
Color Error-Diffusion
Halftoning

What differentiates it from grayscale error diffusion?

Grayscale halftoning converts a continu-
ous-tone image (e.g., 8 bits per pixel) to a
lower resolution (e.g., 1 bit per pixel) for
printing or display. Grayscale halftoning by

error diffusion uses feedback to shape the quantization
noise into high frequencies where the human visual sys-
tem (HVS) is least sensitive. In color halftoning, the ap-
plication of grayscale error-diffusion
methods to the individual colorant
planes fails to exploit the HVS re-
sponse to color noise. Ideally the
quantization error must be diffused
to frequencies and colors, to which
the HVS is least sensitive. Further it
is desirable for the color quantization
to take place in a perceptual space
so that the colorant vector selected
as the output color is perceptually
closest to the color vector being
quantized. This article discusses the
design principles of color error diffu-
sion that differentiate it from
grayscale error diffusion, focusing on
color error diffusion halftoning sys-
tems using the red, green, and blue
(RGB) space for convenience.

Background
Color error diffusion is a high-quality method for the
color rendering of continuous-tone digital color images
on devices with limited color palettes such as low-cost
displays and printers. For display applications the input
colorant space is a triplet of RGB values and the choice of
output levels (i.e., the color palette) is a design parameter.
For printing applications the input colorant space is a
quadruple of cyan, magenta, yellow, and black (CMYK)
values and the output levels are fixed. For example, for a
bilevel CMYK printer there are 16 possible output colors.
In this article we use an input RGB color space and dis-

cuss binary error diffusion. This allows us to concentrate
the exposition on the essential properties of color er-
ror-diffusion system design without having to focus on
the issues of color palette design and device dependent
nonlinear color transformations. However, most of the
results can be easily extended to multilevel images and
other color spaces.

The application of grayscale er-
ror-diffusion methods to the individ-
ual colorant planes fails to exploit the
HVS response to color noise. Ideally
the quantization error must be dif-
fused to frequencies and colors, to
which the HVS is least sensitive. Fur-
ther it is desirable for the color
quantization to take place in a percep-
tual space so that the colorant vector
selected as the output color is percep-
tually the closest to the color vector
being quantized. In this article we
discuss each of the above two design
principles of color error diffusion that
differentiate it from grayscale error
diffusion. We have implemented
these design principles in a freely dis-
tributable digital halftoning toolbox
in MATLAB at http://www.ece.

utexas.edu/~bevans/projects/halftoning/toolbox/in-
dex.html.

Analysis of Color Error Diffusion
Figure 1 shows the system block diagram for color er-
ror-diffusion halftoning. In Figure 1, each signal is
vector valued, e.g., a vector of RGB values. The quan-
tization error e m[ ] is fed back, filtered by the error filter~( )h m , and added to the input continuous-tone image
x m[ ]. The net effect is to diffuse the quantization error
frequencies and colors.
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The error filter ~( )h m has matrix-valued coefficients,
and we use a ~ to differentiate a matrix from a vector. The
matrix-valued sequence~()h ⋅ is defined on a causal support
set � with ( , )0 0 ∉�. If the vector color error-diffusion
halftoning system were applied separately to each color,
then the coefficients of~( )h m would be diagonal matrices.
We will be handling the more general case that the coeffi-
cients of ~( )h m are not diagonal matrices to account for
diffusing the quantization error to other colors. The error
filter~( )h m is a two-dimensional multifilter, and its output
is defined by a matrix-vector convolution

[ ]~ ( ) ~( ) ( )h * e m h k e m k

k

= −
∈
∑

�

.
(1)

In the z-domain, the matrix-vector convolution becomes
a linear transformation

[ ]Z ~ ( ) ~( ) ( ).h * e z H z E z=
(2)

Modeling Color Error Diffusion
The sole nonlinearity in the vector color error
diffusion system in Figure 1 is the quantizer,
which can be linearized by modeling its effect
on the input signal (the original image) and
by modeling its injection of quantization
noise into the system. The quantizer effect on
the input signal is modeled by a constant lin-
ear transformation (gain) denoted by a ma-
trix ~

K. This matrix gain is applied only to the
signal components of the quantizer input.
The injection of quantization noise is mod-
eled as spatially varying additive noise n m( ).
The additive noise is applied only to the noise
components of the quantizer input [1]. The
noise components of the quantizer input are
those that are uncorrelated with the input sig-
nal. We refer to this matrix gain plus additive
noise model for the quantizer as simply a ma-
trix gain model.

