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Abstract—We model a degraded image as an original image that
has been subject to linear frequency distortion and additive noise
injection. Since the psychovisual effects of frequency distortion and
noise injection are independent, we decouple these two sources of
degradation and measure their effect on the human visual system.
We develop a distortion measure (DM) of the effect of frequency
distortion, and a noise quality measure (NQM) of the effect of ad-
ditive noise. The NQM, which is based on Peli’s contrast pyramid,
takes into account the following:

1) variation in contrast sensitivity with distance, image dimen-
sions, and spatial frequency;

2) variation in the local luminance mean;
3) contrast interaction between spatial frequencies;
4) contrast masking effects.

For additive noise, we demonstrate that the nonlinear NQM is a
better measure of visual quality than peak signal-to-noise ratio
(PSNR) and linear quality measures. We compute the DM in three
steps. First, we find the frequency distortion in the degraded image.
Second, we compute the deviation of this frequency distortion from
an allpass response of unity gain (no distortion). Finally, we weight
the deviation by a model of the frequency response of the human
visual system and integrate over the visible frequencies. We demon-
strate how to decouple distortion and additive noise degradation in
a practical image restoration system.

Index Terms—Computational vision, human visual system mod-
eling, image quality.

I. INTRODUCTION

I MAGES may be corrupted by degradation such as linear
frequency distortion, noise, and blocking artifacts. These

sources of degradation may arise during image capture or
processing, and have a direct bearing on visual quality. In this
paper, we model degradation to develop efficient methods
for minimizing the visual impact of degradation. We model a
degraded image as an original image which has been subject
to two independent sources of degradation—linear frequency
distortion and additive noise injection. This model is commonly
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used in image restoration. Based on the model, we develop
methods to measure the quality of images and demonstrate
how one may use the quality measures in quantifying the
performance of image restoration algorithms.

We model the distortion (relative to the original image) as
linear and spatially invariant. We model the noise as spatially
varying additive noise. We refer to adegraded imageas an image
degraded by the two-source degradation model. When we speak
of the quality of the restored image, we consider the degraded
image to be the image we are processing with the restoration
algorithm. We will then quantify the degradationin the restored
imageas compared with the original, uncorrupted image.

We develop two complementary quality measures that sep-
arately measure the impact of frequency distortion and noise
injection on the human visual system (HVS). This decoupled
approach allows a designer to explore the fundamental trade-
offs between distortion and noise to improve restoration algo-
rithms, which is not possible with a scalar-valued quality mea-
sure. Previous scalar-valued image quality measures have been
based on signal-to-noise ratio (SNR) as well as linear and non-
linear models of the HVS.

SNR measures, such as peak SNR (PSNR), assume that dis-
tortion is only caused by additive signal-independent noise. As a
consequence, noisemeasures applied directly toa restored image
and its original do not measure visual quality. Quality measures
based on linear HVS models [1]–[4] assess image quality in three
steps. First, an error image is computed as the difference between
theoriginal imageandtherestoredimage.Second,theerror image
isweightedbyafrequencyresponseoftheHVSgivenbyalowpass
contrastsensitivityfunction(CSF).Finally,asignal-to-noiseratio
is computed.Thesequalitymeasures can take intoaccount the ef-
fects of image dimensions, viewing distance, printing resolution,
andambient illumination.Theydonotincludenonlineareffectsof
contrast perception, such as local luminance, contrast masking,
andtexturemasking[5]–[7].

Daly’s visible differences predictor [5] assesses still image
quality using a nonlinear HVS model consisting of an ampli-
tude nonlinearity, a lowpass CSF, and a hierarchy of detectors.
Daly’s predictor produces anerror imagewhich characterizes
the regions in the test image that are visually different from the
original image. The degree of visual difference at each point is
quantified by the intensity at that point. The results of the Daly
model need to be interpreted by visual inspection of the error
image. Daly’s model is well suited for compression. Lubin’s
sarnoff visual discrimination model [6], which is also based on
a nonlinear HVS model, quantifies a wide variety of distortions,
including blocking and quantization effects which are common
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in image compression. Teo and Heeger’s perceptual distortion
metric [8] is similar in spirit to Lubin’s model. These computa-
tionally intensive approaches return either a single parameter or
an error map to represent visual quality.

