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ABSTRACT

Multi-projector super-resolution is the dual of multi-camera super-
resolution. The goal of projector super-resolution is to produce a
high resolution frame via superimposition of multiple low resolution
subframes. Prior work claims that it is impossible to improve res-
olution via superimposed projection except in specialized circum-
stances. Rigorous analysis has been previously restricted to the spe-
cial case of uniform display sampling, which reduces the problem
to a simple shift-invariant deblurring. To understand the true be-
havior of superimposed projection as an inverse of classical cam-
era super-resolution, one must consider the effects of non-uniform
displacements between component subframes. In this paper, we re-
solve two fundamental theoretical questions concerning resolution
enhancement via superimposed projection. First, we show that it is
possible to reproduce frequencies that are well beyond the Nyquist
limit of any of the component subframes. Second, we show that non-
uniform sampling and pixel reconstruction functions impose funda-
mental limits on achievable resolution.

Index Terms— super-resolution, superimposed projection, im-
age display, alias cancellation, non-uniform sampling

1. INTRODUCTION

Classic camera super-resolution seeks to reconstruct a high resolu-
tion image given several camera captured low resolution images [1].
Superimposed projection is the dual problem of generating multi-
ple low resolution images (called subframes) given a desired high
resolution image. The low resolution images are superimposed to
approximate the desired high resolution image. Examples of super-
imposed projection include Wobulation [2] and multi-projector su-
perimposition [3, 4, 5]. In Wobulation, multiple low resolution sub-
frames of data are generated from each high resolution frame of im-
age data. An optical image shifting mechanism jitters the projected
image of each subframe by a sub-pixel shift. The subframes are pro-
jected in rapid succession so as to appear as if they were projected
simultaneously and superimposed. In multi-projector superimposi-
tion, the output of multiple low resolution projectors are aligned us-
ing camera-based registration. The geometric displacement between
subframes may be modeled with shifts [3] or with more general ge-
ometric transformations [5, 4].

In general, the grid of pixel centers formed by the superimpo-
sition of two or more uniform (or possibly geometrically distorted)
grids is non-uniform (see Fig. 1). Previous work has shown the vi-
ability of super-resolution only in the special case when the grid is
uniform. Majumder [6] claimed to show that resolution enhance-
ment is impossible except when the superimposed grid was uniform
and when pixel sizes are such that no overlap between pixels is al-
lowed. Said [7] rigorously analyzed 1-D superimposed projection

(a) subframes (b) superimposed result

Fig. 1. Superimposed projection.

when the grid of superimposed pixel centers is uniform and criti-
cally sampled (i.e. the high resolution image to be reproduced has
the same number of pixels as the superimposed grid). In this case,
the problem of determining the optimal subframes reduces to shift
invariant pre- ltering on the uniform grid, to undo the effect of the
pixel point spread function. By analyzing the properties of the result-
ing deblurring lters, Said showed that the optimal inverse lters re-
sult in increasing ampli cation of high-frequencies which produces
signals that are beyond the projectors’ range of possible inputs. This
showed that although resolution gain is possible, there are limits to
the maximum achievable resolution even in this special case. How-
ever, the dual of this problem is image deblurring (which is a post-
ltering operation) and not classic super-resolution.

In contrast, this paper addresses the real dual to classic super-
resolution, by examining the mechanism of resolution enhancement
via superimposed projection with non-uniform sampling geometries.
A 1-D superimposition lter bank model is presented in Section 3.1
to properly analyze the more general non-uniform case. We establish
the fundamental theory governing resolution enhancement and alias
cancellation in the non-uniform sampling case (Sections 3 and 4).
We present practical limits to achievable resolution (Section 5) as
well as experimental results with 2-D images (Section 6).

The importance of developing theory addressing the more gen-
eral non-uniform case should be stressed. For Wobulation systems,
cheaper image shifting mechanisms may be designed if the restric-
tion on precise uniform grids is removed. For multi-projector su-
perimposition, the superimposed grid is almost always non-uniform.
Finally, there are limited uniform grid con gurations with N sub-
frames in the 2-D case, and improved image quality may be achieved
in practice by non-uniform oversampling [8].

