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Abstract—Halftones and other binary images are difficult to
process with causing several degradation. Degradation is greatly
reduced if the halftone is inverse halftoned (converted to grayscale)
before scaling, sharpening, rotating, or other processing. For error
diffused halftones, we present 1) a fast inverse halftoning algorithm
and 2) a new multiscale gradient estimator. The inverse halftoning
algorithm is based on anisotropic diffusion. It uses the new multi-
scale gradient estimator to vary the tradeoff between spatial res-
olution and grayscale resolution at each pixel to obtain a sharp
image with a low perceived noise level. Because the algorithm re-
quires fewer than 300 arithmetic operations per pixel and pro-
cesses7 7 neighborhoods of halftone pixels, it is well suited for
implementation in VLSI and embedded software. We compare the
implementation cost, peak signal-to-noise ratio, and visual quality
with other inverse halftoning algorithms.

IndexTerms—Anisotropicdiffusion,computationalvision, image
quality metrics, perceptually weighted noise measures.

I. INTRODUCTION

H ALFTONES and other binary images are difficult to
process without causing severe degradation. Exceptions

include cropping, rotation by multiples of 90, and logical
operations. Halftones are difficult to compress losslessly or
lossily; grayscale images, on the other hand, can be com-
pressed efficiently [1], [2]. Inverse halftoning permits a wide
range of operations on halftones. Inverse halftoning recreates
a grayscale image, with a typical wordlength of eight bits,
from a halftone, with a wordlength of one bit. The problem is
underdetermined—an essentially infinite number of possible
grayscale images could have led to the given halftone, even if
the halftoning method were known.

Screened halftones and error diffused halftones have greatly
differing artifacts. As a consequence, inverse halftoning
methods are generally tailored for either screened halftones or
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error diffused halftones. Some methods may be used for both
types of halftones [3]–[5]. In this paper, we focus on error
diffused halftones.

Published inverse halftoning methods for error diffused
halftones include vector quantization [2], projection onto
convex sets [6], MAP projection [7], nonlinear permutation
filtering [3], Bayesian methods [8], and wavelets [5], [9]. Many
methods show good results, but several are iterative, which
require large amounts of computation and memory. Most also
make heavy use of floating-point arithmetic. Among these
algorithms, the wavelet algorithms [5], [9] arguably produce
the best subjective results on error diffused images.

For error diffused halftones, we present a single-pass method
with low computation and memory requirements that produces
results comparable to those seen in the literature. The proposed
method consists of multiscale directional gradient estimation
followed by adaptive lowpass filtering. Most of the processing
is accomplished with integer additions. The algorithm requires
fewer than 300 arithmetic operations per pixel and only seven
image rows are kept in memory at one time. It is well suited for
implementation in VLSI and embedded software.

The proposed method is similar in spirit to the method pro-
posed by Roetling [10]. While both methods attempt to produce
an inverse halftone by using spatially varying linear filtering,
there are several key differences. Our method issingle pass,
employs a highly sophisticated multiscale gradient estimator,
and uses smoothing filters specifically tuned to the characteris-
tics of error diffused halftones. Roetling’s method estimates
gradients from successive approximations to the grayscale
image, which are formed by adaptively smoothing the halftone
controlled by previous gradient estimates. The first estimate of
the gradients is produced by computing pixel gradients from
a lowpass filtered version of the halftone. Thus, the algorithm
is iterative. Unlike [10], our multiscale gradient estimation is
not only single pass but also tuned for error diffusion, and is
much more robust to noise [11]. Also the bank of smoothing
filters in [10] are not optimized for the characteristics error
diffused halftones. Another key difference is that a plurality
of smoothing filters in Roetling’s method [10] are predeter-
mined and stored, whereas the smoothing filters in the proposed
method are data dependent and computed on the fly using a
closed-form design formula that directly yields their filter co-
efficients. In summary, the proposed method is much more so-
phisticated and efficient (all of our filters were designed with
implementation issues in mind) for inverse halftoning error dif-
fused halftones than the algorithm in [10].

