
ETWOR

Stuart Cheshire

Mary Baker

Stanford University

A n emerging

technology for wireless

connectivity provides

one of the best

combinations of

bandwidth, coverage

area, and cost for a
wireless data network.

It also teaches

important lessons

about software-

hardware interface

design.

44 IEEEMicro

s the trend toward smaller, lighter,
and more powerful computers con- A tinues, researchers on the Mosqui-

toNet project’ are exploring how to keep
these computers permanently connected to
the Internet. This connectivity will be both
wired and wireless, depending on the phys-
ical location and availability of wired access
points. We anticipate that the number of
wireless services and their coverage areas
will increase to make ubiquitous connectiv-
ity possible. Eventually, we hope, people
will be able to rely on access via their
portable computers to the same information
and services they enjoy at their desktop
workstations.,

To support this vision of ubiquitous con-
nectivity, we are studying issues of wireless
and mobile computing at the network, sys-
tem, and application levels. Our two main
goals are to provide seemingly continuous
connectivity for mobile hosts, and to sup-
port system- and application-level adapta-
tion to dynamically changing network
characteristics. We are investigating changes
and extensions to standard networking
application program interfaces (MIS) that
will allow well-written applications to deal
gracefully with widely varying network
characteristics. When switching between
available services, network characteristics
can change significantly, even while an
application is running.

For our work supporting adaptive soft-
ware, we are developing a mobile-comput-
ing test bed’ consisting of two components.
First, a Mobile Internet protocol (IP) imple-
mentation based on the Internet Engineering
Task Force’s Mobile IP specification3.* allows
hosts to switch between different network
interfaces.’ Second, we will provide drivers
and support for several different network
technologies. These two components are
important because ubiquitous connectivity

does not imply that the entire world should
use the same physical-network technology
Rather, it implies that computing devices
should be able to switch between many dif-
ferent physical-layer technologies to use the
best that is locally available

One basic requirement for the Mosqui-
toNet project is a range of network tech-
nologies for the system to choose between
For our initial Implementation, we chose two
technologies, one wired and one wireless
10-Mbps Ethernet and Metricom’s Microcel
lular Digital Network (MCDN) See the adja-
cent Network technologies box for an
analysis of our choices This article presents
our expeiiences with the Metricom radios
and measurements of the throughput and
latency of communication using them

The throughput of Metricom’s radio
devices is comparable to that of modern
modems, but the latency, or round-trip
delay, is higher The maximum throughput
we measured was 30 to 40 Kbps, but the
minimum latency for even the smallest IP
packet was at least 60 ms

We are early users of these wireless radios’
datagram mode, and our experiences con-
firm two sometimes forgotten principles
First, packet switching allows more efficient
resource sharing than does circuit switching
Second, interfaces that are satisfactory for
use by human beings often show their flaws,
ambiguities, and omissions when used as
programming interfaces for software control
of devices

Microcellular Digital Network
Here, we describe the technology that

makes up Metricom’s service the radios, the
design of the wide-area network, and the
way its portable radios interface to the
mobile computers that use them

Underlying technology. Metricom’s
radios operate in the 902- to 928-MHz band

0772-1732/96/$5.00 0 1996 IEEE

the FCC allocated for use by unlicensed, low-power devices.
The radios use frequency hopping, jumping among 160 dis-
tinct channels in the range, and can achieve an over-the-air
transmission rate of 100 Kbps.

Because each radio continually changes its receiving fre-
quency, any radio communicating with another needs some
mechanism to determine what frequency to use. A pseudo-
random number generator determines the sequence of fre-
quencies each radio uses. Every 25 ms, the radio retunes its
receiver to the channel dictated by the next number in the
pseudorandom sequence, thus changing channels 40 times
every second.

Each radio also devotes a small percentage of time to dis-
covering its neighboring radios. It maintains a list of neigh-
bors and their current positions in the pseudorandom channel
sequence. When a radio must transmit a packet to one of its
neighbors, this stored information allows it to predict what
channel that radio will be listening on at a given moment.

Once a radio begins packet transmission, the two radios
involved remain on that channel and suspend their hopping
until transmission ends. However, the pseudorandom num-
ber generator continues to run at the prescribed rate, so that
the timing and sequence information other neighboring
radios hold will remain correct.

