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Abstract—This paper presents an extensible framework for
designing analog filters that exhibit several desired behavioral
properties after being realized in circuits. In the framework,
we model the constrained nonlinear optimization problem as
a sequential quadratic programming (SQP) problem. SQP re-
quires real-valued constraints and objective functions that are
differentiable with respect to the free parameters (pole–zero
locations). We derive the differentiable constraints and a weighted
differentiable objective function for simultaneously optimizing
the behavioral properties of magnitude response, phase response,
peak overshoot, and the implementation property of quality
factors. We use Mathematica to define the algebraic equations for
the constraints and objective function, compute their gradients
symbolically, and generate standalone MATLAB programs to
perform the multicriteria optimization. Providing closed-form
gradients prevents divergence in the SQP procedure. The auto-
mated approach avoids errors in algebraic calculations and errors
in transcribing equations into software. The key contributions
are: 1) an extensible, automated, multicriteria filter optimization
framework; 2) an analytic approximation for peak overshoot; and
3) three novel filter designs. We have released the source code for
the framework on the Internet.

Index Terms—Analog filter optimization, hybrid filters, multi-
criteria optimization.

I. INTRODUCTION

CLASSICAL elliptic Chebyshev, Butterworth, and Bessel
analog filter designs yield desirable behavioral properties

subject to constraints on the magnitude response. For example,
the step response of Bessel filters exhibits low overshoot,
and its phase response is nearly linear over the passband.
Bessel filters have been used as antialiasing filters, since
antialiasing filters require a minimum deviation in the phase
response from linear phase, subject to a set of magnitude
specifications [1]. Classical elliptic filter designs have minimal
order, but for a given implementation technology, minimal-
order filters may either not be realizable or may not have
minimal complexity [2]. In designing analog filters for im-
plementation, multiple behavioral properties (e.g., magnitude
response, phase response, peak overshoot, rise time, and
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settling time) and implementation properties (e.g., quality
factors and capacitance spread) may be important.

In this paper, we present a formal extensible framework for
simultaneously optimizing analog filter designs for multiple
behavioral and implementation properties. We demonstrate
the framework using the behavioral properties of magnitude
response, phase response, and peak overshoot, and the imple-
mentation property of quality factors. The framework takes an
initial filter design, e.g., one designed using a classical numeric
approach or a modern symbolic approach [2], and finds the
pole–zero locations that optimize a weighted combination of
properties subject to constraints on the properties. Some of
the previous multicriteria filter optimization techniques, such
as [3], only optimize for one property subject to constraints
on multiple properties. Another technique applies sequential
quadratic programming (SQP) methods to optimize loss and
delay in digital filter designs [3].

Our framework models the constrained nonlinear optimiza-
tion problem as a SQP problem. SQP requires that the objec-
tive function [4] and the constraints [5] be real valued and
twice continuously differentiable, with respect to the free pa-
rameters. The free parameters are the pole and zero locations.
When closed-form formulas for the gradients of the objective
function and constraints are not provided for SQP routines,
the SQP routines must approximate the gradient, which often
leads to divergence. We develop Mathematica [6] software to
compute the gradients and translate the entire SQP formulation
into working MATLAB [7] programs that optimize analog
filter designs. The generated MATLAB code is combined with
the SQP procedure in the MATLAB optimization toolbox [8]
to produce stand-alone programs that solve the constrained
nonlinear optimization problem.

The framework is flexible because it is formulated at an
algebraic level. At the algebraic level, a designer can use a
symbolic mathematics environment such as Mathematica to
change the objective measure for a given property or add,
delete, and change constraints. Our symbolic software will
then recompute the gradient and regenerate the numerical
optimization code. We have bridged the gap between the
symbolic work designers often do on paper and the working
computer implementation, thereby eliminating algebraic errors
in hand calculations and bugs in coding the equations in
software.