1057–7149/00$10.00 © 2000 IEEE
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When we compare our algorithm against wavelet denoising,
we choose [9] as the representative algorithm. Although Algo-
rithm III in [5] is reported to have 0.2 dB higher peak signal-to-
noise ratio (PSNR) for thelena image, we believe that the re-
sults of [9] are visually better. The algorithm in [9] uses large
filters and floating-point arithmetic to compute the wavelet co-
efficients and stores the coefficients in nine floating-point im-
ages of the same size as the halftone. Our algorithm produces the
same quality with an implementation cost that is several orders
of magnitude lower. Our algorithm is ideally suited for low-res-
olution image binarization systems using error diffusion, such
as low cost binary displays, and low resolution scanning appli-
cations [10].

Section II proposes the new inverse halftoning algorithm,
which estimates local image gradients and uses these estimates
to vary the cutoff frequency of a separable smoothing filter.
Section III discusses and analyzes a fast implementation of
the algorithm. Section IV compares the new algorithm with
several existing methods in terms of visual quality, PSNR, and
computational complexity. Section V concludes the paper. This
paper is an expanded version of [12]. A C implementation of
this algorithm is available at http://www.ece.utexas.edu/~be-
vans/projects/inverseHalftoning.html.

II. PROPOSEDALGORITHM

In inverse halftoning, a tradeoff between grayscale resolution
and spatial resolution exists. Halftoning is essentially spatially-
interactive wordlength reduction, usually from eight bits to one
bit per pixel. Inverse halftoning can be viewed as spatially-in-
teractive wordlength expansion. Averaging binary samples
produces a wordlength of bits; e.g., averaging 16 bi-
nary samples produces a four-bit wordlength. Because aver-
aging blurs features within the support of the filter, a tradeoff ex-
ists between grayscale resolution (wordlength) and spatial res-
olution (detail). In inverse halftoning, the number of pixels in
the halftone and the inverse halftone are equal. For an
image, possible binary images and possible 8-bit
images exist. Since there is at most one unique grayscale image
for a given deterministic inverse halftoning method, a maximum
of grayscale images from the much larger set of
possible images can be produced. Each of these images is there-
fore highly redundant.

A lowpass filter imposes a fixed relationship between the
increase in grayscale resolution and decrease in spatial reso-
lution. By spatially varying the tradeoff between increasing
grayscale resolution and decreasing spatial resolution, we
can obtain a large improvement in inverse halftone quality.
In smooth regions, more pixels are included in the average,
thereby increasing the wordlength. Near edges, fewer pixels are
included in the average, thus preserving the edge. Our inverse
halftoning algorithm obtains smooth regions (with many levels
of gray) and sharp edges (with fewer levels of gray) by using
spatially-varying linear filtering. The amount of smoothing
performed by the filter at each pixel is controlled by a diffusion
coefficient computed from the image gradients. The algorithm

Fig. 1. Filtering in the inverse halftoning algorithm.

is a form of anisotropic diffusion[13], which was developed
for robust multi-scale edge detection.

The basic idea in our proposed approach is to apply
a separable linear filtering operation at each pixel in the
halftone image. First, we design a highly customized family
of smoothing filters, with frequency responses tailored to
smoothing error diffused halftones. The family of filters is
parameterized by a single parameter (control function). Our
smoothing filter coefficients may be computed on the fly
directly from the control function. Second, we design fixed
gradient estimators for theand directions. These filters are
designed to be bandpass in the direction of gradient estimation.
Third, in order to increase the robustness of our directional
gradient estimators to noise, we use two bandpass filters in
each direction to detect small-scale and large scale edges,
respectively. The gradient estimate is computed by combining
the estimates of the two gradient estimation filters to maximize
noise rejection. Fourth, we relate the directional multiscale
gradient estimator outputs to the control function by a simple
affine relationship. Last, at each pixel a separable smoothing
filter is applied depending on the control function computed
from the gradient estimator outputs.

Fig. 1 shows the steps in applying the spatially varying linear
filter. Stage 1 computes gradients at two scales in both the hor-
izontal and vertical directions. Stage 2 correlates the
gradient estimates to give maximum output when a large gra-
dient appears in both scales, such as at a sharp edge. We refer to
the correlated estimates ascontrol functions. Stage 3 constructs
an FIR filter according the control functions. In each direction,
the amount of smoothing increases as the estimated image gra-
dient decreases. Smoothing occurs parallel to horizontal and
vertical edges but not across them, thereby preserving edges in
one direction while increasing grayscale resolution in the other.
Stage 4 applies the FIR filter.

