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Design and Analysis of Vector Color Error Diffusion
Halftoning Systems
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Abstract—Traditional error diffusion halftoning is a high
quality method for producing binary images from digital
grayscale images. Error diffusion shapes the quantization noise
power into the high frequency regions where the human eye is the
least sensitive. Error diffusion may be extended to color images
by using error filters with matrix-valued coefficients to take into
account the correlation among color planes. For vector color
error diffusion, we propose three contributions. First, we analyze
vector color error diffusion based on a new matrix gain model for
the quantizer, which linearizes vector error diffusion. The model
predicts key characteristics of color error diffusion, esp. image
sharpening and noise shaping. The proposed model includes
linear gain models for the quantizer by Ardalan and Paulos and
by Kite et al.as special cases. Second, based on our model, we
optimize the noise shaping behavior of color error diffusion by
designing error filters that are optimum with respect to any given
linear spatially-invariant model of the human visual system. Our
approach allows the error filter to have matrix-valued coefficients
and diffuse quantization error across color channels in an oppo-
nent color representation. Thus, the noise is shaped into frequency
regions of reduced human color sensitivity. To obtain the optimal
filter, we derive a matrix version of the Yule–Walker equations
which we solve by using a gradient descent algorithm. Finally, we
show that the vector error filter has a parallel implementation as
a polyphase filterbank.

Index Terms—Color quantization, halftoning, image display,
parallel halftoning.

I. INTRODUCTION

T RADITIONAL grayscale error diffusion halftoning quan-
tizes an eight bit/pixel grayscale image to a one bit/pixel

image for reproduction on binary devices. The reproduction
is high quality because error diffusion shapes the quantization
noise into the high frequencies (a.k.a. “blue noise”) where
the human visual system is least sensitive [1]. In addition to
adding noise, grayscale error diffusion also sharpens the image
[2]–[4]. The amount of sharpening depends on the error filter.
The twelve-tap Jarvis error filter [5] produces significant image
sharpening whereas the four-tap Floyd–Steinberg error filter
[6] produces only modest sharpening.
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Kite et al. [3], [7] quantify the sharpening and noise in-
troduced by grayscale error diffusion by linearizing error
diffusion. They replace the quantizer with the linear gain
model developed by Ardalan and Paulos [8] for sigma–delta
modulation. The model accurately predicts the noise shaping
and image sharpening in error diffused halftones. Based on the
model, they develop an objective measure of the human visual
system response to each type of degradation, and a low-com-
plexity method for compensating the image sharpening. Their
analysis assumes that the error filter is fixed.

This paper generalizes the linear system model of grayscale
error diffusion in [3] to vector color error diffusion by replacing
the linear gain model with a new matrix gain model and by using
properties of filters with matrix-valued coefficients. The new
model includes the earlier linear gain model [3], [7] as a special
case. The new model describes vector color diffusion in the fre-
quency domain, and predicts noise shaping and linear frequency
distortion produced by halftoning.

Color error diffusion is a high-quality method for color ren-
dering of continuous-tone24-bit digital color images on de-
vices with limited color palettes such as low-cost displays and
printers. The rendered images are commonly referred to ascolor
halftones. Quantization errors are filtered using anerror filter
and fed back to the input in order to shape the quantization noise
into frequency regions where humans are relatively less sensi-
tive.

Kolpatzik and Bouman [9] and Akarunet al. [10] use error
filters with matrix-valued coefficients to account for correla-
tion among the color planes. The error filter by Kolpatzik and
Bouman [9] filters each color error plane independently in an
opponent color space [9]. Separate optimum scalar error filters
are designed for the luminance and chrominance channels in-
dependently based on a separable model of the human visual
system. However, no constraints are imposed on the error filter
to ensure that all of the red–green–blue (RGB) quantization
error is diffused. Akarunet al.[10] adapt the matrix-valued error
filter coefficients using a least mean squares algorithm. This al-
lows for cross-channel diffusion of color error. However, their
method does not incorporate a human vision model.

In this paper, we derive the optimum matrix-valued error filter
using a matrix gain model to model the noise shaping behavior
of color error diffusion and a generalized linear spatially-in-
variant model (not necessarily separable) for the human color
vision. We also incorporate the constraint that all of the RGB
quantization error be diffused. We show that the optimum error
filter may be obtained as a solution to a matrix version of the
Yule–Walker equations. A gradient descent algorithm is pro-
posed to solve the generalized Yule–Walker equations.