Section II reviews notation. Section III derives a family
of weighted differentiable objective functions to measure the
deviation in magnitude response, deviation in linear-phase
response, quality factors, and peak overshoot of the step
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response, of an analog filter. In the derivation, we find a
new analytic approximation for the peak overshoot. Section IV
converts filter specifications on the magnitude response, qual-
ity factors, and peak overshoot into differentiable constraints.
Section V reports three novel design examples found by
our filter optimization framework. Section VI describes the
process by which we verified the formulas in Section III,
generated MATLAB code for the objective function and con-
straints as well as their gradients, and validated the generated
MATLAB code. Section VII concludes the paper. The auto-
mated design framework, including the generated MATLAB
code, is available online.1

II. NOTATION

We represent an analog filter by its complex conjugate
pole pairs and complex conjugate zero pairs, such that

. We denote the th pole pair as where
for stability, and the th zero pair as .

We arbitrarily choose and to be negative and to be
nonpositive. The magnitude response and unwrapped
phase response of an all-pole filter, expressed as
real-valued differentiable functions, are

(1)

(2)

We factor the polynomial under the square root in (1) into
Horner’s form because it has better numerical properties.
Together with the zero pairs, the magnitude and unwrapped
phase responses, respectively, are

(3)

(4)

We assume that the filter is low pass. Its dc response ( )
is normalized to be 1.

In this paper, represents quality factors, represents a
small positive number, denotes deviation, represents slope
of a line, is time, and is a weighting factor.

III. OBJECTIVE FUNCTION

In this section, we derive an objective function that is
real and twice continuously differentiable to match an SQP

1[Online]. Available HTTP: http://www.ece.utexas.edu/˜bevans/projects/
syn_filter_software.html

Fig. 1. The ideal magnitude response.

formulation. The objective function is a weighted combination
of the deviation from the ideal filter for the desired properties.
Properties are quantified by objective measures. Based on
the objective measures for magnitude and phase responses
given in the previous section, Sections III-A and III-B define
deviation from an ideal magnitude response and deviation from
a phase response that is linear in the passband, respectively.
Section III-C defines quality factors and deviation from ideal
quality factors. Section III-D derives a new analytic approx-
imation to measure peak overshoot in the step response and
defines deviation from the ideal filter overshoot. Section III-
E defines the objective function. The objective function is
nonnegative so that a value of zero represents the ideal filter.
Using the automated SQP-based framework, a designer may
change the objective measures and distance measures to form
new objective functions, and regenerate the new MATLAB
programs to perform the optimization.

A. Deviation from an Ideal Magnitude Response

We use (3) as the real differentiable measure of magnitude
response. We measure the deviation from the ideal magnitude-
response separately in the passband, transition bands, and
stopband(s). Based on the five regions of the ideal magnitude
response, shown in Fig. 1, the five components of the objective
function relate to the deviation from an ideal magnitude
response in the least-squares sense in each region. Assuming
that the ideal filter is low-pass or bandpass with the first
stopband located on the passband located
on and the second stopband located on

(5)

(6)

(7)

(8)

(9)

where and are integrable
weighting functions, and and are the slopes of
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the ideal response in the transition regions defined as
and . These

five integral quantities represent deviation from the ideal
magnitude response in the least squares sense over the five
regions shown in Fig. 1.

B. Deviation from an Ideal Phase Response

We use (4) as a real differentiable measure of the phase re-
sponse. We measure the deviation of a filter from linear phase
over some range of frequencies (usually over the passband)

(10)

Here, is the slope of the linear phase response. Unfortu-
nately, one does not know the value of a priori. We can
compute it as the slope of the line inthat minimizes (10)

(11)

In (11), the term does not depend on so the
integrand is quadratic in . To find the minimum, we take
the derivative with respect to set it to zero, and solve
for

(12)

After evaluating the integrals

(13)

where is

and is

Using Mathematica, we compute the definite integrals in (12)
to verify the answers. Now that we have a closed-form solution
for we can substitute (13) into (10) to obtain a rather

complicated but differentiable expression for the deviation
from linear phase.

C. Deviation from Ideal Filter Quality

The objective measure of filter quality, known as a quality
factor, measures the relative distance of a filter pole from the
imaginary frequency axis. The lower the quality factor, the
less likely that the pole will cause oscillations in the output.
A conventional definition for the quality factor for the

th second-order section with conjugate poles (with
) is given by

where . corresponds to a double real-
valued pole ( ), and corresponds to an ideal
oscillator ( ). For the effective overall measure of
filter factor we use a geometric mean of the individual
pole-pair quality factors

(14)

where . Other objectives measures could be used.
To measure the distance from the ideal quality factor of 0.5,
we simply use

This distance measure rewards low quality factors because
they are essential in damping oscillatory behavior in the time
response of the filter.