Section II-A discusses the design of a family of parameter-
ized customized smoothing filters. These filters are designed to
have low implementation complexity, and a frequency response
tailored for error diffused halftones. Each filter in the family is
designed to be parameterized by a single parameter, that con-
trols its frequency response. Section II-B discusses the design
of the multiscale gradient estimation filters. The output of these
filters is combined to produce a control function that is able to
choose the best parameterized smoothing filter at each pixel.
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The inverse halftone is the result of applying appropriately (ac-
cording to the control function) chosen smoothing filters at each
pixel.

A. Smoothing Filter Design

We propose the following general criteria for the smoothing
filter:

• FIR with small fixed size;
• simple to generate;
• separable;
• cutoff frequency determined by a single parameter;
• frequency response tailored for halftones.

Through testing on a set of eight natural images, we found that
a filter provided enough smoothing for good results.

Limit cycles are artifacts often present in halftones. Limit
cycles should be suppressed in the inverse halftone; otherwise,
they will lead to undesirable texture. In Floyd-Steinberg
error diffusion, artifacts are particularly likely to occur at

, and, to a lesser extent, [14], where
denotes horizontal and vertical spatial frequency,

respectively. We suppress these tones by placing zeros in the
smoothing filter at these frequencies. Halftones produced using
Jarvis error diffusion are less likely to contain these tones
[14]. Because the smoothing filter is separable, a zero in the
one-dimensional (1-D) prototype becomes a two-dimensional
(2-D) (line) zero in the 2-D composite filter. By placing a
zero at in the filter, for instance, we obtain a line zero at

in the composite filter.
To preserve the image mean (brightness), the gain of the filter

must be unity at dc, which constrains the filter at dc and. We
use a symmetric filter for linear phase [15]. We constrain the
maximum passband ripple to ensure that the inverse halftone is
a faithful reproduction of the original image. A filter with an ex-
cessively peaked passband produces falsely sharpened images.
We found empirically that restricting the ripple to ( 0.59
dB) produced high quality images that were not falsely sharp-
ened. The maximum stopband gain was specified as 0.05 (26
dB), so that the total noise power in the filter output decreases
monotonically as the cutoff frequency of the filter is lowered. If
the maximum stopband gain is not specified, then it is possible
to design a filter whose cutoff frequency is lower than that of
filter , yet whose output has a higher noise power for the same
input. This produces poor inverse halftones, since the reduction
of quantization noise is no longer inversely proportional to the
local image gradient. Since the smoothing filters are designed to
be separable and linear phase, the coefficients in each dimension
have the form . By imposing the constraints at
dc and and minimizing the required computation, the filter
response in each dimension is

(1)

where and are two parameters that must be chosen so
that satisfies the passband and stopband specifications.
This is theone-dimensional prototypeclass. We construct two

TABLE I
PARAMETERS OF THESMOOTHING FILTERS

filters from the class at each pixel of the input image, one for
each of the and directions. In the following analysis, we
refer exclusively to the filter. The filter is constructed in
the same way.

We design a family of lowpass filters that meet the specifi-
cations. We employ sequential quadratic programming [16] to
minimize the maximum stopband gain with respect to parame-
ters and , subject to a constraint on passband ripple. This
leads to filters that are near-optimal in achieving the lowest tran-
sition width for the given filter size, passband ripple, and stop-
band gain. We design ten filters, each with a different desired
cutoff frequency , as shown in Table I. For each, we fix the
passband ripple at0.05 and adjust the stopband edgeto the
lowest value possible, subject to a maximum stopband gain of
0.03. We find filters with the shortest transition width that sat-
isfy the passband and stopband constraints.

Since we require the filter to be determined by a single pa-
rameter, we seek a functional relationship betweenand
given by Table I. The lowest-order polynomial that gives an ad-
equate fit for vs. is

(2)

The filters in the continuous set defined by (1) and (2) have
cutoff frequencies that vary from to , unity
gain at dc, and a zero at . The maximum passband ripple is

6.2% ( 0.52 dB), and the maximum stopband gain is 0.045
( 27 dB). Thus, the performance of the entire family is within
the original specifications, despite the approximation of (2).