Metricom’s radios are packet-oriented, not circuit- or call-
oriented, which allows network performance to degrade
gracefully when the system overloads. Because the system
selects new channels packet by packet rather than call by

call, idle circuits do not tie up channels as they do in the cel-
lular telephone network.

Due in part to the network’s packet nature, Metricom
charges a flat monthly fee, regardless of connection time.
The company’s pricing model does not discourage users
from staying connected for long periods of time, because its
technology supports fine-grained sharing. It makes efficient
use of the available bandwidth instead of dedicating a chan-
nel per user.

Network infrastructure. Metricom’s wide-area network
infrastructure consists of fixed outdoor radios that are gen-
erally mounted atop street lighting poles. This gives the
radios both reasonable height off the ground and a conve-
nient source of electrical power. The pole-top radios com-
municate with each other to manage the network and
provide directory services.

The network uses geographical routing. At installation time
the installer uses a handheld global positioning satellite
receiver to give each pole-top radio its precise latitude and
longitude. The pole-top radios, spaced roughly half a mile
apart, act as repeaters: they forward packets from one to
another to reach geographically determined destinations.
These radios do not use manually or automatically config-
ured routing tables as IP routers do. Instead, a pole-top sim-
ply compares the packet’s destination latitude and longitude
with its own. Then, it sends the packet one hop closer to its
final destination by forwarding it to the best reachable pole-
top in the right direction.

February 1996 45

Roughly 10 percent of the pole-top radios also have wired
connections. If a packet must go a long way, a pole-top may
deliver it to the wired network to save sending it through
too many wireless hops. Through these wired access points,
the Metricom network can also route packets onto destina-
tion wired networks.

Portable radios. The system provides mobile connectiv-
ity via small, battery-operated, portable radios. Each radio
connects to a user’s computer via an RS-232 serial port and
supports rates up to 115,200 bps. The portable radios oper-
ate almost exactly like the pole-top radios, except they are
not configured as repeaters.

Because the portable radios have no fixed geographic
location, they require some mechanism to locate each other.
Each portable radio registers with the closest pole-top radio
to make its location known to other radios out of direct-com-
munication range. Packets destined for the portable radio
need only be delivered to the closest pole-top, which then
forwards the packet to the portable.

Because the radios maintain lists of other radios within
direct-communication range, portable radios close to each
other may exchange packets directly. This makes it possible
for a group of Metricom-equipped laptop computers to com-
municate with each other in an area without Metricom pole-
top service. In contrast, if you take a pair of cellular telephones
(or CDPD modems) to, for example, Yosemite National Park,
they are completely useless without a cellular base station.

Host interface. Metricom radios operate in two distinct
modes. They can emulate Hayes modems, setting up point-
to-point connections with the usual Hayes AT command set.
Or, they can operate in what Metricom calls Starmode, direct-
ly sending and receiving individually addressed packets.

With the radios in the Hayes modem emulation mode,
users can connect to other radios directly, via a PPP server to
the Internet, or via a wired gateway to other conventional
wired modem services like America Online or Compuserve.
The radios set up a reliable byte-stream connection over the
underlying packet-switched wireless network to emulate a
modem call. Metricom provides this support because it allows
users to substitute a set of radios for standard Hayes modems
with little, if any, change to their software.

For our purposes, however, Starmode is more interesting,
because users can individually address Starmode packets to
specific destinations without any prior connection setup. In
this mode, each radio behaves much more like a true net-
work interface. Because this mode is datagram oriented,

* 0000-1164 * SRIP ... CR

Figure 1. Starmode packet format. Asterisks mark the
beginning and end of the address. At the sending end,
the address field contains the destination of the packet;
at the receiving end, it contains the packet‘s source. A
carriage return (CR) marks the end of packet. The payload
begins with four characters (SRIP) that distinguish our
protocol’s packets from others.

there is no fixed limit on the number of simultaneous end-
to-end “connections” a host can maintain