1057–7149/01$10.00 © 2001 IEEE
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Fig. 1. System block diagrams for block error diffusion halftoning.~h represents a fixed 2-D nonseparable FIR error filter with matrix valued coefficients. The
vectorm represents the 2-D index(m ; m ).

In the special case when we do not constrain all the error
to be diffused, a separable color vision model is used and the
linear transformation into the opponent color space is unitary,
our solution reduces to the solution derived by Kolpatzik and
Bouman [9]. In our formulation based on the matrix gain model,
an uncorrelated noise image replaces the highly correlated error
image in the objective function in [11], [12]. Because the error
filter does not need to minimize correlated signal components,
the filter can be solely optimized for noise shaping.

To increase the efficiency of vector color error diffusion,
we reorder the computations performed by the error filter
(which has matrix-valued coefficients) to derive an equivalent
efficient implementation as a polyphase filter bank. Polyphase
filter banks are used for efficient parallel implementations of
filter banks in digital audio [13]. The implementation of the
error filter may be improved up by a factor of three because
each of the three color planes being input can be buffered
and filtered independently of the other color planes. Such an
implementation makes vector color error diffusion attractive
for raster image processing.

Section II reviews the mathematical notation used in the paper
for scalar, vector, and matrix-valued signals and their transforms.
Section III introduces thematrixgain model for vectorcolorerror
diffusion and validates the model by predicting linear frequency
distortion and noise shaping effects of vector color error diffu-
sion. The necessary and sufficient condition to eliminate linear
frequency distortion in vector color error diffusion using a pre-
filter is derived. Section IV designs optimum fixed error filters
for vector color error diffusion using the matrix gain model and a
model for color appearance. The model for color appearance [14]
incorporateshumanvisualsensitivity tocolorpatternsofdifferent
spatial frequencies. The color of a pattern is defined according to
the model by the excitation of the fundamental cone photorecep-
tors in thevisualsystem.Thus it ispossible toobtainoptimalerror
filters for calibrated imaging devices such as colormonitors. Sec-
tionVderivesaparallel implementationforanerrorfilterwithma-
trix-valued coefficients. Section VI concludes the paper by sum-
marizing the contributions.

II. NOTATION

A. General Notation

In this paper, boldface quantities written with arepresent
matrices, whereas boldface quantities written without arepre-
sent vectors. Capitalized quantities are in the frequency domain
while lower case quantities are in the spatial domain. Scalar
quantities are represented as usual as plain characters. Theth
component of a vector will be denoted by whereas the

th element of a matrix will be denoted by . The
vector with all of its elements equal to unity is denoted by.

Let represent the input RGB image
to be halftoned. represents the-transform of the
RGB input image

(1)

We will use an index to denote a 2-D spatial index
and to denote the -domain index .

B. Notation for Vector Color Error Diffusion

Fig. 1 shows the system block diagram for vector color error
diffusion halftoning. The rendering scalar quantizer is defined
by where maps the mod-
ified input vector into a rendered output vector .

, represents the alphabet used to represent theth
component of the rendered output. We assume that the output to
be restricted to one bit per color plane with 255 representing the
presence of a color component and 0 representing the absence
of a color component, . The results of this
paper are valid for any equal, uniform bit allocation among the
RGB channel quantizers.

The quantization error vector is formed by subtracting
the quantizer input from the output

(2)

The error vector sequence is then filtered by an error filter
to produce the feedback signal. The error filter is a filter
with matrix-valued coefficients and will be denoted by the
matrix-valued sequence with support set . represents
the -transform of the matrix-valued multifilter defined by

(3)

The filtering operation of a 2-D multifilter is defined by ma-
trix-vector convolution given by

(4)

Here the error filter is assumed to have causal supportwith
. We will assume the standard four-coefficient

Floyd–Steinberg filter [6] support set. In the domain, the
matrix-vector convolution becomes a linear transformation by
an transformation matrix given by

(5)
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Fig. 2. System block diagram for vector color error diffusion model, where~K represents a linear transformation of the signal componentu(m) andn(m) is a
noise process uncorrelated with the signal component ofu(m).

