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Adaptive Threshold Modulation for
Error Diffusion Halftoning

Niranjan Damera-Venkatdlember, IEEEand Brian L. EvansSenior Member, IEEE

Abstract—Grayscale digital image halftoning quantizes each ~ Threshold modulation alters the quantizer input, e.g., to re-
pixel to one bit. In error diffusion halftoning, the quantization  duce directional artifacts or linear distortion. Fig. 1(b) and (c)
error at each pixel is filtered and fed back to the input in order to shows two examples of threshold modulation—edge enhance-

diffuse the quantization error among the neighboring grayscale t diffusi d ise halftoni | .
pixels. Error diffusion introduces nonlinear distortion (directional ment error diffusion and green noise halftoning. In green noise

artifacts), linear distortion (sharpening), and additive noise. halftoning [4], [5], a filtered version of the output is added to
Threshold modulation, which alters the quantizer input, has been the input of the quantizer. This approach clusters halftone dots

previously used to reduce either directional artifacts or linear gg that the halftone would be more robust to ink spread and

distortion. This paper presents an adaptive threshold modulation dot gain when printed. Edge enhancement error diffusion is ex-
framework to improve halftone quality by optimizing error diffu- .
splained next.

sion parameters in the least squares sense. The framework model . . L o
the quantizer implicitly, so a wide variety of quantizers may be The Floyd—Steinberg error filter, which is shown in Fig. 2(a),
used. Based on the framework, we derive adaptive algorithms is a simple nonseparable filter with four dyadic coefficients.

to optimize 1) edge enhancement halftoning and 2) green noise Floyd—Steinberg halftones exhibit modest sharpening with re-
halftoning. In edge enhancement halftoning, we minimize linear spect to the original grayscale image. The longer Jarvis [6], [7]

distortion by controlling the sharpening control parameter. We . . . S
may also break up directional artifacts by replacing the thresh- and Stucki[8] error filters, which are shown in Fig. 2(c) and (d),

olding quantizer with a deterministic bit flipping (DBF) quantizer. ~ €xhibit significant sharpening of the original image.
For green noise halftoning, we optimize the hysteresis coefficients. In edge enhancement error diffusion, Eschbach and Knox [9]

Index Terms—Adaptive quantization, halftoning, limit cycles, modify Conventipna! error dif‘fus'ion to adjust halftone sharp-
raster image processing. ness, as shown in Fig. 1(b). Their threshold modulation method
scales the image by a constalitand adds the result to the
guantizer input. A4 increases, the sharpness of the resulting
halftone increases. In a global sense, one valuke eXists that

IGITAL image halftoning quantizes a grayscale image taninimizes sharpening, assuming that the image is wide sense
one bit per pixel for display and printing on binary destationary and the input and output of the quantizer are jointly
vices. In halftoning by error diffusion [1], the quantization errowide sense stationary [10]. Smaller values/ofvould cause
is linearly filtered and fed back to the input in order to diffus®lurring, and larger values would cause sharpening, with respect
the quantization error among neighboring grayscale pixels, tasthe original grayscale image. Hendecan be set to reduce
shown in Fig. 1(a). Traditionally, the error filter has a finitdinear distortion.
impulse response (FIR) and the quantizer is a thresholding deKite et al. [10], [11] develop a formula for the globally
vice with a fixed threshold at mid-gray. Error diffusion degradegptimal value ofL that causes the signal components to be
the original image by nonlinear distortion (limit cycles), linearendered in the halftone without sharpening when using a
distortion (sharpening), and additive noise. The additive noiiesholding quantizer. The quantizer is modeled as a linear
is shaped to be either highpass (i.e., blue noise) or bandpgai plus uncorrelated noise. If the gain value is chosen to be
(i.e., green noise). For conventional error diffusion, as showie linear minimum mean square error (LMMSE) estimator of
in Fig. 1(a), the shape of the additive noise is highpass. Tt quantizer output [10], [12], then the error is guaranteed to
frequency distortion depends primarily on the error filter beinge uncorrelated with the quantizer input. Since the model lin-
used. Limit cycles appear as directional artifacts [2], and ag@rizes the quantizer, halftoning may be analyzed using linear
common in sigma—delta modulation methods such as error difistem theory. The linear gain value affects signal shaping in
fusion [3]. error diffusion and the additive uncorrelated noise affects the
noise shaping [10], [12]. The linear gain value does not signifi-
cantly affect the noise-shaping behavior of error diffusion [3],
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Fig. 1. Block diagrams for various forms of error diffusion. (a) Error diffusion halftoning with a standard thresholding quantizer. (b) Edgevesritearcer
diffusion halftoning with a standard thresholding quantizer and scalariga{n) Green noise error diffusion halftoning with standard thresholding quantizer,
hysteresis 2—-D FIR filtef”, and scalar gail.
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Fig. 2. Common error filters for error diffusion. (a) Floyd—Steinberg (raster),
(b) Floyd—Steinberg (serpentine), (c) Jarvis (raster), and (d) Stucki (raster).
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Fig. 3. Generalized error diffusion with threshold modulation. for spatially adaptive algorithms using adaptive threshold mod-

