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the domain in which the signal parameters can be estimated unambigu-
ously. This can be used in applications to avoid aliasing. Moreover, it
has been shown that the mean squared error of PPS parameter estimates
can be significantly decreased when a nonuniform sampling scheme is
used [1]. Hence, from an accuracy and ambiguity point of view, a prop-
erly chosen nonuniform sampling scheme is preferred before a uniform
scheme when estimating PPS parameters.
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Design of Optimal Minimum-Phase Digital FIR Filters
Using Discrete Hilbert Transforms

Niranjan Damera-Venkata, Brian L. Evans, and Shawn R. McCaslin

Abstract—We present a robust noniterative algorithm to design optimal
minimum-phase digital FIR filters with real or complex coefficients. We de-
rive: 1) the discrete Hilbert transform (DHT) of the complex cepstrum of a
causal complex minimum-phase sequence and 2) the minimum fast Fourier
transform length for computing the DHT to achieve a desired coefficient ac-
curacy.

Index Terms—Cepstrum, complex FIR filters, fast Fourier transform,
low-delay filters.

I. INTRODUCTION

The coefficients of a linear-phase digital FIR filter are symmetric
or antisymmetric about the midpoint [1]. Therefore, a nonlinear-phase
digital FIR filter of the same length would have twice as many free pa-
rameters. A linear-phase FIR filter has zeros inside, on, and outside the
unit circle, whereas a minimum-phase FIR filter has all of its zeros on or
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within the unit circle. Given optimal minimum-phase and linear-phase
digital FIR filters that meet the same magnitude specification, the min-
imum-phase filter would have areduced filter lengthof typically one
half to three fourths of the linear-phase filter length [2], andminimum
group delay, where energy would be concentrated in the low-delay
instead of the medium-delay coefficients [3]. Minimum-phase filters
can simultaneously meet constraints on delay and magnitude response
while generally requiring fewer computations and less memory than
linear-phase filters.

Previous algorithms for designing minimum-phase digital FIR filters
have been limited to real filters and may be divided into two classes.
One class [4]–[8] designs an optimal linear-phase FIR filter for a power
spectrum computed by squaring an ideal piecewise constant magni-
tude response. The process of factoring the linear-phase polynomial
transfer function (a.k.a. polynomial deflation) and reconstructing the
minimum-phase filter coefficients (a.k.a. polynomial inflation) may in-
troduce catastrophic numerical errors in the coefficients.

The other class of design algorithms [9]–[11] uses the complex cep-
strum of the minimum-phase filter and is less error prone than methods
based on polynomial deflation or inflation. Two algorithms [9], [10]
deconvolve the complex cepstrum. The algorithm in [9] uses spectral
factorization, whereas the algorithm in [10] requires time-domain re-
cursion. The algorithms in [11] and this correspondence are based on
the discrete Hilbert transform (DHT) relationship between the magni-
tude spectrum of a causal real sequence and its minimum-phase delay
phase spectrum [1], [12], [13]. As the fast Fourier transform (FFT)
length used to compute the DHT increases [11], [13], we more accu-
rately approximate the continuous Hilbert transform and improve the
accuracy of the minimum-phase filter coefficients.

By extending the DHT approach to the complex case, we present
an algorithm to design optimal, complex, minimum-phase digital FIR
filters. For the same constraints, complex digital FIR filters sometimes
have lower computational complexity than real digital FIR filters, e.g.,
in seismic processing [14]. For piecewise magnitude constraintsanda
linear-phase constraint over the passband, one algorithm [14] designs
optimal, complex, nonlinear-phase digital FIR filters. By relaxing the
phase constraint, we can design an optimal minimum-phase complex
filter that meets the same magnitude constraints but is up to 50% shorter
than [14].

Section II extends the DHT relationship to complex sequences. Sec-
tion III describes the new design algorithm. Section IV gives two design
examples. Section V offers conclusions. The Appendix gives the FFT
length to obtain a desired coefficient accuracy for a given filter order.