A benefit of packet-oriented communication is that not
only can mobile clients be in simultaneous communication
with any number of other mobile hosts, but so can nonmo-
bile, wired Internet hosts In the MosquitoNet project, one of
our desktop computers acts as a router, connecting our wire-
less subnet to the rest of the Internet To do this, we need
only connect one Metricom radio to the router We use the
radio in Starmode, allowing the router to remain in com-
munication with any number of mobile hosts simultaneous-
ly The capacity of the single radio to route traffic from
multiple mobile hosts depends on the workload the hosts
present to the network So far m our test bed, with four active
mobile hosts transferring files and reading e-mail, we have
not reached the system’s capacity

In contrast, d we used the radios (as currently designed)
as modems, we would need one modem per active client,
just as dial-up SLIP servers do Thus, we would need to con-
nect our router to an entire “modem bank” of radios for our
mobile hosts to “dial in” to The widespread use of analog
modems today is a result of the low cost and high availabil-
ity of telephone lines, and not because telephone lines are
the ideal way to connect computers New wireless tech-
nologies give us the opportunity to design ideal systems
rather than m i c existing suboptimal solutions

Using Starmode. The Starmode packet format is very sim-
ple, as shown in Figure 1 An asterisk precedes and follows
the packet’s address field The packet’s payload can contain
any data We adopted the convention of beginning the pay-
load with a characteristic four-character code, so that we can
easily distinguish our packets from unrelated Starinode traf-
fic In this sense, the field functions like the protocol ID field
of an Ethernet packet The end-of-packet marker is a car-
riage return character This means that we must use a byte-
stuffing algorithm to eliminate this byte value whenever it
appears inside a transmitted packet’s payload and automat-
ically reinsert the byte into the payload at the receiving end
when the packet arrives

The address field is the most curious part of a Starmode
packet, because its meaning depends on whether the host is
sending or receiving the packet The address field contains
a radio’s name in ASCII text (Each radio has a permanent
name, usually a pair of four-digit numbers, as shown Users
may also assign additional names if they desire more descrip
tive identification) From the radio sending a packet, the

’

46 IEEEMicro

address field contains the destination radio’s address. On the
receiving end, it contains the source radio’s address.
Starmode is not the actual over-the-air packet format the
radios use, but the programming interface by which a host
computer communicates with the radio over the serial port.

Protocol implementation
To use existing IP applications with Metricom radios, we

must encapsulate IP packets using the Starmode interface.
Our protocol, STRIP (Starmode radio IP), uses a straightfor-
ward encapsulation scheme similar to Ethernet’s. It simply
sends the IP packet as the payload of a Starmode packet
addressed to the correct destination.

Since Metricom radios communicate with the host over
the serial port, we based our driver code on existing SLIP
code. We added code to look up the radio address for a given
IP address and prepend a Starmode header to the IP pack-
et. (A SLIP driver does not normally include any addressing
code, since it assumes that there can only be a single host at
the other end of the serial line.)

Mapping IP addresses to the correct link-layer (radio)
addresses is the most difficult issue for the STRIP implemen-
tation. Ironically, though they are radio devices, Metricom
radios have no broadcast ability, so a solution like the
Ethernet ARP protocol is inappropriate. The radios’ inde-
pendent channel hopping, designed to minimize interference
between simultaneous transmissions to different radios,
makes it impossible for all radios to receive a single trans-
mission simultaneously. In our current software, we must
manually administer the address translation tables. However,
we are now incorporating an automatic directory service into
a DHCP6 server that manages dynamic address assignment.

Performance measurements
In measuring throughput and latency for IP traffic over the

Metricom radio interfaces, we were interested in how much
of the 100-Kbps air transmission rate we could actually
achieve. Our tests show that current radio firmware over-
head limits STRIP throughput to at most 32 Kbps.

We measured the time for both single packets and bursts
of packets to determine the possible benefits of pipelining.
The second and subsequent packets in a burst incurred less
overhead than the first. We also found that per-packet laten-
cies are very high-at least 60 ms in the current firmware for
even the smallest packets. This includes the serial interface
overhead on the sending and receiving radios. For compar-
ison, we also measured transmission times with the radios in
modem emulation mode. Modem emulation throughput is
marginally better, but has much higher variance and much
lower worst-case throughput.