We develop two measures of degradation—distortion mea-
sure (DM) and noise quality measure (NQM)—based on the ob-
servation that the psychovisual effects of filtering and noise are
separate. Instead of computing a residual image, we compute
a model restored imageby passing the original image through
the restoration algorithm using the same parameters as were
used while restoring a degraded image. We compute the DM in
three steps. First, we find the frequency distortion in the restored
image by comparing the restored and the model restored images.
Second, we compute the deviation of this frequency distortion
from an allpass response of unity gain (no distortion). Finally,
we weight the deviation by a lowpass CSF and integrate over
the visible frequencies.

We compute the NQM in two steps. First, we process the orig-
inal image and the modeled restored image separately through a
contrast pyramid. The contrast pyramid, which is based on Peli’s
work [9], computes the contrast in an image at every pixel and
at spatial frequencies separated by an octave, and models the
following nonlinear spatially varying visual effects:

1) variation in contrast sensitivity with distance, image di-
mensions, and spatial frequency;

2) variation in the local luminance mean;
3) contrast interaction between spatial frequencies;
4) contrast masking effects.
Second, we form the NQM by computing the SNR of the re-

stored degraded image with respect to the model restored image.
The NQM is similar to Lubin’s model, but exhibits several

key differences. The NQM ignores the orientation sensitivity
of the HVS. Based on visual tests, Mitsa and Varkur [3] con-
clude that ignoring orientation sensitivity, i.e., assuming a uni-
form retina, has very little effect on visual quality. This agrees
with Peli [9]. By omitting orientation sensitivity, we greatly re-
duce computational cost by avoiding directional filtering, skew
Hilbert transforms, and model calibration and contrast normal-
ization. Moreover, we use a cosine-log filterbank instead of the
Gaussian pyramid in implementing the contrast pyramid. This
approach is justified in Section VI. Contrast masking is taken
directly into account by using the contrast pyramid.

Section II reviews several quality measures. Section III de-
couples frequency distortion from noise injection in restored im-
ages and defines a distortion transfer function for image restora-
tion systems. Section IV develops the DM which weights the
distortion transfer function to quantify the psychovisual effect
of frequency distortion. Section V reviews several definitions of
contrast, and describes a consistent definition by Peli [9] that un-
derlies the NQM. Section VI defines the nonlinear NQM. Sec-
tion VII illustrates the performance of the NQM using test im-
ages. Section VIII concludes the paper.

II. QUALITY MEASURES FORDEGRADATION BY ADDITIVE

NOISE

Objective measures that correlate with the visual difference
between two images are key in ranking and optimizing image

restoration algorithms. Quality measures should vary monoton-
ically with visual quality. Section II-A reviews SNR and PSNR
measures. Section II-B reviews linear quality measures which
weight the noise in frequency according to a model of the fre-
quency response of the HVS.

A. Conventional Quality Measures: SNR and PSNR

Both SNR and PSNR are mean-squared (-norm) error mea-
sures. SNR is defined as the ratio of average signal power to
average noise power. For an image

(1)

for and , where denotes
pixel of the original (“clean”) image and denotes
pixel of the noisy image. PSNR is defined as the ratio of
peak signal power to average noise power

(2)

for and where is the max-
imum peak-to-peak swing of the signal (255 for 8-bit images).
We assume that the noise is uncorrelated with
the signal.

In many image processing applications, such as compression
and halftoning, degradation in the processed image is not due
solely to additive uncorrelated noise. As a consequence, the cor-
relation between SNR or PSNR and visual quality is known to be
poor [10]. Fig. 2(a) shows thelena image corrupted by additive
white noise, and Fig. 2(b) shows thelena image corrupted with
additive highpass noise (“blue noise” [11]), which is character-
istic of halftoning by error diffusion. Even though both images
have an SNR of 10.00 dB, Fig. 2(b) has higher subjective quality.
Noise measures are commonly misused in standards and the lit-
erature to evaluate image quality when the image has been cor-
rupted by degradation other than additive noise, e.g., blocking
artifacts.

B. Linear Quality Measures: Frequency-Domain Weighting

Several quality measures [2]–[4] perceptually weight the
frequency domain by using the frequency response of a linear
model of the HVS. The HVS, however, is a nonlinear, spatially
varying system. A measure of the nonlinear HVS response
to a single frequency is called the contrast threshold function
(CTF). The CTF is measured over the visible radial spatial
frequencies from 0 to 60 cycles/degree [12]. The CTF is the
minimum amplitude necessary to just detect a sine wave of a
given angular spatial frequency [13]. Inverting a CTF gives
a frequency response, called the contrast sensitivity function
(CSF), which is a linear spatially invariant approximation to
the HVS.
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(a) (b)

(c)

Fig. 1. Example of image restoration system using thepeppersimage as the original. (a) Degraded image (1 bit/pixel), (b) original image (8 bits/pixel), and (c)
restored image (8 bits/pixel). We used the error diffusion halftoning algorithm [21] to produce the degraded image, and the inverse halftoning algorithm [20] to
restore the image.