Figures 2 and 3 show the signal and noise
paths, respectively, of the vector color error
diffusion system linearized by the matrix gain
model for the quantizer. This matrix gain
model is a generalization of modeling the
quantizer in a sigma-delta modulator [2] and
grayscale error diffusion [3], [4]. Correlation
among the signal color planes is represented
by the off-diagonal terms in the matrix~

K. Ma-
trix ~

K is chosen to minimize the error in ap-
proximating the quantizer with a linear
transformation, in the linear minimum
mean-squared error (MSE) sense [1]

~ min ( ) ~ ( )~K b m Au m
A

= −





arg E
2

.
(3)

The solution to (3) when b m( ) and u m( ) are
wide sense stationary processes is [1]

~ ~ ~
K C C

bu uu
= −1

(4)

where ~
C

bu
and ~

C
uu

are covariance matrices. As a direct
consequence of this modeling [5], the noise process
n m( ) due to the signal approximation error is
uncorrelated with the signal component of the quantizer
output u s ( )m . Color error diffusion is analyzed by as-
suming a matrix gain of ~

K for the signal path and a ma-
trix gain of ~

I (identity matrix) for the noise path. This
corresponds to using the estimator to estimate signal
components in the output of the quantizer from signal
components at its input, and assuming an uncorrelated
noise injection to model the noise [1]. Analyzing Fig-
ures 2 and 3 in the frequency domain using z-transforms
yields the relationships [1]

( )[ ]B z K I H z K I X zs ( ) ~ ~ ~( ) ~ ~ ( )= + −
−1

(5)
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� 1. System block diagram for vector color error-diffusion halftoning. Here,
~
h

represents a fixed 2-D finite element response error filter with scalar or ma-
trix valued coefficients. The vector m represents the 2-D index ( , )m m1 2 . The
quantizer Q( )⋅ performs scalar or vector quantization.

� 2. System block diagram for the signal path obtained by substituting the ma-
trix gain model for quantizer. Here, z ms( ) represents the signal component of
the variable z m( ). The matrix gain

~
K represents a linear transformation of the

signal component u ms( ) of u m( ).

� 3. System block diagram for the noise path obtained by replacing the
quantizer with an additive noise source. The noise injection n m( ) is a noise
process that is uncorrelated with u ms( ) in Figure 2. Here, z mn( ) represents
the noise component of the variable n m( ). z mn( ) represents the noise compo-
nent of u m( ).



[ ]B z I H z N zn ( ) ~ ~( ) ( )= − . (6)

Here, B zs ( ) and B zn ( ) are the z-transforms of the signal
and noise components, respectively, of the vector error
diffused system output. The overall system response is

B z B z B z( ) ( ) ( )= +s n . (7)

Equations (5) and (6) predict the linear frequency distor-
tion (sharpening/blurring) and noise shaping effects of
vector color error diffusion, respectively. The model pre-
dictions are validated both quantitatively and qualita-
tively in [1] on natural images and are shown to be
effective in representing these “linear” effects. Nonlinear
effects such as limit cycles are not modeled.

Linear Signal Frequency Distortion Cancellation
The matrix gain model predicts that the linear distortion
suffered by the color input image is given by (5). This
means that if one prefilters the input color image by using
the filter

( )[ ]~( ) ~ ~( ) ~ ~ ~
G z I H z K I K= + − −1 ,

(8)

then the resulting halftone should exhibit no signal fre-
quency distortion with respect to the original color im-
age. In fact, it is shown in [1] that applying this prefilter is
equivalent to halftoning using the block diagram of Fig-
ure 4, which feeds a linear transformation ~ ~ ~

L K I= −−1 of
the input image into the quantizer input. Thus, linear fre-
quency distortion due to the use of any error filter may be
cancelled by using the block diagram of Figure 4. The fea-
sibility of signal distortion cancellation is important in the
design of color error filters since it allows one to design a
color error filter for optimum noise shaping without re-
quiring it to compensate for signal frequency distortion it
introduces. Distortion elimination removes the sharpen-
ing effect of an error filter globally. Desired sharpness may
be introduced using a prefilter prior to halftoning.

Error Filter Design
for Optimum Noise Shaping
Kolpatzik and Bouman [6] designed opti-
mum color error filters by designing optimum
scalar error filters for the luminance and
chrominance channels of the color error with-
out imposing constraints on the solution.
Damera-Venkata and Evans [1] generalized
this result to allow matrix-valued error filters
capable of shaping luminance error into the
chrominance channels where the color HVS is
less sensitive. A constraint on the error filter is
introduced to ensure that the errors are
bounded for all inputs that vary continuously

over the range of the outputs. Adaptive matrix-valued fil-
ters that attempt to minimize local MSE have also been
developed [7].

