
Impeding Attrition Attacks in P2P Systems
Petros Maniatis

Intel Research, Berkeley, CA

TJ Giuli
Stanford University, CA

Mema Roussopoulos
Harvard University, Cambridge, MA

David S. H. Rosenthal
Stanford University Libraries, CA

Mary Baker
HP Labs, Palo Alto, CA

Abstract—P2P systems are exposed to an unusually broad range
of attacks. These include a spectrum of denial-of-service, or attri-
tion, attacks from low-level packet flooding to high-level abuse of
the peer communication protocol. We identify a set of defenses
that systems can deploy against such attacks and potential syner-
gies among them. We illustrate the application of these defenses in
the context of the LOCKSS digital preservation system.

1. INTRODUCTION

Peer-to-peer (P2P) systems are exposed to an unusually
broad range of attacks because of their lack of central con-
trol or administration. In earlier work [20], we classify these
attacks according to their intent and describe techniques for
thwarting some of them. Here we focus on attacks aimed at
Denial of Service (DoS), in the broad sense of the term intro-
duced by Needham [22]. More recently, Denial of Service has
come to mean high-bit-rate network-level attacks such as SYN-
flooding [7] that rapidly degrade the usefulness of the victim
system. We use the term attrition to indicate our equal con-
cern with moderate- or low-bit-rate application-level attacks
that gradually waste the victim system’s resources over a long
period, impairing its function.

The contribution of this work is to bring together a broad
range of techniques, none wholly original, that can help to re-
sist attrition attacks on P2P systems, identify synergies among
them, and describe how they can be implemented in the context
of a real P2P application with promising preliminary results.

2. THE ADVERSARY

We classify adversaries according to the intent of their attack
on the victim system into the following categories:

• Stealth adversaries attempt to modify, subvert or otherwise
compromise the integrity of the content or service of the
system undetected. In a file system, this adversary would
seek to modify files unobtrusively without authorization.

• Theft adversaries attempt to access restricted system ser-
vices. In a file system, this adversary would seek to read
restricted files without authorization.

• Nuisance adversaries attempt to cause many apparently
false alarms to discredit intrusion detection and monitor-
ing systems.

• Free-loader adversaries attempt to benefit from the sys-
tem’s services while contributing nothing in return. In a
file system, a free-loader would use up the disk space of
others while refusing to make his own space available.

• Attrition adversaries attempt to prevent clients of the sys-
tem from obtaining timely service.

Here we focus on the attrition adversary, whose goal may be
to consume resources at peers in general so as to reduce the
usefulness of the system as a whole, or to consume resources
at individual but critical peers, either to prevent them from con-
tributing to the system or to facilitate another attack. To these
ends, the adversary can consume or cause waste of network-
level resources (bandwidth, buffer space, connection descrip-
tors), and application-level resources (computation, memory).

The attrition adversary has three potential “modes” of opera-
tion representing increasing levels of sophistication in exploit-
ing the victim system’s protocol:

• Pipe stoppage. Through massive traffic abuse, the ad-
versary saturates the victim peers’ network connections,
preventing them from sending or receiving valid protocol
messages. We assume this mode of operation to be sus-
tainable for short time periods, on the order of hours.

• Anomalously high rates of requests. With more under-
standing of the target protocol, an attrition attacker can
send well-formed requests to victims at a rate that, while
not saturating any network connections, causes resource
exhaustion as the victims try to respond. Such obviously
anomalous traffic rates can lead to the identification of the
attack sources and eventually stem the tide within days
(e.g., with packet marking and subsequent filtering).

• Seemingly innocuous rates of requests. The adversary
sends requests at rates no greater than the highest expected
from other loyal peers in the absence of an attack. Through
even more understanding of the target protocol, these re-
quests are crafted and timed to exhaust the victims’ re-
sources or to prevent them from contributing to the sys-
tem. We must assume that such a mode of adversary op-
eration is sustainable almost indefinitely, absent other tell-
tale signs of anomalous behavior.

The next section demonstrates our strategy: persevere during
short-term pipe stoppage, “discourage” the adversary from us-
ing high-rate attacks by making them less effective than low-
rate ones, and rely on more sophisticated defenses for raising
the cost of low-rate attacks.

3. ATTRITION DEFENSES

We describe general defenses against attrition that we have
found useful. In Section 4, we apply these defenses to a real
system that preserves access to web-published documents.

