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s the trend toward smaller, lighter, 
and more powerful computers con- A tinues, researchers on the Mosqui- 

toNet project’ are exploring how to keep 
these computers permanently connected to 
the Internet. This connectivity will be both 
wired and wireless, depending on the phys- 
ical location and availability of wired access 
points. We anticipate that the number of 
wireless services and their coverage areas 
will increase to make ubiquitous connectiv- 
ity possible. Eventually, we hope, people 
will be able to rely on  access via their 
portable computers to the same information 
and services they enjoy at their desktop 
workstations., 

To support this vision of ubiquitous con- 
nectivity, we are studying issues of wireless 
and mobile computing at the network, sys- 
tem, and application levels. Our two main 
goals are to provide seemingly continuous 
connectivity for mobile hosts, and to sup- 
port system- and application-level adapta- 
tion to dynamically changing network 
characteristics. We are investigating changes 
and extensions to standard networking 
application program interfaces (MIS) that 
will allow well-written applications to deal 
gracefully with widely varying network 
characteristics. When switching between 
available services, network characteristics 
can change significantly, even while an 
application is running. 

For our work supporting adaptive soft- 
ware, we are developing a mobile-comput- 
ing test bed’ consisting of two components. 
First, a Mobile Internet protocol (IP) imple- 
mentation based on the Internet Engineering 
Task Force’s Mobile IP specification3.* allows 
hosts to switch between different network 
interfaces.’ Second, we will provide drivers 
and support for several different network 
technologies. These two components are 
important because ubiquitous connectivity 

does not imply that the entire world should 
use the same physical-network technology 
Rather, it implies that computing devices 
should be able to switch between many dif- 
ferent physical-layer technologies to use the 
best that is locally available 

One basic requirement for the Mosqui- 
toNet project is a range of network tech- 
nologies for the system to choose between 
For our initial Implementation, we chose two 
technologies, one wired and one wireless 
10-Mbps Ethernet and Metricom’s Microcel 
lular Digital Network (MCDN) See the adja- 
cent Network technologies box for an 
analysis of our choices This article presents 
our expeiiences with the Metricom radios 
and measurements of the throughput and 
latency of communication using them 

The throughput of Metricom’s radio 
devices is comparable to that of modern 
modems, but the latency, or round-trip 
delay, is higher The maximum throughput 
we measured was 30 to 40 Kbps, but the 
minimum latency for even the smallest IP 
packet was at least 60 ms 

We are early users of these wireless radios’ 
datagram mode, and our experiences con- 
firm two sometimes forgotten principles 
First, packet switching allows more efficient 
resource sharing than does circuit switching 
Second, interfaces that are satisfactory for 
use by human beings often show their flaws, 
ambiguities, and omissions when used as 
programming interfaces for software control 
of devices 

Microcellular Digital Network 
Here, we describe the technology that 

makes up Metricom’s service the radios, the 
design of the wide-area network, and the 
way its portable radios interface to the 
mobile computers that use them 

Underlying technology. Metricom’s 
radios operate in the 902- to 928-MHz band 
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the FCC allocated for use by unlicensed, low-power devices. 
The radios use frequency hopping, jumping among 160 dis- 
tinct channels in the range, and can achieve an over-the-air 
transmission rate of 100 Kbps. 

Because each radio continually changes its receiving fre- 
quency, any radio communicating with another needs some 
mechanism to determine what frequency to use. A pseudo- 
random number generator determines the sequence of fre- 
quencies each radio uses. Every 25 ms, the radio retunes its 
receiver to the channel dictated by the next number in the 
pseudorandom sequence, thus changing channels 40 times 
every second. 

Each radio also devotes a small percentage of time to dis- 
covering its neighboring radios. It maintains a list of neigh- 
bors and their current positions in the pseudorandom channel 
sequence. When a radio must transmit a packet to one of its 
neighbors, this stored information allows it to predict what 
channel that radio will be listening on at a given moment. 

Once a radio begins packet transmission, the two radios 
involved remain on that channel and suspend their hopping 
until transmission ends. However, the pseudorandom num- 
ber generator continues to run at the prescribed rate, so that 
the timing and sequence information other neighboring 
radios hold will remain correct. 

Metricom’s radios are packet-oriented, not circuit- or call- 
oriented, which allows network performance to degrade 
gracefully when the system overloads. Because the system 
selects new channels packet by packet rather than call by 

call, idle circuits do not tie up channels as they do in the cel- 
lular telephone network. 