Formulation
Based on the matrix gain model discussed earlier, the net
noise component of the output is

[ ]b m I h n mn ( ) ~ ~ ( ).= − ∗

 




(9)

The next step is to quantify the impact of the noise com-
ponent on the HVS. We form an objective function J to
measure the average visually weighted noise energy in the
output halftone. For the color HVS model, we use a lin-
ear spatially invariant matrix-valued model denoted by
the matrix-valued filter function ~()v ⋅ . We define a con-
straint set � to ensure that all the quantization error (rep-
resented in a device independent RGB space) is diffused
and that the system is stable [8]. Thus, the color error-dif-
fusion system(~(),~())h v⋅ ⋅ for a given vision model~()v ⋅ may
be solved for an optimum filter ~ ()h opt ⋅

~ () min~
( )

h
h

opt arg⋅ =
⋅ ∈�

J
(10)

where

[ ]J E= −

 








~ ~ ~ * ( )v * I h n m

2

(11)

and

� �= ∈ = ≥





∑~( ), | ~( ) , ~( ) ~h i i h i 1 1 h i 0

i

.
(12)
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� 4. System block diagram that modifies the vector color error-diffusion
halftoning system in Fig. 1.

~
L represents a constant linear transformation

(matrix gain) that controls the amount of sharpening in the color planes.

This article focuses on the
essential design principles of
color error-diffusion halftoning
systems using the RGB space
for convenience.



The necessary and sufficient conditions for an optimum
solution to (10) is [1]

~ ( )~ ( ) ~ ( )~( )~( )

~

(~ )
v k r i k v s v q h p

r
k

v *n n
sqp

n

T T∑ ∑∑∑− − =

× n p q s i( )+ − − .
(13)

These equations may be regarded as a generalization of
the Yule-Walker equations [9] from linear prediction the-
ory to the matrix case, with a generalized linear spatially
invariant weighting. The above set of generalized
Yule-Walker equations may be solved for the optimal filter
subject to the constraints of (12) to obtain the optimum
color error filter coefficients. A white noise image is used
as an approximation to the uncorrelated noise image
n m( ) [1], [6].

The required autocorrelation matrices are approxi-
mated as

[ ]~ ( ) ( ) ( ) ( )r k n m n m k knn = + ≈E T δ (14)

~ ( ) ~( ) ( ) ( )

~

(~ )
r k v t n m t n m k

v

v *n n
t

t

= −





+










≈

∑E T

∑ +

= −

( ) ( )

~( ).

t k t

v k

δ

(15)

A Linear Color Model for the HVS
As mentioned previously, we use a linear spatially invari-
ant, matrix-valued model~()v ⋅ for the color HVS model in
the error filter optimization given by (10). The linear spa-
tially invariant HVS color model is based on the work of
Poirson and Wandell [10]. The Poirson and Wandell
model operates in the device independent XYZ space and
consists of
� a linear transformation

~
TXYZ Opponent→ from XYZ into an

opponent space consisting of a luminance (black-white)
channel, a red-green channel, and a blue-yellow channel
� separable spatial filtering on each channel using a dif-
ferent spatial filter on each channel. Thus the luminance
channel is filtered less aggressively than the chrominance
channels. This operation may be regarded as a matrix
convolution in the frequency domain by a filter with diag-
onal matrix-valued coefficients ~()d ⋅ .

Since we are starting in RGB space, we will need an ad-
ditional transformation

~
TRGB XYZ→ to transform from a

linear RGB space into XYZ. Hence,~( )v m is computed as

~( ) ~( )
~ ~

v m d m T T= → →XYZ Opponent RGB XYZ . (16)

The parameter specifications for the model including the
shapes of the luminance and chrominance spatial filters
are given in [11].

Monga at al. [12] generalized this linear color model as
a linear transformation

~
T to a desired color space, which is

not necessarily the opponent representation [10] but any
one that satisfies pattern color separability, followed by ap-
propriate spatial filtering in each channel. This generaliza-
tion provides a platform for the evaluation of different
HVS models in perceptual meaning and error filter quality
obtained by minimizing (11). Based on this framework,
they evaluate four color spaces [12] in which to optimize
matrix-valued error filters. The objective measure used for
evaluation is the noise shaping gain of the optimal filter
over the Floyd-Steinberg filter in decibels [1] is

Noise Shaping Gain
opt

=








10 10log

J

J
fs .