1

Effort Balancing. If the effort needed by a requester to pro-
cure a service from a supplier is less than the effort needed
by the supplier to furnish the requested service, then the sys-
tem can be vulnerable to an attrition attack that consists sim-
ply of large numbers of ostensibly valid service requests. We
can use provable effort mechanisms such as Memory-Bound
Functions [12] to inflate the cost of relatively “cheap” protocol
operations by an adjustable amount of provably performed but
otherwise useless effort. By requiring that at each stage of a
multi-step protocol exchange the requester has invested more
effort in the exchange than the supplier, we raise the cost of an
attrition strategy that defects part-way through the exchange.

This effort balancing is applicable not only to consumed re-
sources such as computations performed, memory bandwidth
used or storage occupied, but also to resource commitments.
For example, if an adversary peer issues a cheap request for
service and then defects, he can cause the supplier to commit
resources that are not actually used and are only released after
a timeout (e.g., SYN floods [7]). The size of the provable ef-
fort required in a resource reservation request should reflect the
amount of effort that could be performed by the supplier with
the resources reserved for the request.

Rate Limitation. A peer can use its resources judiciously and
slow down attacks if its decisions about participation are au-
tonomous and free from external coercion. Peers should satisfy
requests no faster than necessary rather than as fast as possi-
ble; for example, this policy can effectively slow the spread of
viruses [30]. A peer can follow this policy by maintaining a
fixed rate at which it requests services from others or supplies
services to others, linking the two through reciprocation when
the application domain allows. This policy is easier to apply
when requests carry expiration times; peers can make informed
choices of whether or when to supply the requested service.
The policy is also easier to follow in applications without bursty
communication patterns during regular operation, either thanks
to statistical multiplexing or by definition; for example, audit-
ing applications usually operate on fixed periodic schedules that
can, collectively, offer good estimates of the expected work rate
per peer.

Admission Control. Rate limitation implies that a peer must
reject or even drop unacknowledged some incoming requests.
Ideally, a strategy for doing so discriminates against the at-
trition adversary by selectively dropping his requests. Strate-
gies that have been used in similar circumstances include ran-
dom drops (which, unfortunately, tend to penalize legitimate re-
questers during a DoS attack), session-based classification [6],
and reputation-based classification [14].

Redundancy. If an individual peer is essential to the function
of the overall system, then the attrition adversary can focus at-
tacks on that peer, for example by flooding its network connec-
tion. Otherwise, when an outage at an individual peer affects
only that peer but not the system as a whole, the adversary must
attack a large proportion of the peers simultaneously. This can
be arranged using self-healing overlays (e.g., in SOS [19]) and
voting mechanisms (e.g., BFT [5] and LOCKSS [20]).

Compliance Enforcement. There is usually some cost for a
legitimate requester to process the result of its request, which
an adversary would like to avoid. It is possible for a requester

to prove to the supplier that the operation for which the request
was made has actually been performed via an unforgeable eval-
uation receipt. Proving the requester’s compliance with the be-
havior expected of it in this way has similarities with “uncheat-
able computations” [17].

Desynchronization. Sometimes a peer requesting a service
must find more than one peer simultaneously available to sup-
ply that service (e.g., in a read-one-write-many fault-tolerant
system [5], [25]). Sometimes multiple peers inadvertently
synchronize (e.g., TCP sender windows at bottleneck routers,
clients waiting for a busy server, and periodic routing mes-
sages [15]). When this happens, even absent an attack, mod-
erate levels of peer busyness can prevent the system from de-
livering services. An attacker in this situation may benefit by
increasing peer busyness only slightly (see Section 4.1). P2P
system designers should only opt for synchrony if it is neces-
sary; accidental synchrony should be prevented by randomiza-
tion, back-off, turn-taking, etc.

4. A CONCRETE EXAMPLE: LOCKSS

To illustrate these defenses, we describe them in the con-
text of the LOCKSS1 digital preservation system, originally de-
scribed in [24]. Briefly, LOCKSS peers cooperate to audit their
copy of an on-line document replicated at many peers by voting
in “opinion polls.” A poller invites a sample of the peer pop-
ulation into a poll, in which each invitee individually produces
a vote on the contents of that document. An invitee votes on
a poll by cryptographically hashing a poller-supplied random
challenge with its local copy of the audited document and re-
turning the resulting hash value. The poller tallies these votes
and if its copy agrees with almost all votes, the poller declares
success and schedules another audit in the future. If, however,
the poller’s copy disagrees with almost all votes, it assumes its
copy is corrupt; to repair, the poller obtains the copy of one of
the disagreeing voters and reevaluates all previously received
votes so as to verify that, with that obtained copy, it agrees with
most of the votes. If the outcome of the poll after the tally is in-
conclusive — for example, the split between votes that disagree
and those that agree with the poller is close to 50-50 — then the
poller raises an inconclusive poll alarm indicating malicious ac-
tivity, and requires the help of a human operator to resolve the
situation.