ulation. We show that the adaptive algorithm developed in this
2) quantizer functiorQ(-); paper convergei the mearto the optimal value of. if the
3) input grayscale image. input and output of the quantizer are jointly wide sense sta-
This suggests a low complexity spatially adaptive algorithm feionary (WSS), and the input image is WSS. In a nonstationary
estimating the optimal value fat to give a what-you-see-is- environment, the algorithm tracks local variations in the input
what-you-get (WYSIWYG) halftone. We define a WYSIWYGimage.
halftone as a halftone that preserves the average sharpness dhree different approaches modify Floyd—Steinberg error dif-
the original grayscale image. This paper develops a framewdusion to reduce directional artifacts [6]-[8]. The first approach
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uses longer error filters such as Jarvis [6], [7] and Stucki [8] fimodulation. We apply adaptive threshold modulation to opti-
ters. The second approach uses nonraster scans [13], [14]. A sgze the hysteresis filter coefficients in green noise halftoning.
pentine scan, which scans odd rows from left to right and ev&ection VI concludes the paper. In the Appendix, we prove that
rows from right to left, reduces horizontal artifacts. Howevem the case of edge enhancement halftoning (a.k.a., modified
it does not reduce artifacts from other directions and may addor diffusion halftoning) and green noise digital halftoning,
artifacts not seen in a raster scan [15]. The third approach uses algorithms converge in the mean to the optimal solution,
threshold modulation. One type of threshold modulation addsder suitable statistical assumptions about the input and output
dither (low-amplitude noise) to the quantizer input [15], [16] tof the quantizer and the input process. Throughout the paper,
break up limit cycles. Adding dither [17], however, adds noise we use the512 x 512 grayscaleLena or peppersimages to
the halftone. It also increases computational complexity becadidgstrate our algorithms. However, we validated the algorithms
the pseudo-random numbers either have to be generated on-dinéen test images obtained from the USC image database.
or stored in a long array. In a second type of threshold modula-
tion, Wong [18] designs an adaptive algorithm to minimize the
guantization error using a weighted mean-squared error (MSE).
These halftones have better visual quality than those generatedihis section analyzes two extreme examples of error diffu-
by adding dither. sion systems. Section II-A describes conventional error diffu-
In this paper, we present a framework for the on-line lea$ton Which uses a fixed error filter and a thresholding quan-
squares optimization of error diffusion parameters to improy&er- Error diffusion degrades the original image by nonlinear
halftone quality. Because the framework uses iaplicit dlstortlon_(dlregtlonal arpfacts), Imear_dlstortlon (_shar_penmg),
LMMSE estimator for the quantizer function, a wide varietnd additive noise. Section II-B describes error diffusion using
of quantizers can be used. Based on the framework, we der{}geshold modulation and an adaptive error filter. Section I1-B
adaptive algorithms to optimize two threshold modulatiof!SO derives an LMS algorithm to adapt the error filter coeffi-
methods for error diffusion: 1) edge enhancement halftonifnts in an attempt to minimize the squared error between the
and 2) green noise halftoning. For green noise halftoning, th@Put and the output. We show that this LMS approach does
algorithm optimizes the hysteresis coefficients for optim&]c’t cqnsnder the threshold modulation parameters in the update
distribution of dots of a specified size. In this case, the alg§auations.
rithm is shown to converge when the input and output of the
quantizer are jointly WSS. For edge enhancement halftonirfy, Error Diffusion with a Fixed Error Filter

the algorithm adapté to minimize linear frequency distortion  Fig. 1(a) shows conventional error diffusion. We usg , to
(sharpening) to obtain WYSIWYG halftones. We demonstratfanote the graylevel of the input image at pied, n), where
the ability of the framework to handle different quantizers bxmm € [~1, 1]. We uséb,, ., to represent the output halftone
using a thresholding quantizer and a deterministic bit flippingixe|, whereb,, , € {—1, 1}, um,» to denote the input to
quantizer. The deterministic bit flipping quantizer, which ighe quantizer, and,.., ., to denote the quantization error. Here,
used in one-dimensional sigma-delta modulators [19], breakss interpreted as the absence of a printer dot-ahds inter-

up limit cycles. Using a deterministic bit flipping quantizemyreted as the presence of a printer d@t(-) denotes the stan-
with adaptive sharpness control, we simultaneously break ygrd quantizer function given by

direction artifacts and minimize frequency distortion.
Section Il analyzes error diffusion halftoning. It shows that {Jrl’ >0

~\1-1, z<o.