Due in part to the network’s packet nature, Metricom 
charges a flat monthly fee, regardless of connection time. 
The company’s pricing model does not discourage users 
from staying connected for long periods of time, because its 
technology supports fine-grained sharing. It makes efficient 
use of the available bandwidth instead of dedicating a chan- 
nel per user. 

Network infrastructure. Metricom’s wide-area network 
infrastructure consists of fixed outdoor radios that are gen- 
erally mounted atop street lighting poles. This gives the 
radios both reasonable height off the ground and a conve- 
nient source of electrical power. The pole-top radios com- 
municate with each other to manage the network and 
provide directory services. 

The network uses geographical routing. At installation time 
the installer uses a handheld global positioning satellite 
receiver to give each pole-top radio its precise latitude and 
longitude. The pole-top radios, spaced roughly half a mile 
apart, act as repeaters: they forward packets from one to 
another to reach geographically determined destinations. 
These radios do not use manually or automatically config- 
ured routing tables as IP routers do. Instead, a pole-top sim- 
ply compares the packet’s destination latitude and longitude 
with its own. Then, it sends the packet one hop closer to its 
final destination by forwarding it to the best reachable pole- 
top in the right direction. 
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Roughly 10 percent of the pole-top radios also have wired 
connections. If a packet must go a long way, a pole-top may 
deliver it to the wired network to save sending it through 
too many wireless hops. Through these wired access points, 
the Metricom network can also route packets onto destina- 
tion wired networks. 

Portable radios. The system provides mobile connectiv- 
ity via small, battery-operated, portable radios. Each radio 
connects to a user’s computer via an RS-232 serial port and 
supports rates up to 115,200 bps. The portable radios oper- 
ate almost exactly like the pole-top radios, except they are 
not configured as repeaters. 

Because the portable radios have no fixed geographic 
location, they require some mechanism to locate each other. 
Each portable radio registers with the closest pole-top radio 
to make its location known to other radios out of direct-com- 
munication range. Packets destined for the portable radio 
need only be delivered to the closest pole-top, which then 
forwards the packet to the portable. 

Because the radios maintain lists of other radios within 
direct-communication range, portable radios close to each 
other may exchange packets directly. This makes it possible 
for a group of Metricom-equipped laptop computers to com- 
municate with each other in an area without Metricom pole- 
top service. In contrast, if you take a pair of cellular telephones 
(or CDPD modems) to, for example, Yosemite National Park, 
they are completely useless without a cellular base station. 

Host interface. Metricom radios operate in two distinct 
modes. They can emulate Hayes modems, setting up point- 
to-point connections with the usual Hayes AT command set. 
Or, they can operate in what Metricom calls Starmode, direct- 
ly sending and receiving individually addressed packets. 

With the radios in the Hayes modem emulation mode, 
users can connect to other radios directly, via a PPP server to 
the Internet, or via a wired gateway to other conventional 
wired modem services like America Online or Compuserve. 
The radios set up a reliable byte-stream connection over the 
underlying packet-switched wireless network to emulate a 
modem call. Metricom provides this support because it allows 
users to substitute a set of radios for standard Hayes modems 
with little, if any, change to their software. 

For our purposes, however, Starmode is more interesting, 
because users can individually address Starmode packets to 
specific destinations without any prior connection setup. In 
this mode, each radio behaves much more like a true net- 
work interface. Because this mode is datagram oriented, 

* 0000-1164 * SRIP ... CR 

Figure 1. Starmode packet format. Asterisks mark the 
beginning and end of the address. At the sending end, 
the address field contains the destination of the packet; 
at the receiving end, it contains the packet‘s source. A 
carriage return (CR) marks the end of packet. The payload 
begins with four characters (SRIP) that distinguish our 
protocol’s packets from others. 

there is no fixed limit on the number of simultaneous end- 
to-end “connections” a host can maintain 

A benefit of packet-oriented communication is that not 
only can mobile clients be in simultaneous communication 
with any number of other mobile hosts, but so can nonmo- 
bile, wired Internet hosts In the MosquitoNet project, one of 
our desktop computers acts as a router, connecting our wire- 
less subnet to the rest of the Internet To do this, we need 
only connect one Metricom radio to the router We use the 
radio in Starmode, allowing the router to remain in com- 
munication with any number of mobile hosts simultaneous- 
ly The capacity of the single radio to route traffic from 
multiple mobile hosts depends on the workload the hosts 
present to the network So far m our test bed, with four active 
mobile hosts transferring files and reading e-mail, we have 
not reached the system’s capacity 