The modified input is computed by subtracting the feedback
signal from the input signal

(6)

III. M ATRIX GAIN MODEL FOR VECTORCOLOR ERROR

DIFFUSION

This section generalizes the linear system model of grayscale
error diffusion in [3] to vector color error diffusion by replacing
the “linear gain model” with a new “matrix gain model” and
using properties of filters with matrix-valued coefficients
discussed in Section II. The new model includes the earlier
model [3], [7] as a special case. The new model describes
vector color diffusion in the frequency domain, and predicts
noise shaping and linear frequency distortion produced by error
diffusion halftoning. For vector color halftoning, we also derive
the necessary and sufficient condition for linear distortion
elimination via prefiltering.

Section III-A describes how vector error diffusion may be lin-
earized via the proposed matrix gain model. Signal and noise
shaping transfer functions are derived based on an analysis of
the linearized system. Section III-B validates the predictions of
the matrix gain model by halftoning test images. We show that a
linear shift-invariant prefilter can eliminate the linear signal fre-
quency-distortion effects of error diffusion. Further, we show
that such a pre-filter can be incorporated with low-complexity
by modifying the error diffusion system to feed a linear transfor-
mation of the quantizer input. Section III-C considers the math-
ematical validity of the modeling and comments on the invert-
ibility of certain matrices used in the matrix gain model.

A. Linearizing Vector Color Error Diffusion

We model the quantizer of Fig. 1 by a constant linear trans-
formation denoted by a matrix which is applied to the signal
components of the quantizer input plus spatially-varying addi-
tive noise applied to the noise components (components
uncorrelated with the input signal) of the quantizer input, as
shown in Fig. 2. This is a generalization of modeling the quan-
tizers in sigma–delta modulators [8] and grayscale error diffu-
sion [3], [7]. Correlation among the signal color planes is repre-
sented by the off-diagonal terms in the matrix. We choose the
matrix to minimize the error in approximating the quantizer
with a linear transformation, in the linear minimum mean

squared error (LMMSE) sense

(7)

where represents the quantizer output process, and
represents the quantizer input process. The solution to (7) when

and are wide sense stationary processes is [15]

(8)

where and are covariance matrices. As a direct con-
sequence of this modeling [15], the noise process due to
the signal approximation error is uncorrelated with the signal
input to the quantizer . We will analyze error diffusion by
assuming a matrix gain of for the signal path and a matrix
gain of (identity matrix) for the noise path. This corresponds to
using the estimator to estimate signal components in the output
of the quantizer from signal components at its input, and as-
suming an uncorrelated noise injection to model the noise. In
this way, one may treat the signal shaping and noise shaping in-
dependently. This is similar to the analysis for grayscale error
diffusion in [3], [7].

Analyzing the linearized vector color error diffusion model
of Fig. 2 in the frequency domain using-transforms yields

(9)

By analyzing the signal path and ignoring the noise path by
setting

(10)

(11)

(12)

By manipulating (10)–(12), the response to the signal compo-
nent becomes

(13)

By considering the contribution of the noise component
to the output

(14)

(15)

(16)
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(a) (b)

(c) (d)

Fig. 3. Validation of matrix gain model by linearly distorting the original image. Here, the residual image has been scaled using a full-scale contrast stretch for
display purposes.

By rearranging (14)–(16),

(17)

The overall system response is given by

(18)

Equations (13) and (17) reduce to the analogous ones for
grayscale error diffusion [3], in which the error filter coef-
ficients and signal gain are scalar valued. The next section
validates the analysis given in this section, and shows that it
accurately models the linear distortion and noise shaping of
vector color error diffusion.

B. Validating the Matrix Gain Model

This section validates the matrix gain model by using it to pre-
dict the linear distortion and noise shaping effects of vector color
error diffusion. Section III-B1 shows that the signal path distor-
tiongivenby(13)accuratelymodels the lineardistortion towhich

the original color image is subjected in vector color error diffu-
sion. Section III-B2 shows that by adding a specified linear trans-
formation of the input image to the quantizer input, the linear
distortion may be eliminated. Thus, the modeling predicts that a
flat frequency response can be achieved. This will be validated
through simulation. Section III-B3 validates that the model ac-
curately predicts the noise shaping behavior of vector color error
diffusion. In the validation process, we use a fixed matrix-valued
error filter whose coefficients were obtained by terminating the
adaptive algorithm of [10] after a fixed number of iterations. The
results hold for an arbitrary fixed set of matrix-valued filter coef-
ficients, and hence, there is no loss of generality.