(17)

Here, J refers to the value of the objective function given
by (11). They also performed a subjective assessment
procedure that evaluates the halftones based on a paired
comparison task as described in [12]. The results of the
subjective test corroborate the objective measures. Of the
four color spaces considered, two are commonly used in
video formats: YIQ and YUV. Both YIQ and YUV repre-
sent color with a luminance (intensity) channel Y and two
chrominance channels. The color spaces in order of in-
creasing quality are 1) YIQ space, 2) YUV space, 3) op-
ponent color space [10], [11], and 4) linearized CIELab
color space [13]. These color spaces in conjunction with
appropriate spatial filters as described in [12] form a
unique HVS model. The color HVS model based on
transformation to the linearized CIELab [13] color
space, spatial filters for the luminance frequency response
due to Nasanen and Sullivan [14], and the chrominance
frequency response as given by Kolpatzik and Bouman
[6] yields the best halftones. The subjective test is avail-
able at: www.ece.utexas.edu/~vishal/cgi-bin/test.html.

Results
Figure 5(a) shows the original toucan image. Figure 5(b)
shows a halftone generated by applying the Floyd-
Steinberg error diffusion separably. The green color im-
pulses on the red toucan are easily visible on a color moni-
tor. Figure 5(e) and (g) shows the green and blue planes
of the Floyd-Steinberg halftone, respectively. The color
impulses on the body of the red toucan are clearly visible
in the green plane. Figure 5(c) shows a halftone generated
by applying an optimum matrix-valued error filter. The
green color impulses are eliminated. Figure 5(f) and (h)
shows the green and blue planes of the optimum halftone.
The green channel (which contributes greatly to lumi-
nance) does not show spurious color impulses. Since the
error is shaped into the blue-yellow channel, however,
the blue channel of the optimum halftone has several arti-
facts that are not easily visible in the optimum color half-
tone. The signal frequency distortion produced by the
optimal error filter can be cancelled using the distortion
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� 5. Signal and noise shaping in color error diffusion. (a) Original image, (b) Floyd-Steinberg error filter, (c) optimum error filter, (d)
signal distortion cancellation, (e) green plane of Floyd-Steinberg halftone, (f) green plane of optimum halftone, (g) blue plane of
Floyd-Steinberg halftone, and (h) blue plane of optimum halftone.



cancellation method described earlier. Figure 5(d) shows
the optimum halftone after distortion cancellation. No-
tice that the sharpening effect of the optimum error filter
has been undone resulting in an undistorted halftone.

Quantization Based
on Perceptual Criteria
The use of the MSE criterion in a colorant space is equiva-
lent to uniform, separable, scalar quantization. The visual
quantization error may be further reduced by performing
the quantization according to perceptual criteria. Such
methods typically aim to minimize colorimetric error, lu-
minance variations, or a combination of the two.

Colorimetric Quantization in Error Diffusion
Hanieshi et al. [15] suggested the use of the XYZ and Lab
spaces to perform quantization and error diffusion. In
this case the rendering gamut is no longer a cube. The
MSE criterion in the XYZ or lab space is used to make a
decision on the best color to output. The quantization er-
ror is a vector in the XYZ space is diffused using an error
filter. (Lab space is not suitable for diffusing errors due to
its nonlinear variation with intensity.) This method per-
forms better than separable quantization but suffers from
boundary artifacts [15], [16] such as the “smear artifact”
and the “slow response artifact” at color boundaries due
to accumulated errors from neighboring pixels pushing
quantizer input colors outside the gamut. This causes a
longer lag in cancelling the errors. This effect may be re-
duced by clipping large color errors [15], [17] or by using
a hybrid scalar-vector quantization method called
semivector quantization [16]. This method is based on
the observation that when errors in colorant space are
small, vector quantization does not produce the smear ar-
tifact. When large colorant space errors are detected, sca-
lar quantization is used to avoid potential smearing. First,
the colorants where the colorant space error exceeds a pre-
set threshold are determined and quantized with scalar
quantization. This restricts the possible output colors
from which a color must be chosen using vector
quantization in device independent color space.

