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the domain in which the signal parameters can be estimated unambigithin the unit circle. Given optimal minimum-phase and linear-phase
ously. This can be used in applications to avoid aliasing. Moreoverdigital FIR filters that meet the same magnitude specification, the min-
has been shown that the mean squared error of PPS parameter estinrates-phase filter would have r@duced filter lengttof typically one
can be significantly decreased when a nonuniform sampling schemaadf to three fourths of the linear-phase filter length [2], amidimum
used [1]. Hence, from an accuracy and ambiguity point of view, a progroup delay where energy would be concentrated in the low-delay
erly chosen nonuniform sampling scheme is preferred before a unifoimstead of the medium-delay coefficients [3]. Minimum-phase filters

scheme when estimating PPS parameters. can simultaneously meet constraints on delay and magnitude response
while generally requiring fewer computations and less memory than
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phase spectrum [1], [12], [13]. As the fast Fourier transform (FFT)

length used to compute the DHT increases [11], [13], we more accu-
rately approximate the continuous Hilbert transform and improve the
accuracy of the minimum-phase filter coefficients.

By extending the DHT approach to the complex case, we present
an algorithm to design optimal, complex, minimum-phase digital FIR
filters. For the same constraints, complex digital FIR filters sometimes
Rave lower computational complexity than real digital FIR filters, e.g.,

In seismic processing [14]. For piecewise magnitude constraiis
linear-phase constraint over the passbhand, one algorithm [14] designs
Abstract—\We present a robust noniterative algorithm to design optimal ~ optimal, complex, nonlinear-phase digital FIR filters. By relaxing the
minimum-phase digital FIR filters with real or complex coefficients. We de- phase constraint, we can design an optimal minimum-phase complex

rive: 1) the discrete Hilbert transform (DHT) of the complex cepstrum ofa  fjiter that meets the same magnitude constraints but is up to 50% shorter
causal complex minimum-phase sequence and 2) the minimum fast Fourier than [14]

transform length for computing the DHT to achieve a desired coefficient ac- )
curacy.

Design of Optimal Minimum-Phase Digital FIR Filters
Using Discrete Hilbert Transforms

Niranjan Damera-Venkata, Brian L. Evans, and Shawn R. McCasli

Section Il extends the DHT relationship to complex sequences. Sec-
tion Il describes the new design algorithm. Section IV gives two design
examples. Section V offers conclusions. The Appendix gives the FFT
length to obtain a desired coefficient accuracy for a given filter order.

Index Terms—Cepstrum, complex FIR filters, fast Fourier transform,
low-delay filters.

I. INTRODUCTION 1I. DHT RELATION FOR COMPLEX SEQUENCES

The coefficients of a linear-phase digital FIR filter are symmetric This section derives a DHT relation between the magnitude spec-
or antisymmetric about the midpoint [1]. Therefore, a nonlinear-phag@m of a causal complex sequence and its minimum group delay phase
dlglta' FIR filter of the same Iength would have twice as many free p@pectrum. Any sequence can be represented as asum of Conjugate sym-
rameters. A linear-phase FIR filter has zeros inside, on, and outside ghétric and antisymmetric parts
unitcircle, whereas a minimum-phase FIR filter has all of its zeros on or
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xz[n] = 0 forn < 0, then it is possible to recovefn] from «.[n] for arbitrary magnitude specifications over the passband and stopband
by using using the DHT.
x[n] = 2x.[n]uln] — 2™[0]6[n)]. (3) A. Obtaining the Squared Magnitude Response of Optimal Magnitude

) . . Minimum-Phase FIR Filter
By taking the Fourier transform of (3), we obtain ) ) ) ] )
First, we design a symmetric lowpass filter of lengthi — 1 using

- g I i0\rr/ j(w—0 x the Parks—McClellan algorithm. Given the desired passband and stop-
X&)y == | Xp(@ U D) — 2*[0 4 9 P P
(e™) T /,,, w(e7)U (e ) w10] “) band ripples of the optimal minimum-phase filter’gsandé’,, respec-

o ) ] tively, we compute the passband and stopband ripples of the linear-
whereU (e’) is the Fourier transform of the unit step sequence [1hnase filter, which are, respectively, denotedaands., . The order of

