscale error diffusion by linearizing error
grayscale images. Error diffusion shapes the quantization noise diffusion. They replace the quantizer with the linear gain
power into the high frequency regions where the human eye is the .
least sensitive. Error diffusion may be extended to color images model d.eveloped by Ardalan and Paulqs (8] for s!gma—de_lta
by using error filters with matrix-valued coefficients to take into Modulation. The model accurately predicts the noise shaping
account the correlation among color planes. For vector color and image sharpening in error diffused halftones. Based on the
error diffusion, we propose three contributions. First, we analyze model, they develop an objective measure of the human visual
vector color error diffusion based on a new matrix gain model for system response to each type of degradation, and a low-com-

the quantizer, which linearizes vector error diffusion. The model lexit thod ting the i h . Thei
predicts key characteristics of color error diffusion, esp. image P'€XIty Method Tor compensating the image sharpening. their

sharpening and noise shaping. The proposed model includesanalysis assumes that the error filter is fixed.

linear gain models for the quantizer by Ardalan and Paulos and This paper generalizes the linear system model of grayscale
by Kite et alas special cases. Second, based on our model, werror diffusion in [3] to vector color error diffusion by replacing
optimize the noise shaping behavior of color error diffusion by the linear gain model with a new matrix gain model and by using

designing error filters that are optimum with respect to any given - ) . . .
linear spatially-invariant model of the human visual system. Our properties of filters with matrix-valued coefficients. The new

approach allows the error filter to have matrix-valued coefficients Model includes the earlier "ﬂear gain model [3_], [7]_ asa special
and diffuse quantization error across color channels in an oppo- case. The new model describes vector color diffusion in the fre-
nent color representation. Thus, the noise is shaped into frequency quency domain, and predicts noise shaping and linear frequency
regions of reduced human color sensitivity. To obtain the optimal distortion produced by halftoning

filter, we derive a matrix version of the Yule—Walker equations Col diffusion i hiah lit thod f |
which we solve by using a gradient descent algorithm. Finally, we olor error dittusion Is a high-quality method for color ren-

show that the vector error filter has a parallel implementation as  dering of continuous-tone24-bit digital color images on de-
a polyphase filterbank. vices with limited color palettes such as low-cost displays and

Index Terms—Color quantization, halftoning, image display, printers. The ren_dergdimages are gommonly referredaplas
parallel halftoning. halftones Quantization errors are filtered using amor filter
and fed back to the input in order to shape the quantization noise
into frequency regions where humans are relatively less sensi-
tive.
RADITIONAL grayscale error diffusion halftoning quan- Kolpatzik and Bouman [9] and Akaruet al. [10] use error
tizes an eight bit/pixel grayscale image to a one bit/pixdlters with matrix-valued coefficients to account for correla-
image for reproduction on binary devices. The reproductidipn among the color planes. The error filter by Kolpatzik and
is high quality because error diffusion shapes the quantizatiBauman [9] filters each color error plane independently in an
noise into the high frequencies (a.k.a. “blue noise”) whepponent color space [9]. Separate optimum scalar error filters
the human visual system is least sensitive [1]. In addition &e designed for the luminance and chrominance channels in-
adding noise, grayscale error diffusion also sharpens the ima&ggendently based on a separable model of the human visual
[2]-[4]. The amount of sharpening depends on the error filtegystem. However, no constraints are imposed on the error filter
The twelve-tap Jarvis error filter [5] produces significant imag® ensure that all of the red—green—blue (RGB) quantization
sharpening whereas the four-tap Floyd—Steinberg error filtesror is diffused. Akaruet al.[10] adapt the matrix-valued error
[6] produces only modest sharpening. filter coefficients using a least mean squares algorithm. This al-
lows for cross-channel diffusion of color error. However, their
method does not incorporate a human vision model.
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Fig. 1. System block diagrams for block error diffusion halftoniﬁgepresents a fixed 2-D nonseparable FIR error filter with matrix valued coefficients. The
vectorm represents the 2-D indexn, m2).

In the special case when we do not constrain all the err@r j)th element of a matrixA will be denoted bya; ;. The
to be diffused, a separable color vision model is used and thector with all of its elements equal to unity is denotediby
linear transformation into the opponent color space is unitary,Let x(m1, m2) € [0, 255]* represent the input RGB image
our solution reduces to the solution derived by Kolpatzik artd be halftonedX(z, 22) represents the-transform of the
Bouman [9]. In our formulation based on the matrix gain modeRGB input image
an uncorrelated noise image replaces the highly correlated error

image in the objective function in [11], [12]. Because the error X(21, 22) = Z X(my, mp)z” " 2T 1)
filter does not need to minimize correlated signal components, M1, e
the filter can be solely optimized for noise shaping. We will use an indexm to denote a 2-D spatial indéxuy, m)

To increase the efficiency of vector color error diffusionandz to denote the:-domain indexzy, z2).
we reorder the computations performed by the error filter
(which has matrix-valued coefficients) to derive an equivale®. Notation for Vector Color Error Diffusion

efficient implementation as a polyphase filter bank. Polyphaserig. 1 shows the system block diagram for vector color error
filter banks are used for efficient parallel implementations gfitfusjon halftoning. The rendering scalar quantizer is defined
filter banks in digital audio [13]. The implementation of theyy . R3 — 7/ whereld = Uy x Us x Us maps the mod-
error filter may be improved up by a factor of three becausfed input vectoru(m) into a rendered output vectdr(m).
each of the three color planes being input can be buffergg’ i =1, 2, 3, represents the alphabet used to represeritthe
and filtered independently of the other color planes. Such @8mponent of the rendered output. We assume that the output to
implementation makes vector color error diffusion attractivge restricted to one bit per color plane with 255 representing the
for raster image processing. presence of a color component and O representing the absence
Section Il reviews the mathematical notation used in the PaR§ia color componenty; = {0, 255}, Vi. The results of this

for scalar, vector, and matrix-valued signals and their transformgper are valid for any equal, uniform bit allocation among the
Section lllintroduces the matrix gain model for vector color errqt g channel quantizers.

