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Abstract. We analyze a seven-week trace of the Metricom metropolitan-area packet radio wireless network to find how users take advantage
of a mobile environment. Such understanding is critical for planning future large-scale mobile network infrastructures. Amongst other
results, we find that users typically use the radios during the day and evening. Of the users who move around during the trace (over half),
we find that the more locations a user visits on a daily basis, the closer together, on average, those locations are. While these results are
only known to be valid for this particular network, we hope future analysis of other networks will add to a growing understanding of mobile

network behavior.
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1. Introduction

Currently, mobile and ad hoc networking is the topic of many
research and development efforts. Much of this work focuses
on providing future users with network resources and con-
nectivity no matter where they are. Whether the work con-
centrates on adapting applications to changing user location
or on devising new protocols to handle mobility, it is largely
based on assumptions of how users will take advantage of a
mobile environment. It is difficult to verify these assump-
tions since we are unaware of any publicly available studies
of a sizeable metropolitan-area wireless network. Therefore,
many research and development efforts must drive their sim-
ulations using assumed models of user movement not derived
from observation.

In this paper, we analyze a network trace of the Metricom
packet radio network, a metropolitan-area wireless network,
to find answers to overall network questions such as when the
mobile network is the most active, how active the network
gets, where the network is active, as well as radio mobility
questions such as how far, how often, and when users move.
The answers to such questions are crucial in planning a future
mobile network infrastructure, and in understanding how peo-
ple actually take advantage of a mobile network. While these
results are only known to be valid for this particular network,
we hope future analysis of other networks will add to a grow-
ing understanding of mobile network behavior.

We present several results in this paper, including our find-
ing that the more locations users visit on a daily basis, the
closer together, on average, those locations are. In addition,
the distance users move is a Gaussian distribution around the
radius of the network. We also find that radios are used mostly
during the day and evening hours.

In this paper, we first present some background informa-
tion about the data before we present the actual results from

the analysis. The analysis is divided into two parts: overall
network behavior and radio mobility.

2. Background

In this section, we describe the network traced, how the data
was collected, and some issues that arose in the data analysis.

2.1. Data collection

The traces we study here were obtained from Metricom [2,6].
Metricom has installed a Ricochet™ packet radio network
infrastructure in three major metropolitan areas (San Fran-
cisco Bay Area, Washington D.C., and Seattle), as well as in
some airports, hotels, and college campuses scattered across
the United States. This infrastructure consists of “poletop”
repeaters distributed throughout the covered areas. Each po-
letop is one of two types:

e a wireless repeater, which just forwards packets on to an-
other poletop via the radio interface, or

e a wired access point, which has both a radio interface and
a wired interface. Typically, wired access points have 8,
16, or 24 radios on them, as they are the focal point of
many other wireless repeaters.

The range of a repeater is normally about half a mile. This
range may vary depending on external conditions, such as the
weather or the location of buildings and hills.

When a subscriber radio is first turned on, it scans the net-
work for poletops, and chooses one with which to register.
This choice is usually based on signal strength, but may also
be based on load-balancing considerations. This poletop is re-
sponsible for forwarding all packets to and from the Metricom
network on behalf of that radio. Radio registrations also occur
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whenever the radio changes its primary poletop and accord-
ing to a predetermined pattern when the radio is stationary
(see section 5.2). Note that while a radio registers with only
one poletop at a time, the radio does keep an internal list of
all poletops within its range. Each registration, whether at the
same or at a different primary poletop, is logged by a central
nameserver.

The trace consists of a nameserver log covering a seven-
week period from February 1, 1998, through March 23, 1998,
with the exception of three holes in the trace data, during
which no registrations were logged: February 16, 6 a.m.
through 1 p.m.; February 16, 5 p.m., through February 17,
4 a.m.; and February 17, 4 p.m., through February 18, noon.
The network at the time of the trace consisted of 14,053 pole-
tops and 24,773 radios.

There were a total of 7,726,678 events logged over these
seven weeks. Of those, 5,982,846 are registrations and the
other 1,743,832 are queries. A registration occurs when the
radio informs the nameserver of its current primary pole-
top, i.e., the poletop to which packets destined for this radio
should be sent. A query occurs when the radio queries the
nameserver about some other entity in the network, such as
another radio or poletop. Queries are usually made at the start
of a connection, and the radio can register at different pole-
tops while a connection is on-going.

Each log entry consists of the following information:

e a timestamp taken at the nameserver with accuracy to the
second,

e a sequence number,

e the radio id,

e the wired access point used,

e the name of the radio’s choice for primary poletop,
e whether the entry is a registration or a query.

A poletop’s name is an encoding of its latitude and lon-
gitude, so given a poletop’s name, we can determine its ge-
ographic location and therefore the approximate geographic
location of the radio registering with it.

2.2. Data analysis techniques

In analyzing this trace, the main difficulty is in dealing with
the sheer volume of data — 7,726,678 events, 24,773 radios,
and 14,053 poletops — making it impractical, if not impossi-
ble, to look at each radio by hand. As a result, we needed
methods to help gather our results automatically. We turned
to a technique commonly used in data mining and machine
learning called clustering, also known as an unsupervised
learning technique.

Clustering algorithms take a set of points in n-dimensional
space and find coherent subsets. Each subset consists of
points that are clustered together. The advantages of using
clustering algorithms are the ability to categorize radios au-
tomatically, and the ability to find groupings that we might
not otherwise find. The disadvantages are that the results are
dependent on the parameters and distance functions used.