Fig. 3 shows a bandpass CSF [14], a lowpass CSF [3],
[4], and a CTF. Based on psychovisual tests, the lowpass
CSF model is better for complex images when viewed under
suprathreshold conditions [3], [4]. The bandpass model is
derived from experiments with the subject fixated; under
normal conditions, eye movements restore the lost low fre-
quency sensitivity [15]. Peliet al. [16] provide an excellent
discussion of the measurement and choice of CSF for use
in practical applications.

The CSF can incorporate information about the printing de-
vice and viewing conditions in quality measures. Lin [2] uses
the lowpass CSF to weight the Fourier transforms of the original
image and the degraded image, and then computes a root mean
square error in the frequency domain between the two weighted
images. Mitsa [3] models the processing of cortical simple cells
in the eye as a bank of Gabor bandpass filters. The error image
is decomposed in the filterbank and each bandpass filter output
is weighted according to the lowpass CSF.
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(a)

(b)

Fig. 2. Two corruptedLena images with the same SNR with respect to the
original but with different visual quality. (a) White noise added and (b) filtered
white noise added.

By using the CSF as the weighting function, we define
weighted SNR (WSNR) as the ratio of the averageweighted
signal power to the averageweightednoise power. The images
in Fig. 2(a) and (b) have WSNR values of 11.22 dB and
28.67 dB, respectively, when viewed at a 4visual angle. This
ordering corresponds to their relative visual quality.

Because a CSF is a linear spatially invariant approximation
of the HVS, it cannot quantify nonlinear and spatially varying
effects. It cannot model the change in perceived contrast due
to amplitude components at other spatial frequencies [9], [17].
It also ignores the change in perceived noise level with local
image content. The visibility of a pixel depends on the local
background contrast. This effect, called contrast masking, is ig-
nored by the CSF. Therefore, before applying any noise mea-
sure such as SNR, PSNR, or WSNR, it is crucial to simulate the
nonlinear, spatially varying response of the HVS to the original
image and the processed image.

(a)

(b)

Fig. 3. HVS response to a sine wave at different frequencies. In (a), the bold
line denotes the lowpass modification to the CSF to account for suprathreshold
viewing and the dotted line shows the original bandpass CSF. (a) Contrast
sensitivity functions and (b) contrast threshold function.

III. D ECOUPLINGFREQUENCYDISTORTIONS ANDNOISE

DEGRADATION

Before applying a noise measure such as SNR, PSNR, or
WSNR, it is necessary to account for the sources of degrada-
tion other than additive noise [18]. Otherwise, the other sources
of degradation will be erroneously incorporated into the noise
measure, as demonstrated by Fig. 4. Fig. 4(a) is the originallena
image. Fig. 4(b) sharpens the original image with a filter.
We add highpass noise to Fig. 4(b) to produce Fig. 4(c). The
SNR of Fig. 4(c) relative to Fig. 4(b) is 10 dB. Fig. 4(d) shows
the difference (residual) between Fig. 4(a) and (c). Because the
residual is correlated with the original image, it is inappropriate
to compute an SNR measure of Fig. 4(c) relative to Fig. 4(a). It
is appropriate to compute an SNR measure for Fig. 4(c) relative
to Fig. 4(b), since their difference is noise that is independent of
the original image.

Table I lists WSNR figures for the image in Fig. 4(c) for
five viewing distances. The third column shows the WSNR
relative to Fig. 4(a), while the fourth column shows the
WSNR relative to Fig. 4(b). As expected, the values in the
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(a) (b)

(c) (d)

Fig. 4. Effect of sharpening on SNR measures. (a) Original image, (b) sharpened original, (c) sharpened original + highpass noise, and (d) residual of(c) and
(a). Since the residual of (c) and (a) shown in (d) contains information from (a), applying an SNR measure of (c) relative to (a) would be inappropriate.Since the
residual (c) and (b) consists of signal-independent noise, applying an SNR measure of (c) relative to (b) would be appropriate.

third column are lower than those in the fourth column, be-
cause the residual includes power from the original image.
The WSNR figures relative to the sharpened original are cor-
rect because the residual is uncorrelated with the original
image. The results of Table I show the importance of re-
moving as much image power as possible from the residual
before computing the WSNR of an image.