Il. ERRORDIFFUSION

when the least mean squares (LMS) algorithm [20] is used to Qs(z) = 1)
adapt the error filter to minimize a local MSE criterion, it does

not optimize the threshold modulation parameters. Section {the quantization error at locatidim, n) is given by

derives a general framework for optimizing threshold modula-

tion parameters to minimize a local MSE criterion. The deriva-

tion shows that the LMMSE estimator for the quantizer is im- Cm,n = Dm,n = U, n- @
plicit, which enables a wide variety of quantizers to be use . ) i . )
Section IV optimizes parameters in edge enhancement er} _Imear mag, a.k.a. the errorfilter, filters the previous quan
diffusion [9] for generating WYSIWYG halftones for the fol- t1Zation errorsey, , € -1 1]

lowing cases:

1) standard quantizer function and fixed error filter; Hem,n = Z P, 1€m—t,n—1 ®)
2) standard quantizer function and adaptive error filter; (k, DesS

3) nonstandard quantizer function and fixed error filter. whereHe,, . is fed back to the input, and the sétlefines the

The first case optimizes the sharpness control paramegstent of the error filter coefficient mask. The mask is causal
in modified error diffusion [9] to compensate for linear frewith respect to the image scan, aftd 0) ¢ S. Typical raster
guency distortion. This section also presents a low-complexiggan masks for the Floyd—Steinberg filter [1] and Jarvis filter [6]
WYSIWYG halftoning algorithm using a deterministic bitare shown in Fig. 2(a) and (c), respectively.
flipping quantizer to break up limit cycles. Section V shows that For serpentine scans using Floyd—Steinberg filters, the mask
green noise halftoning is a special case of adaptive threshi@dshown Fig. 2(a) for odd rows and Fig. 2(b) for even rows.
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Fig. 6. (a) Jarvis and (b) Floyd—Steinberg halftones using a raster scan. Fig. 2 gives the error correction coefficients.
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50 L .
To ensure that all of the quantization error is diffusgéfimust
satisfy the constraint [18]
Z hr, o= 1. (4)
— (k,D)es
§ /
g30‘ v ] The quantizer input,, , and outpub,,_ ,, are given by
< Ve
o5+ /! 1
g / Um,n =Lm,n — Hern,n (5)
201 // | brn,n = QS(Um,n)- (6)
150/ —— non-adaptive 1
J --- adaptive
107 ] B. Error Diffusion with Threshold Modulation and an
5 ‘ ‘ ‘ ‘ ‘ ‘ Adaptive Error Filter
0 0.2 1.2 1.4

Fig. 3 generalizes error diffusior(-) denotes an arbi-
trary quantizer function, where the subscrigtindicates that
Fig.8. Radially averaged error spectral@maimage using Jarvis error filter. it may be nonstandard. The linear mi™ ™ changes at each
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Fig. 11. Performance of the adaptive algorithm on a mixed document. (a) Original grayscale image, (b) result of Jarvis filter, and (c) resultiaptisaig a
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pixel in the image. The functio®(«;, ---, ap) is a differen- 40
tiable threshold modulating function that modulates the qual
tizer input. Its parametera, - --, ap control the threshold 25
modulating function
Um,n =Lm,n — H(nl7n)enl,n (7) €30
bm,n = QN (tm,n + (e, -+, ap)) ® £
= — =25 P 1
ern, n brn, n urn, n- (9) 8;— //
From (7) and (9), the squared error between the output and in| //
is 20; 2 i
2 \\ 7 e ’
Cmn = (bmon — Tm.n)? = |:c — Hm e } . (10 L7 non-adaptive| |
m,n ( m,n rn,n) m,n m,n ( ) 15 o adaptlve
Wong [18] suggests the following approach to minimize th
local mean squared error given by (10) by using an adaptir 10 : : : : ; :
. ) . S o2 4 L 0.2 04 068 08 1 1.2 1.4
LMS algorithm, in which the weighting is omitted for simplicity normalized radial fréquency f.
Fig. 12. Radially averaged error spectra on mixed document using Jarvis error
M =-2 Cm,n — Z hp?GblOlLS m—k, n—1 filter.
ah[l’l evtous ?
(k,)es
X Cm—k,n—l (11)
2(m,n) p?€bZOuS acrn n
hiy ™ =y - NW 12)

wherep. controls the convergence rate of the algorithm. To sat-

isfy (4)

h(rn n) _ h(rn n) + (13)
where~ is a constant chosen to satisfy
S = (14)
(k,DCS

Wong's derivation of the update equations does not con-
sider (8). Hence, the parameters of the modulating function
W(ay, ---, ap) are not optimized. The next section demon-

strates how the parameters of the modulating function may Big. 13. Adaptation of both edge sharpening parambtand error filter?.
modified to minimize an MSE measure.