2. MODELING 1-D SUPERIMPOSITION

Fig. 2 shows our 1-D model of superimposed projection consisting
of N component image projectors. The kth component image pro-
jector is driven with low resolution subframe yk[n], upsampled by
a factor M , ltered using discrete lter R̃(ω), and then offset with
respect to the zeroth image projector by a global shift tk. The shift
is represented in the frequency domain by a multiplication with the
factor e−jωtk . The shifted signals from the component image pro-
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yN−1[n] ↑ M R̃(ω) e−jωtN−1

y1[n] ↑ M R̃(ω) e−jωt1

y0[n] ↑ M R̃(ω)

+ x̂[n]

Fig. 2. Discrete model for 1-D superimposed projection.

jectors are summed to obtain a discrete simulation x̂[n] of the super-
imposed signal. We assume that there is no variation in pixel pro les
or brightness among the component image projectors.

The above model accounts for display sampling, non-uniform
geometric distortion between component image projectors, and pixel
pro les. These quantities are the key determinants of image quality.
In the case of nite extent signals, the entire model may be expressed
using discrete linear operators as:

x̂ =
N−1∑
k=0

Stk RDT
M yk = R

N−1∑
k=0

Stk DT
M yk

︸ ︷︷ ︸
ẑ

(1)

The up-sampling operation is modeled by the matrix operator DT
M ,

the transpose of the downsampling operator DM . Reconstruction is
modeled by the Toeplitz matrix R. Relative fractional shift between
the component projectors is represented by the linear operator matrix
Stk that models a fractional delay.

In the case of uniform critical sampling, x̂ may be formed by
rst rearranging sample values on the high resolution grid and then
ltering with the reconstruction lter. In this case, ẑ represents a

uniform grid of all subframe sample values yk, ∀k with no missing
grid points. Thus, the optimal subframe values may be obtained by
a simple deblurring of the reconstruction lter. There is no aliasing
introduced in the uniform critically sampled case and hence, no need
for explicit alias elimination.

In contrast, for the more general case of non-uniform sampling,
the grid on which ẑ is formed has gaps. This means that the mapping
between the collection of subframe pixels on the high resolution grid
and x̂ is not LTI. Hence, one cannot recover the optimal subframe
values by simple inverse ltering. If the subframes yk are not prop-
erly generated, the term ẑ will contain aliasing that cannot be undone
even if the reconstruction lter could be perfectly inverted.

We propose viewing the optimal subframe generation process
as an analysis lter bank that attempts to both undo the effects of
R̃(ω) and cancel the aliasing due to the non-uniform shifts e−jωtk ;
Fig. 3 shows the analysis bank with regularized pseudo-inverse lter
R̃†(ω) to counter R̃(ω) and analysis lters H̃(ω) to cancel alias-
ing. This lter bank framework thus facilitates a proper analysis
of the non-uniform sampling case and alias cancellation. When
N = M , the lter bank is a non-uniform maximally decimated
bank, for which we can derive the optimal alias cancellation lters
in closed form (Section 3). When N > M , the lter bank is a
non-uniform oversampled lter bank with more pixels in the super-
imposed image than present in the original high resolution image. In
this case, we can derive the optimal alias cancellation lters as the
limit of an operator sequence (Section 4).

ejωtN−1H̃N−1(ω) ↓M

ejωt1H̃1(ω)

↓MH̃0(ω)

↓MR†(ω)x[n]

y0[n]

y1[n]

yN−1[n]

Fig. 3. Analysis lter bank for optimal subframe generation.

3. ALIAS CANCELLATION IN MAXIMALLY DECIMATED
SUPERIMPOSED PROJECTION

When the lter bank is maximally decimated (i.e. N = M ), the
optimal analysis lter coef cients may be derived in closed form as
shown by the following theorem.