Fig. 2(a) shows the originalLenahalftone. Fig. 2(b)–(d) show
the halftone filtered with three filters from the family, with the
same in the and directions. The suppression of the compo-
nents at , and is visible above the hat (where
the checkerboard pattern at is prominent) and in the
cheek (where vertical stripes at are objectionable). No-
tice the increasing smoothness of the filtered image with de-
creasing . The shoulder in Fig. 2(d) is quite smooth, whereas
the feathers and eyes in Fig. 2(b) are clear and sharp. Therefore,
the filter family provides a range of smoothness needed to pro-
duce good inverse halftones.
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(a) (b)

(c) (d)

Fig. 2. Effect of the smoothing filter cutoff frequency on image smoothness. The Lena halftone is filtered with three different filters from the family using the
given parameters. The filter parameterx is computed fromx using (2). (a) Original Lena halftone. (b)x = 1:40 () f = 0:46f . (c) x = 2:73 ()

f = 0:15f . (d) x = 3:40 () f = 0:065f .

B. Gradient Estimator Design

The Gaussian filter is the optimal presmoothing filter for
gradient estimation in continuous signals in that it provides the
best localization of gradients for a given range of scales [17].
In halftones, high-frequency quantization noise and strong idle
tones introduce additional requirements on the presmoothing
filter besides the conjoint minimization of spatial domain and
frequency domain variances. We address the additional require-
ments in the design of our pre-smoothing filters. Although we
make no claims about the optimality of these filters, we have
found that they give better performance than Gaussians of the
same size. The impulse responses of the resulting gradient
estimators are very similar to those proposed as optimal by
Canny [18].

To improve robustness to noise, we estimate gradients at two
scales and correlate the results across scales. Large, sharp edges
appear across scales, whereas noise does not [11]. For eight
test images, gradient estimation at two scales gave the best

Fig. 3. Coefficients of the gradient estimation filters in thex direction. The
superscripts “small” and “large” refer to the scale. They filters are transposes
of thex filters.
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(a) (b)

Fig. 4. Magnitude responses of the gradient estimation filters. The peak response and lowpass cutoff frequencies are approximately 0.32f and 0.090f for the
small-scale estimator and 0.24f and 0.066f for the large-scale estimator. (a)h and (b)h .

performance. Using a third smaller scale increased noise in the
inverse halftone. The specifications of the gradient estimation
filters are

• line zeros at , and ;
• maximum stopband gain of 0.03;
• peak passband gain of 1;
• narrowest possible passband for a given filter size.

The filter passband is made as narrow as possible to best dis-
tinguish between the two scales. Each filter is separable. In the
direction in which gradients are estimated, the filter is band-
pass, with zeros at dc and the Nyquist frequency. In the direction
perpendicular to the direction of gradient estimation, the filter
is lowpass. The filters are given in Fig. 3. The frequency re-
sponses of the two filters are shown in Fig. 4. The near-linear
rise of the response with frequency close to dc conforms to the

response of gradient estimators. We can see the line zeros
at the band edges, and discern the equiripple behavior in the
large-scale filter shown in Fig. 4(b).

At each pixel of the input image, we estimate gradients from
the halftone using the filters , and to
produce outputs , and , respectively.
To correlate the gradients across scales, we compute the control
functions according to the products

(3)

We weight the large-scale gradients more heavily than the
small-scale gradients to suppress small-scale noise. This pro-
duces slightly smoother, better quality inverse halftones than
if equal weighting were used. Since each gradient estimator is
linear, its output is proportional to its input. Each product in (3)
is therefore proportional to the cube of the true image gradient.
We find the cube root of the product so that the control function
varies linearly with the gradient.

A perfect multiscale detector would produce identical esti-
mates from both images. The output of a practical detector,
however, is contaminated by noise in the halftone. This is
demonstrated in Fig. 5, which shows gradients estimated from
the original and halftoned versions of thepeppersimage. We

(a) (b)

(c) (d)

(e) (f)

Fig. 5. Gradients estimated frompeppersimage. (a)e (original image);
(b) e (halftone); (c)e (original image); (d)e (halftone); (e)e
(original image); and (f)e (halftone).
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use modified Floyd–Steinberg halftoning to give an unsharp-
ened halftone [19].