In this section, we separate sources of degradation in restored
images intonoise injectionand frequency distortion. This de-

coupling enables both effects to be quantified and restoration
algorithms to be assessed. Section III-A defines a correlation
measure between images which we use to quantify the amount
of signal components present in noise. Section III-B derives an
effective transfer function for a restoration system called a dis-
tortion transfer function (DTF). Section III-C gives an example
of computing the DTF for a practical image restoration system.
The DTF is the basis for the distortion quality measure described
in Section IV.
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TABLE I
WSNR FIGURES USING INCORRECT AND

CORRECTRESIDUALS

A. Correlation of the Residual with the Original Image

To quantify the degree to which a residual imageis cor-
related with an original image, we use the magnitude of the
correlation coefficient between them [19]

(3)

where Cov refers to covariance, and and are the standard
deviations of images and , respectively. By using an abso-
lute value in the numerator, we ensure that , with
0 indicating no correlation and 1 indicating linear correlation.
Thus, can be considered to be a measure of linear correla-
tion between two images. The covariance is defined as

(4)

where and denote the means of and , respectively.
A residual image should consist only of independent additive

noise, and should therefore have zero correlation with the orig-
inal. In practice, the correlation will not be exactly zero; this
may cause signal-to-noise ratio measures to be in error. We an-
alyze the effect of correlation on WSNR. We generate an “orig-
inal image” , composed of lowpass filtered noise, and a white
noise image of the same size. We create a noisy, corrupted
image

(5)

where is a gain factor. The residual image is
. We force a prescribed linear correlation between

and by choosing , measure the correlation, and compute
SNR and WSNR for relative to .

Table II shows the results for values ofranging from 1.000
to 1.030. As increases, the correlation increases, and the
SNR and WSNR decrease, as expected. The WSNR falls by
approximately 3 dB as the correlation increases from zero to
0.100. This large variation underscores the importance of the
correlation of the residual and the original image being approx-
imately zero for the WSNR figure to be accurate. We consider

to be approximately zero.

B. The Distortion Transfer Function

We model the blurring in restoration algorithms to create a
noise-free model restored image that exhibits the same blurring
as the restored image. We can then obtain a residual between

TABLE II
VARIATION OF SNRAND WSNRWITH CORRELATION OFRESIDUAL

the restored image and the model restored image that is additive
noise. We model the blur by computing an effective transfer
function for the image restoration system as follows:

• compute the two-dimensional (2-D) fast Fourier transform
(FFT) of the original image and the model restored image;

• divide the model FFT by the original image FFT point-for-
point, for spatial frequencies where the original image
FFT is nonzero. Where the FFT of the original image
is zero, the corresponding frequencies in the computed
transfer function are set to unity;

• compute the absolute value (magnitude) of the complex
quotient to find the 2-D transfer function; and

• radially average the transfer function over annuli of ra-
dius [11] to obtain a one-dimensional (1-D) distortion
transfer function (DTF).

The resulting 1-D DTF reflects the blurring in the restored
image.

C. Computing a Model Restored Image in a Practical System

We address the issue of computing the model restored image
for a practical image restoration method. The model restored
image has similar linear distortion characteristics to the restored
image, but it is noise-free. We first process the degraded image
using the restoration scheme. This results in an image with both
linear distortion and additive noise. The parameters used are
saved, and theoriginal imageis processed with the saved pa-
rameters to produce the model restored image.

We illustrate this approach with an example. We consider an
algorithm which attempts to restore a degraded image using spa-
tially adaptive linear filters [20]. This algorithm actually per-
forms an operation known as inverse halftoning, in which a 1
bit/pixel quantized image is to be restored to an 8 bits/pixel
grayscale image. We use the degradation model to model the
restoration algorithm. We consider the restored image, and at-
tempt to quantify its frequency distortion with respect to the
original.

We compute the DTF for the restoration algorithm in [20].
The algorithm adaptively smooths quantization noise and pre-
serves edge information by using a spatially varying FIR
lowpass filter. We assess the frequency distortion of the algo-
rithm in two steps. First, we save the filter used at each pixel,
while restoring a 1 bit/pixel image. We must be confident that
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(a) (b)

(c)

Fig. 5. Result of modeling a restored peppers image. (a) Residual of the restored image [Fig. 1(c)] minus the original image [Fig. 1(b)]. (b) Model restored image
having the same linear frequency distortion as the degraded image but without noise. (c) Residual of the restored image [Fig. 1(c)] minus the model restored image
[Fig. 5(b)]. The residual in (c) represents noise that is uncorrelated with respect to the model restored image. In all three images, a gain of four was applied for
display purposes.

the degraded image has similar sharpness as the original image
[18]. It may be necessary to preprocess the original with a linear
filter to achieve this. Second, we apply the saved filters to the
preprocessed original to produce the model restored image that
has the same spatial blur as the restored image, but does not in-
clude the injected noise (quantization noise, in this case).