Minimization of Luminance Variation
This class of color error-diffusion algorithms is based on
the observation that luminance fluctuation in the halftone
appears as visible graininess and must be minimized. For
example if a midtone were printed with black and white
dots, only then would there be a large luminance varia-
tion from the black to the white. If, however, the tone was
printed using only cyan, magenta, and yellow dots with
minimized overlap, then there would be less white space
and the overall luminance variation will be much lower
resulting in reduced graininess. For ink-jet printing, the
overprinting of cyan and magenta dots is to be minimized

especially in the highlights, since the luminance variation
due to the composite blue dots is usually objectionable.

Klassen et al. [18] distort the colorimetric color space
of vector error diffusion using penalty functions so that at
a given input tone level, favored colors with low lumi-
nance variation are more likely to be chosen. Lau et al.
[19] control the overlap of individual color separations
using an influence matrix to transform the quantizer in-
put, prior to quantization. Shaked et al. [20] restrict the
number of allowable output colors for a given input color
in the color space according to a minimum brightness
variation criterion (MBVC) to four allowable colors (the
minimum number of colors required to reproduce an in-
put color in the average color sense), which forms a mini-
mum brightness variation quadruple. Such a restriction
allows each tone to be printed with four possible colors
that produce the least luminance variation.

Threshold modulation can be incorporated into the lu-
minance variation minimization framework to produce
homogeneous color dot distributions [21], [22].
Eschbach [21] uses cross-separation threshold imprint
functions derived from the input, past outputs, and
thresholds to achieve homogeneous color highlights and
shadows. The imprint biases a threshold in the neighbor-
hood of a minority pixel to discourage clumping and pro-
mote regular dot spacing. Using appropriate correlated
imprint functions also minimizes inter-colorplane lumi-
nance variation. Levien [22] first weights the quantizer
error using multichannel weights and then low-pass fil-
ters the result to derive a quantizer threshold modulation
that minimizes luminance variation due to dot overlap.
Further, an output dependent threshold modulation (which
is equal to the difference between the expected
interminority pixel distance d gavg =1 2/ at graylevel g [23]
and the actual distance to the nearest minority pixel) is used
to produce a pleasing distribution of minority pixels.

Results
Figure 6(a) is a halftone image generated using vector er-
ror diffusion in the device independent XYZ space [15].
Artifacts are noticeable at color boundaries, especially on
the yellow toucan. Figure 6(b) is a halftone image gener-
ated using vector error diffusion in the device independ-
ent XYZ space with artifact reduction by semivector
quantization [16]. The boundary artifacts are signifi-
cantly reduced. Figure 6(c) is a halftone generated using
the MBVC quantization as described in [20]. Figure 6(d)
and (e) shows magnified views of the MBVC halftone
and the Floyd-Steinberg halftone, respectively. The
MBVC halftone exhibits much smoother color with sig-
nificantly reduced objectionable color variation.

Conclusion
This article reviewed some of the recent analysis and de-
sign methods for bilevel color error diffusion halftoning
systems. The key ideas in the design of these systems are
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color noise shaping and color quantization according to
perceptual criteria.

Printing is performed in a subtractive (where certain
wavelengths of light are subtracted or absorbed and the
reflected light is viewed) CMY color space. For printing
applications a fourth color, K (black) is introduced since
the composite of the CMY colorants produces a dark
brown in practice. To print an RGB image, first a
printer/media dependent nonlinear color transformation
from RGB to CMYK is made. The transformation from
device independent XYZ to CMYK is nonlinear and de-
vice dependent.

This article focused on the essential design principles of
color error diffusion halftoning systems using the RGB

space for convenience (transformation to XYZ is accom-
plished by a linear transformation of gamma uncorrected
data). These principles may be applied to the CMYK color
space without loss of generality. For example, the methods
of the section “Error Filter Design for Optimum Noise
Shaping” could be applied to diffuse error optimally in de-
vice independent XYZ color space in combination with
XYZ colorimetric quantization method. In this case the
nonlinear device dependent transformation from XYZ to
CMYK must be computed based on physical measure-
ment of color patches. The MBVC error diffusion devel-
oped in RGB space could be extended to CMYK by
defining appropriate MBVQs depending on the relative
luminance of the CMYK colorants. We have omitted a
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� 6. Color quantization in color error diffusion. MBVC error diffusion uses separable Floyd-Steinberg error filters. (a) Vector error diffu-
sion in XYZ space, (b) boundary artifact reduction, (c) MBVC error diffusion, (d) details of MBVC, and (e) detail of Floyd-Steinberg
halftone.



discussion of multilevel color error-diffusion halftoning
and color palette design methods due to space constraints. A
good source of references on these topics is [24].
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