TANG AND BAKER

We use three different clustering algorithms:

e k-means [9], an iterative clustering algorithm,

e hierarchical agglomerative clustering [8], a tree-forming
clustering algorithm, and

e cxpectation-maximization (EM) [3], a method to find the
means and variances of a mixture of Gaussian distribu-
tions. EM is especially useful when the range of values
differs widely between dimensions.

We use both hierarchical agglomerative and k-means clus-
tering algorithms to help determine when a radio has moved
by grouping poletops into clusters, which we also refer to as
locations. Without physically moving, the radio may still be
within range of up to 20 different poletops at the same time
and may, therefore, register at any of these poletops. We de-
termine that a radio has moved when it registers with a pole-
top in a different cluster (a different location). In section 4,
we use both EM and k-means to categorize the radios into
different patterns of mobility.

3. Overall network behavior

The first three questions we asked have to do with overall
network usage:

1. When is the network the most active?
2. How active does the network get?
3. Where is the network the most active?

The answers to these questions can help network planners
plan future extensions to the network infrastructure. Also,
they provide a way both to compare a simulated network to an
actual network and to provide a basis for simulated networks.

To summarize the results presented in this section, we find
that the network is more active on weekdays than on week-
ends, that the most active poletops handle up to 182 distinct
radios an hour and handle over 1,600 registrations an hour,
and that the network is most active where there is a high con-
centration of technical people. We now look at each question
in more detail.

To answer the first question, figure 1 shows that the net-
work is more active on weekdays, especially the days in the
middle of the week. This pattern holds regardless of whether
we are looking at all events, registrations only, or queries only.
Figure 2 shows that the network is least active between 3 a.m.
and 5 a.m., when most people are asleep. The two lines in
figure 2, one lower in the evening hours and one higher, cor-
respond to weekend and weekdays respectively. Even in Sil-
icon Valley, where the majority of radio users and poletops
are, people are less likely to work on weekends. There is a
slight decrease in the number of active radios during weekday
evenings, perhaps corresponding to when people stop work-
ing for the day. There is also a slight rise around 8 p.m. on
weekends. We define an active radio as one that has at least
one registration or query logged at the nameserver within the
given time period.
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Figure 1. Histogram of the number of active radios on each day of the trace.
One corresponds to Sunday, two to Monday, etc. There is a dip around the
16th through the 18th days corresponding to the holes in the trace data.
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Figure 2. Graph showing the average, minimum, and maximum number of

active radios for each hour of the trace. The two sets of lines, one lower in

the evening hours and one higher, correspond to the weekend and weekdays

respectively. We ignore those days containing the holes in the trace during
which no events were logged.

To find out how active the network gets, for each poletop
we first count how many distinct radios register with or query
from that poletop over the course of the trace. This ranges
from handling only one distinct radio event over the course of
the entire trace to handling 6,677 events (6,064 registrations,
434 queries), which occurs at the poletop at Metricom head-
quarters. Figure 3 shows the distribution within this range.
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Figure 3. Cumulative histogram of the number of poletops (y-axis) that han-

dle a certain number of distinct active radios over the course of the entire

trace (x-axis). Note that to show the detail, we cut off the tail of the graph,

which extends out to 6,677 radios for all events, 6,064 radios for registrations
only, and 434 radios for queries only.
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Figure 4. Two-variable histogram, where the darkness of the bar reflects the
number of poletops that receive events from a given number of radios, by
hour of the day. No matter what time of day it is, most poletops see events
from fewer than 10 radios in an hour. The largest number of radios a poletop
receives events from within an hour is 182. Note that the maximum number
of radios at any point in the graph is the total number of poletops (14,053)
multiplied by the number of times that hour occurs during the trace (once for
each of the 52 days).

We also examine how many radios and radio events per
hour a poletop needs to handle. Figure 4 shows that while
the majority of poletops only handle one radio an hour, some
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Figure 5. Two-variable histogram, where the darkness of the bar reflects the

number of poletops receiving a given number of events per hour, by hour of

the day. Note that the top of the graph, which extends to 1,601 events, has
been cut off to show the detail.

poletops may handle up to 182 distinct radios an hour. Fig-
ure 5 shows that most of the time, most poletops handle 500 or
fewer radio events per hour, although some particularly busy
poletops handle up to 1,600 events in an hour. Note that the
shapes of both the dark areas and the peak values in figure 4
resemble figure 2 with the low points falling between 3 a.m.
and 5 a.m., whereas in figure 5, only the dark areas at the
bottom portion of the graph resemble figure 2. The peaks in
figure 5 do not follow the rise and fall of radio activity. This
lack of a clear rise and fall in peak activity could be due to
frequent radio registrations regardless of radio activity.

We also look at how often the network needs to handle
events, both in the overall network and per poletop. In the
overall network, the three largest intervals between two suc-
cessive events by any radio, discounting the holes in the trace,
are 1293 s (21 min), 744 s (12 min), and 59 s. Each of these
intervals occurs only once. Figure 6 shows that by far, how-
ever, the network had either no time, or one to two seconds be-
tween events. If we look only at registrations in the network,
the distribution of intervals is almost identical. However, if
we look only at queries, we see that the curve is shallower,
with some larger intervals up to 10 to 12 s occurring more
frequently. This result is due to the many fewer queries than
registrations that occur.

