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noise has become the major part of remaining noise after filtering, it is
important to prevent this increase. The RDS is replaced by the IRDS
filter which corrects the thermal noise increase.

Total variances, including sensing-node amplifier noise and reset
noise, can give us a good idea of the interest in using IRDS filter. Their
variance calculation enables us to conclude that the IRDS filter brings
a SNR enhancement of 1, 6 dB compared to the RDS filter.
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A New Transform for the Stabilization and Stability Testing
of Multidimensional Recursive Digital Filters

Niranjan Damera-Venkata, Mahalakshmi Venkataraman,
M. S. Hrishikesh, and P. S. Reddy

Abstract—We present a new transform which, when applied to the de-
nominator polynomial of the transfer function of an unstable multidimen-
sional recursive digital filter (of a special class) will yield a stable polyno-
mial with good preservation of the magnitude spectrum. In fact, the discrete
Hilbert transform (DHT), used to stabilize 2-D and 1-D recursive digital fil-
ters, is a special case of the general multidimensional transform we present
here. We also address the problem of stability testing of a multidimensional
recursive digital filter and show that the new transform may be used to im-
plement a straightforward test for stability of any causal multidimensional
recursive digital filter, having no nonessential singularities of the second
kind.

Index Terms—Multidimensional digital filters, stability, stabilization.

I. INTRODUCTION

The discrete Hilbert transform (DHT) has been used for the stabi-
lization of 1-D and 2-D recursive digital filters. In this brief, we intro-
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duce a transform which is the generalization of the well-known DHT
to multidimensions. It will be shown that such a transform can also
serve as a stability testing tool for any general causal multidimensional
filter, having no nonessential singularities of the second kind [1]. In
Sections IV, VI, and VII, we present some properties of this transfor-
mation, which are valid for 1- and 2-D DHTs but hitherto unknown in
the literature. Possible use of such a transformation for the processing
of three and higher dimensional signals are in the areas of geophysics
[2], [3] and biomedical applications [4], [5]. Design of 3-D recursive
digital filters is discussed in [6].

We assume that thez-transform is defined with positive powers of
z. In other words, we are concerned with the stabilization and stability
testing of multidimensional quarter-plane recursive digital filters with
first quadrant support only. This does not impose any restriction on the
stability testing of general multidimensional filters with nonsymmetric
half plane (NSHP) support, because the necessary and sufficient con-
ditions for stability of these filters are equivalent to the necessary and
sufficient conditions for the stability of a mapping of the NSHP coef-
ficients into the first quadrant [1].

II. NECESSARY ANDSUFFICIENT CONDITIONS FORSTABILITY

In this section, we review the necessary and sufficient conditions for
the stability of a first-quadrant multidimensional recursive digital filter
[1]. LetB(~zzz) be the denominator polynomial of the transfer function of
an N-D recursive digital filter, which has no nonessential singularities
of the second kind [1].

Theorem 1: The filterH(~zzz), with denominator polynomialB(~zzz),
is stable if and only if the following hold.

1) B(~zzz) 6= 0 on Tn, where~zzz = fz1; z2 . . . zNg andTn are
defined as

T
n = fjz1j = 1; jz2j = 1; . . . jzN j = 1g :

2)

B(z; z; . . . z) 6= 0; jzj � 1:

A polynomialB(~zzz) satisfying conditions 1 and 2 is called a min-
imum phase polynomial.

III. T HE NEW TRANSFORM

In this section, we present a new transform, which when applied to a
class of N-D unstable polynomials will yield stable polynomials. The
new transform reduces to the DHT in the case of 1-D and 2-D polyno-
mials. We desire a transform relation between the magnitude and phase
of the discrete Fourier transform of a finite discrete multidimensional
causal sequence. A multidimensional N-D discrete sequencex(~iii) is
causal if

x(~iii) = 0 8ik �
Mk

2
(1)

whereik varies over the setf0; 1; . . . ; Mk�1g, whereMk is the size
along dimensionk.

If x(~iii) is a minimum-phase sequence, then the associated complex
cepstrum is real and causal [1], and the minimum phase response
�(~fff) = 6 X(~fff) is related to the magnitude responsejX(~fff)j by the
relation below (the derivation is similar to that described in [7] and is
omitted)

�(~fff) = �j �DFT t(~iii) IDFT log jX(~fff)j ) (2)
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where

t(~iii) = t1(~iii) + t2(~iii) (3)

where

t1(~iii) =

1; 0 < ik <
Mk

2
; ~iii = 0 exceptik;

for k = 1; 2; . . . ; N

�1;
Mk

2
< ik < Mk; ~iii = 0 exceptik;

for k = 1; 2; . . . ; N

0; for all other values of~iii

(4)

and

t2(~iii) =

1; 0 < ik <
Mk

2
; 0 < im <

Mm

2
~iii = 0; ik; im 6= 0; for k 6= m and

k = 1; 2; . . . ; N; m = 1; 2; . . . ; N

�1;
Mk

2
< ik < Mk;