By using the minimum-phase filter that is finally obtained)s and this filter is
' 1 . " oo not only minimum-phase but also has optimal magnitude characteris-

Ue?) = 5~ % cot (5> + Z w5(w — 2mk) (5) tics in the Chebyshev sense. The lengih — 1 linear-phase filter is
k=—oo typically designed with the smallest number of taps that will meet the

li -ph ificati 17]:
We can express (4) as computed linear-phase specifications [17]

48,

X(e7) = Xn(e?™) + jX1(c?) S e (10)
. 1 T 0 . =
= Xg(e’ — Xp(e?”)de o2
W)+ g [ X S S— (1)
i P 2+ 262 — 62
- J Co(ed?) cot| &
2 J_ . Kr(e™) wt< 2 ) a0 The transfer function of the linear-phase filter designed in this way is
- %R(’{T‘*[O]} - %m{T*[O]} (6) Hiinear(2) = Z—(N—UHO(Z) (12)
Equating real and imaginary parts in (6) and noting that whereHy (>) i the zero-phase transfer function
* 1 " - 9
Re{z"[0]} = — / Xr(e?)df 7 N-1
27 J_, Ho(z) =Y h(k)(z"+:7%). (13)
k=0

we obtain the relationship

1 /7 » o Second, we shift the transfer functiondy-¢; . Shifting the transfer
Xr(e?)y=-— / Xr(e’”) cot(““_—) df — Im{x"[0]}.  function byé, makes the magnitude spectrum non-negative. Since the
2% J o 2 DHT does not exist on the unit circle [18], we addto ensure that
(8)  the DHT exists. The; term may be chosen to be arbitrarily small so

By using the DHT relation for the complex cepstrum [1] of complegs not to affect the magnitude spectrum significantly. We typically use

3 i = 107",
sequence:[n], we obtain !

Third, we normalizeHo(z) + 62 by usingH (z) = (Ho(z) + 62)
o 1 [r _ 0 w—4 ; SCAL, where [8]
arg X () = ~or log | X (e’7)] cot<7) df — K A

(VIF& ¥ +VI—6+6)"

wherelt = 3m{2"[0]}. The minimum-phase spectrum of a complexrhs causes the passband ripple to oscillate betweeti, and1 — & .

sequence has the same form as the minimum-phase spectrum of azgal) corresponds to the magnitude squared response of the minimum-
sequence plus a constant. If we minimize group delay, which is tBﬁase filterH min (=)

derivative of the phase response with respect to frequendyen the
constant termi” will vanish, and the same DHT relation would hold H(z)= (Ho(2)+ 62)SCAL = Hppin (2)Hmin (27 1). (15)
for complex and real sequences.
Humin(z) has the required magnitude response of the minimum-phase

IIl. OPTIMAL MINIMUM -PHASE FIR DESIGN ALGORITHM spectral factor.

The optimal minimum-phase filter is designed by transforming aB. Application of the Discrete Hilbert Transform

optimal linear-phase FIR filter into an optimal minimum-phase filter. We apply the DHT tH,.in (=), which is the square-root response of
The deS|gn. is decoupled into tw.o steps: ) _H(z), reconstruct the minimUm-phase polynomial by combining the
1) Obtain the squared magnitude response of the desired optig§alijreq magnitude and phase responses, and take the inverse FFT. For

minimum-phase FIR filter. , _any magnitude response, the minimum-phase filter of a given order is
2) Use the DHT to produce a minimum-phase FIR filter by directlyique. The algorithm is idempotent for a givenwithin the limits of

supplying the square root of the magnitude response of step Lihmetic precision.
Several methods achieve the goal of the first step. We modify theThe discrete version of the integral transform in (9) uses a discrete
two-level ripple specification in [8] in the following subsections. InEqurier transform (DFT) [13]. Given a sampled magnitude spectrum
order to handle multiple ripple levels over different bands, we replagg|;]| for i = 0, ---, M — 1, whereM is the DFT length, we com-