1) Validation by Constructing a Linearly Distorted Orig-
inal: We linearly distort the original image without introducing
quantization noise by processing the original image of Fig. 3(a)
by using (13). This is equivalent to processing the original
image according to Fig. 2, with the additive noise ignored.
Fig. 3(b) shows the resulting image. Fig. 3(c) shows the result
of halftoning with the fixed error filter. Fig. 3(b) and (c) have
comparable linear distortion. To see this, we simply form
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the residual image by subtracting Fig. 3(b) from Fig. 3(c).
The result is shown in Fig. 3(d). The residual in Fig. 3(d)
is uncorrelated with the original and represents quantization
noise. This is consistent with the modeling of Section III-A. To
quantify the degree of correlation of the residual image with the
original image, we introduce a correlation matrix defined by

(19)

where represents the correlation coefficient [15] between
the color plane in the residual and the color planein the
original image. The correlation matrix for the residual shown in
Fig. 3(d), with respect to the original image shown in Fig. 3(a),
is

2) Validation by Constructing an Undistorted
Halftone: The model predicts that the linear distortion
suffered by the color input image is given by (13). This means
that if one prefilters the input color image by using the filter

(20)

then the resulting halftone should exhibit a flat low-frequency
response with respect to the original color image. Fig. 4 shows
error diffusion modified to include the prefilter. We now prove
the following proposition.

Proposition 1: Fig. 4 is exactly equivalent to Fig. 5 when
, whenever is invertible.

Proof: By analyzing Fig. 4, the input to the quantizer
in the -domain is

(21)

(22)

From (21) and (22)

(23)

Substituting for given by (23) in (21) yields

(24)

Now, by analyzing Fig. 5

(25)

(26)

From (25) and (26)

(27)

Fig. 4. System block diagrams for vector color error diffusion halftoning with
a fixed pre-filter~g having matrix valued coefficients.

Fig. 5. System block diagram for modified vector color error diffusion
halftoning.

Also, since

(28)

we substitute (27) into (28)

(29)

Comparing (24) and (29), it follows that Figs. 4 and 5 are equiv-
alent in the sense that they have the same quantizer input and
hence output if

(30)

By using

(31)

(30) becomes

(32)

Substituting for given by (20)

(33)

This completes the proof.
For grayscale error diffusion, this result reduces to the result

derived in [3] in which the gain is scalar-valued and the error
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(a) (b)

(c) (d)

Fig. 6. Validation of matrix gain model by creating an undistorted halftone. Here, the residual image and the input to the error filter have been scaledusing a
full-scale contrast stretch for display purposes. (a) Residual image when~L = ~0. Halftone generated using optimal~L. (c) Residual image using optimal~L. (d)
Input to error filter using optimal~L.

filter has scalar coefficients. Fig. 5 feeds a linear transforma-
tion of the input image into the quantizer input. The matrix
gain model predicts that the linear distortion in the halftoning
process must be eliminated. To check this result, we first com-
pute the residual of an unmodified halftone (i.e., halftoned using

) with respect to the original. Fig. 3(a) shows the original
image to be halftoned. Fig. 3(c) shows the halftone image, which
was halftoned with (usual vector color error diffusion).
Fig. 6(a) shows the residual with respect to the original by sub-
tracting Fig. 3(c) from Fig. 3(a). The correlation matrix for the
residual is

Fig. 6(b) shows the halftone image, which was halftoned with
(modified vector color error diffusion). Fig. 6(c)

shows the residual with respect to the original by subtracting

Fig. 6(b)from Fig. 3(a). The correlation matrix for the residual is

This shows that the linear distortion has been removed by mod-
ified vector color error diffusion, since the residual with respect
to the original is uncorrelated noise (signal components in the
residual have been eliminated).

Knox [2] shows that the error image for grayscale error diffu-
sion is correlated with the input image. Knox also shows
that the sharpness of halftones increases as the correlation of the
error image with the input increases. Kiteet al.[3] show that by
adding dither, the quantization error may be decorrelated with
respect to the input, and the sharpening (linear distortion) ef-
fects of error diffusion vanish. They also conclude [3] that image
sharpening is due to the fact that the input to the error filter con-
tains signal components, which are fed back and shaped. Since
the system has a highpass response, this results in the halftone
being sharper than the original image.
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We will show by using the matrix gain model that in the case
of modified error diffusion (Fig. 5), halftoning with the value
of that cancels linear distortion is a sufficient condition for
the error image (input to the error filter) to be free of signal
components from the input image.