Figure 7 shows the cumulative distribution of intervals be-
tween events at distinct poletops, rather than in the overall
network. This figure differs significantly from figure 6, with
a much longer tail, due to different poletops having different
loads. Some poletops are basically inactive, processing only
two or three events during the entire trace, while other pole-
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Figure 6. Cumulative histogram of the interval between successive events

over the entire trace as a function of how often that interval occurs. For
clarity, we do not plot the tail, which extends to 1,293 s.
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Figure 7. Cumulative histogram of the interval between successive events at a
poletop as a function of how often that interval occurs. For clarity, we do not
plot the tail of the graph, which extends out to 4,319,696 s (71,994.9 min,
1199.9 hours, or 49.9 days) for all events and registrations only, and to
4,370,269 s (72,837.8 min, 1213.9 hours, or 50.6 days) for queries only.

tops handle thousands in an hour. One similarity between the
two graphs is the lower curve for queries only, in both cases
due to there being fewer queries overall.

Finally, figure 8 shows the most active poletops in the San
Francisco Bay Area. A picture of the entire United States,
covering all areas in which Metricom has established an in-
frastructure, is too crowded, so we choose to show just the
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Figure 8. Picture of the San Francisco Bay Area. Each dot corresponds to a
poletop. The darker the dot, the more radios visit that poletop over the course
of the trace.
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Figure 9. Histogram of the distance between successive events in the network
by any radio as a function of how often that distance occurs.

Bay Area since it has the highest concentration of poletops.
The darker dots correspond to the more active poletops. Sev-
eral hot spots are worth noting. First, the dark area in San
Francisco corresponds to the Financial District. The second
strip of scattered dark dots running northwest-southeast corre-
sponds to Highway 101, on which many high tech companies
have their headquarters. Another hot spot is the dark dot in the
upper part, which corresponds to Berkeley. Also, towards the
bottom is a hot spot corresponding to Metricom headquarters.
The lowest island of activity corresponds to Santa Cruz.
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We also want to investigate how the activity in the network
is distributed geographically, rather than temporally as shown
in figure 6. Now we look at the interval in distance between
successive events in the entire network. As we can see in fig-
ure 9, there are several common distances: 100 miles or less,
around 650 miles, around 1000 miles, 1400 miles, 2000 miles,
and 2400 miles. These distances all correspond either to traf-
fic within a Metricom installation or to the approximate dis-
tances between various Metricom installations. Because the
Bay Area contains about 65% of the poletops in the Metricom
infrastructure, distances of 100 miles or less are prevalent. In
other words, two successive registrations in the network are
more likely to both be in the Bay Area than to be distributed
across the country. However, we can see a Gaussian distribu-
tion around each of the common distances. This implies that
given the radius of the network, the distance between regis-
trations of any radio in the network is likely to be a Gaussian
distribution around the radius.

4. Radio mobility

The other major set of questions we want to answer concerns
radio mobility:

1. How often do radios move?
2. How far do they move?
3. Can we identify patterns of mobility?

Answering these questions is crucial for understanding
whether and how people actually take advantage of a mo-
bile environment. Also, understanding current radio mobil-
ity helps in choosing parameters for simulations of mobile
networks. Unrealistic movement models lead to unrealistic
simulation results.

To summarize the results in this section, we first find that
users who are mobile do not move frequently, and that 64%
of all users only appear at one location per day. As for how
far users move, most users move within their local area, with
fewer users traveling the long distances between different
Metricom installations. In addition, as the number of loca-
tions visited by a user increases, the average distance traveled
between each location decreases. Finally, we are able to find
patterns of mobility for users, such as the number of users
who are active both day and night versus users active only
during the day. We now examine these findings in more de-
tail.

We first calculate the number of different poletops and lo-
cations at which radios register over the course of the trace.
Figure 10 shows that 42% of all radios are stationary, and that
64% of all radios visit only one location a day. This implies
that although users do move around with their laptops, the
movement is not very frequent. We can also see the difference
between looking at poletops versus locations. While 42% of
radios are stationary with respect to location, only 16% of
radios are stationary with respect to poletops, meaning that
radios often register with poletops that fall in the same clus-
ter or general area. Our location finder underestimates user
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Figure 11. Histogram of the average, minimum, and maximum number of ra-
dios changing locations during a particular hour of the day. The time plotted
is the second of two successive events.

mobility, so there may be more actual locations than we have
found (see section 5.3).

We also measure how many radios appear, i.e., register or
query, at a different location from their last appearance. Fig-
ure 11 shows these results. Unsurprisingly, this rate mimics
the usage graph in figure 2, with anywhere from 122 (0.5%)
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Figure 12. Cumulative histogram of the number of events as a function
of the distance traveled. Note that the tail of the graph (which extends to
2,576 miles) has been removed to show detail. Also note that each pair of
corresponding poletop and location lines converge at one mile. The straight
line between 0 and 1 miles for the location graphs reflects the fact that loca-
tions cluster poletops together: poletops that are close together are considered
to be a single location, and therefore, represent a movement of distance zero.

to 1,484 (6.0%) radios changing location at a time. There are,
however, some interesting features to the weekday curve in
figure 11. First, there is a dip around 11 a.m. to 2 p.m., ap-
proximately corresponding to lunchtime, showing that many
people do not take their laptops to lunch wih them. Second,
there is an increase in the number of radios changing location
around 5 p.m., about when many people stop working for the
day. We still observe the dip in the weekday evenings similar
to figure 2.

We next look at how far a radio moves when it changes its
primary poletop or location. Figure 12 shows the distribution
of how often radios move a given distance, in terms of move-
ment both between poletops and between locations. Over
79% of the events (or 80% of registrations, 90% of queries)
involve no change in location. If we then look at figure 13,
we can see that while the majority of successive events occur
within 50 miles of one another, there are small peaks cor-
responding to the long-distance routes between airports and
major cities in which Metricom has established an infrastruc-
ture. While this graph looks similar to figure 9, cross-country
registrations are much less frequent when examining individ-
ual user behavior rather than overall network behavior.