Peers decline invitations if they lack the resources to vote, for
example if they are busy voting in another poll or are running
their own poll. Pollers only use the results of a poll if that poll
obtains at least a minimum quorum of voters, typically 10; they
discard results of inquorate polls. Communication between a
poller and each of its voters is protected against eavesdropping
and tampering via encryption, using a symmetric session key
derived from an anonymous Diffie-Hellman key exchange.

Unfortunately, the original protocol implementing this sim-
ple concept [24] is vulnerable to many attacks [21]. In subse-
quent work [20], we defend against the stealth and nuisance ad-
versaries described in Section 2 with a more complex series of
exchanges between a poller and each participating voter. Using
Rate Limitation, Effort Balancing and Redundancy, we render

1Lots Of Copies Keep Stuff Safe.

2

likely attack strategies by these adversaries ineffective. Here
we outline an improved protocol design that addresses attrition
attacks while retaining resistance to the stealth and nuisance
adversaries we have studied before.

4.1 Vulnerabilities

We identify a number of ways in which the LOCKSS proto-
col as described in [20] is vulnerable to the attrition adversary.

Defection. Creating a vote requires expensive hashing, which
takes up sizable portions of a voter’s resources. Similarly, sup-
plying a repair, which is a copy of an entire document, con-
sumes bandwidth. An adversary intending to waste a victim
peer’s resources can start a poll, a multi-step protocol exchange,
with the victim and then abort it at the point of maximum waste:
an attacking poller can waste a voter’s computation by invit-
ing it to create a vote and then ignoring that vote; the attack-
ing poller can also waste a peer’s bandwidth by requesting un-
needed repairs; an attacking voter can waste a poller’s time by
falsely committing to compute a vote but never delivering it.

Synchrony. A LOCKSS poller requires a quorum of Q > 1
voters (10 or so) before it can accept the outcome of a poll.
Finding them can be difficult. They must be chosen at random
to make directed subversion hard for the adversary; otherwise,
an adversary with deterministic knowledge of which poller in-
vites which voter into a poll can plan his subversions with max-
imum overall benefit [18]. Furthermore, the potential voters
that the poller chooses at random must have free resources at
the specified time, in the face of resource contention from other
peers who are also competing for voters on the same or other
documents at the same time. The adversary is under no such
requirement, but can find and invite an individual victim into a
futile poll.

This is a great advantage for the adversary. Intuitively, if the
probability that a loyal peer is busy is b, then the probability that
i peers are available for a poll is p(i) := (1− b)i. The probabil-
ity that the adversary can make progress is that of finding one
available peer pa := p(1), whereas the probability that the loyal
peer can make progress is that of finding Q concurrently avail-
able peers pl := p(Q) = pQ

a . Even assuming that contacting
Q voters in parallel is no more time-consuming than contacting
1, the expected number of peers the adversary can engage per
try is Pa := Qpa whereas the expected number of peers a loyal
peer can engage per try is Pl := Qpl = QpQ

a = PapQ−1

a ≤ Pa.
The adversary can enhance this advantage with a defection at-
tack that increases the busyness b of available peers during high
contention, exacerbating the situation.

Garbage Flooding. Since a poll exchange between a poller
and a voter is encrypted, if a message appears to be part of a
poll by arriving on the correct port from the correct sender, the
recipient must pay the cost of decrypting it. Although small
compared to the hashing costs, this is not negligible. The attri-
tion adversary can spoof the IP address of other poll participants
and flood a victim with garbage messages costing little to gen-
erate, but much more for the victim to decrypt and identify as
garbage.

4.2 Defenses

We continue by describing LOCKSS defenses of each type
proposed in Section 3. We proposed early versions of some
of these defenses to tackle stealth and nuisance adversaries in
prior work [20]. In this paper we concentrate on why these
defenses help with an attrition adversary and describe others
that are uniquely targeted at the attrition adversary. The full
details on the resulting protocol are described elsewhere [16].