By replacing the quantizer in Fig. 5 with a gain matrixand
analyzing the signal path

(34)

Since

(35)

we obtain

(36)

By substituting into (36), . Hence,
there are no signal components in the error image. To check this
prediction, and hence validate our modeling, we halftone test
images with set to cancel linear distortion. Fig. 3(a) shows
the original image to be halftoned. Fig. 6(b) shows the halftone
image by halftoning with (modified vector color
error diffusion). Fig. 6(d) shows the error image. The correlation
matrix for the error image with respect to the original is

The low correlation of the error image was predicted by the
theory and therefore strongly corroborates it.

3) Validation of the Noise Response:According to our
model, the noise shaping is predicted by (17). To verify the
prediction, we first compute a residual as described in Sec-
tion III-B1. This residual is shaped noise. We need to verify
that the noise shaping is in fact given by (17). We halftone test
images using the optimal linear distortion cancelling method
described in Section III-B2. This corresponds to halftoning with
the value of . The matrix gain model predicts that
the input to the error filter has no signal components. The input
to the error filter in this case is . We then filter this noise
image (i.e., input to the error filter) according to (17) to form
a predicted residual. If the noise shaping equation is correct,
then this residual must be spectrally close to the actual residual
image. This was indeed found to be the case. Fig. 7 shows
radially averaged spectra of the three color planes of the actual
residual noise image and the residual computed using the noise
shaping predicted from the model. The close agreement of the
spectra confirms the predictions of the matrix gain model. The
next section analyzes the valid use of the matrix gain model by
considering the existence of matrix inverses assumed by the
model.

C. Invertibility of Matrices Used in the Model

Typically, the matrix is diagonally dominant with its di-
agonal elements greater than 1, so it is invertible. For the same
reason, the matrix in (13) is typically in-
vertible. The proof ofProposition 1requires that the matrix

be invertible. This is typically not satisfied at DC for
filters like the Floyd–Steinberg filter because .
However, empirical results indicate that does not
blow up [16] because and . In fact, the
zero at DC cancels the pole at DC, and for the
block diagram of Fig. 5 and equals for the block-di-
agram of Fig. 4. This means that the two block diagrams are
equivalent at DC because they have the same input to the quan-
tizer. This is predicted by the matrix gain model. Consider Fig. 5
by noting that

(37)

This implies that

(38)

By taking the limit as

(39)

By analyzing Fig. 4 in a similar manner, .
From (21) and (28), the two block-diagrams are equivalent

at DC. At other frequencies for which might not be
invertible, a similar analysis using the matrix gain model may be
applied to show that Figs. 4 and 5 are equivalent. However, the
exactanalysis may be in error to some extent when
is not invertible.

IV. DESIGNING THEERRORFILTER

In designing the color error filter coefficients, we use the ma-
trix gain model along with a sophisticated model for human
color vision. The formulation results in an uncorrelated noise
image replacing the highly correlated error image in the objec-
tive function of [12]. Thus, the optimization becomes less re-
strictive since we do not compensate for or try to minimize cor-
related signal components in the error image. Recall from Sec-
tion III that the correlated signal components in the error image
produced a sharpening effect which is usually desirable. We as-
sume theuncorrelatednoise image is a white noise process as in
[11]. We minimize the visual impact of the quantization noise by
incorporating the matrix gain model into the optimization along
with a linear model for human color vision. We show that the
optimal filter may be obtained by a solution of a matrix version
of the Yule–Walker equations [17]. Because the error filter does
not need to minimize correlated signal components, the filter
can be solely optimized for optimal noise shaping.

Section IV-A formulates the design problem as a quadratic op-
timization problem with linear constraints. Section IV-B derives
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Fig. 7. Predicted and actual spectra for residual noise image: (a) and (b) green and (c) blue planes. Solid lines indicate actual spectra while the dashed lines
represent predicted spectra.

the optimal solution and uses a gradient-descent algorithm to
compute the optimal filter coefficients. Section IV-C describes a
linear color model for the human visual system and shows that it
may be represented as a linear transformation followed by spatial
filtering. Our solution, however, allows for any general linear
shift-invariant color vision model to be used. In Section IV-D,
the optimal solution is compared quantitatively and qualitatively
to separable Floyd–Steinberg error diffusion.

A. Formulation of the Design Problem

We use the matrix gain model to predict the noise shaping
behavior of the color error diffusion system. Based on the matrix
gain model, we obtain the net noise component of the output as

(40)

Since signal shaping is typically desirable or in any case under
user control [18] we only need to concentrate on the noise

shaping. We define the objective function as the average
visually weighted noise energy in the output halftone. We use
a linear spatially invariant matrix-valued model for the human
visual system denoted by the matrix-valued filter function

. We also define a constraint setto ensure that all the
quantization error (represented in a device independent RGB
space) is diffused [18].