diffusion and validates the model by predicting linear frequency The quantization error vecte(m) is formed by subtracting
distortion and noise shaping effects of vector color error diffyne quantizer input from the output

sion. The necessary and sufficient condition to eliminate linear

frequency distortion in vector color error diffusion using a pre- e(m) = b(m) — u(m). (2)
filter is derived. Section IV designs optimum fixed error filter
for vector color error diffusion using the matrix gain model and . i . .
model for color appearance. The model for color appearance [ﬂlproduqe the feedbac_k _S|gnal. The_ error filleF) is a filter
incorporates human visual sensitivity to color patterns ofdifferelft h matrlx-valued coeffluen'ts and will be denoted by the 3
spatial frequencies. The color of a pattern is defined accordin trix-valued sequends(-) \.N'th support seS H(:) r_epresents
the model by the excitation of the fundamental cone photorec e z-transform of the matrix-valued multifilter defined by
torsinthe visual system. Thusitis possible to obtain optimal error H(z1, ) = Z B(ml, Mg )z ="y~ ©)
filters for calibrated imaging devices such as color monitors. Sec-
tionVderivesaparallelimplementationforanerrorfilter with ma-

trix-valued coefficients. Section VI concludes the paper by sum- 1€ filtering operation of a 2-D multifilter is defined by ma-
marizing the contributions. trix-vector convolution given by

he error vector sequence is then filtered by an error filiey

miy, mo

II. NOTATION [ e} (m) g (k)e(m — k) 4
A. General Notation Here the error filter is assumed to have causal supParith

In this paper, boldface quantities written with” aepresent (0, 0) ¢ S. We will assume the standard four-coefficient
matrices, whereas boldface quantities written withoutepre- Floyd—Steinberg filter [6] support set. In the domain, the
sent vectors. Capitalized quantities are in the frequency domaiatrix-vector convolution becomes a linear transformation by
while lower case quantities are in the spatial domain. Scakm3 x 3 transformation matrix given by
quantities are represented as usual as plain charactersthirhe . .
component of a vectoa will be denoted bya; whereas the Z [h*e} (z) = H(z)E(z). 5)
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Fig. 2. System block diagram for vector color error diffusion model, w€nepresents a linear transformation of the signal compongnt) andn(m) is a
noise process uncorrelated with the signal component af).

The modified input is computed by subtracting the feedbackjuared error (LMMSE) sense
signal from the input signal

K = agmin E [|[b(m) - Au@m)?] ()
A

whereb(-) represents the quantizer output process, afd
represents the quantizer input process. The solution to (7) when

b(-) andu(-) are wide sense stationary processes is [15]
[ll. MATRIX GAIN MODEL FORVECTOR COLOR ERROR

DIFFUSION K = G, C} (8)

This section generalizes the linear system model of graysca}ﬁerecb andC

diffusion in 131t " | diffusion b laci wu &re covariance matrices. As a direct con-
erroI. ! u3|on.|n[ ] 0\,/,ec.orco orer‘for fiusion by rep ?C'ngsequence of this modeling [15], the noise proae&s due to
the “linear gain model” with a new “matrix gain model” an

: : i . . - he signal approximation error is uncorrelated with the signal
using properties of filters with matrix-valued coefﬁuent%nfut to the quantizen(-). We will analyze error diffusion by

discussed in Section Il. The new model includes the earlig suming a matrix gain dk for the signal path and a matrix
model [3], [7] as a special case. The new model describ Sin of I (identity matrix) for the noise path. This corresponds to

ve_ctor colqr dlfoSIQH in the frequen_cy d(_)mam, and predic sing the estimator to estimate signal components in the output
noise shaping and linear frequency distortion produced by ernaine quantizer from signal components at its input, and as-

diffusion halftoning. For vector color halftoning, we also derivgurning an uncorrelated noise injection to model the noise. In

the necessary and sufficient condition for linear distortiof way, one may treat the signal shaping and noise shaping in-

elimination via prefiltering. d JoL T .
. . I . dependently. This is similar to the analysis for grayscale error
Section lll-A describes how vector error diffusion may be Imaiffpzjsion in >[/3] 7] y gray

earized via the proposed matrix gain model. Signal and noise,
shaping transfer functions are derived based on an analysi%ﬂ‘:
the linearized system. Section IlI-B validates the predictions o
the matrix gain model by halftoning test images. We show that a 7 [B « e} (z) = H(z)E(z). 9)
linear shift-invariant prefilter can eliminate the linear signal fre-

quency-distortion effects of error diffusion. Further, we shoBy analyzing the signal path and ignoring the noise path by
that such a pre-filter can be incorporated with Iow—complexityettingn(m) -0

by modifying the error diffusion system to feed a linear transfor-

nalyzing the linearized vector color error diffusion model
ig. 2 in the frequency domain usingtransforms yields

mation of the quantizer input. Section I1l-C considers the math- X(z) =U(z) + H(z)E(z) (10)

ematical validity of the modeling and comments on the invert- i

ibility of certain matrices used in the matrix gain model. B(z) = (~K DU(z) (11)
B;(z) =KU(z). (12)