II. DHT RELATION FOR COMPLEX SEQUENCES

This section derives a DHT relation between the magnitude spec-
trum of a causal complex sequence and its minimum group delay phase
spectrum. Any sequence can be represented as a sum of conjugate sym-
metric and antisymmetric parts

x[n] = xe[n] + xo[n] (1)

wherexe[n] = 1=2 (x[n]+x�[�n]) andxo[n] = 1=2 (x[n]�x�[�n])
such thatx� represents the complex conjugate ofx. Using Fourier
transform properties [1]

X(ej!) = XR(e
j!) + jXI(e

j!) (2)

whereXR(e
j!) andjXI(e

j!) are the Fourier transforms ofxe[n] and
xo[n], respectively. Furthermore,XR(e

j!) andXI(e
j!) are the real

and imaginary parts ofX(ej!), respectively. Ifx[n] is causal, i.e.,
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x[n] = 0 for n < 0, then it is possible to recoverx[n] from xe[n]
by using

x[n] = 2xe[n]u[n] � x
�[0]�[n]: (3)

By taking the Fourier transform of (3), we obtain

X(ej!) =
1

�

�

��

XR(e
j�)U(ej(!��)) d� � x

�[0] (4)

whereU(ej!) is the Fourier transform of the unit step sequence [1].
By using

U(ej!) =
1

2
�

j

2
cot

!

2
+

1

k=�1

��(! � 2�k) (5)

we can express (4) as

X(ej!) =XR(e
j!) + jXI(e

j!)

=XR(e
j!) +

1

2�

�

��

XR(e
j�)d�

�

j

2�

�

��

XR(e
j�) cot

! � �

2
d�

� <efx�[0]g � j=mfx�[0]g: (6)

Equating real and imaginary parts in (6) and noting that

<efx�[0]g =
1

2�

�

��

XR(e
j�)d� (7)

we obtain the relationship

XI(e
j!) = � 1

2�

�

��

XR(e
j�) cot

! � �

2
d� � =mfx�[0]g:

(8)

By using the DHT relation for the complex cepstrum [1] of a complex
sequencêx[n], we obtain

arg X(ej!) = � 1

2�

�

��

log jX(ej�)j cot ! � �

2
d� �K

(9)

whereK = =mfx̂�[0]g. The minimum-phase spectrum of a complex
sequence has the same form as the minimum-phase spectrum of a real
sequence plus a constant. If we minimize group delay, which is the
derivative of the phase response with respect to frequency!, then the
constant termK will vanish, and the same DHT relation would hold
for complex and real sequences.

III. OPTIMAL MINIMUM -PHASE FIR DESIGNALGORITHM

The optimal minimum-phase filter is designed by transforming an
optimal linear-phase FIR filter into an optimal minimum-phase filter.
The design is decoupled into two steps:

1) Obtain the squared magnitude response of the desired optimal
minimum-phase FIR filter.

2) Use the DHT to produce a minimum-phase FIR filter by directly
supplying the square root of the magnitude response of step 1.

Several methods achieve the goal of the first step. We modify the
two-level ripple specification in [8] in the following subsections. In
order to handle multiple ripple levels over different bands, we replace
step 1 with the method in [9], which uses a modified Parks–McClellan
algorithm [15] to allow the error to oscillate between 0 and2�k instead
of ��k to +�k , where�k is the ripple in thekth band [16]. Thus, op-
timal minimum-phase filters with the least complexity may be obtained

for arbitrary magnitude specifications over the passband and stopband
using the DHT.

A. Obtaining the Squared Magnitude Response of Optimal Magnitude
Minimum-Phase FIR Filter

First, we design a symmetric lowpass filter of length2N � 1 using
the Parks–McClellan algorithm. Given the desired passband and stop-
band ripples of the optimal minimum-phase filter as�01 and�02, respec-
tively, we compute the passband and stopband ripples of the linear-
phase filter, which are, respectively, denoted as�1 and�2. The order of
the minimum-phase filter that is finally obtained isN , and this filter is
not only minimum-phase but also has optimal magnitude characteris-
tics in the Chebyshev sense. The length2N � 1 linear-phase filter is
typically designed with the smallest number of taps that will meet the
computed linear-phase specifications [17]:

�1 =
4�01

2 + 2� 2
1 � � 2

2

(10)

�2 =
� 2
2

2 + 2� 2
1 � � 2

2

: (11)

The transfer function of the linear-phase filter designed in this way is

Hlinear(z) = z
�(N�1)

H0(z) (12)

whereH0(z) is the zero-phase transfer function

H0(z) =

N�1

k=0

h(k)(zk + z
�k): (13)

Second, we shift the transfer function by�2+�1. Shifting the transfer
function by�2 makes the magnitude spectrum non-negative. Since the
DHT does not exist on the unit circle [18], we add�1 to ensure that
the DHT exists. The�1 term may be chosen to be arbitrarily small so
as not to affect the magnitude spectrum significantly. We typically use
�1 = 10�10.

Third, we normalizeH0(z) + �2 by usingH(z) = (H0(z) + �2)
SCAL, where [8]

SCAL =
4p

1 + �1 + �2 +
p
1� �1 + �2

2 : (14)

This causes the passband ripple to oscillate between1+ �01 and1� �01.
H(z) corresponds to the magnitude squared response of the minimum-
phase filterHmin(z)

H(z) = (H0(z) + �2)SCAL = Hmin(z)Hmin(z
�1): (15)

Hmin(z) has the required magnitude response of the minimum-phase
spectral factor.

B. Application of the Discrete Hilbert Transform

We apply the DHT toHmin(z), which is the square-root response of
H(z), reconstruct the minimum-phase polynomial by combining the
desired magnitude and phase responses, and take the inverse FFT. For
any magnitude response, the minimum-phase filter of a given order is
unique. The algorithm is idempotent for a given�1, within the limits of
arithmetic precision.

The discrete version of the integral transform in (9) uses a discrete
Fourier transform (DFT) [13]. Given a sampled magnitude spectrum
jX[i]j for i = 0; � � � ; M � 1, whereM is the DFT length, we com-
pute the corresponding minimum-phase spectrum in two steps. First,
we compute the sampled phase spectrum

� = �jDFTfsss � IDFTfaaagg (16)
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where� represents pointwise vector multiplication, and

� = [�[0]; �[1]; � � � ; �[M � 1]]

sss = [sgn[0]; sgn; � � � ; sgn[M � 1]]

aaa = [log jX[0]j; log jX[1]j; � � � ; log jX[M � 1]j]

such that

sgn[i] =

0 i = 0;
M

2

1 0 < i <
M

2

�1
M

2
< j < M:

(17)

Second, we formjX[i]jej�[i] for i = 0; 1; � � � ; M � 1. We can make
the discrete approximation in (16) arbitrarily close to the continuous
integral transform in (9) by choosing a large-enough FFT length, as
quantified in the Appendix.

The minimum-phase filter with the same magnitude response asx[n]
may be constructed by

1) computingjX[i]j for i = 0; � � � ; M � 1, which is the sampled
magnitude spectrum ofx[n];

2) calculating�[i] for i = 0; � � � ; M � 1 by using (16);
3) constructing the FFT of lengthM of the minimum-phase se-

quence asjX[i]jej�[i];
4) taking the inverse FFT transform of lengthM to obtain a min-

imum-phase sequence;
5) truncating the resulting sequence to the desired filter impulse

response lengthN .
The formula for choosingM is given in the Appendix. By using a

long FFT, the magnitude spectrum of the truncated minimum-phase se-
quence closely matches the original magnitude spectrum, and the trun-
cated terms may be made negligibly small, e.g., on the order of10�7.

IV. EXAMPLE OPTIMAL MINIMUM –PHASE FILTER DESIGNS

We design two optimal minimum-phase filters using the DHT-based
algorithm in Section III. Example 1 is designed according to the spec-
ifications of an example in [8]. Example 2 presents the design of a
complex-tap optimal minimum-phase FIR filter. In the examples, all
frequency values are normalized in the range from 0–1, where 1 repre-
sents half of the sampling frequency. For each example, we report the
FFT length used and the time that the DHT-based algorithm took to
run in MATLAB [19] version 5.0 on a 167 Hz Sun Ultra workstation
running Solaris 2.5.1.