4.2.1 Effort Balancing: The LOCKSS opinion poll protocol
requires that every protocol message that may cause the recipi-
ent to consume effort E be padded with provable, useless effort
greater than E; this means that the sender of the message has
expended at least as much effort in producing that message as
the recipient does due to the message. In the case of an attrition
adversary, this ensures that his attack costs him as much effort
as it costs his victim.

This effort balancing technique appears in several portions of
the LOCKSS opinion poll protocol. First, a poller must supply
to a voter participating in its poll a proof of at least as much
effort as that required by that voter to produce the vote (i.e., to
verify the poller’s effort proof and to produce the vote itself).
Second, a voter must supply to a poller, along with its vote,
as much provable effort as it takes the poller to evaluate that
vote (i.e., to hash the local copy of the audited document with
the same challenge so as to compare the digests and to detect a
bogus vote).

These two instances of effort balancing correspond to the
two “transitions” between the three basic steps of the poller-
voter exchange: poller asks for a vote, voter constructs the vote,
poller evaluates the vote. Effort balancing in the first transition
protects a loyal voter from a frivolous poll invitation by a mali-
cious poller, whereas in the second transition it protects a loyal
poller from a bogus returned vote by a malicious voter.

For scheduling efficiency, we augment the poller-voter ex-
change with two extra scheduling steps: poller requests a vote
by time t supplying an introductory effort proof, voter reserves
appropriate voting resources, poller submits effort proof to bal-
ance the actual vote (as above), voter constructs the vote, poller
evaluates the vote. In addition to the effort balancing described
before, now the poller must also supply an introductory proof
of effort as large as the effort required by the voter to reserve
voting resources, augmented by the length of the reservation.
This third instance of effort balancing protects a loyal voter
from a malicious poller who seeks to tie up resources at a voter
for the duration of the reservation. Note that if the voter de-
clines, perhaps because it has no available resources to meet
the poller-requested voting deadline, the poller’s introductory
effort is wasted. Thus, the larger the introductory effort re-
quired, the greater the potential for waste when the system is
busy, but also the greater the discouragement to the adversary
who invites a victim into a poll and then defects, leaving the
victim’s resources reserved but idle.

In summary, we use effort balancing to force the attrition ad-
versary to expend effort commensurate with that inflicted on his
victim directly (through resource consumption) and indirectly
(through unavailability due to reservations of future resources).

4.2.2 Rate Limitation: Peers interact with each other by re-
questing and supplying votes. A peer decides autonomously

3

when to call a poll and from which peers to request votes, based
on a fixed target rate. An adversary posing as a voter cannot at-
tack at will; he must wait to be invited by the potential victim.
A peer decides autonomously whether to supply a vote, based
on its own resource schedule and on past experience with the
specific poller (see Section 4.2.3). Consequently, an adversary
posing as a poller can attack at will but cannot force the victim
to respond. Peers also decide autonomously whether to supply
a requested repair based on a maximum rate for each requester.
In all cases, the peer limits its rate of participation without re-
gard to external factors.

Rate limitation poses a challenging trade-off between adapt-
ability of the rate limit when document collection sizes change
and susceptibility to adversary manipulation. On one hand, a
rigid rate limit inflexibly prevents the system from gracefully
adapting to growing document collections: more documents to
be audited means more polls run per time unit, all other pa-
rameters being equal. On the other hand, allowing rate limits
to adapt automatically to the perception of document collec-
tion growth means that if a stealth modification adversary can
convince peers to run polls more frequently, he can then sub-
vert them faster. For this reason, we have chosen to fix rate
limits and specify that the system has a fixed document ca-
pacity; higher capacities can be handled by provisioning addi-
tional instances of the system that run in parallel. For realistic
workloads in the context of the preservation of digital scien-
tific publications by libraries, this is a reasonable and practical
approach.

4.2.3 Admission Control: Effort balancing can help with
malicious peers who defect from a protocol exchange part way
through, but cannot help when a malicious peer defects at the
first protocol message. Consider, for instance, an adversary
who floods a victim peer with garbage poll invitations contain-
ing bogus introductory effort proofs; such poll invitations cost
the adversary little to generate but cost the victim much more
to detect as malformed or bogus: the victim has to scan the in-
vitation, check whether it has available resources to handle the
request, and verify the introductory effort proof included in the
message (described in Section 4.2.1).