We further examine radio movement in table 1, which
shows the breakdown of radios by how often they move, both
overall and per day, and how far they move. First, a radio that
visits more locations overall does not necessarily also appear
at proportionally more locations per day. For instance, the
majority of radios that visit three or more locations overall
still only appear at one to two locations on a daily basis. Fur-
thermore, only 3.5% of radios that visit more than four loca-
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tions overall appear at more than four locations per day on av-
erage. (Note that one distinct location may be counted as mul-
tiple visited locations per day. For example, a user that visits
location A followed by location B before returning to loca-
tion A in one day is counted as appearing at three locations in
that day.) This result implies that users who visit many loca-
tions do not necessarily move around more on a daily basis,
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Figure 13. Histogram of the percentage of successive events from a radio as a
function of the distance traveled between those events. Note the logarithmic
scale on the y-axis.
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but rather visit the different locations over a longer period of
several days or weeks.

More surprisingly, as the number of locations visited on a
daily basis increases, the average distance traveled decreases.
In other words, the more someone moves around each day,
the closer the locations are. This overall decreasing trend may
correspond to the flatter distribution of the range of distances
among users who visit multiple locations per day, although
the majority of locations are still relatively close together.
This distribution could stem, for example, from users using
their laptops on a train, such as the train that runs along High-
way 101, causing them to “visit” numerous locations on their
way to work.

Users who visit one location per day, independent of the
total number of locations visited throughout the trace, have a
large discrepancy between the average distance traveled and
the median distance traveled. This discrepancy is likely the
result of these users actually being split into two sub-groups:
those who travel locally (for example, people who take their
laptops home on the weekends), and those who travel long
distances (perhaps people who only use their laptops when
travelling). The median distance traveled reflects the usage
patterns of this first sub-group, while this second sub-group of
users increases the average distance traveled for all the groups
of users who, independent of the total number of locations
visited throughout the trace, only visit one location per day.

Despite this overall decreasing trend in the average dis-
tance, the median distance stays relatively constant, reflecting
the many users who only move short distances. Further, the

Table 1
How far users move depending on how many locations and locations per day a user visits. For example, 510 users visit only two locations throughout the
entire trace, but on average, visit between one and two locations per day.

Number of Number of Average Median Number of locations Number of Average Median
locations radios (%) distance distance per active day (max) radios (%) distance distance
1 10,459 (42.2%) 0 0 1(1.0) 10,459 (100%) 0 0
2 2,746 (15.1%) 6.9 2.9 1(1.0) 2,152 (84.1%) 11.6 1.6

1-2 (1.98) 510 (13.6%) 2.1 1.7

2(2.0) 84 (2.3%) 1.7 1.3

3 2,371 (9.6%) 52 1.6 1(1.0) 1,367 (57.7%) 11.3 1.7
1-2 (1.98) 914 (38.5%) 3.5 1.6

2 (2.0) 47 (2.0%) 2.3 1.9

2-3(2.92) 31 (1.3%) 2.3 2.0

3(3.0) 12 (0.5%) 2.2 2.2

4 1,694 (6.8%) 4.2 1.5 1(1.0) 569 (33.6%) 8.4 1.6
1-2 (1.98) 1,013 (59.8%) 4.6 1.5

2(2.0) 44 (2.6%) 2.3 1.5

2-3 (2.98) 55 (3.2%) 2.1 1.5

3(3.0) 3 (0.2%) 2.0 1.9

3-4 (3.65) 8 (0.5%) 1.5 1.3

4 (4.0) 2 (0.1%) 7.9 2.7

>4 6,503 (26.3%) 7.9 2.4 1(1.0) 438 (6.7%) 12.2 1.7
1-2 (1.98) 4,434 (68.2%) 11.2 1.8

2(2.0) 126 (1.9%) 4.2 1.3

2-3 (2.98) 1,020 (15.8%) 49 1.7

3(3.0) 36 (0.5%) 6.0 1.7

3-4 (3.96) 210 (3.2%) 4.3 2.0

4 (4.0) 13 (0.2%) 4.3 2.0

>4 (24.48) 226 (3.5%) 8.0 6.9
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Figure 14. Cumulative histogram of the number of times a certain number of
registrations occur before a query. Note that to show the detail, we cut off the
tail of the graph which extends to 7,948 registrations between queries.

average and median distances, in terms of the total number
of locations visited rather than the average number of loca-
tions visited per day, are also relatively constant, implying
that movement is dependent more on how many locations a
user visits on a daily basis than on how many locations a user
visits overall.

4.1. Radio queries

Before we look into categorizing radios into different pat-
terns of mobility, we examine radio behavior with respect to
queries. Queries are usually made when a radio makes a new
connection, although some radios are used as part of Metri-
com’s diagnostic utilities and make many more queries than
are normal. Note that a query is made regardless of whether
the user is using the radio in modem mode or StarMode (or
packet mode) [2]. If the radio is being used in StarMode, the
radio could have multiple outstanding connections at a time.
Since we do not have information about the end of a connec-
tion, we do not account for this situation. Using the radios in
modem mode is prevalent, however. Because very few radios
are used for diagnostic purposes and very few radios are used
in StarMode, we believe that our results are a good approxi-
mation.