A. Example 1—Real 325-Tap Lowpass Filter

To show that the algorithm can handle very long filters, we design a
real lowpass FIR filter using a set of specifications from [8]:

• passband edgefp = 0:28;
• stopband edgefs = 0:3;
• weighting function1 : 5 � 105;
• passband ripple�01 = 0:000830;
• stopband ripple�02 = 8:2008� 10�5.

Using (10) and (11), we calculate�1 = 0:001660 and�2 = 3:3627�
10�9 for the optimal linear-phase filter. The optimal linear-phase filter
has a length ofL = 649, and the optimal minimum-phase FIR filter
has a length ofN = 325. Fig. 1(a) shows the magnitude response and
group delay of the optimal minimum-phase filter. Fig. 1(b) shows the
plot of the impulse response coefficients. We used an FFT length of
524 288 (219), and the algorithm took 60 s to run.

In the DHT-based optimal design, the actual ripple parameter values
were�01 = 0:000828 and�02 = 8:1684� 10�5, which meet the speci-

Fig. 1. Magnitude response and group delay for an optimal real 325-tap
minimum-phase digital FIR filter designed by the new algorithm based on the
discrete Hilbert transform.

Fig. 2. Magnitude response and group delay for an optimal complex 26-tap
minimum-phase digital FIR filter designed by the new algorithm based on the
DHT. The filter coefficients are given in Table I.

fications. The relative percentage error was 0.24% in the passband and
0.39% in the stopband, which are comparable with the figures of 0.29
and 0.21%, respectively, in [8]. While the ripples in both bands of the
DHT-based design are lower than the specified value, the ripples in the
design in [8] are greater than the specified values.

B. Example 2—Complex 26-Tap Lowpass Filter

We design a lowpass complex-tap minimum-phase filter. The op-
timal linear-phase filter is an equiripple filter having linear-phase over
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the passband only. Hence, it has complex coefficients and may be de-
signed using the algorithm in [14]. The specifications arefp = 0:7,
fs = 0:8, �01 = 0:002125, �02 = 0:092 510, and a weighting func-
tion of 1 : 1. Using (10) and (11), we calculate�1 = 0:004 268 and
�2 = 0:004297. The optimal complex-tap filter with linear phase over
the passband has 50 taps. Using the DHT-based algorithm, we design
a minimum-phase complex FIR filter with 26 taps to meet the specifi-
cations. Fig. 2 shows the magnitude response and group delay of the
optimal complex filter, and Table I lists its coefficients. We used an FFT
length of32678, and the algorithm took 6 s to run.

In the DHT-based optimal design, the actual ripple parameter values
were�01 = 0:002125 and�02 = 0:092359, which meet the specifi-
cations. The relative errors are 0% in the passband and 0.16% in the
stopband. The approach also gives good results for higher-order com-
plex FIR filters.

V. CONCLUSION

We present a robust noniterative algorithm to design optimal min-
imum-phase digital FIR filters with real or complex coefficients given
an arbitrary magnitude specification. We derive the DHT of the com-
plex cepstrum of a causal complex minimum-phase sequence, which
is the DHT of the real cepstrum plus a constant. The Appendix derives
the minimum fast Fourier transform length for computing the DHT to
achieve a desired coefficient accuracy for a given filter order.

APPENDIX

We relate the FFT length for the DHT-based design algorithm to
the filter order and the filter coefficient accuracy�. We express the
normalized transfer function of the minimum-phase filterHmin(z) in
(15) as a product of two shorter transfer functionsH1(z) andH2(z):

H1(z) =

N

k =1

(1� zk z�1)

H2(z) =

N

k =1

(1� ej� z�1): (18)

Here,zk is thek1st zero such thatjzk j < 1 for k1 = 1; 2; � � � ; N1.
H1(z) corresponds to the passband and transition band zeros, and
H2(z) corresponds to the stopband zeros on the unit circle. The
logarithm ofHmin(z) can be expressed as

log(Hmin(z)) = log(H1(z)) + log(H2(z)): (19)

The terms may be expanded using Taylor series forlog(1+z) about
z = 0

log(H1(z)) =�

N

k =1

1

m=1

zmk
m

z�m (20)

log(H2(z)) =�

N

k =1

1

m=1

ejm�

m
z�m : (21)

Since both infinite summations converge, the terms in the infinite sum-
mations decay faster than1=m. In addition, the infinite summation
terms inlog(H1(z)) decay faster than those inlog(H2(z)) since the
zeros ofH1(z) are inside the unit circle, and the zeros ofH2(z) are on
the unit circle.