A. Linearizing Vector Color Error Diffusion ) ) )
) . , By manipulating (10)—(12), the response to the signal compo-
We model the quantizer of Fig. 1 by a constant linear transant pecomes

formation denoted by a matriK which is applied to the signal .

components of the quantizer input plus spatially-varying addi- B.(z) =K [i +H(z) (K — i)} X (z). (13)
tive noisen(m) applied to the noise components (components

uncorrelated with the input signal) of the quantizer input, @y considering the contribution of the noise comporBii)
shown in Fig. 2. This is a generalization of modeling the quago the outpuB,,(z)

tizers in sigma—delta modulators [8] and grayscale error diffu-

sion [3], [7]. Correlation among the signal color planes is repre- B, (z) =N(z) + U(z) (14)
sented by the off-diagonal terms in the malikix We choose the Uz) = — - (2)E(z) (15)
matrix KK to minimize the error in approximating the quantizer

with a linear transformation, in the linear minimum mean E(z) =N(z). (16)
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Fig. 3. Validation of matrix gain model by linearly distorting the original image. Here, the residual image has been scaled using a full-scaktretoirés
display purposes.

By rearranging (14)—(16), the original color image is subjected in vector color error diffu-
sion. Section 111-B2 shows that by adding a specified linear trans-
B.(z) = [i - I:I(z)} N(z). (17) formation of the input image to the quantizer input, the linear
distortion may be eliminated. Thus, the modeling predicts that a
The overall system response is given by flat frequency response can be achieved. This will be validated
through simulation. Section 111-B3 validates that the model ac-
B(z) = Bs(z) + B.(2). (18) curately predicts the noise shaping behavior of vector color error

) diffusion. In the validation process, we use a fixed matrix-valued
Equations (13) and (17) reduce to the analogous ones {gfor filter whose coefficients were obtained by terminating the
grayscale error diffusion [3], in which the error filter coef-,qaptive algorithm of [10] after a fixed number of iterations. The

ficients and signal gain are scalar valued. The next sectipfkts hold for an arbitrary fixed set of matrix-valued filter coef-
validates the analysis given in this section, and shows thakilfients and hence, there is no loss of generality.

accurately models _the_linear distortion and noise shaping ofl) Validation by Constructing a Linearly Distorted Orig-
vector color error diffusion. inal: We linearly distort the original image without introducing
o i ) quantization noise by processing the original image of Fig. 3(a)
B. Validating the Matrix Gain Model by using (13). This is equivalent to processing the original
This section validates the matrix gain model by using it to prémage according to Fig. 2, with the additive noise ignored.
dict the linear distortion and noise shaping effects of vector colbig. 3(b) shows the resulting image. Fig. 3(c) shows the result
error diffusion. Section 111-B1 shows that the signal path distoof halftoning with the fixed error filter. Fig. 3(b) and (c) have
tion given by (13) accurately models the linear distortionto whiakomparable linear distortion. To see this, we simply form
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the residual image by subtracting Fig. 3(b) from Fig. 3(c) |+ u(m)
The result is shown in Fig. 3(d). The residual in Fig. 3(d)x@)| ° [ & O T
is uncorrelated with the original and represents quantizatic /L_
noise. This is consistent with the modeling of Section IlI-A. To i (+)
qguantify the degree of correlation of the residual image with th elm) 7+

original image, we introduce a correlation matrix defined by _ _ o o
Fig. 4. System block diagrams for vector color error diffusion halftoning with

a fixed pre-filterg having matrix valued coefficients.
Preca®red PrrciTgreen PrciTiive

Crx = Proreen®rea  Proreen®green  ProreenTiiue (19)

p"’bluemred p"’blue@qreen p"’bluemblue f‘
wherep,. ... represents the correlation coefficient [15] betweel
the color planei in the residual and the color planein the LV um) AN o
original image. The correlation matrix for the residual shown it x(m) - ~ b(m)
Fig. 3(d), with respect to the original image shown in Fig. 3(a) -
IS h e(m) ®+
0.0067 0.0007 0.0051
N - Fig. 5. System block diagram for modified vector color error diffusion
C,x = | 0.0065 0.0039 0.0049 | . halftoning.
0.0082 0.0040 0.0062
2) Validation by  Constructing an Undistorted”IS0: since
Halftone: The model predicts that the linear distortion o [x o F ~
suffered by the color input image is given by (13). This means X'(z) = [I + L} X(z) — H(z)E(z) (28)

that if one prefilters the input color image by using the filter we substitute (27) into (28)

G(e) = [L+ B - D] K D Xw- A+ e [-He)] | x@)