Mm

2
< im < Mm

~iii = 0; ik; im 6= 0; for k 6= m and

k = 1; 2; . . . ; N; m = 1; 2; . . . ; N

0; for all other values of~iii

(5)

where~fff is the discrete frequency vector. For a causal minimum-phase
polynomialX(~zzz) satisfying the conditions of Section II, the DFT of the
associated sequencex(~iii) satisfies (2). The key to the generalization to
multidimensions from two dimensions is (5), which is a nontrivial ex-
tension of the 2-D “boundary function” [7] to N dimensions. Using (2),
we can construct multidimensional minimum phase polynomials from
nonminimum phase polynomials, while closely preserving the magni-
tude spectrum of the nonminimum phase polynomial . The flowchart
for the computer implementation of the proposed procedure is provided
in Fig. 1. As discussed in [8], in order thatBNT (~zzz) has almost the same
magnitude spectrum asB(~zzz), it is necessary that the size of the fast
Fourier transform (FFT) used to compute the transform be very large,
so that the autocorrelation coefficients ofBNT (~zzz) are almost the same
as those ofB(~zzz). This also ensures that the array elements which were
truncated to getBNT (~zzz) fromB0

NT (~zzz) are negligibly small.

IV. FACTORIZABILITY OF THE TRANSFORMEDPOLYNOMIALS

In this section, we show that if the first-quadrant polynomialB(~zzz) is
factorizable asB(~zzz) = B1(~zzz)B2(~zzz), then the transformed version of
B(~zzz), namelyBNT (~zzz), is also factorizable. Here we assume that the
same order FFT is used along each direction while implementing the
transformation. This does not impose any constraints, as the original
array has to be zero padded to satisfy the causality condition of (1). A
bound on the error due to using a finite-size FFT was established in [9]
for 1-D sequences. A large-order FFT forces the complex cepstrum of
the unstable sequence to satisfy (1).

We know that the transform procedure outlined in Section III yields a
multidimensional matrix equation relating the phase function�(~fff) and
the log magnitude functionlog(jB(~fff)j) for different sliced values of
the discrete angular frequencies~fff . The proposed transform is a linear
transformation which maps samples of a log magnitude function to
samples of its minimum phase response. We can express this as

YYY = TTTXXX: (6)

Fig. 1. Procedure to obtain a minimum-phase version of a nonminimum phase
multidimensional polynomial.

Here,YYY is anN3 � 1 column vector of the new phase samples of the
given polynomialB(~zzz).TTT is the transformation matrix which is square
of orderN3�N3, whereN is the size of the FFT along each direction
used to implement the DHT.XXX is anN3 � 1 column vector of log
magnitude samples of the given polynomialB(~zzz).

LetB(~zzz) be factorizable as the product of two N-D polynomials

B(~zzz) = B1(~zzz)B2(~zzz): (7)

Then

XXX = log (B1(~zzz)B2(~zzz)) = log (B1(~zzz)) + log (B2(~zzz)) = XXX1 +XXX2

(8)
and from (17) and (19), we have

YYY = TTT (XXX1 +XXX2) = TTTXXX1 + TTTXXX2 = YYY 1 + YYY 2: (9)
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Since we reconstruct the polynomial by takingYYY as the phase
(called minimum phase) samples vector and the magnitude samples
jB1(~zzz)jjB2(~zzz)j, we have the transformed polynomialBNT (~zzz) as

BNT (~zzz) = jB1(~zzz)jjB2(~zzz)j exp
(YYY +YYY )

= jB1(~zzz)je
(YYY )jB2(~zzz)je

(YYY )

=B1NT (~zzz)B2NT (~zzz): (10)

In (21),B1NT (~zzz) andB2NT (~zzz) are the transformed polynomials of
B1(~zzz) andB2(~zzz). Thus, we have proven the following theorem.

Theorem 2: If the given N-D polynomialB(~zzz) is factorizable, then
the transformed polynomialBNT (~zzz) is also factorizable, and the fac-
tors of the transformed polynomial are transformed versions of the fac-
tors of the given N-D polynomial.

V. STABILIZATION USING THE NEW TRANSFORM

The following theorem establishes the class of polynomials that may
be stabilized by the new transform.

Theorem 3: The N-D polynomialBNT (~zzz) of any causal N-D poly-
nomialB(~zzz), not having zeros on the unit hypercircle is stable.