In contrast, d we used the radios (as currently designed) 
as modems, we would need one modem per active client, 
just as dial-up SLIP servers do Thus, we would need to con- 
nect our router to an entire “modem bank” of radios for our 
mobile hosts to “dial in” to The widespread use of analog 
modems today is a result of the low cost and high availabil- 
ity of telephone lines, and not because telephone lines are 
the ideal way to connect computers New wireless tech- 
nologies give us the opportunity to design ideal systems 
rather than m i c  existing suboptimal solutions 

Using Starmode. The Starmode packet format is very sim- 
ple, as shown in Figure 1 An asterisk precedes and follows 
the packet’s address field The packet’s payload can contain 
any data We adopted the convention of beginning the pay- 
load with a characteristic four-character code, so that we can 
easily distinguish our packets from unrelated Starinode traf- 
fic In this sense, the field functions like the protocol ID field 
of an Ethernet packet The end-of-packet marker is a car- 
riage return character This means that we must use a byte- 
stuffing algorithm to eliminate this byte value whenever it 
appears inside a transmitted packet’s payload and automat- 
ically reinsert the byte into the payload at the receiving end 
when the packet arrives 

The address field is the most curious part of a Starmode 
packet, because its meaning depends on whether the host is 
sending or receiving the packet The address field contains 
a radio’s name in ASCII text (Each radio has a permanent 
name, usually a pair of four-digit numbers, as shown Users 
may also assign additional names if they desire more descrip 
tive identification ) From the radio sending a packet, the 

’ 
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address field contains the destination radio’s address. On the 
receiving end, it contains the source radio’s address. 
Starmode is not the actual over-the-air packet format the 
radios use, but the programming interface by which a host 
computer communicates with the radio over the serial port. 

Protocol implementation 
To use existing IP applications with Metricom radios, we 

must encapsulate IP packets using the Starmode interface. 
Our protocol, STRIP (Starmode radio IP), uses a straightfor- 
ward encapsulation scheme similar to Ethernet’s. It simply 
sends the IP packet as the payload of a Starmode packet 
addressed to the correct destination. 

Since Metricom radios communicate with the host over 
the serial port, we based our driver code on existing SLIP 
code. We added code to look up the radio address for a given 
IP address and prepend a Starmode header to the IP pack- 
et. (A SLIP driver does not normally include any addressing 
code, since it assumes that there can only be a single host at 
the other end of the serial line.) 

Mapping IP addresses to the correct link-layer (radio) 
addresses is the most difficult issue for the STRIP implemen- 
tation. Ironically, though they are radio devices, Metricom 
radios have no broadcast ability, so a solution like the 
Ethernet ARP protocol is inappropriate. The radios’ inde- 
pendent channel hopping, designed to minimize interference 
between simultaneous transmissions to different radios, 
makes it impossible for all radios to receive a single trans- 
mission simultaneously. In our current software, we must 
manually administer the address translation tables. However, 
we are now incorporating an automatic directory service into 
a DHCP6 server that manages dynamic address assignment. 

Performance measurements 
In measuring throughput and latency for IP traffic over the 

Metricom radio interfaces, we were interested in how much 
of the 100-Kbps air transmission rate we could actually 
achieve. Our tests show that current radio firmware over- 
head limits STRIP throughput to at most 32 Kbps. 

We measured the time for both single packets and bursts 
of packets to determine the possible benefits of pipelining. 
The second and subsequent packets in a burst incurred less 
overhead than the first. We also found that per-packet laten- 
cies are very high-at least 60 ms in the current firmware for 
even the smallest packets. This includes the serial interface 
overhead on the sending and receiving radios. For compar- 
ison, we also measured transmission times with the radios in 
modem emulation mode. Modem emulation throughput is 
marginally better, but has much higher variance and much 
lower worst-case throughput. 