then the resulting halftone should exhibit a flat low-frequency

response with respect to the original color image. Fig. 4 shows — H(z) (i _ ﬁ(z))_l B(z). (29)
error diffusion modified to include the prefilter. We now prove
the following proposition. Comparing (24) and (29), it follows that Figs. 4 and 5 are equiv-
Proposition 1: Fig. 4 is exactly equivalent to Fig. 5 whenalent in the sense that they have the same quantizer input and
L=K!-1I, Whenever[I H( )] is invertible. hence output if
Proof: By analyzing Fig. 4, the input to the quantizer .
u(m) in the z-domain is [(iJr L) + H(z) [i _ I:I(z)} }
U(2) = G(2)X(z) — H(z)E(z) (21) T
E(z) = B(z) - U(z) 22) - {1 +H(z) (I - H(z)) } G(z). (30)
From (21) and (22) By using
~ - —1 - - - - - - -1
E(z) = [I - H(z)] [B(z) - G(Z)X(z)] . (23) P(z) =1+ H(z) (I - H(z)) (31)
Substituting forE(z) given by (23) in (21) yields (30) becomes
~ - . . —-17 . s - .
U(z) = [I +H(z) (I - H(z)) } G(2)X(2) L =P(z) [G(Z) - I] : (32)
~ N Substituting forG(z) given by (20)
~ H(z) (I - H(z)) B(z). (24) T -
o L:P(z)HI—i—H( K — I)} K‘l—I}
Now, by analyzing Fig. 5
. _7 -1 | 1 - o1 _ 7
U(z) =X(2) - H()E(2) (25) =P(@) [K* +H(z) - H@K " -]
E(z) =B(z) — U(z). (26) =P(z) HI - ﬁ(z)] [K*l - 1” —K'-1 (33
From (25) and (26) This completes the proof.

L -1 For grayscale error diffusion, this result reduces to the result
E(z) = [I - H(Z)} [B(z) — X(z)]. (27)  derived in [3] in which the gain is scalar-valued and the error
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Fig. 6. Validation of matrix gain model by creating an undistorted halftone. Here, the residual image and the input to the error filter have besimgcaled
full-scale contrast stretch for display purposes. (a) Residual image vhen0. Halftone generated using optlmhl (c) Residual image using optimAl. (d)
Input to error filter using optimalL.

filter has scalar coefficients. Fig. 5 feeds a linear transformgig. 6(b)from Fig. 3(a). The correlation matrix for the residual is
tion L of the input image into the quantizer input. The matrix .

gain model predicts that the linear distortion in the halftoning . 0.00520.0009 0.0040

process must be eliminated. To check this result, we first com- Cix = | 0.0054 0.0023 0.0020

pute the residual of an unmodified halftone (i.e., halftoned using 0.0058 0.0011 0.0027

= 0) with respect to the original. Fig. 3(a) shows the original

|mageto be halftoned. Fig. 3(c) shows the halftone image wh% is shows that the linear distortion has been removed by mod-
was halftoned witf, — 0 (.usual vector color error diffusi(’)n) ied vector color error diffusion, since the residual with respect

Fig. 6(a) shows the residual with respect to the original by sul® the original is uncorrelated noise (signal components in the
esidual have been eliminated).

tracting Fig. 3(c) from Fig. 3(a). The correlation matrix for thé
ing Fig. 3(c) 9. 3(a) I X Knox [2] shows that the error image for grayscale error diffu-

residual is . g - . g
sione(m) is correlated with the input image. Knox also shows
that the sharpness of halftones increases as the correlation of the
0.3204 0.2989 0.0999 error image with the input increases. Kéeal.[3] show that by
O = | 02787 0.3205 0.1605 adding dither, t_he guantization error may bg decor_relatfed with
respect to the input, and the sharpening (linear distortion) ef-
0.2063 0.2952 0.1836 fects of error diffusion vanish. They also conclude [3] that image
sharpening is due to the fact that the input to the error filter con-
Fig. 6(b) shows the halftone image, which was halftoned withins signal components, which are fed back and shaped. Since
L = K ! — I (modified vector color error diffusion). Fig. 6(c) the system has a highpass response, this results in the halftone
shows the residual with respect to the original by subtractifgping sharper than the original image.
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We will show by using the matrix gain model that in the cas€. Invertibility of Matrices Used in the Model
of modified error diffusion (Fig. 5), halftoning with the value Typically, the matrixK is diagonally dominant with its di-

of L that cancels linear distortion is a sufficient condition foégonal elements greater than 1, so it is invertible. For the same
the error image (inpu'g to the error filter) to be free of Sig”%ason, the matrixl + H(z)(K — I)] in (13) is typically in-
components from the inputimage. _ . vertible. The proof ofProposition 1requires that the matrix
By replacing the quantizer in Fig. 5 with a gain matand 1y _ yy(,)] be invertible. This is typically not satisfied at DC for
analyzing the signal path filters like the Floyd—Steinberg filter becaufle— H(1)] = 0.
However, empirical results indicate thah,_.; E(z) does not
E,(z) =K [ﬂX(z) + U(z)} ~U(z) blow up [16] becausB(1) ~ X (1) andG(1) = I. In fact, the
zero at DC cancels the pole at DC, did,,_,; E(z) = 0 for the
KL X(z) + [K _ i} U(z). (34) block diagram of Fig. 5 and equalsLX (1) for the block-di-
agram of Fig. 4. This means that the two block diagrams are
equivalent at DC because they have the same input to the quan-
tizer. This is predicted by the matrix gain model. Consider Fig. 5

U(z) = X(z) — H(z) E,(z) (35) by noting that

we obtain [I- H(z)| E(z) =B(z) - X(2)

Since

[+ (K-1)A@)] B.(2) = [KL+ K -1 X(2). (36)
. . . This implies that
By substitutingL. = K~ — I into (36), Es(z) = 0. Hence,
there are no signal components in the error image. To check thi§z o A 5
prediction, and hence validate our modeling, we halftone tes T-H(z)+ KH(Z)} E(z) [K(IJF L) - } X(z). (38)
images withL set to cancel linear distortion. Fig. 3(a) ShOWr% taking the limit 1
the original image to be halftoned. Fig. 6(b) shows the halfto p/ taking the imit asz —
image by halftoning witl, = K—* — I (modified vector color L
error diffusion). Fig. 6(d) shows the errorimage. The correlation E(1) = [I +L - K_l} X(1)=o. (39)
matrix for the error image with respect to the original is
By analyzing Fig. 4 in a similar manndfm,,_.; = —LX(1).
0.0455 0.0235 0.0122 From (21) and (28), the two block-diagrams are equivalent
e — | 00493 00144 00164 at DC. At other frequencies for whidfh — ﬁ_(z)] might not be
invertible, a similar analysis using the matrix gain model may be
0.0428 0.0142 0.0150 applied to show that Figs. 4 and 5 are equivalent. However, the

. . , exactanalysis may be in error to some extent wiies H(z
The low correlation of the error image was predicted by the . inveyrtible y e @)

theory and therefore strongly corroborates it.