For all of our tests, we measured one-way transmission
delay, rather than the normal round-trip delay the Unix
“ping” command measures. Since the radios each have only
one antenna, they cannot send and receive simultaneously
and are thus half-duplex devices. We measured the one-way
transmission delay to avoid any interference between out-
going and incoming traffic that might make our results more
difficult to interpret. However, this means that our results
may not be achievable for applications that really require

full-duplex communication.
To measure the one-way transmission delay, a daemon on

the receiving side sends back a small acknowledgment over
the Ethernet for each packet it receives. Because the trans-
mission delay over the Ethernet (1 ms) is insignificant com-

February 1996 47

Serial Wireless Serial Total

I I

0

Total = 87 ms + 60 ms + 246 ms + 87 ms

. / , I , I I I I I I

. / , I I I I I I I I

. 1 , 1 , 1 , 1 , , 1

. I I I I I , I I . a

. , , , , , , , , , I

;;

Figure 2. Minimum, average, and maximum one-way
transmission times for STRIP packets of various sizes (64
bytes t o 1 Kbyte, including 20-byte IP header and 8-byte
UDP header). The packet size is the entire iP packet
excluding the Metricom header. A t each data point, we
performed 64 one-packet tests. For a given size, the low-
est line shows the best time, the middle line shows the
average time, and the top line shows the worst time.

pared to the delay over the wireless interface, this yields an
effective measurement technique.

We performed all of our tests under good conditions.
Packets required only one hop to travel between the source
and destination radios, and we believe there was no other
traffic within range during our tests.

IP packets over Starmode. We first measured the time it
took to send individual packets of various sizes. This gave
us both throughput and latency measurements, including the
serial interface overhead and the data airtime. Figure 2 shows
minimum, average, and maximum one-way transmission
delays for IP packets from 64 bytes to 1 Kbyte. The packet
size does not include the Metricom header, since it is
unavoidable fixed overhead for any data sent over the radios.
For each packet size, our tests sent 64 separate packets. For
each group of packets, we recorded the minimum, average,
and maximum delivery times.

An extrapolation of the best line intercepts the time axis at
60 ms and has a gradient of 420 pdbyte. This tells us that the
time to send a packet from one host computer to another is
at least 60 ms of fixed overhead plus an additional 420
ys/byte. The 420 ps/byte translates to a maximum through-
put of 2,380 bytedsecond or 19 Kbps, a long way short of
the 100 Kbps air transmission speed.

To determine the reason for this low throughput, we ana-
lyzed the coniponent times for transmitting a single packet.
We found that part of the reason for low throughput is the

~ ~ ~ ~

Figure 3. Components of packet latency. The total time t o
send a 1,000-byte packet from one radio and receive it on
another includes a serial-port delay t o deliver the packet
from host t o radio, wireless transmission time (or air-
time), and a second serial-port delay t o deliver the packet
t o the host at the receiving end. The times shown are for
a 115,200-bps serial interface.

latency of the serial interfaces, and part is overhead in the
radio firmware

Figure 3 shows the component times that make up the
total transmission tune for a packet sent between computers
It takes a nontrivial amount of time for the host to deliver
the packet to the radio and for the receiving radio to deliv-
er the packet to its host The time to send a byte (1 start bit
-t 8 data bits + 1 stop bit = 10 bits per byte) over a serial port
at 115,200 bps is 87 ps Given the 60-ms constant overhead
and a 87-pdbyte serial delay for sender and receiver, the
wlreless transmission time must be 60 ms + 420 ,us/byte - (2
x 87 p/byte) = 60 ms + 246 pdbyte

Even assuming that an arbitrarily long transmission would
amortze the fixed overhead, 246 pdbyte translates to a m u -
imum throughput over the air of 4,058 bytes/second, or 32
Kbps This is still a long way short of Metricom’s air trans-
mission speed of 100 Kbps We performed further isolated
tests that indicate the overhead is not in our software but in
the radio firmware supporting Starmode