step 1 with the method in [9], which uses a modified Parks—McClellggyte the corresponding minimum-phase spectrum in two steps. First,
algorithm [15] to allow the error to oscillate between 0 &dd instead  \ye compute the sampled phase spectrum

of —6; to 46, whered, is the ripple in thekth band [16]. Thus, op-
timal minimum-phase filters with the least complexity may be obtained # = —jDFT{s e IDFT{a}} (16)
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wheree represents pointwise vector multiplication, and e
6 =[6]0]. O[1]. ---. 6[M — 1]] §
s =[sgr{0], sgn ---. sgr{M - 1]] g
a = [log|X[0]]. log |X[1]]. -+ log | X[M — 1]]] :
such that ey i o5 s ey e s 1
Normalized frequency (Nyquist == 1)
0 i=0 2
=4 2 s00F - T T T T T T T =
. M 8 200 : : :
sgney =<1 << — 17 g i
o R U Mk
M ; 0 . “: ; i “‘
-1 9 <j< M. 31001 ‘ ot H
e g-zoo- ; ] ‘ l ;
Second, we fornmiX [i]|e’?™ fori = 0, 1, ---, M — 1. We can make okl A4
the discrete approximation in (16) arbitrarily close to the continuous OO 02 08 e eqeney (Wt 1 2 %0
integrg_l tra_nsform in (9) _by choosing a large-enough FFT length, as (a) Magnitude response and group delay
quantified in the Appendix.
The minimum-phase filter with the same magnitude responspis *
may be constructed by
1) computing X[¢]| fori =0, ---, M — 1, which is the sampled "
magnitude spectrum affn]; " "
2) calculatingi] fori = 0, -+, M — 1 by using (16); | Y

3) constructing the FFT of length/ of the minimum-phase se-
quence a$X [i]]e’l;
4) taking the inverse FFT transform of lengith to obtain a min-
imum-phase sequence;
5) truncating the resulting sequence to the desired filter impulggy 1 Magnitude response and group delay for an optimal real 325-tap
response lengtty. minimum-phase digital FIR filter designed by the new algorithm based on the
The formula for choosing/ is given in the Appendix. By using a discrete Hilbert transform.
long FFT, the magnitude spectrum of the truncated minimum-phase se-
quence closely matches the original magnitude spectrum, and the tr
cated terms may be made negligibly small, e.g., on the ordebof.

(b) Impulse Response

10 T . T T T T T T T

=]

L
=)
T

IV. EXAMPLE OPTIMAL MINIMUM —PHASE FILTER DESIGNS

ude Response (dB)
|
3
T

We design two optimal minimum-phase filters using the DHT-base§'3°‘ : : : : : :
algorithm in Section Il1. Example 1is designed according to the Speg Y, ................... .................... ......... R s ........ .......
ifications of an example in [8]. Example 2 presents the design of -so L L . : i i i i i

; o . 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
complex-tap optimal minimum-phase FIR filter. In the examples, a Normalized frequency (Nyquist == 1)
frequency values are normalized in the range from 0-1, where 1 rep
sents half of the sampling frequency. For each example, we report i
FFT length used and the time that the DHT-based algorithm took
run in MATLAB [19] version 5.0 on a 167 Hz Sun Ultra workstation

running Solaris 2.5.1.

20F e O ST AURRRP

o
T

A. Example 1—Real 325-Tap Lowpass Filter

Group delay (in samples)
o
T

To show that the algorithm can handle very long filters, we design ; i ; . .
real lowpass FIR filter using a set of specifications from [8]: O 0T OB 08 malied oquncy (Nyauiate= 1)

* passband edgg, = 0.28;

« stopband edg¢. = 0.3; Fig. 2. Magnitude response and group delay for an optimal complex 26-tap

. g : L= 5. minimum-phase digital FIR filter designed by the new algorithm based on the
\Fl)vae;igg?‘% frlljpn;té?nl '0 '())0)(() ;g()j DHT. The filter coefficients are given in Table I.
. 1 = . 3