To mitigate the effects of this flooding attack, we control
how poll invitations are admitted for consideration. Our ad-
mission control mechanism differentiates between poll invita-
tions from known pollers (i.e., previously seen) and those from
unknown pollers, according to the source address of the invi-
tation; the populations we are considering, in the tens of thou-
sands of peers, allow a hash table of all known peer addresses
to be maintained in memory for easy and cheap access. We rate
limit invitations from unknown pollers by dropping all such in-
vitations during a fixed period (the refractory period) after the
last such invitation is considered, and rejecting invitations ran-
domly with a fixed probability at other times.

A potential voter admits poll invitations from a known poller
according to a local record of its interactions with that poller in
the past, as either a voter or a poller. If the inviting poller is
in credit with the invited voter — the poller has supplied more
votes than it has received from the invitee — then its invitation
is admitted for consideration. In the opposite case, i.e., when
the inviting poller is in debt, its invitation is subject to both ran-

dom rejection and to the same rate limit imposed on unknown
peers via the refractory period. This behavior approximates a
reciprocative strategy [14] in which the cost of producing the
introductory effort is wasted (“lost”) when the invitation is re-
jected.

To assist discovery and to facilitate the initial operation of
new but loyal peers, we allow voters to introduce other peers to
the poller. A peer treats an invitation from an introduced peer as
if it were from a known peer in credit if the last vote it received
from the introducer was valid. Only one introduction is honored
for each such valid vote.

The parameters of this mechanism can vary; we are cur-
rently exploring the parameter space. However, we have some
heuristics to help determine approximate combinations of val-
ues. First, to discourage whitewashing of identities, the fixed
rejection probability for unknown peers is higher than that for
known peers in debt. Second, the maximum rate limit applied
to unknown peers is a small multiple of the expected rate for
the system (obtained out of band). Third, the fixed drop proba-
bility for unknown peers is set so that the cumulative introduc-
tory effort expended by the adversary on dropped invitations is
more than the voter’s effort to consider the adversary’s eventu-
ally admitted invitation, consistently with our effort balancing
philosophy. Fourth, the maximum rate of admitting invitations
from unknown peers and the cost of verifying an introductory
effort are set so that, even if invitations with bogus introductory
efforts arrive at a peer at that maximum admission rate, the sus-
tained effort of proving them bogus is not a significant drain on
the peer’s resources.

Another form of admission control is nonce chaining, an
adaptation of SYN-cookies [3] to encryption. A sender of a
protocol message includes a nonce in the encrypted portion of
the message that both the sender and the recipient store. The
response to that message must contain the nonce in its unen-
crypted portion. Before a peer decrypts a protocol message,
it checks that the unencrypted nonce in that message matches
what it expects from the sender. This means that a peer can drop
spoofed garbage messages with a simple hash lookup instead of
a decryption. Without being a participant in the exchange, the
adversary must guess a nonce, must decrypt an observed mes-
sage in transit, or must intercept and substitute a message in
flight, before he can convince a peer to decrypt a message.

4.2.4 Redundancy: The problem we seek to solve, that of
auditing a population of complete replicas, offers the great ad-
vantage of massive redundancy “for free.” Several real-world
instances of this problem exist; for example, libraries maintain
local copies of on-line journals so as to serve their patrons re-
gardless of networking conditions. This massive redundancy
afforded by our problem and opinion poll fault tolerance of-
fered by our protocol make efforts to focus attacks on individual
peers ineffective in reducing the usefulness of the system as a
whole: when a poller fails to obtain a vote from a chosen voter,
it just asks someone else and tries again later. To succeed, a
pipe stoppage attack must target a large proportion of peers and
Rate Limitation ensures that the attack can succeed only if it
persists for weeks or longer.

4.2.5 Compliance Enforcement: Voters generate votes and
pollers evaluate them using very similar processes: hashing

4

blocks of the local copy of the document and either generating
or validating effort proofs. At the end of the evaluation process,
the poller decides whether the vote was valid or invalid by the
effort proofs and it decides whether it was agreeing or disagree-
ing by the hashes. A valid vote shows the poller that the voter
performed the necessary effort. Conveniently, the process of
generating a proof of effort produces about 160 bits of byprod-
uct in addition to the proof itself. This byproduct is regenerated
by the process of validating the proof. We use it as a receipt
that the poller sends to the voter after evaluating the vote. If the
receipt matches the byproduct of generating the vote, the voter
knows the poller performed the necessary effort.