Il. GENERALIZED ADAPTIVE THRESHOLD MODULATION

Fig. 3 shows generalized error diffusion. Using (8), the
squared error between the output and input is

drn,n = (brn,n - xrn,n)Q
= [Q]\"(unl,n + \Ij(alv B al’)) — T, n]2- (15)
Foranyi € {1, 2, ---, P}

adrn n
. 2[Qn(wm,n +V(as, -+, ap)) = Tm,n]
L%
an\’(unw n +\I/(Oéla Y Oép)) (16)
a p’l evious

where

aQN(Um,n + ‘I/(Oélv e ap)) Fig. 14. Low—com_plexity WYSIWYG halftonin‘g with reduced_ artifacts

5 previous generated by adapting sharpness paranietand using a DBF quantizer.
@;

_ QN (T, n — H™ ")em, nt+¥(a, -, ap)) 17) For the purpose of computing the derivative, we use alinear min-
P! previous )

ok imum mean squares error (LMMSE) estimator for the quantizer.
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Fig. 15. Comparison of errorimages in various halftoning schemes. (a) Errorimage for adaptive DBF halftoning, (b) error image for nonadaptiterid®f; ha
(c) error image for fixed Floyd—Steinberg halftoning, and (d) error image for fixed Jarvis halftoning.

i i i adrn n
E/;/i]model the output of a scalar quantizgfr) with inputx as 5 = 2A[Q N (o + V{1, -, ap)) = Trm, n]
fa'y!

K

R XB\I/(al,---,ap).

Q(.’L’) = Az (18) aafre'vious (22)
where
Cov(z, O()) The constanA may be absorbed into the convergence pa-
A= ’—2 (19) rameterA. Thus, the update equations do not depend on com-
% puting the LMMSE estimator in (18). Next, we use this algo-
By substituting (18) and (19) into (17) rithm to optimize modified error diffusion [9] and green noise

[4] halftoning.
a(A[a:m,n — H(n%n)enl,n + \I/(Oél, ! Oép)])

revious
do

IV. ADAPTIVE THRESHOLDMODULATION IN MODIFIED ERROR
DIFFUSION

= A% (20) This section develops low-complexity adaptive WYSIWYG
(a8

i halftoning methods. In a WYSIWYG halftoning technique,
the sharpness of the halftone and the original grayscale image
The parameters of the modulating function are updated as fehould be approximately the same. In other words we attempt
lows: to minimize linear frequency distortion in the halftone. A user
controlled sharpness may be added as a preprocessing step
new _  previous _ y adm,‘n 1) before halftoning. We consider several cases in which the ob-
’ dalrevons jective is to minimize linear frequency distortion with respect to

T
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@ (b)

Fig. 16. Green noise halftones of a grayscale piecewise constant ramp using a Stucki error filt&rwith’. (a) Floyd—Steinberg hysteresis filter and (b)
adaptive hysteresis filter.

50 same as the original image [3], [10]. The threshold modulating
function, by inspection of Fig. 1(b), is given by
45 .
\P(Lv xrn,n) = Lxrn,n- (23)
40 .
§35 By substituting (23) into (15) and differentiating the result
> ad
gSO % = [QS (-Trn, n Hern, n+ Lpre'l;zousxn% n)
- -Trn, n]-Trn, n (24)
25 ‘ ad
new __ y previous m, n
— Floyd-Steinberg LT =1L )‘a [previous ® (25)

--- adaptive

The Appendix shows that in the case of a WSS stochastic
5 e 0‘4 0‘6 0‘8 1 1‘2 - process, if the input and the output of the quantizer are jointly
' normalized radial frequency f : ‘ WSS processes, and the para'me\te.ts appropnately chosgn,
' then the algorithm introduced in this section converges in the
Fig. 17. Radially averaged error-spectra for fixed and adaptive hysteregilsean .tO t,he globally ODtI_maI value (ﬁthat. minimizes *linear
green noise halftoning. istortion” between the input grayscale image and the output
halftone. Here minimizing linear distortion means flattening the
L _ i i signal transfer function of the error diffusion system [3], [10],
the original image. Section 1V-A fixes the error filter and USE[ 2]. Since natural images are nonstationary in general, the al-

a thresholding quantizer functioRs(-). Section IV-B adapts qqrithm need not converge to a particular value, but rather tracks
the error filter but still uses the standard quantizer funct|cg]ow|y varying image features.