D. Deviation from Ideal Peak Overshoot in the Step Response

From the step response, we can numerically compute the
peak overshoot and the time at which it occurs. In order
to make the peak overshoot calculation differentiable for the
SQP-based framework, we derive a new analytic expression
that approximates in terms of the pole–zero locations.
The derivation assumes that there are no duplicate poles. The
assumption of no duplicate poles is enforced by means of
constraints, as explained in Section IV.

The Laplace transform of the step response is

(15)

Assuming no duplicate poles, partial fractions expansion yields

(16)
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where and can be expressed as real-valued differen-
tiable functions of the pole and zero locations. After inverse
transforming (16), the step response is

(17)

By substituting the definitions for and from (16) into
(17), the step response simplifies to

(18)

The Appendix presents a rigorous derivation of the step
response.

The overall step response, given by either (17) or (18), is
one plus a sum of second-order responses. Each second-
order response is a function of all of the filter poles and zeros.
By analyzing the th term in the summation in (17), theth
peak overshoot occurs at time

(19)

provided that . By substituting for and in (19),
the th peak overshoot occurs at time

(20)

provided that . The additive term in both (19) and (20)
corrects the quadrant of the arctangent. Each second-order time
response in (18) either increases monotonically from time zero
until the peak time and then decreases to oscillate around the
steady-state value of zero, or decreases monotonically from
time zero to the peak time and then increases to oscillate
around the steady-state value of zero. Therefore, the least and
greatest peak times for the second-order responses provide
a bound on the possible times at which the peak overshoot
occurs, i.e.,

(21)

In the SQP-based framework, (21) helps in two important
areas. First, at each iteration, (21) gives a range of time over
which to perform a one-dimensional search for the actual

value. In the implementation, we search a broader
interval. Second, from the observation that (21) states that

is dependent on the values of we construct the
following differentiable function to approximate for the
sole purpose of computing gradients for the peak overshoot
of the filter

(22)

This analytic approximation is inferred from (17), in which
the step response is written as a sum of a constant plus an
equal additive contribution from each second-order section.

At each iteration of the optimization procedure, is set
to the true value of divided by the approximation

. Section VI-C validates the accuracy of the
analytic approximation.

The deviation in peak overshoot is measured by a differen-
tiable function that measures overshoot and undershoot. For
low-pass filters, one measure of deviation in peak overshoot is
the percent overshoot defined as 100% .
This formula, however, assumes that the step response will rise
above 1. We measure the deviation in step response amplitude
when the peak overshoot occurs from the ideal amplitude of
one, which corresponds to a peak overshoot of zero

E. The Complete Objective Function

The complete objective function is a weighted sum of the
distance measures developed earlier in this section. Since
the objective function will ultimately be handed off to a
numerical optimizer, each infinity that appears in the limit of
the definite integrations, such as in (9), must be approximated.
We approximate as multiplied by the highest frequency
specified (e.g., in the case of low-pass and bandpass
filters), where represents the number of decades beyond
the highest specified frequency. In assembling the composite
objective function, we normalize the integrals by dividing by
the length of the integration interval and scale the distance
measure for the peak overshoot, so that when the weights are
equal, each distance measure will contribute more equally.
Note that the weighted objective function is nonnegative and
twice differentiable

(23)

For a low-pass filter, and
. For a high-pass filter, is

undefined, and .

IV. CONSTRAINTS

The first set of constraints are on the magnitude response,
peak overshoot, and quality; the second set prevents numerical
instabilities in the calculations and enforces assumptions about
the poles and zeros. For the magnitude-response constraints,
we sample the magnitude response given by (3) at a set of pass-
band frequencies and stopband frequencies

(24)

where and are the magnitude specifica-
tions. For the peak-overshoot constraint, we compute the
peak overshoot by searching a larger interval than

to find the maximum value of the
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step response in (17). Before finding the gradient of this
constraint, we substitute in (17) by using the
analytic approximation for given by (22).