4.2.6 Desynchronization: An adversary can use limited re-
sources more effectively by “time-shifting,” voting multiple
times in a single poll under different identities. To reduce the
extent to which stealth or nuisance adversaries can do this, we
originally [20] made all voters in a poll start voting together
and finish by some deadline. Even without an attrition attack,
this synchrony reduces throughput under moderate load. It is
easy for the adversary to exploit this, especially with a short-
term estimate of how loyal peers have allocated their resources
obtained through subversion [31] or observation.

Fortunately, our simulations show the system performing
well even when the stealth adversary has unlimited resources
and thus no need to time-shift. As we include the attrition ad-
versary in our threat model, we allow the poller to invite vot-
ers independently, perhaps even serially, rather than simultane-
ously. A poll now consists of a sequence of two-party interac-
tions rather than a single multi-party interaction. The attrition
adversary suffers a lot while the stealth adversary gains little.

5. RELATED WORK

Effort Balancing. Effort balancing has been used as a de-
fense against high-rate application-level denial of service such
as email spam. Dwork and Naor [13] first articulated the con-
cept of pricing via processing as a concrete tool to capture the
“investment” of a player in the correct execution of a protocol.
This investment can be measured in memory cycles [1], [12],
CPU cycles [2], [13], or even Turing tests [28]. Douceur [11]
argues that, in a pricing via processing scheme, if the difference
in speed between the fastest and the slowest effort producer is
large, then the scheme may become either “unaffordable” for
legitimate slow players or unconstraining for illegitimate fast
players. This makes memory-bound schemes, with their nar-
rower gap between commercial low-end and high-end technolo-
gies [12], preferable to CPU-bound schemes. Crosby et al. [9]
show that worst-case behavior of application algorithms can be
exploited in application-level DoS attacks; effort balancing may
be an effective protection against such attacks when fixing the
worst-case behavior of algorithms is not an option, or when
average-case behavior is, itself, expensive.

Rate Limitation. Rate limits are effective in slowing the
spread of viruses at the network layer [30] or at the user-kernel
boundary [27]. They have also been applied to peers joining a
DHT [4], [29] as a defense against attempts to control part of
the hash space. For many applications, rate limitation does not
affect user behavior or experience [26].

Admission control. Admission control has been used to
improve the usability of overloaded services. Cherkasova et
al. [6] propose admission control strategies that help protect
long-running web service sessions (i.e., related sequences of
requests) from abrupt termination, since long-running sessions
have greater potential for a purchase. In a P2P context, Daswani
et al. [10] use admission control to mitigate the effects of a
query flood against super-peers in unstructured file-sharing net-
works such as Gnutella. Reputation, i.e., an opinion formed
by a peer about another peer, based on first-hand (subjective)
or third-party information, can be invaluable in performing ad-
mission control. Feldman et al. [14] conduct a game-theoretic
analysis of peer behavior to show that a reciprocative strategy
(that is, “do unto others as others have done unto you”) in ad-
mission control can motivate cooperation among selfish peers.

Redundancy. Routing along redundant paths in an overlay
has been suggested as a way of increasing the probability that
a message arrives at its intended recipient despite forwarders
dropping messages due to malice [4] or pipe stoppage [19].

Compliance Enforcement. Researchers have proposed the
practice of storing useless content in return for having con-
tent be stored elsewhere, as a way to enforce symmetric stor-
age relationships. Compliance enforcement is achieved by ask-
ing the peer storing the file of interest to hash some portion of
the file as proof that it is still storing the file [8], [29]. Golle
and Mironov [17] propose more general “uncheatable compu-
tations” based on the state of a protocol player; unless the player
is in the state it seeks to prove to others, it cannot forge or guess
the outcome of the uncheatable computation with significant
probability. Such constructs can be effective for building com-
pliance enforcement tools. This practice is also similar to the
“trust but verify” vision [32] for detecting accountably the com-
pliance of protocol entities to an expected service specification.

Desynchronization. Waves of synchronized routing updates
caused by joins or departures in a DHT cause instability during
periods of high churn [23]. Breaking the synchrony through
lazy updates (e.g., in Bamboo [23]) can absorb the brunt of a
churn attack.