Qs(-). Section IV-C fixes the error filter but uses a nonstandard Fig. 7 shows the values df over the entire image for Jarvis

quantizer function(-). We compare our algorithms with 54 Floyd_Steinberg halftones, on thenaimage, along with
trad|t|onal_ error dlffuspn schemes _based on 'Fhe (_:orrelatlon Pl optimal value of, found by computing the LMMSE esti-
the quantization error image [22] with the original image.  natorA for theLenaimage assuming stationary processes—see
(39) in the Appendix. Fig. 8 shows a plot of the radially aver-
A. Adapting Sharpness for a Fixed Error Filter and a aged [23] error spectrum obtained by using the fixed Jarvis filter
Thresholding Quantizer with and without the adaptive algorithm. At the low and mid fre-
quencies where quantization noise is small, the adaptive algo-
Eschbach and Knox [9] show that the sharpness of a halftortam, which reduces the linear frequency distortion between the
may be changed by adding a fractibrof the inputimage to the image and the signal component of the halftone, has lower error.
quantizer input as in Fig. 1(b). We seek to find the optirhal At the high frequencies, however, the quantization noise domi-
that will preserve the average sharpness of the grayscale imagses the error spectrum. The adaptive algorithm also introduces
That is, we want the signal component of the halftone to be there adaptation noise when the paraméter changed rapidly
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@

Fig. 18. Result of fixed and adaptive green noise halftoningemimage (& = 0.5). (a) Floyd—Steinberg hysteresis filter and (b) adaptive hysteresis filter.

to high frequency features. This noise is however buried in tdesirable in practice to sharpen/enhance text by pre-sharpening
shaped quantization noise present at high frequencies. Simdawusing a constant value df > 0 over the text regions [9].
spectra were obtained with the Floyd—Steinberg error filter afidhis is a limitation of the adaptive algorithm presented in this
on several other test images. section.
In practice, it is computationally expensive to compute the

optimal L using (39) and (19) on an image by image basis, ev@ Adapting Sharpness and the Error Filter Coefficients
if we assume stationary processes. The a}daptlve algorithm Préive adapt bottt. and the error filtef<(™ ™) simultaneously
sented above overcomes this problem, since the LMMSE e%u- T . .

R ) — 10 remove directional artifacts and retain the WYSIWYG prop-
mator is implicitly modeled. Fig. 9 shows the effect of using a

(m,n) H ith— = _
fixed L computed using (19) and (39) on a piecewise consta%rtty'H is adapted according to (11) with= 0.05 as sug

grayscale ramp imageL{,, was—0.42 in this case) using the gested in [18]. Fig. 13 shows the resulting halftone. The initial
- .

; : ; . ... guess for the error filter was the set of Floyd—Steinberg coef-
Jarvis error filter, and the effect of using the adaptive algorithrf, . . .
. Icients, and raster scanning was used. The resulting halftone
The adaptive method performs better at the very low frequen= . he WYSIWYG property. while the directional artifacts
cies because it tracks changes in the piecewise constant inret Ins the W Property, T
image. loyd—Steinberg error diffusion are also minimized.

Fig. 10 shows the results of the adaptive halftoning on ) L
the Lenaimage using raster scanning with fixed Jarvis ang: AAdapting Sharpness and a Deterministic Bit Flipping
Floyd—Steinberg error filters, respectively. Fig. 6 shows tHguantizer
results of standard error diffusion using Jarvis and Floyd—Stein-Magrath and Sandler [19] introduce deterministic bit flipping
berg filters. A visual inspection shows that the WYSIWYGQDBF) quantizers to reduce limit cycles in sigma—delta mod-
property has been obtained in Fig. 10 (since there is no visihlators. DBF is implemented with a modification to the basic
sharpening with respect to the original image), while thguantizer function, as shown in Fig. 4. This quantizer is equiv-
halftones in Fig. 6 appear sharper than the original grayscalent to using a standard quantizer, followed by deterministi-
image shown in Fig. 5. These visual observations are furtheally flipping certain output bits when the quantizer input was
supported by using a measure of sharpness of the sigimaa predetermined range. DBF can be implemented at a much
component of an error diffused halftone, which we describe iower complexity than random dithering, and produces higher
Section IV-E. frequency noise [19]. This is crucial in halftoning applications

Fig. 12 shows the error spectrum for the Jarvis filter, obecause we can break up limit cycles by modifying the quantizer
Fig. 11(a) which is a composite of a natural image with aunction without adding much visible noise. Such a nonstandard
image containing text. The algorithm is seen to adapt to tlg@antizer function has not been used previously in halftoning
slowly varying structure of the natural image, but introducespplications.
noise while adapting over the rapidly varying text regions. We may also combine the nonstandard DBF quantizer with
Fig. 11(b) and (c) shows the resulting halftones. It may ke adaptive sharpness control scheme to produce WYSIWYG
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halftones with no directional artifacts at a low computationabrtion produced by error diffusion. Fig. 15(a) shows the error

complexity. The DBF quantizer function is image of the halftone generated by adaptive sharpness using
a DBF quantizer, as proposed in this paper. Fig. 15(b) shows