Fig. 1(a) shows the Floyd–Steinberg halftone [21] of the
original peppersimage in Fig. 1(b) which we are trying to

restore. We compute the restored image, as shown in Fig. 1(c),
and save the FIR filter coefficients used at each pixel. Fig. 5(a)
shows the residual between the restored image and the original
image. Strong image edges exist because the restored image is
blurred. Fig. 5(b) shows the model restored image, computed
from Fig. 1(b) using the same filters used to create Fig. 1(c).
Fig. 1(c) shows the residual between the restored image and
the model restored image. The image components are greatly
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Fig. 6. Distortion transfer function of image restoration systems is a function
of radial frequencyf = f + f [20]. The magnitude off is the average
transfer function magnitude over an annulus in the frequency domain with the
average radiusf .

reduced relative to Fig. 5(a). Fig. 6 shows the DTF’s for the
lena, peppers, andbarbara images. All show the marked high
frequency suppression that is characteristic of blurring.

We validate the model for frequency distortion by using the
correlation measure given by (3). Table III shows the correla-
tion between the original image and two residual images: the
difference between the restored image and the original image,
and the difference between the restored and the model restored
image. For the test images, the average correlation is 0.317 for
the actual residual and 0.010 for the modeled residual. On av-
erage, image components have been suppressed by factor of 33
in the modeled residual.

The low correlation of the original image and the modeled
residual permits the use of modeled degraded images as a basis
for WSNR measurements. Table IV shows WSNR measure-
ments for five test images, assuming a maximum spatial fre-
quency in the and directions of 20 cycles/degree, which
corresponds to a typical combination of image resolution, size,
and viewing distance. The first row shows the WSNR of the re-
stored image relative to the original image, while the second row
shows the WSNR of the restored image relative to the model
restored image. The second of these figures is a true measure
of the weighted noise content of the restored images, since the
first figure includes image distortions. As expected, WSNR is
higher when the restored image is compared to the model re-
stored image. It is also more stable across images, varying by
1.25 dB over the test set, compared to a variation of over 8.50
dB when image distortion is not taken into account.

IV. DISTORTION MEASURE

The previous section demonstrates the importance of decou-
pling the frequency distortion and noise introduced by image
restoration algorithms. In this section, we quantify the psycho-
visual effect of frequency distortion by using the lowpass CSF
discussed in Section II and the DTF introduced in Section III-B.
First, we weight the deviation from unity of the DTF by the CSF

TABLE III
CORRELATION COEFFICIENTS FORINVERSEHALFTONE RESIDUALS

TABLE IV
WSNR MEASURES FORINVERSEHALFTONES

to form a visual distortion function. Then, we compute the area
under the visual distortion function to form a distortion measure

(6)

Here, is the radial frequency , where and
are the horizontal and vertical frequencies, respectively;

is the Nyquist frequency; and is the maximum radial fre-
quency included in the DM. We choose to be 60 cycles/de-
gree. The DM penalizes low frequency distortion more heavily
than high frequency distortion, to model perception by the HVS.
Using as an arbitrary reference, we express the DM as

(7)

On a single-processor 167 MHz Sun Ultra-2 workstation,
Matlab 5 requires 10 s to compute the DM for
original and restored images.

V. CONTRAST IN COMPLEX IMAGES

Contrast is a key perceptual image attribute. Measurement
and evaluation of contrast and contrast changes in arbitrary im-
ages are not uniquely defined in the literature. The processing of
images in the human visual system is believed to be neither pe-
riodic nor purely local; therefore, the representation of contrast
in images should be quasi-local as well. For completeness, this
section reviews the development of a robust measure of contrast
in complex images [9]. Section V-A summarizes measures of
contrast in simple images. Section V-B reviews three measures
of contrast for complex images. Section V-C presents Peli’s def-
inition of contrast and shows that this definition is consistent
with subjective experiments on complex images.

A. Contrast Definitions for Simple Patterns

We review the Michelson and Weber contrast definitions for
simple targets in still images. The Michelson contrast [22] of a
periodic pattern, such as a sinusoidal grating, is

(8)
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(a) (b)

(c) (d)

Fig. 7. Bandpass images at (a) 4, (b) 8, (c) 16, and (d) 32 cycles/image.

where and are the maximum and minimum lumi-
nance values, respectively. The Weber contrast, which measures
local contrast of a single target of uniform luminance observed
against a uniform background, is

(9)

where is the change in the target luminance from the uni-
form background luminance . One usually assumes a large
background with a small test target, so that the average lumi-
nance will be close to the background luminance. This assump-
tion does not hold for complex images.