Packet pipelining in STRIP. Since the high packet trans
mssion latency 1s partly due to the three stages of the pipeline
operatmg senally, we measured the effect of sending a stream
of packets from one radio to another This should allow the
three pipeline stages to operate in parallel, increasing the
throughput The total time for delivery of any particular pack-
et remains the same, but the potential parallelism improves
the rate at which the radio delivers the packets

Our measurements show that the time to send two pack-
ets is indeed less than twice the time to send a single pack-
et Figure 4 displays the transmission times for each packet
in an eight-packet burst It shows that the cost to send one
1,000-byte packet is about 500 ms, but each additional 1,000-
byte packet adds only 300 ms to the total time Illustrating this
observation more clearly, Figure 5 shows the incremental
cost, or additional cost, for each packet in the burst

48 IEEEMicro

0 100 200 300 400 500 600 700 800 9001,000
Packet size (bytes)

Figure 4. Packet burst transmission times. One-way trans-
mission times for bursts of packets of sizes from 64 bytes
to 1 Kbyte (including 20-byte IP header and 8-byte UDP
header). The lowest line for each packet size shows the
transmission time for one packet. The next line shows the
transmission time for two packets, and so on. The top line
shows the transmission time for the entire burst of eight
packets.

That we see some benefit from pipelining is not surprising,
since this phenomenon occurs in many other networks. For
instance, TCP/IP works better than Novell Netware over long
distances (links with a high delay-bandwidth product, such as
satellite links) because TCP/IP is a variable-window protocol
and Novell Netware is a one-packet, stop-and-wait protocol.

What is somewhat surprising is that we do not see addi-
tional pipelining benefits after the second packet. One might
expect that it would take at least three packets to get full
concurrency from a three-stage pipeline.

Figure 6 illustrates why the second packet realizes the full
benefit of the pipeline. The first packet’s wireless transmis-
sion masks the second packet’s transmission on the outgo-
ing serial port. Similarly, the second packet’s wireless
transmission masks the first packet’s transmission on the
receiving serial port. In this way, both forward znd back-
ward masking occur. The additional cost of sending two
packets compared to the cost of sending one is only the extra
wireless transmission time; serial port communication con-
tributes no extra delay.

Examining Figure 6 and our measurements, we find that
the wireless transmission time for packets 200 bytes or larg-
er is about 25 ms + 250 pdbyte. This is within measurement
error of the 246 bs/byte we calculated earlier. Thus, this mea-
surement confirms that in practice we can achieve a wireless
transmission time of only about 32 Kbps, well short of the
theoretically possible 100 Kbps. Note that below 200 bytes,
the curve flattens out and does not drop below 60 ms. No

I , , , , , , O C
0 100 200 300 400 500 600 700 800 900 1,000

Packet size (bytes)

Figure 5. Incremental packet burst delays. The cost for the
first packet in a burst and the incremental costs for the
subsequent packets in that burst. As in Figure 4, each
packet burst consists of eight packets of a given size. The
top line shows the cost of sending the first packet. The
lower lines show the additional cost for sending each sub-
sequent packet.

Serial Wireless Serial Total

Total = so1 + w1 + w2 + si2

Figure 6 . Pipeline timing diagram for a pair of pipelined
packets. The wireless transmission time of the first packet
(w,) hides the outgoing serial delay for the second packet
(so2). Likewise, the wireless transmission time of the sec-
ond packet (w,) hides the incoming serial delay of the
first packet (si,), Hence, total transmission time includes
only two serial delays for the two packets, rather than
four.

February 1996 49

4000
_ , , , I I I I I , I

0.
0 100 200 300 400 500 600 700 800 9001,000

Packet size (bytes)

Figure 7. Modem emulation performance: minimum,
average, and maximum one-way transmission times for
packets of different sizes sent using SLIP over a reliable
modem emulation connection. (Packet sizes include 20-
byte IP header and 8-byte UDP header.) At each data
point, we performed 64 one-packet tests. The lowest line
shows the best time for the given size. The middle line
shows the average time at that size, and the top line
shows the worst time.

packet, however small, can be sent in less than 60 ms.
Modem emulation performance. For comparison with

Starmode, we also measured the time to deliver individual
packets sent via the standard Linux SLIP driver with Metricom's
Hayes modem emulation. These measurements show that
modem emulation mode achieves somewhat better wireless
transmission throughput than Starmode (40 Kbps), but at the
cost of much higher variance in packet latencies.