Proof: In our new transform, as stated earlier in Section III, the
autocorrelation coefficients ofB(~zzz) andBNT (~zzz) are almost the same,
if we use a large size FFT. When we ensure that the autocorrelation
coefficients are approximately the same for bothB(~zzz) andBNT (~zzz)
we can be certain that ifB(~zzz) has no zeros on the unit hypercircle then
BNT (~zzz) will also not have such zeros [8]. Thus, the stability condition
1 of Section II will be satisfied. We can easily extend the results of [10]
and show thatBNT (1; 1; . . . ; zk; . . . ; 1) 6= 0 whenjzkj � 1, k =
1; 2; . . . ; N if B(1; 1; . . . ; zk; . . . ; 1) does not have zeros on the
unit circle [8].B(1; 1; . . . ; zk; . . . ; 1) will not have zeros on the unit
circle since we assume thatB(~zzz) is free of zeros on the unit hyperdisc.
So we conclude that the transformed polynomialBNT (~zzz) will satisfy
the stability condition 2 of Section II. Since both conditions 1 and 2
of Section II are satisfied,BNT (~zzz) will be stable. Hence the proof of
Theorem 3.

Example 1: We consider an unstable nonseparable polynomial
B(z1; z2; z3) given by

B(z1; z2; z3) = 0:95z1z2z3 � 0:7z1z2 � 0:5z2z3 + 2z3z1

� 1:5z1 + 0:375z2 � z3 + 0:75

which is a (2,2,2) array. The stable polynomialBNT (z1; z2; z3) ob-
tained by processing through the proposed algorithm using (64,64,64)
size FFT is

BNT (z1; z2; z3)

= 0:3563z1z2z3�0:4727z1z2�0:7172z2z3+0:7545z3z1

� 1:0059z1 + :9527z2 � 1:4971z3 + 2:0001:

The polynomialBNT (z1; z2; z3) is stable. This can be shown by using
some of the standard stability tests in the literature [1]. In the following
sections, we will develop a stability test based on the new transform,
and revisit example 1 in Section VII.

VI. UNIQUENESSTHEOREM

In this section, we present an N-D to 1-D transformation by which
any N-D polynomialB(~zzz) can be transformed into a 1-D polynomial
B(z), such that bothB(~zzz) andB(z) have the same autocorrelation
coefficients [3]. We then prove a theorem that says that the minimum

phase polynomial of a nonminimum phase polynomial, if it exists, is
unique. This has been an open problem in the literature [7]. We do
not restrict ourselves to N-D polynomials not having zeros on the unit
hypercircleTn.

Let

P (~zzz) =

M

j =0

M

j =0

. . .

M

j =0

p(j1; j2; . . . ; jn)z
j
1 z

j
2 . . . z

j

N

be an N-D polynomial. The 1-D polynomialP (z) having the same
auto-correlation coefficients as those of polynomialP (~zzz) can be ob-
tained by the transformation [3],z1 = z,zi = zL , (i = 2; 3 . . . N),
whereLi = (2Mi�1 + 1)Li�1 for (i = 2; 3 . . . N). Also, it was
shown that if the N-D polynomial was stable, then the 1-D polynomial
obtained by such a transformation would also be stable [3].

Theorem 4 (Uniqueness Theorem):If an N-D minimum phase poly-
nomial exists, such that it has the same magnitude response as a given
general N-D causal multidimensional polynomial of the same order,
then that polynomial is the unique minimum-phase polynomial corre-
sponding to the given magnitude response.

Proof: Let us assume that there are two multidimensional min-
imum-phase polynomials of the same order denoted byB1(~zzz) and
B2(~zzz), both having the same autocorrelation coefficients as the cor-
responding nonminimum phase multidimensional polynomialB(~zzz).

On applying the form preserving transformation outlined in this sec-
tion, we get two 1-D polynomials which are stable and also have the
same autocorrelation coefficients as follows:

B1(~zzz)
z =z; z =z
���������!B1(z) (11)

B2(~zzz)
z =z; z =z
���������!B2(z) (12)

Li = (2Mi�1 + 1)Li�1 for (i = 2; 3 . . . N). But from 1-D polyno-
mial theory, we know that the two 1-D polynomialsB1(z) andB2(z)
cannot have the same autocorrelation coefficients and be stable simul-
taneously. Therefore, our assumption is not valid. So only one ofB1(~zzz)
andB2(~zzz) is a stable polynomial. Thus, Theorem 4 is proven.

The fact that a minimum phase may not exist at all for certain 2-D
polynomials has been brought out by means of a counter-example [11].
Such counter examples are to be expected in the multidimensional case
also. Using the results of Theorem 4, we have the following.

Corrolary 1: Minimum-phase polynomials are fixed points of the
new transform, with the order of the FFT chosen as discussed in Section
V.