« stopband ripples, = 8.2008 x 107",
Using (10) and (11), we calculate = 0.001 660 ands, = 3.3627 x fications. The relative percentage error was 0.24% in the passband and
10~ for the optimal linear-phase filter. The optimal linear-phase filte?-39% in the stopband, which are comparable with the figures of 0.29
has a length of. = 649, and the optimal minimum-phase FIR filter @nd 0.21%, respectively, in [8]. While the ripples in both bands of the
has a length oV’ = 325. Fig. 1(a) shows the magnitude response arldHT-based design are lower than the specified value, the ripples in the
group delay of the optimal minimum-phase filter. Fig. 1(b) shows tH&eSign in [8] are greater than the specified values.
plot of the impulse response coefficients. We used an FFT length of i
524288 £'°), and the algorithm took 60 s to run. B. Example 2—Complex 26-Tap Lowpass Filter

In the DHT-based optimal design, the actual ripple parameter valuedVe design a lowpass complex-tap minimum-phase filter. The op-
weres] = 0.000 828 ands, = 8.1684 x 10™%, which meet the speci- timal linear-phase filter is an equiripple filter having linear-phase over
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the passband only. Hence, it has complex coefficients and may be de-
signed using the algorithm in [14]. The specifications gyre= 0.7,

fs = 0.8,6] = 0.002125, 6, = 0.092510, and a weighting func-
tion of 1:1. Using (10) and (11), we calculate = 0.004 268 and

82 = 0.004 297. The optimal complex-tap filter with linear phase over

TABLE |
COEFFICIENTS OF AN OPTIMAL COMPLEX

AND GROUPDELAY ARE PLOTTED IN FIG. 2

26-TAP MINIMUM -PHASE DIGITAL FIR HLTER. MAGNITUDE RESPONSE

. . . Real part Imagi t
the passband has 50 taps. Using the DHT-based algorithm, we design ca’ par maginaty par
a minimum-phase complex FIR filter with 26 taps to meet the specifi- 0.327129781635836 1.10104503387227 x 10~°
cati_ons. Fig. 2 sh_ows the magnitu_de response and group delay of the 0.512001406284635 0.262431899245427
optimal complex filter, and Table | lists its coefficients. We used an FFT 0.163047468371105 0.927163058808302
length of32 678, and the algorithm took 6 s to run. ’ )

In the DHT-based optimal design, the actual ripple parameter values — 0.0257167097493542 0.169356927781137
Were (54 = 0.002 125 and (5/2 = 0092 359, which meet the SpeCIfI_- 0.0355816232408139 0.107986540639453
cations. The relative errors are 0% in the passband and 0.16% in the
stopband. The approach also gives good results for higher-order com- — 0.093077273032793 0.0915095753055589
plex FIR filters. — 0.0273636983641238 0.00902835562046581

0.100091962583298 0.0167244203666966
V. CONCLUSION — 0.0190331892220469 0.0145608794832695

We present a robust noniterative algorithm to design optimal min- — 0.0286050656554984 0.0569396810712755
imum-phase digital FIR filters with real or complex coefficients given — 0.000707266912356274 | 0.0495568548051081
an arbitrary magnitude specification. V_Vg derive the DHT of the com- — 0.0104438457279702 0.0208216969515995
plex cepstrum of a causal complex minimum-phase sequence, which
is the DHT of the real cepstrum plus a constant. The Appendix derives 0.0411664224502276 0.0293187012314285
the minimum fast Fourier transform length for computing the DHT to — 0.00914800135573782 0.00101446776486144
achieve a desired coefficient accuracy for a given filter order. — 0.032619881411354 0.0107003684593396

0.0183176695129369 0.0188941052638534
APPENDIX 0.00391196683007148 | 0.011337275264548

We relate the FFT length for the DHT-based design algorithm to 0.00443371597075111 0.0270242535593892
the fllte_r order and the fl!ter coefﬂue_m accuraeyWe_ express _the — 0.00386068199999262 0.00485717178612143
normalized transfer function of the minimum-phase filiB, (2) in
(15) as a product of two shorter transfer functidhg(z) andHs(z): — 0.0162004814693202 0.00834426154063499

0.0154867955225919 0.00016176926155688
Ny
1 0.00680124235641706 0.00318781993786719
Hi(z)= [ Q=227
ki=1 — 0.0140452818544805 0.0190124777686621
Nz » . 0.00327648746946536 | 0.0200572861433658
Hy(z)= [] (1=t (18)
Ky=1 0.00238954698448227 0.00749923742815284
0.000915786507148754 0.000874039273345126
Here,z, is thek;st zero such thgty, | < 1 fork; =1, 2, ---, Ny.