Our main interest with regard to queries is in how much
activity there is between queries. We first look at how many
times radios register between queries. Figure 14 shows the cu-
mulative distribution of how many registrations occur before
a query, which is indicative of the amount of activity between
the beginnings of different connections. The majority of con-
nections occur after 30 or fewer registrations. In figure 15,
we examine how often a radio changes its location or poletop
before starting a connection. This graph is indicative of how
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Figure 15. Cumulative histogram of how often a certain number of poletops

or locations are registered at before a query is made. Note that to show the

detail, we cut off the tail of the graph which extends to 1,193 locations and
3,334 poletops.

much movement there is between connections. Note that a
connection can be long-lived and last for days, explaining the
tail of the graph, which extends out to 1,193 locations or 3,334
poletops. Also note that we count the number of changes in
location; if a radio visits location A then B then C then B and
then A again, we count this sequence as four location changes.
We see in figure 15 that 70.4% of connections have no move-
ment before them at all, while 95% of radios change location
fewer than four times. In other words, most radios do not
move around much between connections. Unfortunately, we
do not have information about when connections terminate so
we do not know how much of the movement occurs while the
connection itself is maintained.

4.2. Patterns of mobility

Our final goal is to categorize the radios into different pat-
terns of mobility. One expected pattern, for example, might
correspond to a user who moves between using the radio at
home and at the office. Another pattern would correspond to
the user who just uses the radio at home. Yet another pattern
might correspond to a traveling salesman who uses the radio
to keep in touch with the warehouse. We are interested in
these patterns to see whether and how people take advantage
of mobility.

Without comprehensively going through the radios by
hand, there is no way to find all the categories, much less cat-
egorize each radio, without using clustering algorithms. We
use a two-stage clustering because it avoids the difficulty in
finding a single stage clustering that balances both the lo-
cation and time information together. By separating out the
clustering into two stages, we can first cluster the radios based
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on how mobile they are and on some overall frequency para-
meters. Once we know how mobile the radios are, we can
adjust the second stage to reflect the results of the first stage,
and sub-cluster based on time of day to determine when ra-
dios are active.

More specifically, in the first stage, we cluster the radios
based on mobility using nine parameters:

o the total number of unique locations a radio visits through-
out the trace,

o the total number of unique locations a radio queries from
throughout the trace,

e the average number of locations a radio visits per active
day,

e the average number of locations a radio queries from per
active day,

o the total number of active days for a radio,
o the total number of query days for a radio,

e the average number of active days in an active week for a
radio,

e the average number of query days in an active week for a
radio, and

o the average number of query days per week for a radio.
An active day is defined as a day during which the radio

visits some poletop, a query day is defined as a day during
which the radio makes at least one query, and an active week
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is defined as a week during which at least one day is active.
We use EM (expectation maximization) to do this first-stage
clustering, since EM takes the differing ranges of the para-
meters into account, whereas the other clustering algorithms,
such as k-means, do not.

We then take each cluster resulting from the first stage,
and sub-cluster it based on more specific time information,
namely the times of day that the radio is used. Specifically,
for each radio we create two histograms counting the num-
ber of times the radio has an event per hour of the day, one
for weekdays and one for weekends. These histograms show
when the radio is active. We then normalize these histograms
and use them as the parameters for the second-stage cluster-
ing, thus grouping radios with similar active times. We do this
sub-clustering, rather than just re-cluster the entire space of
radios, so that we can see how each mobility pattern changes
by time of day.

We now look at the results from the first-stage clustering
and second-stage sub-clustering, shown in tables 2 and 3, re-
spectively. The first-stage clustering results in eleven clus-
ters. Cluster 1 consists of radios that are essentially not used
during the trace. Cluster 2 is comprised of stationary radios,
perhaps the ones used on desktop machines for home connec-
tivity. Cluster 3 consists of radios that are minimally mobile,
i.e., users that predominantly use their radios from a single lo-
cation, but may occasionally travel to the office to download
some software or data. Clusters 4, 5, 6, and 7 all consist of
radios that, while they do visit several locations, do not neces-