6. FUTURE WORK

We are evaluating LOCKSS defenses against attrition at-
tacks. Preliminary results are encouraging. In contrast with the
protocol of [20], Figure 1 shows the system performing well
even with as many attackers as defenders. Figure 2 suggests
that less synchrony is better. We fake asynchronous voting by
running more but smaller polls to obtain the same number of
total votes and we observe reduced overall busyness.

We plan to run experiments perturbing protocol parameters
to measure the sensitivity of the system and to see if there is a
“sweet spot” for a deployed system.

Also, new protocol revisions require us to re-validate against
past adversary strategies. We are currently running simulations
against the stealth and nuisance adversaries.

Finally, a major goal of the LOCKSS research effort is to
merge our findings into the currently running LOCKSS pro-
duction system.

5

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100

S
uc

ce
ss

fu
l p

ol
ls

 in
 5

 d
ay

s

Number of attritionist’s nodes

w/ defenses
w/o defenses

ideal

Fig. 1. Preliminary data. A LOCKSS system of 100 peers is attacked by at-
trition adversaries of increasing strength. The graph shows the average number
of polls that loyal peers successfully complete per sliding 5-day period.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10N
or

m
al

iz
ed

 ti
m

e
sp

en
t i

n
bu

sy
 s

ta
te

Maximum synchronous votes within a poll

Fig. 2. Preliminary data. Absent an attack, the busyness (average time spent in
a busy state) of the system of 100 peers decreases as the maximum synchronous
votes within a poll decreases from 10 to 1. We normalize by the maximum
synchrony experiment.

7. ACKNOWLEDGMENTS

This work is supported by the National Science Foundation
(Grant No. 0205667). Any opinions, findings, and conclusions
or recommendations expressed here are those of the authors and
do not necessarily reflect the views of the NSF. We would like
to thank Kevin Lai, Yanto Muliadi, and Athena Markopoulou
for their comments and help.

REFERENCES
[1] M. Abadi, M. Burrows, M. Manasse, and T. Wobber. Moderately Hard,

Memory-bound Functions. In Proceedings of the 10th Annual Network
and Distributed System Security Symposium, San Diego, CA, USA, Feb.
2003. Internet Society.

[2] A. Back. Hashcash - a denial of service counter measure, Aug 2002.
http://www.hashcash.org/hashcash.pdf.

[3] D. J. Bernstein. Syn cookies. http://cr.yp.to/syncookies.
html, 1996.

[4] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S. Wallach.
Secure Routing for Structured Peer-to-Peer Overlay Networks. In Pro-
ceedings of the 5th Usenix Symposium on Operating Systems Design and
Implementation, pages 299–314, Boston, MA, USA, Dec. 2002.

[5] M. Castro and B. Liskov. Practical Byzantine Fault Tolerance. In Pro-
ceedings of the 3rd Symposium on Operating Systems Design and Imple-
mentation, pages 173–186, New Orleans, LA, USA, Feb. 1999. USENIX
Association.

[6] L. Cherkasova and P. Phaal. Session-Based Admission Control: A Mech-
anism for Peak Load Management of Commercial Web Sites. IEEE
Transactions on Computers, 51(6):669–685, June 2002.

[7] Computer Emergency Response Team. CERT Advisory CA-1996-
21 TCP SYN Flooding Attacks. http://www.cert.org/
advisories/CA-1996-21.html, Sept 1996.

[8] L. P. Cox and B. D. Noble. Samsara: Honor Among Thieves in Peer-to-
Peer Storage. In Proceedings of the Nineteenth ACM Symposium on Op-
erating Systems Principles, pages 120–132, Bolton Landing, NY, USA,
Oct. 2003.

[9] S. Crosby and D. S. Wallach. Denial of Service via Algorithmic Com-
plexity Attacks. In 12th USENIX Security Symposium, 2003.

[10] N. Daswani and H. Garcia-Molina. Query-Flood DoS Attacks in
Gnutella. In Proceedings of the ACM Conference on Computer and Com-
munications Security, Nov. 2002.

[11] J. Douceur. The Sybil Attack. In Proceedings of the 1st International
Workshop on Peer-to-Peer Systems, pages 251–260, Boston, MA, USA,
Mar. 2002.

[12] C. Dwork, A. Goldberg, and M. Naor. On Memory-Bound Functions
for Fighting Spam. In 23rd Annual International Cryptology Conference,
Santa Barbara, CA, USA, Aug. 2003.

[13] C. Dwork and M. Naor. Pricing via Processing. In 12nd Annual Interna-
tional Cryptology Conference, pages 139–147, Santa Barbara, CA, USA,
Aug. 1992.