VII. T HE STABILITY TEST

In this section, a test procedure is presented on an arrayBBB based on
the discussion in Section VI. It is required to ascertain whether arrayBBB

is stable or not. It may be noted that the polynomial corresponding to
BBB, namelyB(~zzz), can be allowed to have zeros on the unit hypercircle
Tn

1) Apply the new transform as outlined in Section III to obtain array
AAA.

2) Compare arraysBBB andAAA.

a) If BBB � AAA,thenBBB is a stable array.
b) If BBB 6� AAA, thenBBB is unstable.

Let us now check the stability of the polynomial of Example 1.
Example 2: Here

B(z1; z2; z3) = 0:95z1z2z3 � 0:7z1z2 � 0:5z2z3 + 2z3z1

� 1:5z1 + 0:375z2 � z3 + 0:75:
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Application of the new transform using (64,64,64) size FFT, we get

A(z1; z2; z3)

= 0:3563z1z2z3 �0:4727z1z2�0:7172z2z3+0:7545z3z1

� 1:0059z1 + :9527z2 � 1:4971z3 + 2:0001:

ClearlyBBB 6� AAA, therefore arrayBBB represents an unstable polynomial
B(z1; z2; z3). To test the stability ofA(z1; z2; z3) obtained after the
application of the new transform, we apply the transform again to the
coefficient arrayAAA to yield a new coefficient arrayAAA0

A
0(z1; z2; z3)

= 0:3564z1z2z3 �0:4727z1z2�0:7172z2z3+0:7545z3z1

� 1:0059z1 + :9527z2 � 1:4971z3 + 2:0001:

Clearly,AAA � AAA0. Therefore,AAA represents a stable polynomial. Since
we base our test on the validity of Theorem 4, for all practical purposes,
we would like to state that a higher order FFT would result in closer
preservation of the autocorrelation coefficients and hence yield a more
accurate test for the equivalence condition in step 2 of the test.

VIII. C ONCLUSION

We have proposed a new transform for the stabilization and sta-
bility testing of multidimensional recursive digital filters. The ease with
which the transform may be applied using the FFT makes it an efficient
tool in the stabilization and stability testing of these filters. Also, the
order of the FFT needs to be as high as possible. It may be stressed
that though only a special class of N-D polynomials, not having zeros
on Tn can be stabilized by this method, testing for stability need not
be restricted to such polynomials only. Our stability test is based on
the uniqueness theorem for multidimensional minimum phase polyno-
mials presented in this paper. We also need to use a high-order FFT to
stabilize the class of multidimensional polynomials not having zeros
on the unit hypercircle. In this case a large order FFT, forces the auto-
correlation coefficients to be preserved by the new transformation as in
[8].
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Unbiased LMS Filtering in the Presence of White
Measurement Noise with Unknown Power

Ying Zhang, Changyun Wen, and Yeng Chai Soh

Abstract—This paper presents a new modified least mean squares (LMS)
adaptive filtering algorithm for autoregressive (AR) modeling in the pres-
ence of white measurement noise with unknown power. In the proposed
algorithm, a first-order filter is used to filter the noise-corrupted signal. In
this way, the AR model is augmented to have a known pole which can, based
on asymptotic analysis, be used to extract and eliminate the noise-induced
bias in the standard LMS filtering result, and thus the unbiased parameter
estimation can be achieved.

I. INTRODUCTION

The parameter estimation of an autoregressive (AR) model plays
a very important role in a wide range of applications such as spec-
trum estimation, speech analysis, noise cancelation, and digital com-
munications[1]. In all these applications, the observed signal is usu-
ally corrupted by a white measurement noise. It has been shown that
the standard least-mean-square (LMS) filter, in this case, cannot yield
unbiased parameter estimates of the coefficients in the AR model. To
overcome the bias problem, a-LMS filter was suggested in [3] and
its second-order statistical property was analyzed later in [4], where
a �-LMS filter was proposed. It is shown that when the noise vari-
ance is known, both the-LMS and the�-LMS filters can give unbi-
ased estimates of the AR coefficients, and the�-LMS filter has better
second-order statistics performance than the-LMS filter. However,
the noise variance is hardly available in many practical circumstances.
Thus, it is of theoretical and practical interest to study how one can ob-
tain unbiased parameter estimation for the AR model in the presence
of white measurement noise with unknown power.

In this brief, we propose a modified LMS adaptive filter to remedy
the bias in LMS parameter estimation for AR models in the presence
of white measurement noise with unknown variance. In the design, a
first-order filter is used to filter the noise polluted signal. As a result, a
known pole is artificially inserted into the AR model to be estimated.
Using this known pole, an equation relating the unknown noise vari-
ance to the unknown AR parameters is derived from asymptotical anal-
ysis. By this equation, the estimate of the bias item in the standard LMS
filter can be expressed in terms of the estimates of the AR parameters.
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