For all of our tests, we measured one-way transmission 
delay, rather than the normal round-trip delay the Unix 
“ping” command measures. Since the radios each have only 
one antenna, they cannot send and receive simultaneously 
and are thus half-duplex devices. We measured the one-way 
transmission delay to avoid any interference between out- 
going and incoming traffic that might make our results more 
difficult to interpret. However, this means that our results 
may not be achievable for applications that really require 

full-duplex communication. 
To measure the one-way transmission delay, a daemon on 

the receiving side sends back a small acknowledgment over 
the Ethernet for each packet it receives. Because the trans- 
mission delay over the Ethernet (1 ms) is insignificant com- 
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Figure 2. Minimum, average, and maximum one-way 
transmission times for STRIP packets of various sizes (64 
bytes t o  1 Kbyte, including 20-byte IP header and 8-byte 
UDP header). The packet size is the entire iP packet 
excluding the Metricom header. A t  each data point, we 
performed 64 one-packet tests. For a given size, the low- 
est line shows the best time, the middle line shows the 
average time, and the top line shows the worst time. 

pared to the delay over the wireless interface, this yields an 
effective measurement technique. 

We performed all of our tests under good conditions. 
Packets required only one hop to travel between the source 
and destination radios, and we believe there was no other 
traffic within range during our tests. 

IP packets over Starmode. We first measured the time it 
took to send individual packets of various sizes. This gave 
us both throughput and latency measurements, including the 
serial interface overhead and the data airtime. Figure 2 shows 
minimum, average, and maximum one-way transmission 
delays for IP packets from 64 bytes to 1 Kbyte. The packet 
size does not include the Metricom header, since it is 
unavoidable fixed overhead for any data sent over the radios. 
For each packet size, our tests sent 64 separate packets. For 
each group of packets, we recorded the minimum, average, 
and maximum delivery times. 

An extrapolation of the best line intercepts the time axis at 
60 ms and has a gradient of 420 pdbyte. This tells us that the 
time to send a packet from one host computer to another is 
at least 60 ms of fixed overhead plus an additional 420 
ys/byte. The 420 ps/byte translates to a maximum through- 
put of 2,380 bytedsecond or 19 Kbps, a long way short of 
the 100 Kbps air transmission speed. 

To determine the reason for this low throughput, we ana- 
lyzed the coniponent times for transmitting a single packet. 
We found that part of the reason for low throughput is the 

~ ~ ~ ~ 

Figure 3. Components of packet latency. The total time t o  
send a 1,000-byte packet from one radio and receive it on 
another includes a serial-port delay t o  deliver the packet 
from host t o  radio, wireless transmission time (or air- 
time), and a second serial-port delay t o  deliver the packet 
t o  the host at the receiving end. The times shown are for 
a 115,200-bps serial interface. 

latency of the serial interfaces, and part is overhead in the 
radio firmware 

Figure 3 shows the component times that make up the 
total transmission tune for a packet sent between computers 
It takes a nontrivial amount of time for the host to deliver 
the packet to the radio and for the receiving radio to deliv- 
er the packet to its host The time to send a byte (1 start bit 
-t 8 data bits + 1 stop bit = 10 bits per byte) over a serial port 
at 115,200 bps is 87 ps Given the 60-ms constant overhead 
and a 87-pdbyte serial delay for sender and receiver, the 
wlreless transmission time must be 60 ms + 420 ,us/byte - ( 2  
x 87 p/byte) = 60 ms + 246 pdbyte 

Even assuming that an arbitrarily long transmission would 
amortze the fixed overhead, 246 pdbyte translates to a m u -  
imum throughput over the air of 4,058 bytes/second, or 32 
Kbps This is still a long way short of Metricom’s air trans- 
mission speed of 100 Kbps We performed further isolated 
tests that indicate the overhead is not in our software but in 
the radio firmware supporting Starmode 

Packet pipelining in STRIP. Since the high packet trans 
mssion latency 1s partly due to the three stages of the pipeline 
operatmg senally, we measured the effect of sending a stream 
of packets from one radio to another This should allow the 
three pipeline stages to operate in parallel, increasing the 
throughput The total time for delivery of any particular pack- 
et remains the same, but the potential parallelism improves 
the rate at which the radio delivers the packets 

Our measurements show that the time to send two pack- 
ets is indeed less than twice the time to send a single pack- 
et Figure 4 displays the transmission times for each packet 
in an eight-packet burst It shows that the cost to send one 
1,000-byte packet is about 500 ms, but each additional 1,000- 
byte packet adds only 300 ms to the total time Illustrating this 
observation more clearly, Figure 5 shows the incremental 
cost, or additional cost, for each packet in the burst 
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Figure 4. Packet burst transmission times. One-way trans- 
mission times for bursts of packets of sizes from 64 bytes 
to 1 Kbyte (including 20-byte IP header and 8-byte UDP 
header). The lowest line for each packet size shows the 
transmission time for one packet. The next line shows the 
transmission time for two packets, and so on. The top line 
shows the transmission time for the entire burst of eight 
packets. 