TABLE I
COEFFICIENTS OF AN OPTIMAL COMPLEX

26-TAP MINIMUM -PHASE DIGITAL FIR FILTER. MAGNITUDE RESPONSE

AND GROUPDELAY ARE PLOTTED IN FIG. 2

The complex cepstrum ish1(n) + h2(n). Each component may
be obtained by taking the inversez transform of log(H1(z)) and
log(H2(z)), respectively

h1(n) =�

N

k =1

Z�1
1

m=1

zmk
m

z�m (22)

h2(n) =�

N

k =1

Z�1
1

m=1

ejm�

m
z�m : (23)

Sinceh2(n) decays at a much slower rate, we considerh2(n). When
n > 0

h2(n) = �

N

k =1

ejn�

n
: (24)

For the complex filter case,jh2(n)j < N2=n. For causality,jh2(n)j <
� for n > M2=2, whereM2 is the length of the sequence or the order
of the FFT used:

h2
M2

2
< � = 2

N2

M2

: (25)
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For real filters, we obtain a better bound because we know that the stop-
band zeros occur in complex conjugate pairs and are spaced uniformly
around the unit circle

jh2(n)j = �
2

n

l

i=0

cos(2�fi) (26)

wherel = N2=2� 1 whenN2 is even andl = (N2 � 1=2) whenN2

is odd.
Using the fact that�i = 2�fi andf0 = fs, wherefs is the stopband

frequency, the stopband frequency response specification (26) becomes

jh2(n)j = �
2

n

l

i=0

c(fs; i; N2) (27)

where

c(fs; i; N2) = cos 2� fs + i
1� 2fs
N2 � 1

: (28)

Therefore, the error bound for the real case is

h2
M2

2
< � =

4

M2

l

i=1

c(fs; i; N2) : (29)

We can make� arbitrarily small by using a large-enough FFT length. If
the FFT length is restricted to be a power of two, then we may compute
the required FFT lengthM2 from the specified cepstral error� for the
complex and real cases as

mcomplex =d1 + log2(N2)� log2(�)e (30)

mreal = 2 + log2

l

i=0

c(fs; i; N2) � log2(�) (31)

M2 =2m (32)

wherem2 is mcomplex for the complex case andmreal for the real
case. For a filter with 100 stopband zeros,fs = 0:3, and� = 0:001, we
obtainm2 = 18 in both cases. Although (30) is more conservative than
(31), requiring a power-of-two FFT may yield the same FFT length.
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Factorable FIR Nyquist Filters with Least Stopband
Energy under Sidelobe Level Constraints

Mingyu Liu, Christopher J. Zarowski, and Frederick W. Fairman

Abstract—Spectrally factorable Nyquist filters are used in data commu-
nications to avoid intersymbol interference. In this correspondence, an ap-
proach is developed for obtaining a Nyquist filter that is factorable having
the smallest stopband energy for a given sidelobe level. The resulting con-
strained minimization problem is solved efficiently and reliably using the
Goldfarb–Idnani algorithm. Some examples are presented comparing the
present method with a previous approach from the literature.

Index Terms—FIR Nyquist filters, sidelobe level constraints.

I. INTRODUCTION

Mueller [1] proposed a method of designing Nyquist filters (Mueller
sequences) with minimum stopband energy (SE). However, [1] does
not present a method of imposing a non-negative frequency response,
which is essential to achieve a spectrally factorable sequence. One
spectral factor is used as the transmit pulse, whereas the other is
used as the matched filter in the receiver. Since the work of [1],
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