Theorem 3.1 A high resolution signal x[n] can be split into N low
resolution subframes yk[n], k = 0, 1, ....N − 1 by ltering with
an analysis bank of lters h̃k[n] followed by decimation by N . The
signals yk[n] can be designed to exactly reproduce x[n], when up-
sampled by N and superimposed with distinct relative shift offsets
tk < N . The optimal subframes yk[n] may be generated using the
following equations:

wk[n] = sinc(n + tk) (2)

ak =
1

N−1∏
q=0,q �=k

sin (π (tq − tk)/N)

(3)

fk[n] = ak

N−1∏
q=0

sin (π (n + tq − tk)/N)

πn/N
(4)

h̃k[n] =
∑

p

fk[p] wk[n− p] (5)

yk[n] =
∑

p

h̃k[p] x[nN − p] (6)

The lter wk[n] is the impulse response of an ideal fractional delay
lter [9]. The proof of the above theorem is omitted due to space

restrictions. However, we validate the result by simulation.

Example 3.1 Let N = 2, t0 = 0 and t1 = 0.5. Let x[n] =
A((cos(2πfn) + 1)/2) + (0.5 − A/2) with A = 0.5 and nor-
malized frequency f = 0.4. The input signal frequency is beyond
the Nyquist frequency of any of the subframes (viz. 0.25).

This con guration is the same one analyzed in [6], where it was in-
correctly concluded that aliasing could not be eliminated. To the
contrary, we demonstrate that aliasing effects of the non-uniform
sampling may indeed be cancelled by a proper choice of subframes
to produce alias-free super-Nyquist frequencies. Fig. 4(a) shows the
two aliased subframes yk(t), and Fig. 4(b) shows the reconstructed
x̂(t).1 Despite yk(t) being aliased, x(t) and x̂(t) are found to be

1All discrete signals have been reconstructed with ideal sinc interpolation
at an 8× oversample factor relative to x[n]. This step eliminates post-aliasing
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(a) aliased yk(t) (b) alias-free x̂(t)
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(c) Yk(ω) (d) X̂(ω)

Fig. 4. Super-Nyquist results of Example 3.1.

virtually identical. The alias cancellation can also be clearly seen in
the frequency domain where the subframes in Fig. 4(c) have an alias
component at f = 0.1 that is eliminated in the superimposed result
of Fig. 4(d).

4. ALIAS CANCELLATION IN OVERSAMPLED
SUPERIMPOSED PROJECTION

When the lter bank is oversampled (i.e. N > M ), there is no
unique choice of closed-form alias cancellation lters. Neverthe-
less, the optimal estimates for the subframes {y∗k} may be obtained
as solutions to the following optimization problem:

{y∗k} = argmin
{yk}

‖x−
∑

k

Stk DT
M yk‖2 (7)

Note the reconstruction operator R is not included above since we
are interested in analyzing the effects of alias cancellation alone. The
optimization problem of Eq. (7) may be solved using the following
iterative algorithm.

y
(0)
k = DM ST

tk
x (8)

x̂(n) =

N−1∑
k=0

Stk DT
M y

(n)
k (9)

∂J

∂y
(n)
k

= −DM ST
tk

(
x− x̂(n)

)
(10)

y
(n+1)
k = y

(n)
k − μ

∂J

∂y
(n)
k

(11)

{y∗k} = lim
n→∞

{y(n)
k } (12)

where μ is the step-size of the descent algorithm. The iterative pro-
cess is guaranteed to converge to an optimal choice of subframes due
to convexity and can be shown to be equivalent to an analysis bank

artifacts introduced by MATLAB’s default connect-the-dots reconstruction.
Also, the in nite impulse responses of Theorem 3.1 were truncated using
appropriate Hamming windows for the implementation.

of lters followed by downsampling [4, 5]. The iterative lter bank
subframe generation also optimally cancels aliasing.

5. ANALYSIS OF RESOLUTION LIMITS

In the section, we consider practical range limits on the subframes by
way of a couple of examples. While Section 3 presented an optimal
closed-form solution to cancel aliasing for N = M , it does not
guarantee that the subframes will all be in the range [0,1] (Example
3.1 happened to have yk[n] ∈ [0, 1]).

To overcome this issue, one can impose limit constraints in the
iterative algorithm of Section 4 by clipping the updates of Eq. (11)
to the range [0, 1] at each iteration. Since this is a projection onto
a convex constraint set, the algorithm still converges to an optimal
solution, and has the added bene t of ensuring practical limits on
subframes yk[n].