Table 2
Results from the first-stage clustering, which results in 11 clusters. Each cluster represents a parameterization for a different pattern of mobility.
Cluster ~ Number of  Total number of  Avg number of  Total number  Avg number of  Avg number of Description
radios loc’s (all, o, loc changes of active active days queries per
qry only, o) per active days (all, o, per active day (o)
day (all, o, qry only, o) week (all, o,
qry only, o) qry only, o)
1 5,877 1.02 (0.17) 1(0) 2.98 (7.34) 1.41(0.95) 0(0) Not used
0(0) 0(0) 0(0) 0(0)
2 4,608 1(0) 1(0) 27.65 (18.43) 3.98 (1.94) 2.41 (2.21) Stationary (home connectivity?)
1(0) 1(0) 20.31 (15.69) 3.12 (1.68)
3 4,765 2.98 (1.50) 1.40 (0.69) 22.66 (17.02) 3.51(1.79) 2.28 (1.51) Minimal mobility, moderate usage
1.60 (0.81) 1(0) 16.04 (13.84) 2.77 (1.49)
4 1,117 5.59 (3.67) 2.81 (1.66) 5.63 (3.21) 1.76 (0.60) 3.91 (4.32) Moderate mobility, minimal usage
2.87 (2.12) 1.26 (0.77) 3.78 (2.85) 1.38 (0.86)
5 1,422 5.13 (2.53) 1.50 (0.41) 15.50 (5.75) 2.66 (0.65) 2.42 (1.05) Moderate mobility, low usage
3.65 (1.57) 1.16 (0.10) 13.63 (5.17) 2.51(0.63)
6 1,603 4.55 (2.32) 1.39 (0.36) 35.22 (6.88) 4.69 (0.73) 2.59 (1.23) Moderate mobility, moderate usage
3.17 (1.26) 1.12 (0.10) 31.23 (6.26) 4.24 (0.70)
7 984 5.19 (3.0) 1.84 (0.79) 47.99 (2.77) 6.05 (0.33) 3.64 (2.04) Moderate mobility, high usage
3.43 (1.66) 1.25 (0.26) 46.16 (3.22) 5.83(0.39)
8 882 5.23 (3.98) 9.43 (8.14) 37.62 (15.36) 5.15 (1.48) 1.68 (0.66) Moderate mobility, train users?
2.41 (1.12) 1.15(0.17) 17.41 (13.19) 2.76 (1.39)
9 1,459 12.05 (6.44) 3.06 (1.49) 22.21 (7.26) 3.51(0.78) 3.23 (1.80) High mobility, moderate-to-low usage
6.85 (3.46) 1.43 (0.28) 19.67 (6.88) 3.34 (0.81)
10 1,299 12.14 (7.83) 4.17 (2.51) 42.91 (5.63) 5.51(0.62) 3.18 (1.33) High mobility, high usage
6.83 (4.09) 1.55 (0.39) 39.50 (5.88) 5.13 (0.66)
11 757 18.85 (19.70) 6.87 (6.02) 30.92 (15.08) 4.54 (1.47) 12.45 (21.83) High mobility, moderate usage,
9.41 (10.57) 1.80 (1.31) 21.34 (16.80) 3.33(2.07) high connection rate
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Table 3
Results from the second-stage clustering. Each row corresponds to a time pattern, which is shown with a representative histogram. The x-axis of the histogram
is the hour of the day, and the y-axis is the percentage of events occurring during that hour. The black bars correspond to weekday usage, and the white
bars correspond to weekend usage. Eight time patterns emerge, and the distribution of these patterns differs amongst the mobility patterns resulting from the
first-stage clustering. Note that each first-stage cluster corresponds to one column of the table.

Representative histogram Cluster
2 3 4 5 6 7 8 9 10 11
1 42.1% 26.6% 12.5% 20.4% 33.9% 12.5% 28.1%
1,939 1,267 200 201 299 163 213
4]]1 flogoh l]q] 1] !]I] I]I] ‘]l][l I]!] I]lll]
2 3.9% 15.3% 5.1%
62 151 66
J]I]I]J] - hhl]!].l]l]l]‘]l][ll]l][ll]l]
3 21.4% 39.2% 33.1% 46.8% 38.1% 35.9% 49.3% 19.7% 44.3% 37.0%
984 1,865 370 666 611 353 435 287 575 280
PR {11111 1P
4 18.9% 8.7% 10.4% 28.6% 42.3% 27.0% 13.5% 71.7% 36.9% 28.5%
————— 873 415 116 407 679 266 119 1,046 479 216
bingtgoiogolifi.
5 0.2% 1.4% 1.9% 1.9% 0.2% 0.2% 0.1% 0.7%
1 1 8 69 21 27 2 3 1 5
.J] ||‘]l.u*1-l|] ML
6 0.4% 0.1% 0.9% 0.6% 0.2% 0.8% 0.5%
—f- 4 2 9 5 3 11 4
J] I] !]l]llll‘].lll]ll‘]l].l]ll‘ll]ll.l]*].l]ll.l]
7 15.2% 23.4% 48.6% 20.1% 2.7% 1.9% 7.9% 0.1% 5.2%
705 1,114 543 286 43 17 115 1 39
kb I-I]I]l]ll_ll]l:ll L
8 2.2% 0.7% 6.1% 2.6% 0.4% 0.4% 0.6% 0.3% 0.2%
| 102 35 63 36 6 4 5 5 3
UL

sarily visit all of those locations during a single day. In other the least, and the radios in cluster 6 used the most. However,
words, the movement is spread out over a larger amount of the radios in cluster 4 also move around the most per day of
time. The main difference between these three clusters is in  usage, with more location changes per day. Cluster 8 consists
how often the radios are used, with the radios in cluster 4 used of radios that on any given day, visit approximately twice as
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many (not necessarily distinct) locations as they see different
locations in the entire trace. This behavior could correspond
to users who commute by train and use their laptops while
on the train, thus visiting most of their locations twice in one
day, once on the way to work and once on the way back. Clus-
ters 9—11 correspond to radios that move around much more,
differing mainly in how often the radios are used and how
many connections are formed per day.

Table 3 shows the eight prevalent timing patterns resulting
from the second-stage clustering:

1. A smooth curve similar to figure 2, with usage balanced
across weekends and weekdays.

2. A curve similar to the previous one, but the times are
shifted so that the time of least usage is later (around 5
to 6 a.m. rather than 4 a.m.), perhaps consisting of techies
who are used to working later hours.

3. A distribution in which the usage later in the day primarily
occurs during the weekend and the usage during the day
primarily occurs on weekdays.

4. A distribution in which there is almost no activity all night,
and the peaks are a little more obvious. In fact, slight peaks
around 9 to 10 a.m. and 6 to 8 p.m. can be seen in the
weekday and weekend usage.

5. A distribution with very obvious peaks, usually one to two
big weekend peaks and two to three smoother weekday
peaks. The histogram pictured is merely representative,
since other time usage distributions in this cluster have the
peaks at different times.