Thus, the color error diffusion system for a given
vision model may be solved for an optimum filter

(41)

where

(42)

and

(43)
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B. Optimum Error Filter Design

The objective function of (42) may be rewritten as

Tr

(44)

where we have substituted and used the
fact that for a vector , Tr , where Tr denotes the
trace operation. Also since the trace is a linear functional, (44)
may be further simplified as

(45)

where

Tr (46)

Tr

(47)

Tr

(48)

Tr

(49)

By taking the first partial derivatives of (45) with respect to
for all and setting them to zero, we obtain the first-order
necessary conditions for an optimum solution. This requires that
a scalar function be differentiated with respect to a matrix. To
do this, some results from linear algebra are required.

The following results are stated here without proof. For
proofs of the following, see [17]:

(50)

Tr (51)

Tr (52)

Tr (53)

Tr Tr (54)

Let us consider the terms , , and

(55)

By using (50) and (52)

Tr

(56)

By using (52)

Tr

(57)

By considering , only occurs in three terms ,
and where

Tr

Tr

Tr

(58)
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By using (52)

(59)

By using (50) and (52) as in (56)

(60)

To simplify , we use (54) and (53)

Tr

(61)

By using (54) in (61) and applying (53)

Tr

Tr

(62)

Finally, combining (62) with (60) and (59) and combining
(57) and (56) yields the first-order necessary conditions for an
optimum solution to the minimization of (42)

(63)

These equations may be regarded as a generalization of the
Yule–Walker equations [17] from linear prediction theory to
the matrix case, with a generalized linear spatially-invariant
weighting. The above set of generalized Yule–Walker equations
may be solved for the optimal filter subject to the constraints of
(43) using the steepest descent algorithm [17].

We use a white noise image as an approximation to the un-
correlated noise image . Thus, the required autocorrela-
tion matrices are approximated as

(64)

(65)

where is the two-dimensional Kronecker delta function
[17]. In the optimization, the constraint is enforced by projec-
tion onto the convex constraint set. The convergence behavior of
this algorithm is discussed in [19]. The algorithm is guaranteed
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to converge if the convergence parameter in the descent algo-
rithm is chosen to be small enough [19].

The descent algorithm may be formulated as

(66)

(67)

(68)

where refers to the iteration number, andis the projection
operator that projects the iterate into the constraint set, which
is defined by (43). We use the convergence parameter
in our simulations. The projection operator is defined as [20]

(69)

C. Linear Color Model for the Human Visual System

To obtain a true matrix linear color model, one needs to model
the color processing of the human visual system as a convolu-
tion with a matrix-valued filter . The development of such
a model is beyond the scope of this paper and a topic for future
research. Instead, we use a pattern-color separable model for the
human visual system based on the work of Poirson and Wandell
[14], [21]. The pattern-color separable color vision model forms
the basis for the S-CIELab color space, which has become an
industry standard [22]. The pattern-color separable model first
transforms device dependent RGB values (where R, G and B
are coefficients of standard spectral tristimulus basis functions)
into a space with basis functions represented by the normalized
color sensitivities of the three fundamental cones responsible for
human color vision. The three cones are called the L, M and S
cones respectively, to denote long (L), medium (M), and short
(S) wavelength sensitivities. Thus, at each pixel an RGB value
is transformed into the corresponding cone photoreceptor ab-
sorption rates. The L, M, and S basis functions are referred to
in the literature as the Smith–Pokorny cone fundamentals [23].
The LMS coordinates are then transformed using a color trans-
formation into an opponent representation [24]. The three op-
ponent visual pathways are the whiteblack (or the luminance
pathway), red green and blueyellow pathways (chrominance
pathways). The “ ” in red green and blueyellow should be
read as “minus” and not confused with a hyphen. Thus, white
and black are in opposition, red and green are in opposition, and
blue and yellow are in opposition. Such a representation is very
different from early RGB models where it was believed that hu-
mans respond to the three primary colors [24]. Strong support
for the opponent representation comes from the fact that humans
do not perceive colors that are reddish green or yellowish blue
since the red green and yellow blue visual pathways are op-
ponent channels. Poirson and Wandell [14], [21] found that spa-

tial frequency sensitivity to color patterns could be modeled as
spatial frequency sensitivity of the three channels in the oppo-
nent representation.