Example 5.1 Consider the signal of Example 3.1 with A = 0.6,
N = 2, t0 = 0, t1 = 0.1, f = 0.4

We examine using the closed form solution of Section 3 for this case.
Although the reconstructed signal (Fig. 5(b)) is alias-free, subframe
y1[n] clearly exceeds its operating range [0,1] (Fig. 5(a)). If we in-
stead use the iterative algorithm and optimize the subframes subject
to practical limit constraints (Fig. 5(c)), the reconstructed signal is
unable to cancel the aliasing entirely (Fig. 5(d)) with just N = 2
subframes.

Example 5.2 Consider the signal of Example 3.1 with A = 0.6,
N = 4, t0 = 0, t1 = 0.1, t2 = 0.5, t3 = 0.7 and f = 0.4

We consider simply introducing two additional component projec-
tors so that N = 4 > M . In this case, the computed subframe y1[n]
does not exceed the range [0,1] (Fig. 6(a)), and the reconstructed
signal after applying the iterative algorithm suf ciently cancels the
aliasing (Fig. 6(b)). Thus through oversampling, we demonstrate the
ability to overcome aliasing in the reconstructed signal while ensur-
ing individual subframes lie in their operating range. Note that in
practice, oversampling also helps by reducing post-aliasing recon-
struction artifacts due to non-ideal pixel PSFs even at sub-Nyquist
frequencies [4, 5].

Up to this point, we have considered only the effects of the non-
uniform sampling and alias cancellation. The reconstruction lter
imposes independent limits since we cannot undo the blur exactly in
most cases [7]. In general, increased oversampling allows for bet-
ter alias cancellation and the resolution is limited by our ability to
deblur the reconstruction lter. Clearly, if the low resolution pixel
bandwidth is not greater than the Nyquist frequency of a low reso-
lution subframe, no super-resolution is possible. If however, the low
resolution pixel has a bandwidth greater than the Nyquist frequency
of the low resolution subframe (most practical pixel PSFs have this
property), each low resolution image can be engineered to contribute
frequencies higher than its Nyquist frequency without violating the
laws of superimposition, meaning that each subframe will have low-
frequency aliasing. We have demonstrated that by properly generat-
ing the complementary subframes, we can cancel the low-frequency
aliasing and reconstruct alias-free high frequencies that are beyond
the Nyquist frequency of a single projector subject to physical range
limits. For a given con guration, the amplitudes of sinusoids at var-
ious frequencies that the system can reconstruct without aliasing is a
measure of achievable resolution.
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(a) y1[n] (b) x̂(t)
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Fig. 5. Effect of subframe clipping in Example 5.1.
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Fig. 6. Effect of oversampling in Example 5.2.

6. EXTENSIONS TO 2-D IMAGES

While the discussion has focused on 1-D models, it may be natu-
rally extended to 2-D images and applied to real systems. Fig. 7
presents actual results from experimental multi-projector superim-
position systems for M = 2. The results were generated using a
practical extension of the iterative algorithm of Section 4 to simul-
taneously incorporate deblurring and alias cancellation [4]. The rst
example shows a representative aliased subframe (Fig. 7(a)) and its
corresponding alias-free super-Nyquist result (Fig. 7(b)) for N = 4.
Even more dramatic improvement may be observed in the second
example (Figs. 7(c) and (d)) for N = 10.

7. CONCLUSIONS

We showed that superimposed projection can be modeled using non-
uniform lter banks. In this more general case, the optimal signal
generation problem reduces to the optimal choice of analysis lters
to 1) cancel the aliasing introduced by the non-uniform sampling,
and 2) deblur the pixel reconstruction function. We showed both
theoretically and via simulation that signal frequencies well beyond
the Nyquist frequency of an individual subframe may be accurately
reproduced by using a well-designed subframe generation algorithm.
However, there are limits due to the nite signal ranges of the sub-
frames in practical cases. We demonstrated that the reconstruction
lter and the sampling may independently cause the signal limits to

(a) single subframe (b) super-resolution result

(c) single subframe (d) super-resolution result

Fig. 7. Examples of resolution gain via superimposed projection.

be exceeded, making it practically impossible to perfectly reproduce
all input signal frequencies and amplitudes. Nevertheless, signi cant
gains are indeed achievable through superimposed projection.
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