That we see some benefit from pipelining is not surprising, 
since this phenomenon occurs in many other networks. For 
instance, TCP/IP works better than Novell Netware over long 
distances (links with a high delay-bandwidth product, such as 
satellite links) because TCP/IP is a variable-window protocol 
and Novell Netware is a one-packet, stop-and-wait protocol. 

What is somewhat surprising is that we do not see addi- 
tional pipelining benefits after the second packet. One might 
expect that it would take at least three packets to get full 
concurrency from a three-stage pipeline. 

Figure 6 illustrates why the second packet realizes the full 
benefit of the pipeline. The first packet’s wireless transmis- 
sion masks the second packet’s transmission on the outgo- 
ing serial port. Similarly, the second packet’s wireless 
transmission masks the first packet’s transmission on the 
receiving serial port. In this way, both forward znd back- 
ward masking occur. The additional cost of sending two 
packets compared to the cost of sending one is only the extra 
wireless transmission time; serial port communication con- 
tributes no extra delay. 

Examining Figure 6 and our measurements, we find that 
the wireless transmission time for packets 200 bytes or larg- 
er is about 25 ms + 250 pdbyte. This is within measurement 
error of the 246 bs/byte we calculated earlier. Thus, this mea- 
surement confirms that in practice we can achieve a wireless 
transmission time of only about 32 Kbps, well short of the 
theoretically possible 100 Kbps. Note that below 200 bytes, 
the curve flattens out and does not drop below 60 ms. No 

I , , , , , ,  O C  
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Packet size (bytes) 

Figure 5. Incremental packet burst delays. The cost for the 
first packet in a burst and the incremental costs for the 
subsequent packets in that burst. As in Figure 4, each 
packet burst consists of eight packets of a given size. The 
top line shows the cost of sending the first packet. The 
lower lines show the additional cost for sending each sub- 
sequent packet. 

Serial Wireless Serial Total 

Total = so1 + w1 + w2 + si2 

Figure 6 .  Pipeline timing diagram for a pair of pipelined 
packets. The wireless transmission time of the first packet 
(w,) hides the outgoing serial delay for the second packet 
(so2). Likewise, the wireless transmission time of the sec- 
ond packet (w,) hides the incoming serial delay of the 
first packet (si,), Hence, total transmission time includes 
only two serial delays for the two packets, rather than 
four. 
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Figure 7. Modem emulation performance: minimum, 
average, and maximum one-way transmission times for 
packets of different sizes sent using SLIP over a reliable 
modem emulation connection. (Packet sizes include 20- 
byte IP header and 8-byte UDP header.) At each data 
point, we performed 64 one-packet tests. The lowest line 
shows the best time for the given size. The middle line 
shows the average time at that size, and the top line 
shows the worst time. 

packet, however small, can be sent in less than 60 ms. 
Modem emulation performance. For comparison with 

Starmode, we also measured the time to deliver individual 
packets sent via the standard Linux SLIP driver with Metricom's 
Hayes modem emulation. These measurements show that 
modem emulation mode achieves somewhat better wireless 
transmission throughput than Starmode (40 Kbps), but at the 
cost of much higher variance in packet latencies. 

Figure 7 shows the minimum, average, and maximum one- 
way transmission delay measured for packets sent via SLIP, 
with Metricom radios emulating Hayes modems. Our most 
obvious observation from the graph is that worst-case per- 
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Figure 8. Modem emulation performance. For compari- 
son, this figure presents the data from Figure 7 plotted t o  
the scale of Figure 2. 

forniance is v e ~ y  bad, with paLkct delays uf up tu almost 4 
seconds (For easier comparison with Starmode peiformance, 
Figure 8 shows the data plotted to the scale of Figure 2 ) 