Thus, the linear color model consists of

1) a linear transformation ;
2) separable spatial filtering on each channel using a dif-

ferent spatial filter on each channel. This operation may
be regarded as a matrix multiplication in the frequency
domain by a diagonal matrix .

Thus, is computed as

(70)

We now describe the computation of the model parameters for
viewing RGB images on a monitor. First, one needs to account
for the fact that the eight-bit values that are put in the frame
buffer to trigger the red, green, and blue guns of the CRT are
not the RGB tristimulus values of the colors displayed on the
monitor. This is because the CRT has a nonlinear response to
frame buffer values. Thus, we need to pass the RGB values of the
image through this nonlinearity to obtain the RGB coordinates
of the colors displayed on the monitor. This corresponds to the
inverse of gamma correction. The color images are first pre-
processed with this point-nonlinearity before they are halftoned.
This ensures that the colors in the halftone are closest to the
color actually rendered on the monitor.

The linear transformation is computed as the composi-
tion of two linear transformations and . The transforma-
tion is the transformation that converts linear RGB values
into Smith–Pokorny cone absorption rates.is a monitor de-
pendent transformation. The transformationthat transforms
the LMS coordinates into the opponent representation is given
in [14], [21], [22] and is monitor independent. The spatial fre-
quency weighting functions for the three opponent visual path-
ways were obtained for viewing images displayed on the mon-
itor at 72 dots per inch (dpi) at a “normal” viewing distance of
18 in using the parameters given in [22].

D. Simulation Results

Several random initial guesses were tried, and the descent
algorithm was terminated when the changes in the objective
function were below a predefined threshold. Using this method,
one may explore different minimizers (solutions that result in
nearly the same objective function value). The uniformity in
the dot distributions produced by different initial guesses was
different. It has been shown [25]–[27] that frequency weighted
mean squared error alone cannot guarantee optimum dot dis-
tributions. This problem can be alleviated by using threshold
modulation [28]. For the purpose of this work, since we are only
concerned with the noise shaping behavior of error diffusion, we
chose a solution that has a reasonably uniform dot distribution.

Our calibration data used a monitor display , and a
monitor dependent transformation matrix

(71)
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The optimal filter coefficients obtained for this monitor were

The optimal filter that was obtained based on our calibrated
color monitor and was tested on five standard color test images
(Lena, peppers, pasta, fruits, hats). In each case, to evaluate
the noise shaping behavior, we produced undistorted halftones
using the color signal distortion canceling method developed in
Section III-B2. Section III-B2 showed that according to the ma-
trix gain model, the quantization error image in the distortion
canceling method is in fact the uncorrelated noise injection into
the halftoning system. Therefore, we used the error image pro-
duced while halftoning the set of test images with distortion can-
celing schemes using the Floyd–Steinberg error filter and the
optimal filter, respectively, as the noise image in the objective
function of (42). The effective noise shaping gain (in decibels)
of the optimal filter over the separable Floyd–Steinberg filter
may be computed as

(72)

where the numerator and denominator in the argument of the
function are the objective functions computed by using (42)

for the optimal filter and the Floyd–Steinberg filter, respectively.
Sample averages were used to estimate the expectations. Table I
tabulates the noise gain of the optimal filter over using a sepa-
rable Floyd–Steinberg error filter.

Fig. 8(a) shows thepastaimage halftoned using Floyd–Stein-
berg halftoning on each color plane. Fig. 8(b) shows a magnified
view of a portion of the image. Fig. 9(a) and (b) show the cor-
responding results for halftoning with the optimal error filter.
The optimal filter results in less visible halftone noise. It signifi-
cantly reduces color impulses when compared with scalar error
diffusion using filters with scalar coefficients. The halftone noise
patterns produced by conventional Floyd–Steinberg error scalar
filter were significantly more visible when observed on the cali-
brated monitor as compared to the noise patterns produced by the
optimal filter.1 However the proposed design procedure does not
guarantee that the distribution of the color dots is the most regular
possible. It must be emphasized that since the optimal filter
coefficients are dependent on a particular monitor configuration,
the above design process must be applied ona case-by-casebasis.
Since our color model is defined in a device independent color

1Images available at http://signal.ece.utexas.edu/~damera/col-vec.html.