3) Validation of the Noise Responséccording to our
model, the noise shaping is predicted by (17). To verify the
prediction, we first compute a residual as described in Sec-In designing the color error filter coefficients, we use the ma-
tion IlI-B1. This residual is shaped noise. We need to verifirix gain model along with a sophisticated model for human
that the noise shaping is in fact given by (17). We halftone testlor vision. The formulation results in an uncorrelated noise
images using the optimal linear distortion cancelling methathage replacing the highly correlated error image in the objec-
described in Section 111-B2. This corresponds to halftoning wittive function of [12]. Thus, the optimization becomes less re-
the value oL = K~! — I. The matrix gain model predicts thatstrictive since we do not compensate for or try to minimize cor-
the input to the error filter has no signal components. The inpuglated signal components in the error image. Recall from Sec-
to the error filter in this case iN(z). We then filter this noise tion Ill that the correlated signal components in the error image
image (i.e., input to the error filter) according to (17) to fornproduced a sharpening effect which is usually desirable. We as-
a predicted residual. If the noise shaping equation is correstime theincorrelatechoise image is a white noise process as in
then this residual must be spectrally close to the actual resid[fl]. We minimize the visual impact of the quantization noise by
image. This was indeed found to be the case. Fig. 7 shoimsorporating the matrix gain model into the optimization along
radially averaged spectra of the three color planes of the actuéth a linear model for human color vision. We show that the
residual noise image and the residual computed using the nagéimal filter may be obtained by a solution of a matrix version
shaping predicted from the model. The close agreement of thfeghe Yule—Walker equations [17]. Because the error filter does
spectra confirms the predictions of the matrix gain model. Tm®ot need to minimize correlated signal components, the filter
next section analyzes the valid use of the matrix gain model bgn be solely optimized for optimal noise shaping.
considering the existence of matrix inverses assumed by theSection IV-Aformulates the design problem as a quadratic op-
model. timization problem with linear constraints. Section IV-B derives

IV. DESIGNING THEERRORFILTER
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Fig. 7. Predicted and actual spectra for residual noise image: (a) and (b) green and (c) blue planes. Solid lines indicate actual spectra wildities dash
represent predicted spectra.

the optimal solution and uses a gradient-descent algorithmsioaping. We define the objective functioh as the average
compute the optimal filter coefficients. Section IV-C describeswasually weighted noise energy in the output halftone. We use
linear color model for the human visual system and shows thaaitinear spatially invariant matrix-valued model for the human
may be represented as a linear transformation followed by spatissiual system denoted by the matrix-valued filter function
filtering. Our solution, however, allows for any general linea¥(-). We also define a constraint sétto ensure that all the
shift-invariant color vision model to be used. In Section IV-Dguantization error (represented in a device independent RGB
the optimal solution is compared quantitatively and qualitativepace) is diffused [18].

to separable Floyd—Steinberg error diffusion. Thus, the color error diffusion systefh(-), ¥(-)) foragiven
vision modelv(-) may be solved for an optimum filtér,, . (-)
A. Formulation of the Design Problem fiopt(-) — arg min J (41)
We use the matrix gain model to predict the noise shaping h(ec

behavior of the color error diffusion system. Based on the matkhere
gain model, we obtain the net noise component of the output as L 9

| J:E[H(ff*[I—h}*n) (m)H } 42)

b, (m) = ([1 - h} x n) (m). (40 4

Since signal shaping is typically desirable or in any case under C=<{h(),ies Z h(i)l1=1}. (43)
user control [18] we only need to concentrate on the noise :
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B. Optimum Error Filter Design Let us consider the ternf3,, ©,, ©3 andO,
The objective function of (42) may be rewritten as ~3 0, =0. (55)
J=E [Hé(m) - (wﬁ*n) (m)m oh(i)
By using (50) and (52)
2 0 0 T
—E [ a(m) — " > v(k)h(k)n(m - k' - k) ] o 2T <af1T(i) @2>
k Kk
d
=—FE|——T Tm—K —i
=ETr|am)-> Y v(k)hKn(m-K — k)] [th(i) r; Al (m V
k Kk’ T
. T hT(1)vT(k’)]
: [ﬁ(m) -3 v )h(kn(m -k — k)] (44)
k Kk

where we have substitutedm) = (v * n)(m) and used the
fact that for a vectox, ||x||? = Tr[xx?], where Tr denotes the
trace operation. Also since the trace is a linear functional, (44)
may be further simplified as