Figure 7 shows the minimum, average, and maximum one-
way transmission delay measured for packets sent via SLIP,
with Metricom radios emulating Hayes modems. Our most
obvious observation from the graph is that worst-case per-

600

500

h

m
5 4 0 0

.- E"
c
S

.$300
m ._
;

200

100

, , I , / I I I I I

0 100 200 300 400 500 600 700 800 900 1,000
Packet size (bytes)

Figure 8. Modem emulation performance. For compari-
son, this figure presents the data from Figure 7 plotted t o
the scale of Figure 2.

forniance is v e ~ y bad, with paLkct delays uf up tu almost 4
seconds (For easier comparison with Starmode peiformance,
Figure 8 shows the data plotted to the scale of Figure 2)

We do not yet fully understand the reason for the higher
variance in latency Although some of the delays are due to
packet retransmissions, packet loss is well under one per-
cent, so we do not believe this accounts for all of the vari
ance However, even one lost packet can cause a significant
delay In modem emulation mode, the radios provide a reli-
able byte-stream connection and retransmit any lost pack-
ets If a packet is lost, the entire byte-stream is held up while
the radio retransmits the missing portion Modem emulation
achieves this higher reliability (which may not be required
by all traffic) at the cost of higher worst-case delay and high-
er variance in delay

This variable delay may be even worse for higher level
network protocols Transport protocols like TCP will inter-
pret the unexpected delay as packet loss and react by retrans-
mitting, building up even more queued data and
exacerbating the delay '

Our second observation is that although the graphs are
far more noisy, for packet sizes above 500 bytes, theibest-
case modem emulation performance is better than the best-
case Starmode performance This tells us that the iadios can
actually exceed 40-Kbps wireless transmission, but are cur-
rently unable to do so in Starmode

Interface design issues
Working with the Metricom radios taught us an important

lesson in software-hardware interface design An interface
designed for humans operating at human speeds, such as a
modem interface, is not appropriate for a software network
driver operating at computer speeds The radios have a

50 IEEEMicro

radios into Starmode requires several initialization steps.
Under various error conditions, a radio can fall out of
Starmode and must be reinitialized. It is hard for the soft-
ware to keep track of the radio’s state and sense when to
trigger reinitialization. This would be a less difficult decision
for a human to make, since a human usually notices when
the system has stopped behaving properly.

The second difficulty resulting from the radio interface is
error message interpretation. At software speeds, error mes-
sages for packets sent in the past are hard to interpret with-
out more context information. Humans do not send packets
as quickly as software, and therefore have less trouble under-
standing the context of the error messages.

Initialization and reinitialization. One of our goals was
to make our Metricom driver software robust enough to
recover, without manual intervention, from radios being
turned off and on, battery replacement, and various other
minor catastrophes. This means we must handle error recov-
ery transparently, which is not as straightforward as we orig-
inally assumed. See the Staying in Starmode box for the
details of our solution. In contrast, replacing a battery or turn-
ing a radio off and on in modem emulation mode will hang
up the connection.
Error messages. The radios also produce error messages

demonstrating that the interface was designed for humans and
not software. The radios give error messages such as “Em-03
Can’t resolve name” and “ERR-08 Bad character in name.”
When a human types commands on a keyboard, messages
like this may make sense. They mean, “What you just typed
was a mistake.” Unfortunately, when a piece of software sends
packets very rapidly, it may have sent many other packets to
other destinations before it receives the error message. The
software’s speed renders the error indication asynchronous.
Because the software does not know the context of the error
message, it cannot know which radio name the receiver could
not resolve, or which radio name contained a bad character
unless the error message indicates this explicitly.

modem interface so that Metricom can penetrate the modem
market easily, but this interface makes programmatic con-
trol of the radios in packet mode more difficult.