Lower quality factors mean better noise immunity and lower
chances of an oscillating time response. When the analog filter
is implemented, the second-order sections will typically be
cascaded in order of ascending quality factors. The earlier
sections will attenuate input signals so as to minimize the
oscillatory behavior of the final sections. The implementation
technology imposes an upper limit on the quality factors,

, for each second-order section

for (25)

The designer is free to set the value of . Section VI-B
explains how to set in the synthesized MATLAB code.

Since appears in the denominators in (2) and (13),
appears in the denominators in (17) and (19), andappears in
the denominators in (4) and (13), we constrain these negative-
valued parameters to be a neighborhood away from zero

for

for

for

Here, is the distance from 1.0 to the next largest floating
point number. In MATLAB, it is defined by the constant,
which is 2.2204 10 on a Sun Ultra-2 workstation. To
ensure the numerical stability of the denominators of and

in (16)

for and

This set of constraints also prevents duplicate poles and
poles from becoming too close to one another relative to the
available numerical precision.

It is possible that an initial filter design does not meet
all of the constraints. For example, classic filter design al-
gorithms often yield filters with extraordinarily large quality
factors which may be exceed . When an initial guess
is infeasible, the SQP procedure in MATLAB will update the
free parameters until the constraint or constraints that were
initially violated are satisfied. This relaxation occurs in the
design example discussed in Section V-B.

V. EXAMPLE FILTER DESIGNS

This section presents three new low-pass filter designs found
by the automated filter optimization framework. In Sections V-
A and V-B, the filters have minimized deviation from linear
phase over the passband and peak overshoot in the step
response. In Section V-C, the filter has minimized magnitude
response in the stopband, deviation from linear phase in the
passband, peak overshoot, and quality factors. All execution
times are given for MATLAB 5 on a 167-MHz Sun Ultra
workstation.

TABLE I
QUALITY FACTORS AND POLE LOCATIONS FOR THETWO SECOND-ORDER

SECTIONS OF THEINITIAL AND OPTIMIZED FILTERS

(a) (b)
The optimized filter has minimal deviation from linear phase in
the passband and peak overshoot. Fig. 2 compares the behavior of
the two filters.

A. All-Pole Filter with Near-Linear-Phase Response and
Minimal Peak Overshoot

We apply the framework to optimize an all-pole filter to
obtain near-linear-phase responseandminimal peak overshoot.
The magnitude specifications are rad/s, ,

rad/s, and . The initial design is a
fourth-order Butterworth filter. We jointly optimize the pole
locations to achieve minimal peak overshoot and minimal
deviation from linear phase in the passband phase response.
In the objective function, we weight the deviation from linear
phase by and deviation in peak overshoot by one. All
other weights are zero. We set to 10. The nonnegative
objective function is reduced from to 4.7 10 . The
peak overshoot of the resulting filter is reduced from 16%
to 8%, and the phase becomes approximately linear in the
passband. Since the magnitude response was not optimized, it
is traded off for better phase response and lower overshoot,
but kept within specifications. Table I lists the initial and
optimized pole locations. Fig. 2 plots the magnitude, phase,
and step responses for the initial and optimized filters. The
plots illustrate that the optimization procedure effectively
traded off magnitude response in the passband for a more
linear-phase response in the passband and a lower overshoot.
The optimization takes 13 s to run.

B. Filter with Near-Linear-Phase Response and
Minimal Peak Overshoot

As in the previous example, we minimize the peak overshoot
and deviation from linear phase of a low-pass filter given the
same magnitude specifications rad/s,

rad/s, and except that we allow poles and zeros.
We use a fourth-order elliptic filter as the initial guess. In the
objective function, we weight the deviation from linear phase
by 0.1 and deviation in peak overshoot by 1. All other weights
are zero. We set to 10. The nonnegative objective
function is reduced from to 4.33 10 . Table II lists the
initial and final poles and zeros. Fig. 3 plots the magnitude,
phase, and step responses for the initial and final filters. Fig. 3
illustrates that the optimization procedure effectively trades
off transition bandwidth in the magnitude response for more
linear phase in the passband and a lower overshoot. The peak
overshoot is reduced from 25% to 10%. The gradient of the
objective function with respect to the poles
is and with respect
to the zeros, is

. Since the second filter section is more sensitive to
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Fig. 2. Fourth-order low-pass filter with optimized phase and step responses.
The specification of the magnitude response is!p = 20 rad/s and�p = 0:21

for the passband and!s = 30 rad/s, and�s = 0:31 for the stopband. The
dashed lines represent the initial Butterworth filter, and the solid lines represent
the filter optimized for linear phase response in the passband and for overshoot
of the step response.

perturbations in the pole locations, better components should
be used for the second section. The optimization takes 20 s
to run.