The Michelson contrast definition is inconsistent with the
Weber contrast definition. In the Weber contrast definition,

and . Using these
relations, we express the Michelson contrast as

(10)

to reveal that the Michelson and Weber contrast definitions dis-
agree [9]. The numerator terms in (8) and (10) are the same but
the denominator terms are only equal when , which is
a trivial case. It is difficult to find a consistent definition of con-
trast for complex images.

B. Contrast Definitions for Complex Images

Many definitions of contrast in a complex scene are restricted
to the assessment of contrast changes in an image displayed

in two different ways. Ginsburg [23] defines image contrast
spanning all 256 gray levels as 100%; therefore, linearly com-
pressing the image to span gray levels 0–127 reduces the con-
trast to 50%. With this definition, the mean luminance of the
image decreases with contrast. If the minimum intensity re-
mains zero, then Michelson’s definition in (8) leaves contrast
unchanged relative to compression of the graylevel range.

Hess and Pointer [24] define contrast in terms of horizontal
and vertical spatial frequencies and as

(11)

where is the amplitude of Fourier component
, and is the DC value of the image. This

definition has been applied globally to images and to nonover-
lapping subimages. This approach does not capture the local
nature of contrast changes.

Badcock [25] measures local contrast for complex grating
patterns composed of first and third harmonics. Hess and Pointer
[26] only calculate the contrast around peaks of the first har-
monic and not around valleys. This implicitly ignores the effect
of the local luminance mean on the contrast of the higher har-
monic [9], [17], which we describe next.

C. Local Bandlimited Contrast in Complex Images

The definition of local bandlimited contrast proposed by Peli
[9] provides a consistent definition of contrast. In order to de-
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(a) (b)

(c) (d)

Fig. 8. Simulated contrast images at (a) 4, (b) 8, (c) 16, and (d) 32 cycles/image.

TABLE V
VARIATION IN SPATIAL FREQUENCY

fine bandlimited contrast for a complex image, a bandlimited
version of the image is obtained by filtering the image with a
bank of bandpass filters. In the filter bank, we select a one-oc-
tave bandwidth to model the the cortical bandpass frequency
channels [27].

In the spatial domain, a filtered image can be represented by

(12)

where
linear convolution;

input image;

impulse response of the filter.

For every bandpass filtered image , we define the corre-
sponding local luminance mean image , which is a low-
pass filtered version of the original image that contains the fre-

quency components below the band of . At the given
band of spatial frequencies,

(13)

defines thelocal bandlimited contrast: it assigns a local contrast
at every point in the image and at every frequency channel. Since
human contrast sensitivity is dependent on spatial frequency, the
contrast for each spatial frequency band is calculated separately.
The contrast at each point in the image is calculated separately
to account for contrast variation across the image. As (13) indi-
cates, brightness changes in the image affect the apparent con-
trast. Decreasing intensity over a local area increases the con-
trast more over dark areas than light areas for the same spatial
frequency.

Local bandlimited contrast relates contrast at a particular
band of frequencies with amplitudes at lower spatial fre-
quencies. Thomas [17] validates this approach by using a
1-D grating consisting of a fundamental frequency and the
eighth harmonic. He finds that the apparent contrast of the
high-frequency component changes across the image even
though its amplitude is fixed. The contrast is greater at the
valleys than at the peaks, as predicted by local bandlimited
contrast: high-frequency bands will have a greater contrast
over dark areas where the corresponding points in are
low. Details below threshold in the bandpass filtered image are
assumed to have no relevance in perception [28], but may be
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(a)

(b)

Fig. 9. Effect of noise position on visibility. (a) Lena with spatially localized
white noise added at lower center and (b) with white noise added to feathers at
lower left.

TABLE VI
VARIATION IN SPATIAL POSITION

above threshold in the contrast image, add to image sharpness,
and aid in recognition. This shows the importance of including
contrast effects in a quality measure.