Fig. 5(a) and (b) show the small-scaledirection gradients
computed from the original image and halftone, respectively.
Fig. 5(b) is noticeably noisier than Fig. 5(a) but also sharper.
Fig. 5(c) and (d) show the large-scaledirection gradients com-
puted from the original image and halftone, respectively. The
noise is less noticeable in Fig. 5(d) than in Fig. 5(b) because
the large-scale filter removes more of the quantization noise
than the small-scale filter, but the image edges are not as sharp.
Fig. 5(e) and (f) show the direction control functions com-
puted from the original image and halftone, respectively. By
correlating across scales, we obtain most of the noise rejection
of the large-scale gradient image, while retaining small-scale
image edge information.

The and control functions, and , determine the
cutoff frequencies of a separable smoothing filter, whose char-
acteristics are described in Section II-A. We require a relation
between and . To reduce computation, we use the linear
relation (the relation is analogous)

(4)

When the gradient magnitude is low, the image is smooth, and
therefore the cutoff frequency of the lowpass filter should be
low. This requires to be at the top of the allowable range:

(see Table I). When the gradient magnitude is high,
should be at the bottom of the allowable range: . We

start with , and varied them while monitoring
the visual quality of test images. The best results were achieved
when and .

III. A LGORITHM IMPLEMENTATION

To reduce computation, we compute from using
Horner’s form of (2)

(5)

We then construct the prototype filter according to (1), ignoring
for the moment the factor of . Each coefficient
is a floating-point number in the approximate range .
We scale each coefficient by the factor 1024 , and convert
it to an integer by discarding the fractional part. This results
in at most a 13-bit signed integer, apart from the fixed central
coefficient, which is 14-bit. The reason for this conversion is to
permit application of the filter using integer arithmetic, which
is quicker than floating-point arithmetic on most hardware.

The and prototype filters are applied separably to the
neighborhood centered on the current pixel. At the boundaries
of the image, three pixels are replicated by mirroring to simplify
the filtering. Applying the filters separably obviates the need to
construct the equivalent 2-D filter. A 2-D filter would require
49 integer multiplications for its construction, and 48 integer
additions for its application, per pixel. Applying the filters sep-
arably requires 42 integer additions in thedirection, followed
by seven integer multiplications and six integer additions in the

direction, per pixel. Thus, 42 integer multiplications per pixel
are saved.

Fig. 6. Block diagram of the inverse halftoning algorithm. The filter applied
at each pixel is determined by operation shown in Fig. 1. Because all operations
are local, the algorithm is well-suited for implementation in VLSI or embedded
software.

Each of the seven outputs of thefilter is at most a 16-bit
signed integer; each is multiplied by one coefficient from the

filter, yielding at most a 29-bit signed integer product, apart
from the central product, which may be 30-bit. The seven
products are then summed, yielding at most a 32-bit signed
result, which is a common integer wordlength for general pur-
pose hardware. The coefficient quantization has no measurable
effect on the final results.

The filtered output pixel is converted to afloat and
scaled. The scaling simultaneously accounts for the ignored
factor in (1) (and the corresponding factor from
the filter), the scaling factor used in converting the filter
coefficients to integers, and the requirement that the output
pixels be in the range . Clipping enforces this range,
before the pixel is rounded to the nearest integer and converted
to anunsigned char (single byte).

Since the halftone is binary, we implement integer multi-
plication using integer addition. The number of integer addi-
tions depends on the image: 30 for all-black halftones, 128 for
a mid-gray halftone, and 226 for all-white halftones. In com-
puting the cube roots in (3) to derive theand control func-
tions, we use bilinear approximation, followed by two itera-
tions of Newton-Raphson approximation, which gives results
accurate to better than 0.4%. For each cube root, we require
a total of four additions, seven multiplications, and two divi-
sions (all floating-point). We need three floating-point multi-
plications and additions for (5) in each direction. We need one
floating-point division to normalize (1) in each direction. The
arithmetic operations required per pixel are

• 30–226 integer additions;
• seven integer multiplications;
• 34 floating-point additions;
• 22 floating-point multiplications;
• six floating-point divisions;
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(a) (b)

Fig. 7. OriginalLenaimage and its halftone. (a) Original image and (b) Floyd–Steinberg halftone.

(a) (b)

Fig. 8. Inverse halftonedLenaimages. (a) Proposed algorithm, PSNR 31.34 dB. (b) Wavelet algorithm, PSNR 31.47 dB.

The algorithm also requires 303 increment (++) operations. For
a image, algorithm executes in 2.9 s on a 167 MHz
Sun UltraSparc-2 workstation. The Bayesian [8] and wavelet
[9] algorithms require 18 s and 180 s, respectively [4]. All algo-
rithms were implemented in C.