H,(z) corresponds to the passband and transition band zeros, an
H,(z) corresponds to the stopband zeros on the unit circle. TB
logarithm of H,in (2) can be expressed as

‘f{he complex cepstrum i81(n) + ho(n). Each component may
& obtained by taking the inversetransform oflog(H,(z)) and
log(Hz(z)), respectively

N oo
1 Hnﬁn z =1 Hi(z log(Ho(2)). 19 1 _ m .
0g(Hmin(2)) = log(H1(2)) + log(Hz(2)) (19) hn)=— 3 2 1{2 o } (22)
ki=1 m=1
The terms may be expanded using Taylor serie®fg(l + =) about J\,vz S imo,
_—
S=0 =3 T b e
ko=1 m=1 m
Ny oo L
log(H1(2)) =— Z (Z il Z?ﬂ) (20) Sincehz(n) decays at a much slower rate, we consibigin). When
m
ki=1 \m=1 n >0
N O im0k, . Na LTI
log(Ha(2)) == >_ [ > =M. (1) ho(n)=— > S (24)
ko=1 \m=1 m o n
-

Jror the complex filter casgh2(n)| < N2/n. For causality|hz(n)| <
e forn > M, /2, wherelM is the length of the sequence or the order

of the FFT used:
M . N>
NES e =

Since both infinite summations converge, the terms in the infinite su
mations decay faster tharym. In addition, the infinite summation
terms inlog(H:(z)) decay faster than those log(H>(z)) since the
zeros ofH, (z) are inside the unit circle, and the zerosHbf( =) are on
the unit circle.
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For real filters, we obtain a better bound because we know that the stopf7]
band zeros occur in complex conjugate pairs and are spaced uniformly
around the unit circle

(8l
9 ]
[ha(n)| = - ; cos(27 f;) (26) [9]
wherel = N»/2 — 1 whenN, is even and = (N> — 1/2) whenN- [10]

is odd.
Using the fact thad; = 2«7 f; andf, = f,, wheref; is the stopband
frequency, the stopband frequency response specification (26) becomidél

. 1
ha()] = == [Z e(far i M)} (n) B2
=0 [13]
where [14]
c(fs, i, Na) :cos<27r {fs+i <17_2f8>}> (28)

.7\2 -1 [15]

Therefore, the error bound for the real case is
[16]

M, T
2 Mo ; [18]

We can make arbitrarily small by using a large-enough FFT length. If
the FFT length is restricted to be a power of two, then we may comput&L9]
the required FFT length/, from the specified cepstral erreifor the
complex and real cases as

Meomplex =[1 +1og,(N2) — log, (e)] (30)
{

Z c(fs, 1y, N2)

=0

Mreal = "2 + log,

- m(ﬂ (31)

M, =22 (32)
wherem. IS meomplex fOr the complex case anab...; for the real
case. For afilter with 100 stopband zerfs= 0.3, ande = 0.001, we
obtainms = 18 in both cases. Although (30) is more conservative than
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Factorable FIR Nyquist Filters with Least Stopband

Energy under Sidelobe Level Constraints

Mingyu Liu, Christopher J. Zarowski, and Frederick W. Fairman

Abstract—Spectrally factorable Nyquist filters are used in data commu-
nications to avoid intersymbol interference. In this correspondence, an ap-
proach is developed for obtaining a Nyquist filter that is factorable having
the smallest stopband energy for a given sidelobe level. The resulting con-
strained minimization problem is solved efficiently and reliably using the
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(31), requiring a power-of-two FFT may yield the same FFT length.
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