At least two difficulties result from this interface. The first
is that it is stateful, which means that the interface builds up
some state information required for continuing correct com-
munication, making error recovery more difficult. Putting the

February 1996 51

One solution, making software store context information
to decode occasional error messages, burdens the common
error-free case with unnecessary overhead A better soluuon
is for error messages to include enough information to make
sense in isolation

WIRELESS COIW\/IUNICATIONS HAVE RECENTLY gar-
nered a lot of attention, and wide-area wireless services
promise to make ubiquitous network connectivity possible in
the near future. LJnfortunately, the performance of the wide-
area wireless service we investigated is still such that it is hard
to make its characteristics transparent to higher level software.
The throughput we measured in practice, running IP over the
radio datagram service, is only a third of the possible 100-
Kbps air transmission speed.

Our experience with the radios also indicates that using
packet-switched networking rather than reliable virtual cir-
cuits gives us two benefits. It reduces the need for the
modem pool approach to network service, and it gives sig-
nificantly less variability in packet transmission times, at the
expense of not guaranteeing delivery. Although higher layer
protocols must handle any packet retransmissions, this is not
a significant burden for Internet protocols, since they already
assume this task when necessary.

We have also experienced firsthand the difficulties of writ-
ing software for an interface designed as a human-computer
interface rather than a software-computer interface. We hope
that future wireless devices and future interfaces to current
devices will take these experiences into account.

cknowledgments
We thank Metricom for the generous loan of their radios,

for their help, and for their responsiveness to questions, com-
plaints, and suggestions. We also thank Bart Miller, Jonathan
Stone, and Xinhua Zhao for their suggestions and help test-
ing the software. Finally, we thank Jonathan Stone, Craig
Partridge, and Van Jacobson for their comments on this arti-
cle. Stanford's Telecom Center and NSF contract CCR-
9501799 partially supported this work.

References
1 M Baker, "Changing Communication Environments in

MosquitoNet," Proc Workshop on Mobile Computmg Systems
and Apphcalions, IEEE Computer Society Press, Los Alamitos,
Calif, 1994, pp 64-68
M Baker et al , "Supporting Mobility in MosquitoNet," to be
published in Proc 1996 us en^^ Conf, Usenix Assn , Berkeley,
Calif, 1996

3 C Perkins, "IP Mobility Support," lnternet Engineering Task
Force, Internet Draft, July 8, 1995

2

4 J Postel, lnternet Protocol, RFC 791, Sept 1981,
http //www cis Ohio-state edu/htbin/rfdrfc791 html

5 M Pettus, "Unlicensed Radio Using Spread Spectrum A
Technical Overview," available from Metricom, Inc , Los Gatos,
Calif, Sept 27, 1993
R Droms, Dynamic Host Conf/gurat/on Protocol, RFC 154 I , Oct
1993, http //www CIS Ohio-state edu/htbin/rfdrfcl541 html
R Caceres and L Iftode, "The Effects of Mobility on Reliable
Transport Protocols," Proc 14th lnt'i Conf D/slr/buted
Computing Systems, IEEE CS Press, 1994, pp 12-20

6

7

Stuart Cheshire is a PhD candidate in
the Computer Science Department at
Stanford University in the area of net-
works and operating systems He is cur-
rently concentrating on issues of
computer mobllity and wireless networks
Cheshire has worked at Madge Networks,

the US Army Research Institute, and Apple Computer He is
the author of Bolo, the popular multiuser, real-time Internet
tank battle game

Cheshire received his first class honors degree from Sidney
Sussex College, Cambridge, and is a member of the ACM
and the LPF, the League for Programming Freedom

Mary Baker is an assistant professor in
the Departments of Computer Science
and Electrical Engineering at Stanford
University Her interests include operat-
ing systems, distributed systems, and soft-
ware fault tolerance She is now leading
the development of the MosquitoNet

mobile and wireless computing project
Baker received a BA degree m mathematics and MS and PhD

degrees m computer science from the University of California,
Berkeley She is a member of the IEEE, the ACM, and Usenur

Direct questions concernrng this article to Mary Baker,
Computer Science Department, Gates Building 4A, Stanford
University, Stanford, CA 94305-9040, mgbaker @ cs stan-
ford.edu.

Reader interest Survey
Indicate your merest in this article by circling the appropriate
number on the Reader Service Card

Low 165 Medium 166 High 167

52 IEEEMicro

http://ford.edu