J=01+602+03+06, (45) =k %,: v (atmn (m - K 1)]
where o NAT == ¥ (K)fum(-i-k). (56)
0, =EFTr [a(m)a (m)] (46) -
0, =—ETr|a(m) 3 Y n’(m-K k) BY gsmg (52)
k Kk —— O,
dh(i)
: ﬂT(kW(k’)l (47) 9 o /
=-E ) Tr ; v(k)h(i)n(m — k' — 1)aT(m)]
©;=—ET v(K)h(k)n(m — k' — k)a’ (m
3 r zk: ; ( ) ( ) ( ) ( )] — _E Z ~T(k/)a(m)nT(m _ k/ _ 1)]
(48) K’
. =— VI (K)Fan(—1 — k). 57
Ou=FETr ZZZZ\?(S)h(r)n(m—s—r) Ek: (o) an ) ®7)

By considering®,, fl(i) only occurs in three term®,;, ©4

. nT(m —p-— Q)ET(p){’T(q)] ) (49) and©,4; where

Oy =FE

Ty > ) v(s)h(in(m—s - i)

pA aq s

By taking the first partial derivatives of (45) with respecfm@)
for alli € & and setting them to zero, we obtain the first-order
necessary conditions for an optimum solution. This requires that
a scalar function be differentiated with respect to a matrix. To -nT(m-p- q)flT(p)GT(q)]
do this, some results from linear algebra are required.

The following results are stated here without proof. For

fs of the following, see [17]: i
proofs of the fo OVE :(e;[]<d f(X))T 50 Op=FE|Tr ; zq: Z v(s)h(r)n(m — s — 1)
dXT - \dX
% Tr (AX) — AT (51) -n?(m—i- q)flT(i)VT(q)]
A (AXB) =A”B" (52) )
dX Op=F|TrY > v(s)h(in(m—s—i)
A (X"AXB) =AXB+A'XB"  (53) 1o
IX

T (AB) =Tr (BA). (54) '“T(m_i_q)hT(i)GT(q)]' ©9
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By using (52)
9
ah(i)

@41

{n(m —s—inf(m-p-q)

2, 2.2

p#i a s
ﬁT(pWT(q)}T]
33T S ¥(s)v(@h(p)n(m-p-q)
p#i q s
-nf(m—-s— 1)]
=>_ 2 Z v (s)V(@)h(p)Fun(p+q—s—i).  (59)
p#i a

By using (50) and (52) as in (56)

s o~ [ o]

—E[zzz{

r#i q

m-s-—r)

: nT(m—i—q)}Tﬁ(q)l

m-i—gq T(m—s—r)

[zzz

r#i q

q s \J,/\f/ L
U. X Vas
h(i)v"(q) (61)
\VJ‘Y-/
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By using (54) in (61) and applying (53)
9 2 BTy S ﬁsxvq,squ]
q s

—= 043 =
_ aix BT Y Y XIW,U,XV,, ]
q s

“ [ 3 wanxvauwiv

n(m—s —1i)

=E (> > v (@) (s)h(
-n’(m—i- q)]
E|Y ") " (s)v(a)h(

. nT(m—s—i)]

=28 |30 Y ¥ (¥(ahin(m —i - a)
-0 (m - s—i)]
_QZZ NT s)v(q h (1)fun(q — s).

Finally, combmmg (62) with (60) and (59) and combining
(57) and (56) yields the first-order necessary conditions for an
optimum solution to the minimization of (42)

Z {/T(k)f‘an(_i - k)
k
=>.> > vis)¥(ahp

n(m —i-q)

(62)

Jran(p +9q—s—1i).

(63)

These equations may be regarded as a generalization of the
Yule—Walker equations [17] from linear prediction theory to
the matrix case, with a generalized linear spatially-invariant
weighting. The above set of generalized Yule—Walker equations
may be solved for the optimal filter subject to the constraints of
(43) using the steepest descent algorithm [17].

We use a white noise image as an approximation to the un-
correlated noise imaga(m). Thus, the required autocorrela-
tion matrices are approximated as

Fan(k) =F [n(m) Tim+ k o(k)

) (m + k)

§k+t)=v(-k

(64)
Fan(k) = E <
zt: v(t

where 6(k) is the two-dimensional Kronecker delta function
[17]. In the optimization, the constraint is enforced by projec-

tion onto the convex constraint set. The convergence behavior of
this algorithm is discussed in [19]. The algorithm is guaranteed

(65)
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to converge if the convergence parameter in the descent algal frequency sensitivity to color patterns could be modeled as

rithm is chosen to be small enough [19]. spatial frequency sensitivity of the three channels in the oppo-
The descent algorithm may be formulated as nent representation.
CYEN Thus, the linear color model consists of
ohO ) =-2 Z vI(k)v(i+k) 1) a linear transformatiof’;
k 2) separable spatial filtering on each channel using a dif-
42 T (s)v(qQ)h? (p)6 ferent spatial filter on each channel. This operation may
zp: zq: zs: (&)v(a) () be regarded as a matrix multiplication in the frequency

domain by a diagonal matri®(z).