TABLE I
NOISEGAIN OF THE OPTIMAL FILTER ON STANDARD TEST IMAGES

space, our preceding discussion holds for other color spaces as
well. For example, ifwe are working inaCyan–Magenta–Yellow
(CMY) color space (for a printing application), then we can
convert CMY into corresponding CIE XYZ coordinates [24] and
then into the opponent representation. Thus, using a new color
transformation matrix , the optimal filter for this case can be
calculated using the method described in this section.

V. PARALLEL IMPLEMENTATION OF THEERRORFILTER

In this section, we show that an error filter with matrix-valued
coefficients has a parallel implementation, which can increase
throughput by up to a factor of three. A filter with matrix-valued
coefficients can be implemented withconventionalfiltering op-
erations applied in parallel to each component of the vector se-
quence being filtered.

Analyzing (5) and using for the -transform of the feed-
back signal, we obtain

(73)

We represent the filtering using Fig. 10. Each of the filters
, , is a polyphase component of the

multifilter, and represents a conventional scalar filter that can
be derived from the filter coefficients of the multifilterusing
the polyphase decomposition. In fact, .
Since is fixed, the polyphase components of its rows may
be precomputed. Nine polyphase filters are required for the
implementation.

Theresult isasetofconventional filterswithscalarcoefficients,
whichenables thecomponentsof the inputsignalvectorsequence
tobebufferedandfilteredindependentlyof theothercomponents,
in parallel. Since the filters , and are operate in par-
allel, the parallel polyphase implementation is three times faster
thanasequential implementationof (4).Wemayutilize threelow-
bandwidth, low-cost embedded processors instead of one high
bandwidth processor to get the same performance at a lower cost
[13] or use a processor with VLIW or SIMD parallel processing
operations, such as the TMS320C6000 or Intel Pentium MMX,
respectively.Theparallel implementationdoesnot requireshared
circular buffers. Each component of the input vector sequence is
put intoa separate circularbuffer oneachof the three parallel dig-
ital signal processors (DSPs). This allows for fast, low-overhead
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(a)

(b)

Fig. 8. Performance of the separable Floyd–Steinberg filter. (a)Pasta
halftoned with Floyd–Steinberg filter. (b) Magnified portion of halftone.

loop code making the implementation efficient on parallel pro-
grammable DSPs.

VI. CONCLUSION

This paper formalizes the idea that error diffusion may be
approximated as a system that produces frequency distortion
and adds additive noise [29]. The modeling approach gener-
alizes modeling methods for scalar error diffusion [3] to the
vector case. We linearize vector error diffusion based on a “ma-
trix gain model” for the quantizer that accounts for correlations
among the components of the vector error being diffused. We
use this modeling to predict the linear signal distortion and noise
shaping effects of vector error diffusion. Based on the model,
we derive a low-complexity compensation method to eliminate
signal frequency distortion in vector error diffusion. The model
could potentially be used for color halftone compression, in
which one may decide to allocate bits according to the signal
distortion and noise injection profiles predicted by the model.

(a)

(b)

Fig. 9. Performance of the optimal filter. (a)Pastahalftoned with optimal
filter. (b) Magnified portion of halftone.

We develop a model-based error filter design method in which
the objective is to minimize the visual effect of the additive
noise injection produced by vector error diffusion. We cast the
optimal error filter design problem as a generalized weighted
linear prediction problem and derived the set of equations
that may be regarded as a generalization of the Yule–Walker
equations. The solution of the generalized set of equations results
in color error filters with visually optimum noise shaping. The
explicit modeling for the human visual system incorporates a
generalized linear spatially invariant matrix-valued weighting
and is not restricted to the pattern-color separable model [14]
that is used to obtain our filters. Thus, more general linear
visual models could be used if they were available. Future
work could explore the role of the constraints in designing
optimal color error filters. Better results were obtained when
the lossless diffusion constraints were not strictly observed.
Symbolic optimization such as the approach of [30] could be
used to explore constrained design spaces in an automated
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Fig. 10. Parallel polyphase structure for matrix valued error filter. Each output
color component is obtained by filtering the color components of the inputs with
different filters, each with scalar valued coefficients, and then combining their
outputs.i = 0; 1; 2 correspond to the computation of the red, green, and blue
components of the output, respectively.

frameworkwheretheerror filtercanbesimultaneouslyoptimized
to satisfy several constraints.

Finally, we showed that the matrix-valued color error filters,
when put into polyphase form, have an efficient parallel imple-
mentation. Such an implementation is especially valuable when
using conventional embedded digital signal processor architec-
tures.
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