VI. THE NOISE QUALITY MEASURE

In this section, we present a nonlinear noise quality measure
(NQM) that not only accounts for many of the phenomena not

measured by LQM’s, but also can potentially be extended to in-
clude other nonlinear factors. We simulate the appearance of the
original and restored images to an observer. The SNR is then
computed for the difference of the two simulated images as a
measure of image quality. To produce the simulated images,
nonlinear space-frequency processing is performed based on
Peli’s contrast pyramid [9]. While retaining the essential com-
ponents of this scheme, we modify the pyramid in the following
ways:

1) we define a threshold that varies for each spatial fre-
quency band and each pixel in the bandpass images, to
account for contrast masking;

2) we derive global thresholds for each channel based on
the inverse of the CSF in [14] to incorporate information
about the viewing medium, and ambient luminance [13];

3) we account for suprathreshold contrast discrimination ef-
fects explicitly using a contrast masking threshold.

If and denote the simulated versions of the
model restored image and the restored images, respectively, then
the NQM is

(14)

On a single-processor 167 MHz Ultra-2 workstation, Matlab 5
requires 90 s to compute the NQM for model restored
and restored images.

To implement the contrast pyramid, we use a bank of co-
sine-log bandpass filters defined by

(15)

where each filter is centered at a frequency ofcycles/image,
where is an integer. These filters, which have a one-octave
bandwidth, are symmetric on a log-frequency axis, and their
outputs in the frequency domain sum to one. Gabor filters,
which are traditionally used, are not symmetric on a log-fre-
quency axis and a summation of the filter frequency responses
is not flat [9]. Since the filter outputs are summed to obtain
simulated images, the unweighted summation of all channel
responses should be constant over all spatial frequencies.

We use a bank of six filters centered at
cycles/image. The zero spatial frequency (DC) filter is a low-
pass, shifted version of the filter centered at 2 cycles/image and
is given by

(16)

The Fourier transform of the image is multiplied by the fre-
quency-domain transfer functions of the bandpass filters to de-
compose the image into spatial frequency bands. In the fre-
quency domain, the image may be represented as

(17)
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(a)

(b)

Fig. 10. Effect of adding a random function of the noise. (a) Lena with
Gaussian noise added and (b) with a function [see (33)] of the noise in (a)
added.

TABLE VII
EFFECT OFADDING A SPATIALLY RANDOM FUNCTION OFADDITIVE NOISE

where and are the low frequency and high frequency
residuals, respectively. In the spatial domain, this becomes

(18)

where is the image obtained by filtering with the low-
pass filter. The terms are computed by using the filter
transfer functions , defined as

(19)

The high frequency residual may be omitted from consideration
because the eye is virtually insensitive to these frequencies, as
shown in Fig. 3(a).

For every , we define a local luminance mean image
given by

(20)

while the contrast image for each spatial frequency band is

(21)

Figs. 7 and 8 show the bandpass and contrastlena images, re-
spectively. The contrast is greater in the dark regions of low
luminance mean than suggested by the corresponding band-
pass images. We retain all points in the corresponding bandpass
image that have values above the threshold in the contrast image,
and zero points below the threshold.

We derive the thresholds from the CTF. The thresholds are
a function of angular frequency, and therefore depend on the
angle subtended at the eye by the image. The threshold of the
th channel is

(22)

where is the viewing angle in degrees subtended by the image.
This is related to the viewing distanceand the image sizein
each dimension by

(23)

where and have the same units. We make use of the CTF
derived from threshold measurements directly, instead of using
the CSF, which is a linear weighting function derived from non-
linear threshold measurements. In deriving the thresholds for
each channel, we use the unmodified CTF because we will ac-
count for suprathreshold contrast discrimination explicitly by
deriving a set of contrast masking thresholds. By making the de-
pendence of the channel thresholds on the CTF explicit, we can
use the CTF to take into account the effect of physical param-
eters of the display and the surrounding environment on visual
perception at various spatial frequencies [13].

Suprathreshold viewing effects are related to contrast dis-
crimination tasks [29]. We are interested in distinguishing
between contrast components that are above threshold (and
that can therefore be discerned). The contrast value that may
be discriminated from a background contrast depends on the
background contrast [29]. Bradley and Ozhawa [30] further
establish that if we normalize the contrast to be discriminated
and the background contrast at a particular spatial frequency
by the detection thresholds for that spatial frequency, then the
just-discriminable contrast is a fixed function of the background
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contrast. In fact, the function may be approximated with a
straight line with a slope of approximately 0.86 [30]. The same
function is obtained for all spatial frequencies. So, normalized
suprathreshold contrast discrimination may be regarded as
invariant to spatial frequencies.

In our contrast pyramid, suprathreshold effects may be taken
into account directly if we consider the contrast of the simulated
model restored image as background, and the corresponding
contrast component in the simulated restored image as a value
to be discriminated. We can therefore ascertain whether the two
contrast components will be distinguishable. If they are not dis-
tinguishable, then the two values in the corresponding bandpass
images are set to be equal.