. —s—1i 66
(Pta-s—1 (66) Thus,v(m) is computed as
- A~ aJ
FOGDE2ROG) — o — 67 . .
L+ i)=P (f*(@) (i)) (68) We now describe the computation of the model parameters for

viewing RGB images on a monitor. First, one needs to account
whered refers to the iteration number, aftlis the projection for the fact that the eight-bit values that are put in the frame
operator that projects the iterate into the constrain€sathich  puffer to trigger the red, green, and blue guns of the CRT are
is defined by (43). We use the convergence paramete0.005  not the RGB tristimulus values of the colors displayed on the
in our simulations. The projection operator is defined as [20] monitor. This is because the CRT has a nonlinear response to
frame buffer values. Thus, we need to pass the RGB values of the
P (f(e)(i)) 2 £O)() — L Z @G 1) 117, (69) image through this nonlinearity to obtain the RGB coordinates
35| ics of the colors displayed on the monitor. This corresponds to the
inverse of gamma correction. The color images are first pre-
processed with this point-nonlinearity before they are halftoned.
This ensures that the colors in the halftone are closest to the
To obtain a true matrix linear color model, one needs to modsdlor actually rendered on the monitor.
the color processing of the human visual system as a convoluThe linear transformatio is computed as the composi-
tion with a matrix-valued filtes(m). The development of such tion of two linear transformation€® and O. The transforma-
a model is beyond the scope of this paper and a topic for futuien C is the transformation that converts linear RGB values
research. Instead, we use a pattern-color separable model foiitiie Smith—Pokorny cone absorption rat€sis a monitor de-
human visual system based on the work of Poirson and Wandghdent transformation. The transformati®rthat transforms
[14], [21]. The pattern-color separable color vision model form$ie LMS coordinates into the opponent representation is given
the basis for the S-CIELab color space, which has becomeiarj14], [21], [22] and is monitor independent. The spatial fre-
industry standard [22]. The pattern-color separable model fitgiency weighting functions for the three opponent visual path-
transforms device dependent RGB values (where R, G andiMys were obtained for viewing images displayed on the mon-
are coefficients of standard spectral tristimulus basis functiong)r at 72 dots per inch (dpi) at a “normal” viewing distance of
into a space with basis functions represented by the normaliZeglin using the parameters given in [22].
color sensitivities of the three fundamental cones responsible for
human color v_ision. The three cones are ca!led the L, M andS gjmulation Results
cones respectively, to denote long (L), medium (M), and short
(S) wavelength sensitivities. Thus, at each pixel an RGB valueSeveral random initial guesses were tried, and the descent
is transformed into the corresponding cone photoreceptor @dorithm was terminated when the changes in the objective
sorption rates. The L, M, and S basis functions are referredftiction were below a predefined threshold. Using this method,
in the literature as the Smith—Pokorny cone fundamentals [28'€ may explore different minimizers (solutions that result in
The LMS coordinates are then transformed using a color traf§:arly the same objective function value). The uniformity in
formation into an opponent representation [24]. The three Ot@e dot distributions produced by different initial guesses was
ponent visual pathways are the whitelack (or the luminance different. It has been shown [25]-[27] that frequency weighted
pathway), reé-green and blueyellow pathways (chrominance mean squared error alone cannot guarantee optimum dot dis-
pathways). The £” in red—green and blueyellow should be tributions. This problem can be alleviated by using threshold
read as “minus” and not confused with a hyphen. Thus, whifdodulation [28]. For the purpose of this work, since we are only
and black are in opposition, red and green are in opposition, Ancerned with the noise shaping behavior of error diffusion, we
blue and yellow are in opposition. Such a representation is Vec,@,ose a solution that has a reasonably uniform dot distribution.
different from early RGB models where it was believed that hu- Our calibration data used a monitor display~ 2.2, and a
mans respond to the three primary colors [24]. Strong supp8iehitor dependent transformation mat€ix
for the opponent representation comes from the fact that_humans 20935 7.6018 1.1235
do not perceive colors that are reddish green or yellowish blue .
since the reg-green and yellowblue visual pathways are op- C=107921 76394 1.6264 |. (71)
ponent channels. Poirson and Wandell [14], [21] found that spa- 0.0894 0.8020 7.6618

C. Linear Color Model for the Human Visual System
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The optimal filter coefficients obtained for this monitor were TABLE |
0.6316 —0.1306 0.0323 NOISE GAIN OF THE OPTIMAL FILTER ON STANDARD TEST IMAGES

h(0, 1) = | —0.0430  0.3993 0.0327 image | Noise gain
—0.0167 —0.1082 0.7379 (dB)
—0.1949 0.1289 —0.0242 lenna 3.2868
n(1,1)=| 00817 —0.0730 0.0645 peppers | 1.8775
0.0454 0.1585 —0.4017 fruits 1.3741
0.3598 —0.0549 0.0403 pasta 1.4563
fl(l, 0) = | —0.0018 0.2906 0.0173 hats 1.0452
—0.0080 —0.0895 0.4867
02181 —00112 0.0047 space, our preceding discussion holds for other color spaces as
- . . well. For example, if we are working in a Cyan—Magenta—Yellow
h(l, —1) = | 0.0222  0.1515 0.0580 (CMY) color space (for a printing application), then we can

0.0129  0.0213 0.1614 convert CMY into corresponding CIE XYZ coordinates [24] and
The optimal filter that was obtained based on our calibratéden into the opponent representation. Thus, using a new color
color monitor and was tested on five standard color test imagégnsformation matrisI’, the optimal filter for this case can be
(Lena, peppers, pasta, fruits, hjatd$n each case, to evaluatecalculated using the method described inthis section.
the noise shaping behavior, we produced undistorted halftones
using the color signal distortion canceling method developed in V. PARALLEL IMPLEMENTATION OF THE ERRORFILTER
Section 11I-B2. Section 11I-B2 showed that according to the ma- |, this section, we show that an error filter with matrix-valued

trix gain model, the quantization error image in the distortiogyefficients has a parallel implementation, which can increase
canceling method is in fact the uncorrelated noise injection infgy o, ghput by up to a factor of three. A filter with matrix-valued
the halftoning system. Therefore, we used the error image Pfyefficients can be implemented witbnventionafiltering op-

duced while halftoning the set of testimages with distortion cagi4tions applied in parallel to each component of the vector se-
celing schemes using the Floyd—Steinberg error filter and thgence being filtered.