6. A distribution we call system administration hours, with
usage throughout the day, but higher usage late at night.

7. A relatively smooth weekday usage curve, predominantly
during the day, with almost no weekend usage.

8. And finally, a very sporadic distribution, with one to two
peaks during both the weekday and weekends. Similar
to 6, these peaks can be shifted in time.

From table 3, we see that while we can observe patterns of
mobility derived from the first-stage clustering, not all users
within a cluster execute their particular mobility pattern at the
same time. Instead, users can be further divided into time pat-
terns. For example, cluster 2 consists of 4,608 stationary ra-
dios. This set of radios can further be broken down into users
who balance their radio usage across weekends and weekdays
(time pattern 1), and users who almost never use their radios
at night (time pattern 4, and to a lesser extent, time pattern 3),
for example. Also note that not all time patterns occur in
every mobility pattern and that the percentages of different
time patterns occurring in different mobility patterns vary.

5. Lessons learned

During the course of this analysis, we learned several lessons
about the importance of visualization tools, the difficulty in
analyzing a trace taken for a purpose other than our own, and
the importance of parameter choice in clustering algorithms.
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5.1. Visualization

The first lesson we learned is that visualization tools are cru-
cial given the volume of data. Without the ability to see a
high-level view of the data, it is easy to get bogged down in
the details of a very small part of the data set.

In addition, without using different levels of detail, visu-
alization is very difficult, especially given the volume of data
involved. In other words, rather than always dealing with the
raw registration data, determining intermediate parameters,
such as locations and the number of active days, is critical
in being able to understand the overall picture.

We used a custom visualization built on top of the Rivet
visualization environment [ 1], combined with our own imple-
mentation of the clustering algorithms to help us understand
(and debug) the clustering algorithms themselves and to un-
derstand the results from the clustering algorithms. Having
a custom visualization in which we could implement the ex-
act visualizations and interactions we wanted, adjust the al-
gorithm parameters, and implement and adjust the algorithms
themselves was key in understanding the data and the results.

5.2. Tracing

The next lesson we learned was about the difficulty in ana-
lyzing a trace that was not gathered for the purpose of our
analysis, since the trace gathered by Metricom for their own
purposes is missing data we would have found useful. Sev-
eral unanswered questions and ambiguities are a direct result
of not having control over what data was recorded and where
the data was recorded.

First, one question we wanted to answer was how long
a radio stays active, or in other words, how long sessions
last. However, session delimiters are not included in the trace.
Therefore, session duration results which might be directly
calculated from a tcpdump trace using TCP SYN and FIN
markers, for example, had to be inferred here. In fact, we
tried several different methods to infer session duration re-
sults, and concluded that while we cannot infer the session
duration accurately enough, we can infer that the radio has a
linear backoff registration scheme.

Figure 16 shows how often a given interval between suc-
cessive registrations by a single radio occurs. The histogram
shows exponentially decreasing peaks every 600 s, or 10 min.
If the radio is not reset or if the radio does not change its pri-
mary poletop, the radio first registers 10 min after the initial
registration, then 20 min, then 30, and so on. Rather than the
typical exponential backoff found in networking protocols, a
linear backoff is used.

Second, we wanted to investigate patterns of communica-
tion between radios. However, the trace has been anonymized
to protect Metricom customers’ privacy. As a result, we have
no information about the other end of a radio’s connection,
or a mapping from radio to user, and can learn nothing about
patterns of communications between radios.

Third, since we have a log from the nameserver only, we
could not differentiate problems at the nameserver from prob-
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show the details.

lems in the network. For example, the trace includes three pe-
riods during which no radio registrations were logged: Feb-
ruary 16, 6 a.m. through 1 p.m.; February 16, 5 p.m., through
February 17, 4 a.m.; and February 17, 4 p.m., through Febru-
ary 18, noon. We do not know if these holes in the trace were
due to a nameserver malfunction or a series of network out-
ages. Metricom has since suggested that this outage is likely
a failure in the logging mechanism rather than any network
malfunction that would affect users.

Another example of such an ambiguity is a potential net-
work reconfiguration on March 19. On that day, several po-
letops, previously unseen in the trace, first appear near a po-
letop at Metricom headquarters and then within the period of
an hour, 5 p.m. to 6 p.m. on March 19, reappear at a new loca-
tion in the Midwest. We do not know whether these poletops
malfunctioned, or whether the network was in fact reconfig-
ured. We suspect the poletop radios were being tested before
installation in the Midwest.

Finally, the timestamps are the last problem we encoun-
tered in analyzing this trace. They are taken at the name-
server, which means that while clock skew is not a problem,
network traversal time between the radio and the nameserver
is not taken into account. Although we cannot determine the
upper bound for this error, we can approximate the average
error, since Metricom states that each packet will make no
more than three wireless hops before reaching a wired access
point. Traversing three wireless hops takes on average be-
tween 200 ms and 400 ms, which is less than the accuracy
of the timestamp itself, making this a non-issue. These unan-
swered questions and ambiguities are all a direct result of not
having the necessary data.

TANG AND BAKER
5.3. Clustering

The final lesson we learned while doing this analysis is the
importance of parameter choice and distance function in both
hierarchical and k-means clustering.

For example, when we use hierarchical agglomerative
clustering to group poletops into locations, the choice of a
cutoff distance is crucial. Hierarchical agglomerative cluster-
ing builds a tree by iteratively finding the two closest nodes
without parents to become the children of a new parent node.
Since the distance associated with each parent node is the dis-
tance between its two children, we can use this information to
differentiate between different clusters. However, we found
that there is no good static value to use as a cutoff between
clusters.