1 d<z the error image of the halftone using a DBF quantizer, without
Qn(z) = { _’1’ otherwise. (26) adaptive sharpness control. Some of the correlated image com-

ponents are visible in the error image. Fig. 15(c) and (d) shows
The value ofd was chosen as the least value that eliminatddoyd—Steinberg and Jarvis halftones, respectively. The greater
limit cycles in a piecewise constant grayscale image with tdR€ correlation of the original image with tegror image the
uniformly spaced graylevels between 0 and 1 (limit cycle b&harper the halftone. For Fig. 15(a)~(d), the correlations with
havior for graylevels betweenl and 0 is identical to the above®SPect to the original image were 0.0001, 0.14, 0.25, and 0.45,
case, with-1 replaced by 1). Based on this test, 0.2 was choskgspectively. Also, the DBF quantizer successfully eliminates
as a suitable value aof for the DBF quantizer in error diffu- the directional artifacts of the Floyd—Steinberg halftoning. Thus,
sion. Fig. 14 shows the output halftone using the DBF quantizBPth frequency distortion and artifacts are minimized by the
We use raster scanning and a fixed Floyd—Steinberg error filtéfY SIWYG adaptive DBF algorithm. _ o
Comparing Fig. 14 with the halftone produced by adapfifg We validated all of the adaptive algorithms introduced in this
and adapting. in Fig. 13 shows that they are of comparabléeCtiO” by testing the error images_ of 10 halftones. AII error
quality. Section IV-D shows that the complexity of the DBRMages haq low corre_latlora:(().OOG) with respect to the or|g|n_al
algorithm is far lower than that of the adaptive error filter agMmage. This correlation dropped by two orders of magnitude

proach. over theL = 0 (no sharpness control) case.
D. Complexity of Adaptive DBF vs. Adaptive Error Filter V. OPTIMAL GREEN-NOISE DIGITAL HALFTONING
Techniques

Fig. 1(c) shows the setup for output-dependent feedback
The nonstandard DBF quantizer functi@n;(-) differs from proposed by Levien [4]. The effect of adding a filtered version
the standard quantizer functiohs(-) by only one comparison, of the output of the quantizer input results in clustering of

because output pixels. Green noise makes printing devices, such as laser
_0s(6), |6]<d printers, much easier to predict. The benefits of green-noise
Qn() :{Qs(%) ’ otherwise (27) halftoning are in printing processes with nonideal printing

conditions [5]. Lau, Arce and Gallager [5] report that the
Thus, the DBF quantizer in (27) requires one extra comparisgnantization noise containgitermediate frequencpetween
over the standard thresholding quantizer. Updafiragcording blue noise patterns and ordered dither patterns. They call it
to (24) and (25) requires an extra three additions and three nilgreen noise.” The hysteresis consta&wntcontrols the size of
tiplications per pixel becausg(™ ™e,, ,, is already computed the dot clusters in green noise digital halftones.
as part of error diffusion. Using (11)—(14), the adaptive error We use the theory developed in Section Ill to adapt the
filter method [18] withK filter coefficients require$3K + 1) hysteresis filter coefficientg ™ ™). All algorithms involving
additions and(2K + 1) multiplications per pixel. The com- the method shown in Fig. 1(c) need to use serpentine scanning
plexity of the adaptive DBF method over the adaptive error filtdo avoid strong diagonal artifacts. By analyzing Fig. 1(c), we
method [18] may be measured using the complexity ratio  derive the following equations governing green noise digital

halftoning:
_ complexity of adaptive DBF (28) Um n =Tm.n — Hem n (30)
complexity of adaptive error filter b n = Os |:U'rn,n L GFmm) brn,n:| (31)
If the complexity of an addition ig’ times the complexity of a Fmmp = Z Fre, bk, n—t- (32)
multiplication, f < 1, then (k,DESF
The quantization error and,, , are computed as usual using
C— 3 29 (2) and (5), respectively.
- 3f+2\° (29) By inspection of Fig. 1(c)
1+ K < 1 ) (G, F) b ) = GFbym . (33)

Therefore, the adaptation equations for the hysteresis filter co-
When applying the two adaptive methods on Floyd-Steinbegfficients become

halftoning using a conventional digital signal proces$dg- 1, %
f=1landC = 3/11. fi*
= Gbrn—k,n—l

E. Cause of Sharpening in Error Diffusion (previous)
_ previous _
Knox defined theerror imagein error diffusion to be the ma- % [QS (wm’ n Hem 7 bm’") “m, "} )
trix of quantization errors scaled and displayed as animage [22]. (34)
Kite [11] shows that the correlation of therror imagewith  Note that the two sums in the quantizer function are computed
respect to the original is directly related to the frequency dianyway and do not add complexity to the adaptation process.
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To form the final updates, we add a constraint to guarantee thatJsing the framework, we optimize hysteresis coefficients
the hysteresis filter coefficients are nonnegative and sum to oimegreen noise halftoning, and the edge sharpening parameter
This ensures that the hysteresis filter does not change the iloedge enhancement halftoning. By replacing a thresholding
size.The set of filter€ satisfying the constraints forms a closedjuantizer with a deterministic bit flipping quantizer, we break
convex set iMR!S71 [24] where| S| denotes the cardinality of up directional artifacts caused by limit cycles. The framework
Sr. The adaptation equation in this case is given by may be further improved by incorporating human visual
flm,n) _ Pe(fprevious _ 1N ) (35 models in the objective function and by using variable step size