We do not yet fully understand the reason for the higher 
variance in latency Although some of the delays are due to 
packet retransmissions, packet loss is well under one per- 
cent, so we do not believe this accounts for all of the vari 
ance However, even one lost packet can cause a significant 
delay In modem emulation mode, the radios provide a reli- 
able byte-stream connection and retransmit any lost pack- 
ets If a packet is lost, the entire byte-stream is held up while 
the radio retransmits the missing portion Modem emulation 
achieves this higher reliability (which may not be required 
by all traffic) at the cost of higher worst-case delay and high- 
er variance in delay 

This variable delay may be even worse for higher level 
network protocols Transport protocols like TCP will inter- 
pret the unexpected delay as packet loss and react by retrans- 
mitting, building up even more queued data and 
exacerbating the delay ' 

Our second observation is that although the graphs are 
far more noisy, for packet sizes above 500 bytes, theibest- 
case modem emulation performance is better than the best- 
case Starmode performance This tells us that the iadios can 
actually exceed 40-Kbps wireless transmission, but are cur- 
rently unable to do so in Starmode 

Interface design issues 
Working with the Metricom radios taught us an important 

lesson in software-hardware interface design An interface 
designed for humans operating at human speeds, such as a 
modem interface, is not appropriate for a software network 
driver operating at computer speeds The radios have a 
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radios into Starmode requires several initialization steps. 
Under various error conditions, a radio can fall out of 
Starmode and must be reinitialized. It is hard for the soft- 
ware to keep track of the radio’s state and sense when to 
trigger reinitialization. This would be a less difficult decision 
for a human to make, since a human usually notices when 
the system has stopped behaving properly. 

The second difficulty resulting from the radio interface is 
error message interpretation. At software speeds, error mes- 
sages for packets sent in the past are hard to interpret with- 
out more context information. Humans do not send packets 
as quickly as software, and therefore have less trouble under- 
standing the context of the error messages. 

Initialization and reinitialization. One of our goals was 
to make our Metricom driver software robust enough to 
recover, without manual intervention, from radios being 
turned off and on, battery replacement, and various other 
minor catastrophes. This means we must handle error recov- 
ery transparently, which is not as straightforward as we orig- 
inally assumed. See the Staying in Starmode box for the 
details of our solution. In contrast, replacing a battery or turn- 
ing a radio off and on in modem emulation mode will hang 
up the connection. 
Error messages. The radios also produce error messages 

demonstrating that the interface was designed for humans and 
not software. The radios give error messages such as “Em-03 
Can’t resolve name” and “ERR-08 Bad character in name.” 
When a human types commands on a keyboard, messages 
like this may make sense. They mean, “What you just typed 
was a mistake.” Unfortunately, when a piece of software sends 
packets very rapidly, it may have sent many other packets to 
other destinations before it receives the error message. The 
software’s speed renders the error indication asynchronous. 
Because the software does not know the context of the error 
message, it cannot know which radio name the receiver could 
not resolve, or which radio name contained a bad character 
unless the error message indicates this explicitly. 

modem interface so that Metricom can penetrate the modem 
market easily, but this interface makes programmatic con- 
trol of the radios in packet mode more difficult. 

At least two difficulties result from this interface. The first 
is that it is stateful, which means that the interface builds up 
some state information required for continuing correct com- 
munication, making error recovery more difficult. Putting the 
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One solution, making software store context information 
to decode occasional error messages, burdens the common 
error-free case with unnecessary overhead A better soluuon 
is for error messages to include enough information to make 
sense in isolation 

WIRELESS COIW\/IUNICATIONS HAVE RECENTLY gar- 
nered a lot of attention, and wide-area wireless services 
promise to make ubiquitous network connectivity possible in 
the near future. LJnfortunately, the performance of the wide- 
area wireless service we investigated is still such that it is hard 
to make its characteristics transparent to higher level software. 
The throughput we measured in practice, running IP over the 
radio datagram service, is only a third of the possible 100- 
Kbps air transmission speed. 

Our experience with the radios also indicates that using 
packet-switched networking rather than reliable virtual cir- 
cuits gives us two benefits. It reduces the need for the 
modem pool approach to network service, and it gives sig- 
nificantly less variability in packet transmission times, at the 
expense of not guaranteeing delivery. Although higher layer 
protocols must handle any packet retransmissions, this is not 
a significant burden for Internet protocols, since they already 
assume this task when necessary. 

We have also experienced firsthand the difficulties of writ- 
ing software for an interface designed as a human-computer 
interface rather than a software-computer interface. We hope 
that future wireless devices and future interfaces to current 
devices will take these experiences into account. 
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