optimal filter, respectively, as the noise image in the objective Analyzing (5) and usin@(z)
function of (42). The effective noise shaping gain (in decibelg), - signal, we obtain
of the optimal filter over the separable Floyd—Steinberg filter '

for thez-transform of the feed-

may be computed as Fo(z) Ho,o(z) Ho,1(z) Ho,2(z) Eo(z)
Fi(z = | Hio(z) Hi1(z) Hio(z F(z
NG:lOlogm(JfS) 72) 1(2) 1,0(z) Hi(z) Hio(2) 1(2)
']opt FQ(Z) H270(Z) H27 1(Z) H27 Q(Z) EQ(Z)
where the numerator and denominator in the argument of the (73)

log function are the objective functions computed by using (4%

for the optimal filter and the Floyd—Steinberg filter, respectively, ¢ repre‘se‘nt the f||ter|ng using Fig. 10. Each of the filters
. ) . (z), 4,5 = 0,1,2, is a polyphase component of the
Sample averages were used to estimate the expectations. Tablé{... : i
muiltifilter, and represents a conventional scalar filter that can

:Zglljela;i? ?f:sr:g;rs]geg:algrtr)(f)rtr;ii;ptlmal filter over using a SER5E derived from the filter coefficients of the multifﬂt& using
y 9 : the polyphase decomposition. In faét, ;(m) = [h(m)]; ;.

Fig. 8(a) s_hows thpastaimage halftqned using Fond—Steip.-Si ceh is fixed, the polyphase components of its rows may
berg halftoning on each color plane. Fig. 8(b)showsamagn|f|%%n precompute;:i. Nine polyphase filters are required for the

view of a portion of the image. Fig. 9(a) and (b) show the C0|rfnplementation.

respondmg r_esults for h_alftonmg W'th the opt|ma_1l error_flltt_a_r. Theresultisasetofconventionalfilterswith scalar coefficients,
The optimal filter results in less visible halftone noise. It signifi- , . : .
. . which enablesthe components ofthe input signal vector sequence
cantly reduces color impulses when compared with scalar erfo . .
e T . . . tobe buffered andfiltered independently of the other components,
diffusion using filters with scalar coefficients. The halftone noisg : ' .
Parallel. Since the filters; o, h; 1 andh; » are operate in par-

. . |
patterns prc_)du.c.ed by convent.|o.nal Floya-Steinberg error Scaa%}el, the parallel polyphase implementation is three times faster
filter were significantly more visible when observed on the caI{-

brated monitor as compared to the noise patterns produced by, n1aen asequentialimplementation of (4). We may utilize three low-

optimal filter! However the proposed design procedure does % ndwidth, low-cost embedded processors instead of one high

guarantee that the distribution of the color dots is the mostregu, andwidth processor to get the same performance at a lower cost

ossible. It must be emphasized that since the optimal filt ?r‘ral or use a processor with VLIW or SIMD paraliel processing
possible. P : . b . gperations, such as the TMS320C6000 or Intel Pentium MMX,
coefficients are dependent on a particular monitor configuratiort, . . ; .

. . respectively. The parallelimplementation does notrequire shared

the above design process mustbe applied on a case-by-case basi : :
. ; ! . o circular buffers. Each component of the input vector sequence is
Since our color model is defined in a device independent color .. : :
putinto a separate circular buffer on each of the three parallel dig-

Limages available at http://signal.ece.utexas.edu/~damera/col-vec.html. ital signal processors (DSPs). This allows for fast, low-overhead
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(b) (b)

Fig. 8. Performance of the separable Floyd-Steinberg filteiPgaja Fig. 9. Performance of the optimal filter. (&astahalftoned with optimal
halftoned with Floyd—Steinberg filter. (b) Magnified portion of halftone. ~filter. (b) Magnified portion of halftone.

loop code making the implementation efficient on parallel pro- We develop a model-based error filter design method in which
grammable DSPs. the objective is to minimize the visual effect of the additive
noise injection produced by vector error diffusion. We cast the

VI. CONCLUSION optimal error filter design problem as a generalized weighted

This paper formalizes the idea that error diffusion may Hi€ar prediction problem and derived the set of equations
approximated as a system that produces frequency distorttBat may be regarded as a generalization of the Yule-Walker
and adds additive noise [29]. The modeling approach gengguat|ons.Thg solutpn of.the generqhzed set_ofequat[ons results
alizes modeling methods for scalar error diffusion [3] to th# color error filters with visually optimum noise shaping. The
vector case. We linearize vector error diffusion based on a “nfPlicit modeling for the human visual system incorporates a
trix gain model” for the quantizer that accounts for correlatior@eneralized linear spatially invariant matrix-valued weighting
among the components of the vector error being diffused. \@8d is not restricted to the pattern-color separable model [14]
use this modeling to predict the linear signal distortion and noiat is used to obtain our filters. Thus, more general linear
shaping effects of vector error diffusion. Based on the modeisual models could be used if they were available. Future
we derive a low-complexity compensation method to eliminawork could explore the role of the constraints in designing
signal frequency distortion in vector error diffusion. The modelptimal color error filters. Better results were obtained when
could potentially be used for color halftone compression, ihe lossless diffusion constraints were not strictly observed.
which one may decide to allocate bits according to the sigraymbolic optimization such as the approach of [30] could be
distortion and noise injection profiles predicted by the modelused to explore constrained design spaces in an automated
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