. . L adaptive algorithms.
where P-(-) is the Hilbert space projection onto the closed

convex setC, f(™ ™ denotes the vector of filter coefficients
and the argument aF:(-) denotes the standard update (21) in
vector notation. In the Appendix, we prove that the adaptive algorithms pro-
The Appendix shows that the adaptive algorithm described@sed in this paper converge in the mean when the input and
this section converges in the mean to the globally optimal sol@utput of the quantizer are jointly wide sense stationary, and
tion under suitable statistical assumptions. The Appendix di§e quantizer may be modeled using a linear gain model [3],
cusses a method to compute the orthogonal projection operdidt. The linear gain model depends on the accuracy of mod-
Pe(). eling the quantizer with a scalar gain for the signal component.
To illustrate the framework of Section IIl, we adapt a four-tap his model has been validated in [10], [21], and accurately pre-
hysteresis filter. The error filter coefficients are the Stucki coeglicts linear effects in halftoning such as linear distortion (sharp-
ficients. The initial guess for the hysteresis filter coefficients agning) and noise shaping.
the Floyd—-Steinberg coefficients. This corresponds to the 4-tap
hysteresis filter, 12-tap error filter green noise scheme usedAn Adaptive Modified Error Diffusion

(51 _ Proposition 1: The optimal value off, L°?* under the as-
Fig. 16(a) shows the halftone obtained on a grayscale ra@pmptions stated above is given by* = ((1 — A)/A), where

by using the Floyd-Steinberg hysteresis coefficients, whilg = (Cowv(u,, », b, n)/Var(um »)) is the LMMSE estimator

Fig. 16(b) shows the halftone obtained by using the adaptifs the quantizer output, a.k.a. the “linear gain” of the quantizer.

algorithm described in this section. In both cases the dot size Proof: For the optimal result in the global sense we need

was held constant by fixing: = 0.5 as suggested in [5]. Theto take expectations on both sides of (24) and set the result to

adaptive algorithm breaks up the directional artifacts obtainggro. This means that the optimal solutibgy,, satisfies
on using the Floyd—Steinberg hysteresis filter [5]. Fig. 17 shovg%[d o]

APPENDIX

the improvement in the error spectra of the adaptive green n%
halftone at the lower frequencies. Fig. 18 shows the results of_ opt _
fixed and adaptive hysteresis error filter on thenaimage. BllQs(@m, n = Hem,n + L™ @m, n) = Tm, nlwm, n] = 0.
The adaptive algorithm breaks up the long “worm” artifacts (36)
seen in the smooth regions of the image. Using the linear gain approximation for the quantizer func-
The Appendix shows that the above algorithm convergestion this becomes

the mean if the input and output of the quantizer are jointIyE[[A(xm v = Hemn +LP T ) = T n]Zm.n] = 0. (37)
wide sense stationary. This assumption need not hold true fqr ’ ’ ’ ' '

natural images. However, the mean value of the iterateisa g 8%’ s'.’:ﬁ?ﬁh? opt;r_nal solultlgn Izegds toan errorklnlag(;, anqrre-
value to use if fixed hysteresis coefficients are desired. In o edw € inputimage [10], [22], we can make the following

simulations, we usg = 0.005 as the convergence parameter iﬁlpprOXImatIon based on the linear gain model [10], [12]:

our adaptive algorithms. E[Hem, n®m,n] = 0. (38)
By substituting (38) into (36) and solving fdrrt
VI. CONCLUSION . 1—-A
. . ) L = ———, (39)
In this paper, we introduce a general framework for adapting A

the parameters of a differentiable threshold modulating func- 1 NiS completes the proof. _

tion to minimize a mean square error measure. Competing" fact, this condition is the same as gleballyoptimal value
techniques that adapt error filter coefficients and inject noi§t L derived by Kiteet al. using frequency domain methods
by adding dither do not optimize the threshold modulatingQ]- What s crucial, however, is that the optinial L°** satis-
parameters and have higher implementation complexity. Badi&$ (36). We will use thlsfaqt to estab!lsh the following t_heorem.
on the framework, we develop a low-complexity algorithm Theorem 1:The adaptive algorithm proposed in Sec-
to minimize the linear distortion (sharpening) in error diffion IV-A converges in the mean to the globally optimal
fused halftones. The savings on a conventional digital sigré@lutionLe if 0 < A < 2/(A _E[ern,n])- _

processor are a factor of 3.67 for Floyd—Steinberg halftoning Proof: The update equation for the adaptive paramsger
and a factor of 10.33 for Jarvis halftoning, when comparédf thepth iteration/adaptation is given by (24) and (25), which
with adaptive error filter algorithms [18]. By preserving thé@n be written as

sharpness of the grayscale image, a separate preprocessing = L, — MA[tm, n — Hem, n + LpTm n] — Tm, n}Em, n
method may be applied for customized image enhancement. (40)
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where we have made use of the linear gain model, by introre. Since the constraint sétis a closed convex set iR”,
ducing the parametet. By rewriting (40) whereN is the dimension of,,, we can define a projection op-
eratorPz ontoC by
Lyyi =L, (1- AAz2 ) — A Hem, n)Tm, n

m,n

+ AAz2 = A2

m,n m,n’