We use a dynamic cutoff instead. Given all of the distances
between children nodes, we look for the first distance which
is greater than half a mile. We then look for an exponential
increase (i.e., factor of two) over that distance. This new dis-
tance is the cutoff used to differentiate clusters of poletops
into locations.

We then use k-means to refine the clusters. In k-means
clustering, the number of clusters is chosen a priori, and the
points are assigned to clusters iteratively. This algorithm is
repeated for each radio.

Because we do not know a priori the number of locations
a radio visits over the course of the trace, we cannot just use
k-means or EM in this situation. Hierarchical agglomerative
clustering helps us determine the number of locations for a
radio. We also do not use EM in this situation, since the units
in both parameters are the same.

The Metricom network already has a coarse granularity:
no movement within a building can be detected. We make the
network coarser by clustering poletops into locations, with the
choice of a minimal distance affecting the resulting coarse-
ness. Figure 17 shows how changing the minimal distance
affects the number of locations a radio sees. For example, the
most locations any radio visits using 0.5 miles as a minimal
distance is 176. Using a minimal distance of 0.25 more than
doubles this number to 428. We chose to underestimate the
number of locations visited per radio, and thus underestimate
the total mobility in the network.

An example of the importance of the choice of distance
function in the clustering algorithm occurs in the second-stage
clustering used to generate the results in table 3. Rather than
using the standard Euclidean or Manhattan distance when
clustering, we modified the standard Euclidean distance func-
tion for the clustering based on peak time usage such that the
distance between midnight (0) and 11 p.m. (23) is 1 rather
than 23. Finally, the two-stage clustering of radios to find
patterns of mobility shows how parameter choice is crucial.
When we clustered on poletops merely to find the logical
grouping into locations, the choice of parameter was obvi-
ous: the latitudinal and longitudinal position of the poletop.
For mobility, however, we had many choices in how to para-
meterize each radio.
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When we first clustered based on the overall mobility of
the radio and on the frequency of radio usage, some other
parameters we could have used were:

1. The total number of registrations, since we might want to
differentiate radios that are barely active during the trace.
However, this parameter varied so much in value that it
influenced the resulting clusters too much.

2. The total number of poletops at which a radio registers. We
felt that it would be better to use the location information
derived from the poletops, since this is more reflective of
the radio’s actual movement than the poletops themselves.

We also could have chosen not to use all nine of the pa-
rameters we did use. Changing which parameters are used
affects the results of the clustering.

Further, when we did the time-based second stage clus-
tering and chose the overall peak times of day for the final
dimensionality, we also could have chosen any of the follow-
ing:

1. Peak time per location. Rather than two overall peaks,
base the dimensionality on the total number of locations
rather than the number of locations per active day. This
choice does not work very well due to users who may visit
many more total locations over the course of the trace than
they visit per day, leading to unclear results. We could also
look at peak time per day of the week, rather than overall
peak times.

2. Durations rather than start times. Due to the linear backoff
registration scheme, this parameter is hard to quantify.
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6. Related work

We know of no other publicly available analysis of a metro-
politan mobile network of this scale. However, there are stud-
ies of smaller mobile networks.

Researchers at CMU examined their large WaveLAN in-
stallation [4]. This study focuses on characterizing how the
WaveLLAN radio itself behaves, in terms of the error model
and signal characteristics given various physical obstacles,
rather than on analyzing user behavior in the network.

Another related set of papers is joint work from Berkeley
and CMU [7]. The main paper in this set outlines a method for
mobile system measurement and evaluation, based on trace
modulation rather than on network simulation. This work
differs from our own in several ways. First, the parameters
they concentrate on deal with latency, bandwidth, and signal
strength rather than radio movement. Second, their empha-
sis is on using these traces to analyze new mobile systems,
rather than on understanding the current system. In this pa-
per, our goals are to understand how people use an existing
mobile system, with the eventual goal of providing parame-
ters that could be used in simulating mobile networks in the
future. Our current focus is on radio movement rather than
radio behavior characteristics such as latency and bandwidth.

We previously performed a study of a combined wireless
and wired network [5]. However, this study was limited in
that only eight users participated rather than the 24,773 in our
trace. Also, the Stanford study concentrated more on com-
paring which end-user applications were used in the wireless
versus wired arena, and on determining the characteristics of
the wireless network, such as latency and bandwidth.

7. Conclusion

Although the information in the traces limits the obtainable
results and the results themselves are particular to the Met-
ricom network, with its metropolitan-area coverage and high
latency (compared to a local-area network), our analysis is a
start on understanding how people take advantage of a mo-
bile environment. We find that the more locations users visit
on a daily basis, the closer together, on average, those loca-
tions are. In addition, the distance users move is a Gaussian
distribution around the radius of the network. We also find
that radios are used mostly during non-work hours, presum-
ably due to users connecting to a faster network connection
during work hours.

Given that many simulations of radio mobility assume a
static time between radio movement or some other simple
model of user movement, our results present a more realistic
model of movement. We hope that these results can be used
to guide simulations to yield projected network performance
results based on observed movement.

8. Future work

The main body of future work needed is the comparison of
this trace to other mobile network traces. It is possible, even



120

probable, that at least some of the results are a product of the
Metricom network and its features, such as its latency, net-
work infrastructure, and trace information or lack thereof. For
example, the latency in the Metricom network is high enough
that people probably do not use it as they would an in-building
wireless network such as WaveLAN. We would like to trace
another network ourselves, and see how those results differ
from these.
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