C. Filter Simultaneously Optimized for Four Criteria

We optimize three behavioral properties and one imple-
mentation property simultaneously. The specifications on the
magnitude response are rad/s,
rad/s, and . In the objective function, we weight the
deviation from linear phase by 1, ideal peak overshoot by
1, ideal filter quality by 0.5, and ideal stopband magnitude
response by 1. All other weights are zero. We set to 10.
The initial guess is a sixth-order elliptic filter. It was designed
using a stricter stopband criterion than specified to illustrate the
tradeoffs obtained by searching the infinite design space. The
nonnegative objective function is reduced from 4.25 to 0.34.
The peak overshoot is reduced from 20% to 15%. Table III
lists the initial and final poles and zeros. Table III and Fig. 4
illustrate that the optimization procedure effectively trades
off transition bandwidth and extra stopband attenuation for
more linear phase in the passband, lower overshoot, and lower
quality factors. The optimization takes 65 s to run.

Fig. 3. Two fourth-order low-pass filters to meet the magnitude specifica-
tions!p = 20 rad/s,�p = 0:21; !s = 30 rad/s, and�s = 0:31. The initial
filter is an elliptic filter (dashed lines) and the final filter is optimized for
phase and step response (solid lines). We are trading linear-phase response
over the passband and peak overshoot in the step response for magnitude
response, while keeping the magnitude response within specification. For the
optimization, we set the maximum quality factorQmax to be 10. Even though
the initial guess is infeasible because its maximumQ value is 61, the SQP
procedure in MATLAB adjusted the initial guess to be a feasible solution.

TABLE II
QUALITY FACTORS AND POLE–ZERO LOCATIONS FOR THETWO SECOND

-ORDER SECTIONS OF THEINITIAL AND OPTIMIZED FILTERS

(a)

(b)
The filter was minimized for the deviation from lin-
ear phase in the passband and peak overshoot. Fig. 3
compares the behavior of the two filters.

VI. V ALIDATION AND VERIFICATION OF THE

AUTOMATED FRAMEWORK

We use the Mathematica symbolic mathematics environment
to collect the formulas for objective measures of properties,
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TABLE III
QUALITY FACTORS AND POLE-ZERO LOCATIONS FOR THETWO SECOND-

ORDER SECTIONS OF THEINITIAL AND OPTIMIZED FILTERS

(a)

(b)

The filter was minimized for deviation from linear phase
in the passband, peak overshoot, quality factors, and
magnitude response in the stopband. Fig. 4 compares
the behavior of the two filters.

Fig. 4. Two fourth-order low-pass filters to meet the magnitude specifica-
tions !p = 20 rad/s,�p = 0:20, !s = 30 rad/s, and�s = 0:30. The initial
filter is an elliptic filter (dashed lines), and the final filter is optimized for
phase, step response magnitude response in the stopband and quality factor
(solid lines).

distance measures, objective function, and constraints, and
to automate the conversion of the formulas to working filter

optimization programs in MATLAB. Section VI-A describes
the steps in using Mathematica to verify the formulas we
entered into it for the equations in Section III. It also in-
troduces our approach to converting the objective function
and constraints, as well as their gradients, into source code.
Section VI-B discusses the automatic synthesis of complete
MATLAB programs to optimize analog filter designs. Finally,
Section VI-C summarizes the ways in which we validate the
generated code.