[14] M. Feldman, K. Lai, I. Stoica, and J. Chuang. Robust Incentive Tech-
niques For Peer-to-Peer Networks. In Proceedings of the 5th ACM con-
ference on Electronic commerce, pages 102–111, New York, NY, USA,
2004. ACM Press.

[15] S. Floyd and V. Jacobson. The Synchronization of Periodic Routing Mes-
sages. ACM Transactions on Networking, 2(2):122–136, 1994.

[16] T. Giuli, P. Maniatis, M. Baker, D. S. H. Rosenthal, and M. Roussopoulos.
Resisting Attrition Attacks on a Peer-to-Peer System. Technical Report
arXiv:cs.CR/0405111, Computer Science Department, Stanford Univer-
sity, Stanford, CA, USA, May 2004.

[17] P. Golle and I. Mironov. Uncheatable Distributed Computations. In
D. Naccache, editor, Proceedings of the RSA Conference, Cryptogra-
phers’ track, volume 2020 of Lecture Notes in Computer Science, pages
425–440, San Francisco, CA, USA, Apr. 2001. Springer.

[18] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the Spread of In-
fluence Through a Social Network. In Proceedings of the 9th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 137–146. ACM Press, Aug. 2003.

[19] A. D. Keromytis, V. Misra, and D. Rubenstein. SOS: Secure Overlay
Services. In Proceedings of the Conference on Applications, Technolo-
gies, Architectures, and Protocols for Computer Communications, pages
61–72, 2002.

[20] P. Maniatis, M. Roussopoulos, T. Giuli, D. S. H. Rosenthal, M. Baker, and
Y. Muliadi. Preserving Peer Replicas By Rate-Limited Sampled Voting.
In Proceedings of the Nineteenth ACM Symposium on Operating Systems
Principles, pages 44–59, Bolton Landing, NY, USA, Oct. 2003.

[21] N. Michalakis, D.-M. Chiu, and D. S. H. Rosenthal. Long Term Data
Resilience Using Opinion Polls. In 22nd IEEE International Performance
Computing and Communications Conference, Phoenix, AZ, USA, Apr.
2003.

[22] R. M. Needham. Denial of Service. In Proceedings of the 1st ACM
Conference on Computer and Communications Security, pages 151–153.
ACM Press, 1993.

[23] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling Churn in
a DHT. In Proceedings of the Usenix Annual Technical Conference,
Boston, MA, USA, June 2004.

[24] D. S. H. Rosenthal and V. Reich. Permanent Web Publishing. In Proceed-
ings of the USENIX Annual Technical Conference, Freenix Track, pages
129–140, San Diego, CA, USA, June 2000.

[25] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object loca-
tion and routing for larg-scale peer-to-peer systems. In Proceedings of
IFIP/ACM Middleware 2001, Heidelberg, Germany, Nov. 2001.

[26] S. Saroiu, K. P. Gummadi, R. Dunn, S. D. Gribble, and H. M. Levy.
An Analysis of Internet Content Delivery Systems. In Proceedings of
the Fifth Symposium on Operating Systems Design and Implementation,
Boston, MA, USA, Dec. 2002.

[27] A. Somayaji and S. Forrest. Automated Response Using System-Call
Delays. In Proceedings of the 9th Usenix Security Symposium, Aug. 2000.

[28] Spam Arrest, LLC. Take Control of your Inbox. http://
spamarrest.com.

[29] D. Wallach. A Survey of Peer-to-Peer Security Issues. In International
Symposium on Software Security, 2002.

[30] M. Williamson. Throttling Viruses: Restricting Propagation to Defeat
Malicious Mobile Code. In Proceedings of the 18th Annual Computer
Security Applications Conference, Las Vegas, Nevada, USA, Dec. 2002.

[31] D. Xuan, S. Chellappan, X. Wang, and S. Wang. Analyzing the Secure
Overlay Services Architecture under Intelligent DDoS Attacks. In Pro-
ceedings of the International Conference on Distributed Computing Sys-
tems, Tokyo, Japan, Mar. 2004. IEEE.

[32] A. R. Yumerefendi and J. Chase. Trust but Verify: Accountability for
Internet Services. In Proceedings of the 11th ACM SIGOPS European
Workshop, Leuven, Belgium, Sept. 2004. ACM SIGOPS.

6