Execution proceeds in raster fashion, one row at a time. Seven
image rows are required for the filters; they are kept in theimage
storage areaof size bytes, where is the number
of image columns. There are six more columns in the storage
area than in the image itself because of the mirroring extension
of three pixels at the image boundaries. Each image pixel re-
quires one byte of storage. For a image, 3626 bytes
of memory are allocated for image storage. A block diagram of
the dataflow for an embedded (low memory) implementation of
the proposed algorithm is shown in Fig. 6.

IV. RESULTS

Fig. 7(a) shows the originallena image,1 while Fig. 7(b)
shows the Floyd–Steinberg halftone. Artifacts above the hat
(containing tones close to ) and in the cheek (con-
taining tones close to ) are visible. Fig. 8(a) shows
the result of inverse halftoning Fig. 7(b) using the proposed
algorithm. The image shows a range of smooth and sharp
areas; compare the the interior of the shoulder with that of
its edge where it overlaps with the mirror. Artifacts are still

1Images referred to as “original” have been halftoned by the printing process
used to render the figures on the paper. All of the images are therefore of low
spatial resolution(512 � 512) and have been reproduced at as large of a dot
size as possible to mitigate the effect of the printer. The images are best viewed
by holding the page further from the eye until the halftone patterns due to the
rendering vanish.
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(a) (b)

Fig. 9. Originalpeppersimage and its halftone. (a) Original image and (b) Floyd–Steinberg halftone.

(a) (b)

Fig. 10. Inverse halftonedpeppersimages. (a) Proposed algorithm, PSNR 31.43 dB. (b) Wavelet algorithm, PSNR 30.40 dB.

visible in the area above the hat, where the Floyd-Steinberg
halftone is quasiperiodic. Fig. 8(b) shows the results of the
wavelet-based algorithm. The wavelet image looks somewhat
more natural, but the edges are not as sharp. The increased
noise is particularly visible in the cheek and nose.

Fig. 9(a) shows the originalpeppersimage, while Fig. 9(b)
shows the Floyd-Steinberg halftone. Fig. 10(a) and (b) show
the inverse halftones generated by the proposed method and the
wavelet method, respectively. The image produced by the pro-
posed method has sharper edges: the chile pepper at the left is
more distinct, as is the stalk of the bell pepper.

Fig. 11(a) shows the originalBarbara image, and Fig. 11(b)
shows the Floyd-Steinberg halftone. Fig. 12(a) and (b) show
the inverse halftones generated by the proposed method and
the wavelet method, respectively. TheBarbara image contains

strong high frequencies that effectively cannot be recovered
from the halftone, e.g., the stripes in the trousers. The proposed
algorithm retains the sharp edges of the table leg and the books,
and the skin on the face and arms is quite smooth. The edges in
the wavelet image are not as sharp, and smooth areas are noisier.

Table II compares memory usage, computational complexity,
and PSNR figures of merit for four inverse halftoning algo-
rithms and the proposed algorithm. Table II shows that the pro-
posed algorithm has very low memory requirements. The com-
putational complexity of the proposed algorithm is also very low
compared to methods that have comparable visual quality. The
large improvement in PSNR for thepeppersimage is due in part
to an error in the original image. This error was corrected for
this work, and was reported to the authors of the wavelet-based
method [9].
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(a) (b)

Fig. 11. OriginalBarbara image and its halftone. (a) Original image and (b) Floyd–Steinberg halftone.

(a) (b)

Fig. 12. Inverse halftonedBarbara images. (a) Proposed algorithm, PSNR 24.61 dB. (b) Wavelet algorithm, PSNR 24.14 dB.

TABLE II
COMPARISON OFINVERSEHALFTONING METHODS FOR ANN� N HALFTONE

V. CONCLUSION

We have presented 1) a fast inverse halftoning algorithm,
and 2) a new multiscale gradient estimator for error diffused
halftones. The algorithm produces high quality images from

error diffused halftones at low computational cost. The control
functions derived from the new multiscale gradient estimator
determine the horizontal and vertical cutoff frequencies of a

smoothing filter applied to the halftone. The proposed al-
gorithm not only achieves visual quality and PSNR results com-
parable with best algorithms in the literature, but does so at a
fraction of the computation and/or memory cost.
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