Using a linear fit to the suprathreshold contrast discrimina-
tion function of Bradley and Ozhawa [30] gives the just-discrim-
inable contrast as a function of background contrast

and the detection threshold of theth channel

(24)

The indices of the contrast components in theth channel that
have undergone imperceptible change from the contrast of the
model restored image may be represented as belonging to the
set

(25)

where the superscript refers to the model restored image and
the superscript refers to the restored image. The thresholding
is completed by setting the corresponding elements in the band-
pass image of the restored image equal to those in the bandpass
image of the model restored image

(26)

We apply the global thresholds of (22) to the channel images
as follows:

(27)

(28)

(29)

(30)

We then compute the net simulated bandpass images of the
model restored image and restored image as

(31)

(32)

Using and in (14), we compute the NQM.

VII. V ALIDATING THE NOISEQUALITY MEASURES

To validate the noise quality measure, we conducted a two-al-
ternative forced choice experiment. A total of ten images were
altered by adding noise. All images were pixels in
size, and were viewed at a 4 degree visual angle, after printing.

Three observers viewed the images, and we compared their re-
sponses with the predictions of the noise quality measure.

Three tests were performed. In the first test, we added
Gaussian noise with different spatial frequency distributions
(white and highpass), but of the same power, to the same orig-
inal image chosen from a set. The noise power was different for
each image in the set. The two degraded images and the original
were viewed by the observers. Each observer was allotted 10 s
in which to choose which degraded image he or she preferred.
A typical image pair is shown in Fig. 2. SNR, LQM, and NQM
values for this image are tabulated in Table V. For this test, both
the LQM and the NQM produced 100% correlation with visual
results, while SNR predictions were uncorrelated with visual
results, since the noise power was the same in both degraded
images.

In the second test, we added white noise filtered by the
contrast sensitivity function to two different spatial locations in
the original image. This ensures that the SNR and LQM values
are identical for both of the resulting images, while the visual
quality may be different. The two-alternative forced choice
method outlined above was used to compute the correlation
coefficients. SNR and LQM were completely uncorrelated with
the visual results while the NQM produced a correlation of
80%. Fig. 9 shows a typical image pair. Table VI tabulates the
SNR, LQM, and NQM values for one image used in this test.

In the third test, we print two degraded images for each of the
original images. The degradation consists of spatially varying
distortion and spatially varying noise. The degradation in one
image is additive noise generated from a uniform,
Gaussian, or Laplacian random process. The degradation in the
other image is also additive noise that is a spatially
varying function of plus a spatially varying random
process

(33)

where is a sample of a zero-mean truncated Gaussian
random variable in the range . A typical example of a
resulting image pair is shown in Fig. 10. Table VII tabulates the
SNR, LQM, and NQM values for this image pair. SNR produced
a correlation of 0%, the LQM 60%, and the NQM 80%.

VIII. C ONCLUSION

This paper develops a distortion measure (DM) and a noise
quality measure (NQM) to quantify the impact on the human vi-
sual system (HVS) of frequency distortion and noise injection
in image restoration. We derive a 2-D distortion transfer func-
tion for modeling the linear distortion effects present in restored
images. After we radially average the distortion transfer func-
tion, we apply perceptual weighting to generate the DM. For the
NQM, we formulate a nonlinear quasi-local processing model
of the HVS by modifying Peli’s contrast pyramid to measure

1) variation in contrast sensitivity with distance, image di-
mensions, and spatial frequency;

2) variations in the local luminance mean;
3) contrast interaction between spatial frequencies;
4) contrast masking effects.
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We also show how the DM may be calculated in a practical
image restoration system.

The DM and NQM quantify the two key sources of degra-
dation in restored images—frequency distortion and noise
injection. Measures based on SNR and linear HVS models do
not account for frequency distortion and ignore the essential
nonlinear processing of the HVS in the spatial and frequency
domains. We have demonstrated the importance of taking
nonlinear effects into account in the computed quality mea-
sures. Previous measures based on nonlinear HVS models
are tailored to compressed images and are computationally
intensive to compute. We reduce the amount of computation
by not including sensitivity to orientation in our HVS model
[6]. Since our quality assessment is based on independent
measures for frequency distortion and noise, one can optimize
the parameters of an image restoration algorithm to minimize
the visual impact of both these effects. Measures that return
one parameter cannot indicate the relative visual impact of the
degradations that may occur. This is of key importance. An
important open problem is to define a quality metric based on
the two quality measures for frequency distortion and noise
injection.
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