A. Verification of Formulas and Code Generation

We have written functions in the Mathematica to return
the formulas in Section III given the names of the free
parameters of the pole–zero locations, the number of conjugate
pole pairs, and the number of conjugate zero pairs (i.e.,

and ). We then use the symbolic mathematics
environment to verify that we encoded the key equations
properly as follows. For (1) and (2), we validated them by
comparing their formulas to the absolute value and argument,
respectively, applied directly to several example frequency
responses . We verified the formula for the partial
fractions coefficients in (16) by comparing the formula to
the partial fractions decomposition obtained by the symbolic
mathematics environment. In validating the encoding of the
step response in (17), we compared the formula with the
inverse Laplace transform of multiplied by several transfer
functions.

Now that the formulas as entered into the symbolic mathe-
matics environment have been verified, we encode the objec-
tive function given in (23). The next step is to compute the
gradient of the objective function and the constraints so that the
problem formulation can be passed onto optimization software.
In this step, we discovered the need for an “inert” integral
operator (one that does not try to evaluate the integrand)
to represent equations such as (7). The reason is that we
want the optimization software to compute the integral rather
than the symbolic mathematics environment. Therefore, we
introduce an inert integration operator called . By
using we were able to automate the calculation
of gradients for the objective function and constraints by
augmenting Mathematica’s built-in derivative operator. The
gradients are computed with respect to the free parameters
(pole–zero locations).

Next, we convert the objective function and constraints and
their gradients into source code. In order to generate efficient
source code, we reuse the intermediate results of code that has
already been generated. Before we can reuse computations, we
must make sure that the computations are context-free, i.e., that
they are not dependent on a parameter that can change value.
For the objective function and constraints, all of the compu-
tations are context-free except for the integral calculations.
The integral calculations can be performed by substituting the
variable of integration with some unique variable. Now we can
employ the equivalent of subexpression elimination by means
of hash tables or some other method. Although we can generate
C and Fortran code, we focus on generating MATLAB code
to take advantage of its optimization toolbox.
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TABLE IV
MATLAB F ILES GENERATED BY OUR PROGRAMS

Here,n is the number of conjugate pole pairs in the
analog filter. All functions take the pole–zero locations
as arguments.

B. Generating Working MATLAB Programs

The first step in generating MATLAB programs is to
find the analogous operations in MATLAB. The MATLAB
functions corresponding to the Mathematica functions

and are the same, except
that the MATLAB names are in lower case. Similarly, the con-
stant becomes but the constant becomes exp(1).
maps to angle. We map which takes the sign of

and into account, to angle . Likewise,
becomes angle . We map symbolic definite integrals
into numerical integrations via MATLAB’s trapz function.

MATLAB’s syntax is different from Mathematica’s, but
the conversion is possible by a direct mapping of characters.
In delimiting functions, Mathematica uses square brackets
whereas MATLAB uses parentheses. Unlike Mathematica,
which performs its computations in terms of formulas, MAT-
LAB is based on matrix–vector operations. In Mathematica,
the multiplication, division, and power operators work in a
pointwise fashion and are therefore mapped into MATLAB’s

and operators. The complete mapping of an expression
in Mathematica to MATLAB is carried out by first generating
a string representing the internal form of the Mathematica ex-
pression via and then performing the substitutions
listed above via .

Now that expressions in Mathematica can be mapped di-
rectly into MATLAB code, we can add the syntax for function
definitions and create a MATLAB script that directs the design
procedure. In the synthesis of MATLAB programs, our pro-
grams generate four files as shown in Table IV. The “go.m”
file directs the optimization procedure. First, it initializes
several constant optimization parameters as global variables.
Then, it calls the constrained nonlinear optimization routine
constr in the MATLAB optimization toolbox [8] to minimize
the objective function given by (23).

The constr function calls the filcost function to compute
the objective function and constraints, and the costderfunc-

tion to compute the gradients. As stated previously, theconstr
routine is sequential quadratic programming method [5], and
not a conjugate-gradient technique.

The designer may change the constant optimization param-
eters in the MATLAB code. The maximum quality factor

is the variable in the “filcost .m” file. The other
constant parameters—weights of the objective function, mag-
nitude response specifications, and maximum overshoot—are
defined at the beginning of the “go.m” file.