1) (Yo € RY)||Po(w) — wll = min[lv - wi.  (47)

By subtractingL°’* from both sides of (41) and taking expecThe constrained optimal solution is characterized using the pro-

tations jection operator [26], [27] by
E[Lp-l-l] - Lopt fopt = PC(fopt - NGE[brn,n[A(xrn,n - hTern,n
=L.(1- )‘AE[erQn, wl) = AAE[(Hem, n)Tm, 1] + beh nfopt) — Zm,n]]) (48)
+ ME[z7, | - AE[z7, ] — L. (42)

which may be rewritten as
Since L°Ft satisfies (36)
£7t = Pe((T— pAG?Kp)fP + pu[(A — 1)GEDby, nZm n)

— ME[(Hem, n)Tm, n] + )‘AE[ern,n] - )‘E[ern, n] + AGE[bm’nhTem,n]])
= MAL?P'E[z2, . (43) (49)
By substituting (43) into (42) whereKy, = E[b,,, »bZ ,]andlistheN x N identity matrix.

It follows from the development in Proposition 1 in [26] as well
as [27] and the fact that the unconstrained solution satisfies (46),
that the iteration

E[Lpy1] = L7 = [1 = X A B[z}, I[Lp — L], (44)
Therefore

L] - 17 =[1 - A A B[z, P[Lo — 17 (45) Tt = FelT= pAGTKy ) 4 ul(A = DGE[by nitm ]
7 + AGE[an, nhTern, n]])

where Ly is an arbitrary initial guess. Hence ifi — (50)
AAE[ ) < 1L,or0 < A < 2/(A E[z2, ,]), then
the adaptive algorithm converges in the mean to the optim@nverges in mean 5, if 0 < p < 2/(A G* Ay) where\y
value of L. This means thab[L,] — L°** under the assump- js the maximum eigenvalue of the mati&,. Since T(Ky,) >
tions we have made at the beginning of this Appendix. This,  the theorem follows. The iteration converges to a global
completes the proof of the theorem. optimum because the Hessian of the objective function to be
minimized over the convex sét is given by a positive semi-
definite AG?K;,. AG?K,, is positive semi-definite becaug,

We denote the hysteresis filter at thih iteration as a vector is an autocorrelation matrix.
f, and the output image pixels covered by the hysteresis filterComputation of the Projection Operaté}:: To enforce that
mask at locationm, n) by the vectorb,,, ,,. Thus, the hys- the iterates do not leave the constraint@give introduce the
teresis filter output at locatiomf{, ») and iterationp is given auxiliary variablef,. ; such that
by bl £,

Theorem 2: The adaptive algorithm proposed in Section V Je, 0= 9;%71 (51)
converges in the mean to a globally optimal solutie#i if 0 <
p < 2/(A G* Tr(Kp)) and the output vectds,,, , and the and
hysteresis filter vectof,, are statistically independent. (Ky,) )
refers to the trace of the autocorrelation mafifg, which is Z Ok, =1 (52)
defined as the sum of its diagonal elements. (K, DESE

This assumption is similar to the independence assumptigiterms off;, ;, the adaptation equation given by (21) becomes
made for conventional LMS adaptive filters [25], which says

B. Adaptive Green Noise Error Diffusion

that the data (input) and the LMS weight vector are statistically et previons I n
independent. ’ k, oprTeions
Proof: The unconstrained optimal solutiéhmust satisfy '
with
O] ad ad
of fgo rn,n — rn,n ]?re'vious ) (54)
T T 89p1 eVLOUS af[n evious k,1
= GE[brn,n[A(xrn,n —h em,nt Gbnl7nfo) - xrn,n]] k1 k1
=0. (46) To enforce (52), we normalize the update as follows:
However, we impose the requirement that the elements of the fnew _ Ort’ (55)

constrained optimal solutioff?* must be positive and sum to kol ey
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The projected parameterf, ; satisfying the constraints are [21] S. Ardalan and J. Paulos, “An analysis of nonlinear behavior in
given by

We use the operator that maps the iterate into the constraint géf!

new ( Anew)Q'

= \U,1

ki = (56)

C as an approximation to the true projection operdior

(1]
(2]
(3]

(4]
(5]
(6]

(7]

(8]
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