The “stepresp.m” file computes the step response. It is
independent of the number of conjugate pole pairswhereas
the other three files are not. In order for Mathematica to
compute the gradient of the objective function, we unravel
the product and summation terms in the objective function for
fixed values of and . The effect on the generated MATLAB
code is that the loops that would have depended onand
have been unrolled (i.e., flattened). In the freely distributable
release of the framework, we have generated the MATLAB
programs for four poles and zero zeros, four poles and two
zeros, four poles and four zeros, six poles and six zeros, and
eight poles and eight zeros.

C. Validating the MATLAB Programs

This section discusses the verification of synthesized MAT-
LAB programs. Because we generated the step response as
a separate MATLAB file, we compare it directly to the
step response generated in Mathematica for sampled values.
MATLAB implements the step response according to (17),
whereas Mathematica computes the step response by using
the inverse Laplace transform. We compare the objective
function generated in Mathematica directly with the objective
function generated in MATLAB as it is also a separate file.
The Mathematica and MATLAB versions agree.

MATLAB’s constrSQP routine enables the checking of the
symbolic form of the gradients. We expect strong agreement
because symbolic differentiation by a symbolic mathematics
environment is highly reliable. In numerically computing the
gradients, the SQP routine uses finite difference techniques.
The finite difference techniques only use the generated objec-
tive function, which we have already validated. If the analytic
and finite difference gradients agree, then the symbolic form
of the gradient is correct because we already know that the
code generation is working properly. For the design examples
in Section V, the maximum deviation in the components of the
gradient is less than 0.06%. The symbolic form of the gradients
are important for the stability of the SQP procedure. We found
design examples in which MATLAB’sconstrroutine diverged
when not using the symbolic gradients but converged when
using the symbolic gradients.

By validating the symbolic form of the gradients, we
validate the analytic approximation of by (19) and (22).
The analytic approximation is solely used to compute the
gradient of the objective measure of the peak overshoot of a
filter. We validate the accuracy of the analytic approximation
by running 10 design examples requiring at least 40 iterations
of the SQP procedure each. At each iteration, we have the
SQP routine compare gradients. In all cases, the gradient of
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the objective measure of the peak overshoot given by (19)
and (22) never varied more than 0.06% of the numerically
approximated value.

VII. CONCLUSION

We have developed a formal, extensible framework for
optimizing multiple behavioral and implementation properties
of analog filter designs. We have implemented the framework
as a set of Mathematica programs that generate MATLAB
programs to perform the simultaneous optimization of mag-
nitude response, phase response, peak overshoot, and quality
factors. In developing the framework, we derive a new analytic
approximation for peak overshoot, which we validate using
the MATLAB implementation. We demonstrate the framework
by finding three new low-pass filter designs optimized for
multiple criteria.

In the framework, both the algebraic derivations and pro-
gramming tasks would be nearly impossible for a human to
carry out correctly. By performing both processes together,
we can validate that the assumptions in the algebraic deriva-
tions are legitimate and that the source code is generated
properly. Furthermore, the algebraic abstraction empowers the
researcher to create new filter design programs by simply
redefining the objective function—our software will take care
of recomputing the derivatives and regenerating the source
code.

APPENDIX

DERIVATION OF THE STEP RESPONSE

For an analog filter with conjugate pole pairs and
conjugate zero pairs, the transfer function of the impulse
response is

In the continuous time domain, the step response is

The Laplace transform of is

(26)

Since the order of the denominator will always be greater than
the order of the numerator even for , we can express the
transfer function as a partial fractions expansion

Splitting up (26) in terms of individual poles and zeros

The partial fractions expansion may be expressed as

where the second-order sections have been split up into first-
order sections. Thus

(27)

(28)

where the partial fraction coefficients and can be
obtained as follows:

(29)

(30)

(31)

(31a)
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Assuming that the analog filter is a low-pass prototype filter,
the dc value is 1, so

By substituting into (30), we have (31), shown
at the bottom˜of the previous page. Next, we compute the
magnitude and phase for based on (31) for use in (27) and
(28). The magnitude of is shown in (31a), at the bottom of
the previous page, where the negative sign beforeis because

is taken to be negative in our formulation. Similarly, the
unwrapped phase of is

and can be computed from and . Thus,
has the form

which can be rewritten as

Therefore, taking their inverse Laplace transform, we obtain
the step response

(32)

provided that . By substituting (27) and (28) into (32),
we obtain
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